Conceptual schema matching with the Ontology Mapping Language: requirements and evaluation

- Marian de Vries / Thorsten Reitz
- AGILE workshop 2009
Overview

• About conceptual schema matching
• Requirements for a mapping language
• What is OML
• First tests
Data harmonisation

• Two kinds of issues: at general level, and at instance level

• At general level:
 Data model (conceptual schema)
 Spatial reference system
 Level-of-detail, scale / resolution
 (Data format)
 Terminology, semantics (meaning)
 Metadata profile
 Portrayal

• At instance level:
 Edge matching
 Solving conflation (doubles, etc.)
 Other data quality issues
Data harmonisation

• Two kinds of issues: at general level, and at instance level

• At general level:
 - Data model (conceptual schema)
 - Spatial reference system
 - Level-of-detail, scale / resolution
 - (Data format)
 - Terminology, semantics (meaning)
 - Metadata profile
 - Portrayal

• At instance level:
 - Edge matching
 - Solving conflation (doubles, etc.)
 - Other data quality issues
Transforming existing geodata to new schema, e.g. INSPIRE

Steps are

• Specifying (or re-using) target data model / schema
• Reverse-engineering (often) data model of existing data
• Definition of mapping rules between schema of source data and target schema
• ‘Execution’ of mapping rules in actual data transformation process
The diagram illustrates the HUMBOLDT Framework, which comprises a Technical Process and Target Definition.

Technical Process
- Source
- Processing
- Target

Target Definition
- Decision-based specifications
- Technical specifications
- National Data Sources on the same theme, e.g. parcels
- Applications based on different themes
- HUMBOLDT scenarios

The framework connects sources through processing steps to a target, with decision-based and technical specifications influencing the outcomes.

INSPIRE

The diagram also highlights the INSPIRE initiative, emphasizing the importance of national data sources and the potential for applications and scenarios.
On-the-fly, at server, in client, ...

- Several options for when, where and how of actual data transformation
 - On-the-fly during data retrieval
 - in mediator service?
 - in client?
 - Or beforehand by data provider
 - as migration step (physical copy)
 - or by configuration of e.g. WFS
- Different data formats, software platforms
[Conceptual Schema] Transformation

Goal:
- **Application expert** is able to specify the mapping
- **HUMBOLDT Software** is able to perform the processing automatically based on the mapping specification

Processing chain
(edge matching, coordinate transformation, etc.)
Matching tables, spreadsheets

- **Matching table (input domain expert)**

<table>
<thead>
<tr>
<th>Feature class: er:RoadLink</th>
<th>Feature class: de:Ver01_L</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>er:id</code>/<code>er:permanentId</code></td>
<td>de:OB</td>
</tr>
<tr>
<td><code>er:RoadName</code></td>
<td>If de:OBJART in (3102, 3101)</td>
</tr>
<tr>
<td><code>er:roadName1</code></td>
<td>de:GN (when ‘NNMN’ then ‘Null or no value’)</td>
</tr>
<tr>
<td><code>er:roadName2</code></td>
<td>de:KN (when ‘NNMN’ then ‘Null or no value’)</td>
</tr>
<tr>
<td><code>er:alternativeName</code></td>
<td>de:ZN (If not null)</td>
</tr>
<tr>
<td><code>er:RoadSurface</code>/<code>er:roadSurface</code></td>
<td>If de:OBJART =3102 and de:BEF!=1000 then ‘unpaved’</td>
</tr>
</tbody>
</table>
Encoding schema mappings

• Must be a better way than spreadsheets or tables
• ETL tools, but for professionals
• HUMBOLDT: open source tools for data harmonisation,
• One focus point is: developing tool for conceptual schema matching
 (HALE, see Session 6 tomorrow)
• Schema mappings are then used in other components of the HUMBOLDT software for actual data transformation

• → we needed a language to encode the schema mappings
Requirements for mapping language

• Open, non-proprietary
• Generic, at conceptual level, not bound to specific implementation
• Declarative (preferably), because that fits activity by domain experts of Model 2 Model mapping
• Support for all needed aspects / types of schema translation = expressiveness
• Complete and unambiguous: no extra information is needed at runtime to do the actual data transformation
‘Must have’

• Rename

• Filter: definition of subsets based on attribute values or spatial operations (intersect, buffer, etc.)

• (Simple and complex) Functions
 - Concatenate, multiply by 10, covert from yards to meters, …
 - Geometric conversions (e.g. MultiCurve -> Curve)
 - Etc.

• Easy way to recode attribute values (form of reclassification)

• Set default values
Schema translation: lessons learnt

• Previous work, e.g. GiMoDiG, see Lehto 2007
• Our own tests
 1. Filtering: conditional statements applied to source data to filter features (extract sub-sets)
 2. Reclassification of attribute values
 3. Renaming of feature classes or attributes
 4. Merge / split of features
 5. Change attribute order
 6. ...
Candidate languages considered

- OWL (Web Ontology Language)
- QVT implementation: ATL (Eclipse context)
- UML-T (mdWFS research)
- (SPARQL-Construct)
- SWRL

- But none of these fulfilled even part of the requirements
- …
OML = Ontology Mapping Language

• From EU projects SEKT, DIP and Knowledge Web

• Consists of 2 parts
 Align (which is used in some tools)
 Extension to Align, called OML

• OML is not a standard

• There are papers and other documentation, e.g.
OML: cells with entity-entity mappings

• See oml_v0.jpg
• Example mappings (plain XML) waterBW2inspire.xml
Steps

• Testing of OML’s strengths and weaknesses
 1. The expressiveness = can OML handle the most common schema translation situations (Lehto, our own tests) (mapping time)
 2. The completeness and unambiguity -> does OML provide all necessary information for the actual data transformation (runtime)

• Make a Java API for OML

• Use OML API in the Conceptual Schema Transformer components of the HUMBOLDT software
First evaluation: expressiveness

• We can express in OML all schema translation situations from previous
 “data transformation with XSLT” tests
• (= tests with German, Austrian and Swiss River and Road data sets)
• With a little tweak for the ‘missing value’/ set default case

• But we have to add / extend also
 A standardized list of function names and semantics
 More precise way to specify parameters to functions
 Clearer way to specify aggregation, intersection, and other set operations
Classifications of river width

Source Schema BY and BW

<table>
<thead>
<tr>
<th>Attribute „BRG“, Enumeration</th>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>< 3 m</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3 - 6 m</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6 - 12 m*</td>
</tr>
</tbody>
</table>

Source Schema VA

<table>
<thead>
<tr>
<th>Attribute „BRG“, Enumeration</th>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>< 5 m</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5 - 20 m</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>> 20 m</td>
</tr>
</tbody>
</table>

Target Schema

<table>
<thead>
<tr>
<th>Attribute „WidthLowerRange“</th>
<th>Range value, ></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Attribute „WidthUpperRange“</th>
<th>Range value, ></th>
</tr>
</thead>
</table>
First evaluation: runtime

• We can parse the OML examples and derive data transformation operations from the mappings

• With until now 2 exceptions (test with XML/GML input)

 Namespaces of data sets are not in the OML mapping -> but needed in Conceptual Schema Transformer software

At conceptual level (OML) not distinction 2 kinds of Properties, as is the case in XML (element and attribute)
Future work, outlook

• Add configuration possibility of implementation-specific details (in case of XML/GML: namespaces, element/attribute)
• Development of the CST (Conceptual Schema Transformer) components
• Integration with existing libraries (GeoTools most probably): re-use of functions
• More tests, especially with INSPIRE target schemas
• Serialization from HALE (HUMBOLDT Alignment Editor)