Electromagnetic Analysis of Nanoscale Heterogeneity
The Domain-Integrated Perspective
Lager, Ioan E.; Vandenbosch, Guy A.E.; Stumpf, Martin

DOI
10.23919/EuMC.2018.8541698

Publication date
2018

Document Version
Accepted author manuscript

Published in
2018 48th European Microwave Conference, EuMC 2018

Citation (APA)
https://doi.org/10.23919/EuMC.2018.8541698

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.
Electromagnetic analysis of nanoscale heterogeneity — the domain-integrated perspective —

Ioan E. Lager
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD Delft, the Netherlands
Email: i.e.lager@tudelft.nl

Guy A. E. Vandenbosch
Electrical Engineering Dpt., TELEMIC
Katholieke Universiteit Leuven
Kasteelpark Arenberg 10 bus 2444
B-3001 Leuven, Belgium
Email: guy.vandenbosch@kuleuven.be

Martin Štumpf
SIX Brno Research Centre
Brno University of Technology
Technická 3082/12,
616 00 Brno, the Czech Republic
Email: martin.stumpf@centrum.cz

Abstract — This paper introduces a new paradigm in the electromagnetic (EM) analysis of largely inhomogeneous nanostructures. It is shown that the high degree of inhomogeneity may render the traditional discretisation of such topologies problematic. A new discretisation scheme that is much better matched to these topologies is proposed. The scheme involves a more adequate meshing and discretisation formalism, in conjunction with an original combination of dual space-time EM analysis at nanoscale level. By starting from computational results’ relevance — to quote Professor de Hoop: more importantly, researchers must become more aware of the demand different approaches for a twofold reason: (i) technically, EM analysis of nanoparticles may push general-purpose codes beyond their limits and (ii) more importantly, researchers must become more aware of the computational results’ relevance — to quote Professor de Hoop: “A code will always yield some numbers.”

This paper advocates a novel viewpoint in the computational EM (CEM) analysis at nanoscale level. By starting from the fundamental works [6]–[10] and a selection of verified strategies [11]–[17] it will propose an approach that is deemed highly opportune for tackling nanoscale inhomogeneity.

I. INTRODUCTION

The versatility and (relative) affordability of commercial computational EM (CCEM), CST Microwave Studio (CST) and ANSYS – High Frequency Electromagnetic Field Simulation (HFSS) in the first place, ‘democratised’ the use of such instruments to the point where CCEM is presently presumed in any EM (related) research and became an almost standard tool in EM (related) curricula [1]. The prevalence of CCEM puts self-developed codes under pressure, such codes being now exclusively the territory of extremely specialised studies and, highly relevantly, being assessed against the same CCEM tools (construed as some sort of ‘golden standards’).

Can we compete with CCEM? For most simulation tasks, the answer is, probably, “no”. Nonetheless, nanotechnologies, e.g., nanospheres, nanodipoles or dimers becoming critical enablers as optical antennas [2]–[4], emerging carbon-based nanoelectronics [5], or applications beyond 1 THz that become more and more frequent, it is highly opportune for tackling nanoscale inhomogeneity.

Two aspects are crucial: (a) inhomogeneity is maintained in all envisaged configurations down to the mesoscopic scale and (b) a subdivision beyond that scale, although computationally perfectly possible, cannot be justified physically. These arguments recommend choosing the mesoscopic scale as the scale of the discretisation in a mesh-based CEM scheme. In the case of bounded domain techniques, e.g., the Finite Integration Technique (FIT) [6] (at the core of CST) or the Finite-Element Method (FEM) [19] (at the core of HFSS), the mesh should fit the boundaries of the (often highly) contrasting subdomains of the configuration. However, FIT is known to suffer from the effect of staggered grids with non-coincident electric and magnetic interfaces. Precluding the fuzziness of the resulting interfaces requires sub-meshing mesoscopic subdomains, often over very thin sheets, the employed material parameters having then little physical background on grounds of the observation (b) above. To the best of our knowledge, FEM too suffers from similar impediments. Moreover, depending on the discretisation of physical quantities at hand [7], [8], [12], [20], some EM field quantities may also be poorly represented.

By starting from the domain-integrated method, the CEM formalism introduced in [17, Section VI] offers a viable solution to this deadlock. The prerequisites will be:

- Construct a simplicial mesh at mesoscopic scale — tighten the mesh on the boundaries of the subdomains where material continuity can be assumed and sub-mesh those subdomains only inasmuch as the geometry demands it such that to be able to perform a Delaunay meshing.
- Discretise EM field quantities via consistently linear edge and face expansion functions [7]. A possible combination of such expansion functions with standard Cartesian ones (with [16], [21] offering the path to follow) may be considered for increased computational effectiveness.

The choice for EM quantities and their discretisation will be henceforth elaborated upon. These quantities will then be used in a set of EM field equations that can be directly transferred

macroscopic EM laws (see [18, pp. 286–289] for this lower bound). Moreover, this is also the limit at which macroscopic measurements are still feasible. In line with [15], [17], we term this scale as the mesoscopic scale.

Two aspects are crucial: (a) inhomogeneity is maintained in all envisaged configurations down to the mesoscopic scale and (b) a subdivision beyond that scale, although computationally perfectly possible, cannot be justified physically. These arguments recommend choosing the mesoscopic scale as the scale of the discretisation in a mesh-based CEM scheme. In the case of bounded domain techniques, e.g., the Finite Integration Technique (FIT) [6] (at the core of CST) or the Finite-Element Method (FEM) [19] (at the core of HFSS), the mesh should fit the boundaries of the (often highly) contrasting subdomains of the configuration. However, FIT is known to suffer from the effect of staggered grids with non-coincident electric and magnetic interfaces. Precluding the fuzziness of the resulting interfaces requires sub-meshing mesoscopic subdomains, often over very thin sheets, the employed material parameters having then little physical background on grounds of the observation (b) above. To the best of our knowledge, FEM too suffers from similar impediments. Moreover, depending on the discretisation of physical quantities at hand [7], [8], [12], [20], some EM field quantities may also be poorly represented.

By starting from the domain-integrated method, the CEM formalism introduced in [17, Section VI] offers a viable solution to this deadlock. The prerequisites will be:

- Construct a simplicial mesh at mesoscopic scale — tighten the mesh on the boundaries of the subdomains where material continuity can be assumed and sub-mesh those subdomains only inasmuch as the geometry demands it such that to be able to perform a Delaunay meshing.
- Discretise EM field quantities via consistently linear edge and face expansion functions [7]. A possible combination of such expansion functions with standard Cartesian ones (with [16], [21] offering the path to follow) may be considered for increased computational effectiveness.

The choice for EM quantities and their discretisation will be henceforth elaborated upon. These quantities will then be used in a set of EM field equations that can be directly transferred

macroscopic EM laws (see [18, pp. 286–289] for this lower bound). Moreover, this is also the limit at which macroscopic measurements are still feasible. In line with [15], [17], we term this scale as the mesoscopic scale.
into a computational scheme. The last step will be to describe that numerical strategy and analyse its (possible) limitations.

III. FIELD QUANTITIES

A vast bibliography [9]–[14], [20], [22], [23] conclusively proves that complementarity is indispensable to constructing consistent CEM formulations. Our starting point is the twofold perspective on complementarity in [9], [10], with specific types of EM quantities being associated with specific supports – in a numerical scheme, these are the elements of a (simplicial) mesh. Based on energetic arguments, Tonti distinguishes between configuration ↔ source EM integral field quantities that are associated with supports having inner ↔ outer geometric orientations. This reasoning dictates the use of dual meshes for representing EM field quantities and laws.

Tonti’s view was at the crux of the choices in [17]. Most of those choices are taken over in the present proposal:

1) Use a simplicial (tetrahedral) mesh as a primal mesh and its barycentric dual (see Fig. 1) as a dual mesh.

2) Use the local EM field quantities: electric field strength \(E(r, t) \), electric flux density \(D(r, t) \), magnetic field strength \(H(r, t) \) and magnetic flux density \(B(r, t) \).

3) The local EM field quantities are expanded on the primal mesh, only – the employed expansion technique must be consistent with the interface boundary conditions applying to the relevant local field quantities. Complement the spatial discretisation by a linear time discretisation.

4) The field quantities are defined on the boundary of the simplicial cells, only. Those values are extrapolated into the cells’ interior (algebraic topology ensures the possibility to employ a consistently linear spatial expansion, based on the limiting values of the expanded quantities upon approaching nodes, edges and faces). This procedure allows performing line, surface and volume integrations of the local EM field quantities.

5) Employ the integral field relations (1) and (2) below on the boundaries of space–time elements. These equations make no reference to properties of the matter.

6) Use the relations (3) and (4) below for constructing constitutive relations via volume energy minimisation. Use these constitutive relations for deriving mappings of the expansion coefficients pertaining to the relevant complementary quantities.

The cardinal difference between the present proposal and that in [17] is in the choice for the complementary quantities to be computed. The approach in [17] used to this end \(E(r, t) \) and \(H(r, t) \), primarily for computational effectiveness, but also because that was the choice in [7] and in the therefrom developed methods. However, there are solid theoretical and practical reasons for using \(E(r, t) \) and \(B(r, t) \) instead:

- Starting from special relativity theory arguments, it can be inferred that \(E \) and \(B \) are the fundamental EM field quantities and not \(E \) and \(H \) [24, p. 477].
- Operating with \(E \) and \(B \) entails evaluating exclusively field quantities that are continuous across any (locally) smooth interface. Note that any imposed discontinuity of their applicable field components requires invoking active magnetic charge distributions or currents (“active” being interpreted as in [26, Section 18.3]). While “induced” magnetic charges or currents may serve a purpose in CEM (not in our scheme), imposing them requires acknowledging their physical existence and all available observations compellingly contradict this. On the contrary, \(H \) and \(D \) are allowed to show jump discontinuities (in a limiting sense) due to electric currents or charge distributions inside domains of vanishing thickness.
- In conjunction with the type of field representation advocated above, selecting the continuous quantities \(E \) and \(B \) as computational quantities alleviates the modelling of interfaces – an exceptionally testing programming task for the considered highly inhomogeneous configurations.

It is noted that, at first glance, our choice seems incapable of handling surface electric currents and electric charge distributions. To begin with, our mesoscopic scale analysis also because that was the choice in [7] and in the therefrom datasets. From this perspective, it seems desirable to transfer surface distributions into volume ones that can be handled easier. To conclude with, [22] too uses an \(E \sim B \) dual representation, with \(E \) being discretised on a primal mesh and \(B \) on a dual one (as in the case of FIT – see the observation on modelling interfaces in Section II).

IV. INTEGRAL EM FIELD EQUATIONS

In line with [17], the selected local expansions are used in integral field relations. By using the notations: \(D \) = a bounded domain with piecewise smooth boundary \(\partial D \), \(S \) = a simply connected subsurface of \(\partial D \) with piecewise smooth boundary \(\partial S \), \(n \) = the unit vector along the outward normal to \(\partial D \) (the orientation on \(\partial S \) and that of \(n \) are related by means of the screw rule), \(\tau \) = the unit vector along the tangent to \(\partial S \), and \(T \) = a bounded time interval with boundary \(\partial T = \{ t_1, t_2 \} \), the space-time domain-integrated field relations are [15], [17]

\[
\int_{\partial D \times T} \tau \cdot E(r, t) \, dL \, dt + \int_{\partial S} n \cdot B(r, t) \, dA \bigg|_{\partial T} = 0 \tag{1}
\]

\[
\int_{\partial D \times T} \tau \cdot H(r, t) \, dL \, dt - \int_{\partial S} n \cdot D(r, t) \, dA \bigg|_{\partial T} = 0 \tag{2}
\]
These relations are supplemented with the following volume (source) integral relations

\[\int_{\partial D} n \cdot B(r,t) dA_{\partial T} = 0 \]
\[\int_{\partial D} n \cdot D(r,t) dA_{\partial T} = 0 \]

where \(f(t) \big|_{\partial T} \) stands for \(f(t_2) - f(t_1) \). Equations (3) and (4) generalise the standard Gauss’s laws but, as stressed in [17], they are, in fact, space-time integrated compatibility relations since a summation of (1) and (2) applied to any subsurface composing \(\partial D \) yields automatically (3) and (4).

Two important observations can be made with respect to these space-time domain-integrated relations:

1) In line with [9], [10], (1) and (3) are written for curves and surfaces with an inner orientation, while (2) and (4) for curves and surfaces with an outer orientation. In our computational scheme, this will have an impact on the choice for the supports of the relevant integrals.

2) Relations (1), (3) have the dimension of action rated by charge and (2), (4) that of charge – in physics, action and charge are the fundamental mechanical and electrical ‘physical observables’ [25], respectively. In this sense, it is notated that [18, p. 273] speculated on the benefits (and beauty) of a CEM method using action as basic quantity and observed the non-availability of such a formulation.

Our proposal may offer that missing tool.

V. COMPUTATIONAL APPROACH

The principles and tools introduced in Sections II–IV are now assembled into a CEM scheme. This formalism uses a simplicial decomposition of the domain of computation, with the simplicial mesh providing the primal grid and its barycentric dual the dual grid. This situation is illustrated in Fig. 1 that shows the simplicial star of an edge \(\mathcal{N}_0\mathcal{N}_7 \) and a part of its barycentric dual. The pertaining tetrahedra, with the relevant parts of the barycentric dual, are also represented separately. The picture of \(T_i \) contains all facets of the complete barycentric dual surface enclosing the node \(\mathcal{N}_0 \). By using [17] as a guideline, we opt for the followings:

1) Relations of type (1) are written for closed contours along the primal mesh, enclosing the nodes where \(E \) is unknown (for example, the contour \(\partial S \) in Fig. 1 for the unknown edge coefficient corresponding to the edge \(\mathcal{N}_0\mathcal{N}_7 \) at \(\mathcal{N}_0 \)). Note that the expansions of \(B \) on the facetted surface \(S \) are readily available. Moreover, by summing all \(B \) expansions on the complete simplicial star of the edge \(\mathcal{N}_0\mathcal{N}_7 \), (3) is automatically satisfied.

2) Relations of type (2) are written for closed contours along the dual mesh, like the contour \{ a, b, c, d, e, f, a, \} in Fig. 1. Since only expansions of \(D \) on the primal mesh are available, the needed surface integrals are derived from corresponding closed surface integrals on surfaces such as the boundary of the polyhedron with vertices \{ \mathcal{N}_0, a, b, c, d, e, f, a \}. Note that, by combining relations of the type (2) written for all 4 subregions of \(T_i \), (4), when applied to \(T_1 \), is automatically satisfied.

3) These relations are supplemented by \(D \leftrightarrow \{ E, P \} \) and \(B \leftrightarrow \{ H, M \} \) mappings that follow from the constitutive relations, with \(P \) and \(M \) denoting the impressed electric polarisation and magnetisation, respectively.

4) The DoFs associated with \(E \) and \(B \) are kept, while those associated with \(H \) and \(D \) are eliminated via the mappings provided by the constitutive relations (see also [22]), possibly supplemented by relations following from jump discontinuities at interfaces where surface electric currents or charge distributions are present.

This strategy, combined with the applicable space-time boundary conditions, results into a time-dependent system of algebraic equations with the expansion coefficients of \(E \) and \(B \) as unknowns. It is conjectured that the relevant system will be amenable to a time-domain solution via a standard marching-in-time scheme (see [22] for possible alternatives). Due to the problem’s complexity, formulating stability criteria will be

\(^{\text{The present formalism is constructed by assuming exclusively locally and instantaneously reacting media [26, Chapter 19].}}\)
quite likely very difficult, with software implementations being expected to provide practical indicators to this end.

VI. COMPUTATIONAL COSTS & PROGRAMMING COMPLEXITY

The fact that the simplicial stars of edges and, above all, faces are much smaller than those of nodes implies that consistently linear edge and face expansions are computationally much less efficient than Cartesian (nodal) expansions. Moreover our strategy requires the simultaneous discretisation of two quantities (as was the case with the first CEM formulation involving edge and face expansion functions [7]). It is then clear that our method will require calculating a (very) large number of DoFs. On the other hand, the expansion inefficiency is compensated by the fact that interfaces are preserved, eliminating the need of dense meshing in the vicinity of such interfaces. Moreover, one can consider combining an edge plus face expansion at interfaces with a Cartesian expansion inside domains of homogeneity (as was the case in [16], [21]).

As stated, our method can, in principle, handle surface electric currents and charges. However, this will entail coding complications due to the need to manage incomplete edge and face simplicial stars where jumps must be enforced.

To conclude with, experience with building (general purpose) FEM packages shows that one of the most critical bottle-necks is obtaining quality meshes that are also complemented with adequate topological information and a versatile mapping between geometrical elements and DoFs. The meshing demands are enhanced in the proposed method that requires both a simplicial mesh and its barycentric dual, with full topological information. Addressing these challenges may be facilitated by advances in dual meshing in computer graphics [27] or in mathematics, with [28, Chapters 7 and 8] discussing expedient solutions for associating geometrical elements and DoFs.

ACKNOWLEDGMENT

The authors express their gratitude to Professor Adrianus T. de Hoop, Dr. Gerrit Mur and Professor Enzo Tonti with whom they had the privilege of collaborating, among others for developing some of the methods quoted in this contribution – their physical and mathematical insight underpins the presently advocated technique. A word of gratitude is also due to Professor Thomas Weiland with whom one of the authors had several opportunities of exchanging fruitful ideas – his seminal paper [6] represents a true turning point in CEM.

REFERENCES