REPRODUCTIE ZOUTTOESTAND GETIJRIVIEREN XXI

INVLOED AFSLUITING OOSTERSCHELDE OP ZOUTBEZWAAAR BIJ VOLKERAKSLUIZEN

WATERLOOPKUNDIG LABORATORIUM DELFT M896-XXI
WATERLOOPKUNDIG LABORATORIUM

REPRODUCTIE ZOUTTOESTAND GETIJRIVIEREN

XXI

INVLOED AFSLUITING OOSTERSCHELDE

OP ZOUTREZWAAR BIJ VOLKERAKSLUIZEN

januari 1973

M 896 - XXI
INHOUD

NOTATIES

LITERATUUR

LIJST VAN FIGUREN

1. Inleiding

2. Invloed van het wegvallen van het getij in de Oosterschelde direct na afsluiting op de zouttoestand bij de Volkeraksluizen
 2.1. Inleiding
 2.2. Schematisaties
 2.3. Uitgevoerde proeven getijgoot
 2.3.1. Korte beschrijving getijgoot (meetopstelling)
 2.3.2. Gekozen schalen
 2.3.3. Instelling proefomstandigheden; uitgevoerde proeven
 2.4. Resultaten
 2.5. Conclusies

3. Berekeningen ter verkrijging van een indruk van de zouttoestand bij de Volkeraksluizen bij een afgesloten, al dan niet gedeeltelijk verstoorde Oosterschelde
 3.1. Inleiding
 3.2. Schematisaties
 3.3. Uitgevoerde berekeningen (stilstaande zouttong)
 3.4. Resultaten en conclusies stilstaande zouttong berekeningen
 3.4.1. Situatie, waarbij geen menging optreedt tussen het zoute water en het ingelaten zoute water bij de Volkeraksluizen
 3.4.2. Situatie, waarbij menging optreedt tussen het zoute water en het ingelaten zoute water bij de Volkeraksluizen
 3.5. Samenvatting van de resultaten

FIGUREN: 1 tot en met 16.
NOTATIES

a : totale waterdiepte (stilstaande zouttong)
\(a_1\) : laagdikte bovenlaag (lichte c.q. zoete water)
\(a_2\) : laagdikte onderlaag (zware c.q. zoute water)
\(a_3\) : laagdikte bovenlaag (zoetwater) t.p.v. \(x = 0\), overgang Oosterschelde-
 Keeten, waarbij het zout niet niet bij de sluizen komt. (par. 3.4.1.)
\(a_0\) : getijamplitude (\(2a_0 = \text{getijverschil}\))
\(c_1\) : zoutconcentratie bovenlaag (kg/m\(^3\))
\(c_2\) : zoutconcentratie onderlaag (kg/m\(^3\))
\(c\) : gemiddelde concentratie over de verticaal (kg/m\(^3\))
\(g\) : zwaartekrachtsversnelling
\(h\) : waterdiepte (getijproeven)
\(h^0\) : gemiddelde waterdiepte over de getijdperiode
\(k_i\) : interne wrijvingscoëfficiënt (\(\lambda_i = 8k_i\)) (zie par. 3.3.)
\(n_u\) : snelheidsschaal\(^1\)
\(n_h\) : vertikale schaal
\(n_c\) : schaal voor de Chézy-coëfficiënt
\(n_t\) : tijdschaal
\(n_l\) : lengteschaal
\(q_1\) : debiet zoete water (lichtere water) per m' breedte (spuidebiet per m' breedte)
\(u\) : snelheidscomponent in lengterichting
\(x\) : horizontale coördinaat (in lengterichting)
\(y\) : vertikale coördinaat
\(B\) : breedte
\(C\) : Chézy-coëfficiënt
\(F\) : \(F = q_1^2/cg^3\)
\(L\) : gootlengte overeenkomend met het traject Keeten-Volkerak resp. Zijpe-
 Volkerak (zie par. 2.3.3. en Fig. 1)
\(L_1\) : zoutindringingslengte stilstaande zouttong (zie definitie schets par. 3.3.
\(Q\) : bovenafvoer, spuidebiet, afvoer bovenlaag
\(T\) : getijdperiode

\(\lambda_b\) : bodemwrijvingscoëfficiënt

\(^1\) Onder schaal wordt verstaan: prototype maat gedeeld door modelmaat
NOTATIES (vervolg)

\(\lambda_i \): interne wrijvingscoëfficiënt \((\lambda_i = 8 k_i)\)

\(\varepsilon \): \(\varepsilon = \Delta \rho / \rho_2\)

\(\rho \): dichtheid

\(\rho_1 \): dichtheid bovenlaag

\(\rho_2 \): dichtheid onderlaag

\(\Delta \rho \): \(\Delta \rho = \rho_2 - \rho_1\)

\(\tau_i \): grensvlak-wrijving per eenheid van oppervlak

index \(m \): grootte heeft betrekking op het model

index \(pr \): grootte heeft betrekking op het prototype
LITERATUUR

2 RIGTER, B.P., "Density-induced return currents in outlet channels", Publication no. 83, Delft Hydraulics Laboratory, October 1970

4 ABRAHAM, G. and EYSINK, W.D., "Relations between Internal friction coefficients and Reynolds number", Report M 772, Delft Hydraulics Laboratory, Delft, April 1968

5 Waterloopkundig Laboratorium, "Theoretische grondslagen", Rapport Reproductie Zouttoestand Getijrivieren, M 896 - III, Waterloopkundig Laboratorium, september 1971

6 Waterloopkundig Laboratorium, "Dimensie-analyse zoutindringing Systematisch onderzoek", Rapport Reproductie zouttoestand getijrivieren, M 896 - XV, Waterloopkundig Laboratorium, juli 1971
LIJST VAN FIGUREN

Fig. 1 Situatie schets Keeten, Mastgat, Zijpe, Krammer, Volkerak
 a. dieptelijnen, overgenomen uit: Bodemligging Zeeuwse Meer en
 Grevelingenbekken, lodingen 1968, Rijkswaterstaat, Deltadienst
 Waterloopkundige Afdeling
 b. aanduiding schematisaties

Fig. 2 Meetopstelling getijgootproeven

Fig. 3 Zoutmetingen proef met getij (T 505.00)
 (Schematisatie I)

Fig. 4 Zoutmetingen proef met getij (T 505.01)
 (Schematisatie I)

Fig. 5 Zoutmetingen proef met getij (T 505.02)
 (Schematisatie II)

Fig. 6 Zoutmetingen proef met getij (T 505.03)
 (Schematisatie II)

Fig. 7 Maximale zoutindringing bij wegvallen van het getij

Fig. 8 Schematisatie in secties van Keeten-Volkerak
 (Schematisatie III)

Fig. 9 Definitie schets voor uitgevoerde berekeningen bij de resp. sche-
 matisaties I en III

Fig. 10 Zoutindringingslengte L_i van stilstaande zouttong als functie van
 spuildebiet \bar{Q} en dichtheidsverschil $\Delta \rho$ met $\lambda_i = 0,01$
 (Schematisatie I)

Fig. 11 Zoutindringingslengte L_i van stilstaande zouttong als functie van
 spuildebiet \bar{Q} en dichtheidsverschil $\Delta \rho$ met $\lambda_i = 0,005$
 (Schematisatie I)

Fig. 12 Zoutindringingslengte L_i van stilstaande zouttong als functie van
 λ_i en \bar{Q} met $\Delta \rho = 20$ resp. 10 kg/m3
 (Schematisatie I)

Fig. 13 a. Laagdikte zoet- en zoutwater bij Volkerak dam als functie van $\Delta \rho$
 en \bar{Q} voor $\lambda_i = 0,01$ en 0,005
 (Schematisatie I)
LIJST VAN FIGUREN (vervolg)

b. Laadjikten zoetwater in de Oosterschelde opdat de zouttong net
 niet bij de dam komt als functie van $\Delta \rho$ en \bar{q} voor $\lambda_1 = 0,01$ en
 $0,005$ (Schematisatie I)

Fig. 14 Laadjikten van zoet- en zoutwater bij de Volkerakdam als functie van $\Delta \rho$
 en \bar{q} voor $\lambda_1 = 0,01$ en $0,005$
 (Schematisatie III)

Fig. 15 Laadjikten zoetwater in de Oosterschelde, opdat de zouttong net niet
 bij de dam komt als functie van $\Delta \rho$, \bar{q} voor $\lambda_1 = 0,01$ en $0,005$
 (Schematisatie III)

Fig. 16 Kombergend oppervlak Oosterschelde (exclusief Keeten t/m Volkerak)
1. Inleiding

De wateren Oosterschelde, Keeten, Mastgat, Zijpe, Volkerak (tot aan Hellegat) staan thans in open verbinding met de Noordzee. Dientengevolge heerst er in deze wateren een getijbeweging. Vanuit zee wordt zoutwater aangeboden.

In het Hellegat ligt een dam met een tweetal schutsluizen. Het zoutbezwaar vanuit het Volkerak via deze schutsluizen op het Hollands Diep wordt bestreden door middel van luchtbellen-gordijnen. Tevens wordt om het zoutbezwaar te verkleinen een zoetwater debiet van circa 30 m³/s door de sluizen gevoerd van het Hollands Diep naar het Volkerak.

In bovengenoemde dam zijn spuisluizen geprojecteerd in verband met het door-spoelen van het Oosterscheldebekken ná afsluiting. Voorts wordt het aantal schutsluizen met twee vermeerderd: één voor beroeps-scheepvaart (Rijn-Scheldeverbinding) en één voor pleziervaartuigen.

In de periode liggende tussen het gereedkomen van de sluizen en het moment waarop het Oosterscheldebekken verzocht is, kan een en ander consequenties hebben voor het zoutbezwaar via de schutsluizen op het Hollands Diep.

Het onderhavige onderzoek heeft tot doel deze consequenties nader te onderzoeken, hetgeen als volgt is uitgevoerd.

Direct na het afsluiten van de Oosterschelde ontstaat een situatie, waarbij de Oosterschelde een zoutwaterbekken vormt, dat in open verbinding staat met de Volkeraksluizen, terwijl de getijbeweging is weggevallen. In het eerste deel van dit verslag zijn een 4-tal proeven beschreven waaruit volgt, dat bij bovengenoemde situatie na afsluiting het zoutgehalte bij de Volkeraksluizen in het Hellegat (aan de kant van de Oosterschelde), en daarmee het zoutbezwaar via de schutsluizen op het Hollands Diep toeneemt ten opzichte van de zouttoestand in de huidige situatie met getijbeweging, indien de hoeveelheid zoetwater die op het Zuidelijk Deltakabekken via de Volkerakdam wordt ingelaten, niet in belangrijke mate toeneemt.

Na afsluiting zal de Oosterschelde geleidelijk met zoetwater worden gevuld. Dit heeft uiteraard een gunstige invloed op het zoutgehalte van het water bij de Volkeraksluizen. In het tweede deel van dit verslag worden berekeningen gepresenteerd, waaruit een indruk kan worden verkregen van de mate waarin de Oosterschelde verzoet moet zijn om bij een gegeven spuidebiet, - waarmee
bedoeld wordt het zoete water, dat via de Volkerakdam (spuisluizen) op het Zuidelijke Deltabekken wordt ingelaten - een belangrijke reductie van het zoutgehalte bij de Volkeraksluizen en daarmee van het zoutbezwaar via de schutsluizen op het Hollands Diep, te verkrijgen.

De bestaande en toekomstige schutsluizen in de Volkerakdam, via welke het zoutbezwaar naar het Hollands Diep kan optreden, liggen op enige afstand van de in de Volkerakdam geprojecteerde spuisluizen, via welke zoutwater op het Zuidelijk bekken wordt ingelaten. Dit maakt, dat de zouttoestand bij de Volkeraksluizen een driedimensionaal karakter heeft. Bij het in dit verslag beschreven onderzoek wordt dit driedimensionale karakter buiten beschouwing gelaten.

Het onderzoek is in opdracht van en in nauw overleg met de Waterloopkundige Afdeling van de Delta-dienst, R.W.S. uitgevoerd in de maanden juni en juli 1972 door ir. A. van Mazijk, die tevens dit verslag samenstelde.

2. Invloed van het wegvallen van het getij in de Oosterschelde direct na afsluiting op de zouttoestand bij de Volkeraksluizen

2.1. Inleiding

Direct na het afsluiten van de Oosterschelde is deze nog volledig met zoutwater gevuld. De wateren Keeten, Mastgat, Zijpe tot aan de Volkeraksluizen monden dan uit in een zoutwaterbekken zonder getij. Schematiserend men de wateren Keeten tot en met Volkerak tot een grotvormig kanaal met rechthoekige doorsnede, waarvan de getijgoot een model vormt (zie voor de beschrijving van de getijgoot par. 2.3.1.), dan kan men op grond van het bovenstaande de invloed van het wegvallen van het getij op de zouttoestand bij de Volkeraksluizen bestuderen door ná de zouttoestand in Keeten-Volkerak bij open Oosterschelde (met getij) in de getijgoot te hebben ingesteld, het getij in de goot te laten wegvallen. De invloed van het wegvallen van het getij kan dan worden vastgesteld door zoutconcentraties in verschillende vertikalen in de getijgoot in de situaties met resp. zonder getij met elkaar te vergelijken.

Doordat de situatie met open Oosterschelde (met getij) in de goot is ingesteld, kan binnen de begrenzingen opgelegd door de verschillen in geometrie tussen de goot en het prototype (zie par. 2.2. schematisaties) een indruk worden gegeven van de hoeveelheid zoetwater, die op het Zuidelijk Deltabekken moet worden ingelaten, opdat bij de situatie met open Oosterschelde het water bij de Volke-
raksluizen nagenoeg zoet zal zijn.

2.2. Schematisaties

Voor een reproductie van de zouttoestand in de wateren Keeten tot en met Volkerak in de getijgoot, moeten deze wateren tot een goot met een rechthoekig profiel en een horizontale bodem geschematiseerd kunnen worden, zonder dat deze schematisatie een goede reproductie in de weg komt te staan. Het verschil in geometrie tussen de wateren Keeten, Mastgat, Zijpe, die gekenmerkt worden door een grote diepte en een naar verhouding kleine breedte, en de wateren Krammer en Volkerak, die gekenmerkt worden door een kleine diepte en een naar verhouding grote breedte (fig. 1), maakt een schematisatie tot een rechthoekige goot evenwel onmogelijk.

Om desondanks tot een zekere kwantitatieve weergave van de zouttoestand in Keeten tot en met Volkerak en met name bij de Volkeraksluizen te komen door middel van proeven in de getijgoot, zijn de volgende twee schematisaties gekozen (zie fig. 1):

I Het gehele traject Keeten tot Hellegat wordt geschematiseerd tot een goot met een diepte van 6 m (prototype maat), zijnde bij benadering de kleinste waterdiepte over het beschouwde traject, en een breedte van 700 m (prototype maat), zijnde bij benadering de kleinste breedte (fig. 1). Getijgootproeven leveren dan ten aanzien van de zouttoestand bij de Volkeraksluizen een ge- ringere zoutconcentratie dan in de werkelijkheid optreedt, daar bij bovengenoemde schematisatie het zout moeilijker dan in het prototype bij de sluizen komt. De proeven geven dus een ondergrens voor de zoutconcentratie bij de sluizen.

II Het traject vanaf het Zijpe tot aan het Hellegat zijnde het traject met kleine diepte en grote breedte, wordt geschematiseerd tot een goot met een diepte van 6 m (zijnde de gemiddelde diepte van het beschouwde traject) en een breedte van 1.500 m (zijnde de gemiddelde breedte van het beschouwde traject). Bij deze schematisatie wordt verondersteld dat het Zijpe, zijnde de zeerand in het getijgootmodel (zie par. 2.3.1.) volledig zout is. Getijgootproeven leveren dan ten aanzien van de zouttoestand bij de Volkeraksluizen een grotere zoutconcentratie dan in de werkelijkheid optreedt, daar bij deze schematisatie het zout naar verwachting gemakkelijker dan in het prototype bij de sluizen komt. De proeven geven dus een bovengrens voor de zoutconcentratie bij de sluizen.

Bij schematisatie I wordt een lengte van 35,1 km aangehouden voor het traject Keeten-Hellegat en bij schematisatie II een lengte van 23,4 km voor het traject.
vanaf Zijpe tot aan Hellegat. Beide lengten zijn zodanig gekozen, dat ze een veelvoud zijn van 2,34 km, zijnde de bij getijgootproeven gebruikelijke meetafstand in lengterichting (prototype maat).

2.3. Uitgevoerde proeven getijgoot

2.3.1. Korte beschrijving getijgoot (meetopstelling)

De getijgoot is een 101,5 m lange goot met een rechthoekig profiel, waarvan de afmetingen zijn 0,67 m breed en 0,50 m diep. De bodem van de goot is horizontaal. De goot is aan het bovenstroomse einde verbonden met een zeebassin van 6 x 8 x 1,5 m. In het zeebassin kan door middel van een overstortende, regelbare klep een vertikale getijbeweging verkregen worden. In het bassin bevindt zich zoutwater (zeewater), waarvan de dichtheid op een gewenste waarde door middel van injectie van pekelwater kan worden ingesteld. Met behulp van een op dichtheid controlerend regelmechanisme wordt de hoeveelheid geinjecteerd pekelwater zodanig geregeld, dat de dichtheid van het zeewater in het zeebassin gedurende een proef niet variëert. Via zogenaamde 'skimmers' (oppervlakte-afzuigers) kan een eventuele zoetwaterlaag in het zeebassin worden afgezogen.

Op ongeveer 64 m vanaf het zeebassin is de goot over 180° omgebogen (fig. 2).

Het bovenstroomse einde van de goot wordt bij de onderhavige proeven gevormd door een in de goot geplaatst schot, waar overheen een in te stellen zoetwater debiet wordt toegevoerd.

De getijgoot is zodanig ingericht (gladde wanden en voldoende breed), dat een tweedimensionale stroming ingesteld kan worden.

Voor de extra benodigde weerstand zijn vertikale vierkante messing weerstandsstaafjes (5 x 5 mm²) toegepast, welke boven de waterspiegel uitreiken.

2.3.2. Gekozen schalen

Door aan de getijgootproeven schalen toe te kennen, is een vergelijking met de prototype afmetingen van de goot, waartoe het traject Keeten tot Hellegat, resp. Zijpe tot Hellegat is geschematiseerd (par. 2.2.), mogelijk. Stel nu h_{pr} is de waterdiepte in het prototype en h_m is de waterdiepte bij de getijgootproef (model), dan is de vertikale schaal $n_h = \frac{h_{pr}}{h_m}$. Als de duur van de getijperiode in het prototype T_{pr} is en in het model T_m, dan is de tijd schaal $n_t = \frac{T_{pr}}{T_m}$. Verder geldt volgens de Froude-schaalregel, dat de snelheidsschaal $n_u = (n_h)^{1/2}$. Daaroor is de lengteschaal $n_l = n_h^{1/2} n_t$.
Voor de onderhavige proeven in de getijgoot is voor de vertikale schaal \(n_h = 40 \) gekozen, terwijl de tijdschaal zodanig gekozen is, dat de lengte-schaal \(n_l = 400 \) is geworden. De tijdschaal is gelijk 63,3. De schaal voor de ruwheid c.q. Chézy waarde is dan \(n_C = \sqrt{n_l / n_h} \).

2.3.3. Instelling proefomstandigheden, uitgevoerde proeven

In de mond van de getijgoot - d.w.z. op de overgang tussen de goot en het zeebassin - is bij de proeven een sinussenorm vertikaal getij ingesteld.

- Dit is de benedenstroomse rand, welke overeenkomt met Keeten (schematisatie I) resp. Zijpe (schematisatie II) (zie fig. 1). De amplitude van deze sinus (\(a_o \)) is 3,0 cm modelmaat. Bij een vertikale schaal van 40 komt dit overeen met 1,20 m prototype maat (getijverschil \(2a_0 = 2,40 \) m). Dit getijverschil is bij benadering te vergelijken met dat wat in Zierikzee wordt gemeten: orde van grootte 2,50 à 3,00 m (zie getijtafels 1972). De salinititeit van het water in het zeebassin wordt gedurende de proeven constant gehouden en is \(\approx 30^\circ/oo \), waardoor het dichtheidsverschil \(\Delta p \) tussen zout- en zoetwater circa 21,5 kg/m\(^3\) bedraagt. De ingestelde gemiddelde waterdiepte \(h \) bij de proeven is 0,15 m modelmaat, wat bij een vertikale schaal van 40 overeenkomt met 6 m prototype maat.

De bovenstroomse rand werd bij de uitgevoerde proeven gevormd door een in de goot geplaatst schot, waarover een zoetwater debiet werd ingebracht (overstort). - De bovenstroomse rand komt overeen met de Volkerakdam bij schematisatie I en II (zie fig. 1). - De plaats van genoemd schot was bij de proeven 87,75 m resp. 58,50 m vanuit de mond van de getijgoot (L). Dit is in prototype maat 35,1 km resp. 23,4 km, bij een lengteschaal van 400. De ingebrachte debieten waren in model (\(Q \)) 1,5 en 0,6 l/s. Dit is onder inachtneming van de schalen: 0,565 resp. 0,226 m\(^3\)/s per m\(^3\) breedte prototype maat. Bij een breedte van 700 m (schematisatie I) geeft dit een spuidebit van 395 resp. 158 m\(^3\)/s en bij een breedte van 1.500 m (schematisatie II) geeft dit een spuidebit van 846 resp. 340 m\(^3\)/s prototype maat. De grootte van de debieten in het model (0,6 en 1,5 l/s) is zodanig gekozen, dat zij bij een breedte van 700 m (schematisatie I) overeenkomen met debieten in de orde van 400 en 200 m\(^3\)/s in het prototype. Voor een onderlinge vergelijking van de proeven met een kleinere waarde voor L (schematisatie II) met die met een grotere waarde voor L (schematisatie I), zijn de proeven bij schematisatie II ook met debieten van 0,6 en 1,5 l/s modelmaat uitgevoerd. Tevens zijn de debieten in modelmaat zodanig gekozen, dat de gedane proeven, uitgevoerd in het kader van

De getijperiode was in het model 706,8 sec., wat overeenkomt met 12 u. 25 min. prototype maat.

De in de goot aanwezige ruwheid, uitgedrukt in de Chézy-coëfficiënt was 16 m¹/²/s. Op grond van de gekozen schalen komt dit met \(C = 50,5 \) m¹/²/s in het prototype overeen.

De omstandigheden van de uitgevoerde proeven worden in onderstaande tabellen samengevat:

Gegevens proefomstandigheden

Modelmaten

<table>
<thead>
<tr>
<th>proefnr.</th>
<th>(h_0) (m)</th>
<th>L (m)</th>
<th>T (sec)</th>
<th>(C) (m¹/²/s)</th>
<th>(2a_0) (m)</th>
<th>(Q) (l/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>505.00</td>
<td>0,15</td>
<td>87,75</td>
<td>706,8</td>
<td>16</td>
<td>0,06</td>
<td>1,5</td>
</tr>
<tr>
<td>505.01</td>
<td>0,15</td>
<td>87,75</td>
<td>706,8</td>
<td>16</td>
<td>0,06</td>
<td>0,6</td>
</tr>
<tr>
<td>505.02</td>
<td>0,15</td>
<td>58,50</td>
<td>706,8</td>
<td>16</td>
<td>0,06</td>
<td>1,5</td>
</tr>
<tr>
<td>505.03</td>
<td>0,15</td>
<td>58,50</td>
<td>706,8</td>
<td>16</td>
<td>0,06</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Prototype maten

<table>
<thead>
<tr>
<th>schema-</th>
<th>proef</th>
<th>(h_0) (m)</th>
<th>L (km)</th>
<th>T</th>
<th>(C) (m¹/²/s)</th>
<th>(2a_0) (m)</th>
<th>(Q) (m³/s)</th>
<th>traject</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>505.00</td>
<td>6</td>
<td>35,1</td>
<td>12²,25min</td>
<td>50,5</td>
<td>2,40</td>
<td>395</td>
<td>Keeten-Hellegat B = 700 m</td>
</tr>
<tr>
<td></td>
<td>505.01</td>
<td>6</td>
<td>35,1</td>
<td>12²,25min</td>
<td>50,5</td>
<td>2,40</td>
<td>158</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>505.02</td>
<td>6</td>
<td>23,4</td>
<td>12²,25min</td>
<td>50,5</td>
<td>2,40</td>
<td>846</td>
<td>Zijpe-Hellegat B = 1,500 m</td>
</tr>
<tr>
<td></td>
<td>505.03</td>
<td>6</td>
<td>23,4</td>
<td>12²,25min</td>
<td>50,5</td>
<td>2,40</td>
<td>340</td>
<td></td>
</tr>
</tbody>
</table>

¹) Verwijzing naar literatuur wordt in de tekst aangegeven met []
2.4. Resultaten

Bij de uitgevoerde proeven is in een aantal punten in de x-richting (in
de lengterichting van de goot) de zoutverdeling over de verticaal doorgemeten.
Deze meetgegevens leveren de in de figuren 3 tot en met 6 weergegeven zoutverti-
kalen en de zoutverdeling in longitudinale zin, die door middel van lijnen
van gelijke dichtheid (isopycnen) is vastgelegd. Bij schematisatie I wordt
bij de plaatsbepaling in x-richting gemeten vanaf het Kesten: een punt gele-
gen op 35,1 km vanaf de Volkeraksluizen (zie fig. 1), dat overeenkomt met
de mond van de getijgoot. Bij schematisatie II wordt bij de plaatsbepaling
in x-richting gemeten vanaf het Zijpe: een punt gelegen op 23,4 km vanaf de
Volkeraksluizen (zie fig. 1), dat overeenkomt met de mond van de getijgoot.
Bij de plaatsbepaling in vertikale zin wordt gemeten vanaf de bodem. De
afstand tot de bodem wordt uitgedrukt in de dimensieloze grootte Δy.
Hierbij is $\Delta y = 1/7$ van de gemiddelde waterdiepte, welke bij de proeven 6 m
bedroeg, gemeten in het prototype. De tijdsbepaling wordt gerekend vanaf het
moment, waarop de waterstand in de mond van de getijgoot gelijk is aan de
gemiddelde waterstand over het getij, terwijl het vertikale getij van laag-
water naar hoogwater gaat (zie o.a. fig. 3: getijbeweging zeerand).

Bij de proeven is de maximale zoutindringingslengte bepaald. (Onder zoutin-
dringingslengte wordt verstaan de lengte waarover het zout de getijgoot langs
de bodem binnendringt gemeten vanaf de mond). De zoutindringing kan visueel
bepaald worden. Het zoute water wordt n.l. met methyleen blauw gekleurd, zo-
dat de overgang van zoutwater naar zoutwater gemengd met zoutwater goed
herkenbaar is. In de figuren 3 tot en met 5 worden deze visuele waarnemingen
vergeleken met de isopycnen voor de tijdstippen van maximale indringing
(hoogwaterkentering).

Bij het uitvoeren van de proef wordt gedurende iedere getijperiode van 12u.
25 min. (prototype) dezelfde getijbeweging aan de zeerand opgedrukt. De zout-
toestand in de getijgoot wordt eerst doorgemeten nadat geconstateerd is met
behulp van zoutindringingslengte en/of zoutmetingen dat de zouttoestand zich
bij opeenvolgende getijcyclusi reproduceert. Aan het eind van de vier uitge-
voerde proeven is, nadat de zoutmetingen bij de gegeven repeterend ingestelde
getij-omstandigheden waren verricht, in opeenvolgende getijcyclusi de getij-
amplitude van het vertikale zeegetij stapsgewijs verkleind totdat het getij
volledig weggevallen was.

De verandering in de zouttoestand als gevolg van het aldus weggelaten van he
getij is in een tweetal punten in x-richting gemeten.
De resultaten worden weergegeven in de figuren 3 tot en met 6.

2.5. Conclusies

De uitgevoerde proeven leveren de volgende conclusies voor het prototype:

- Daar zowel bij de proeven volgens schematisatie I als bij de proeven volgens schematisatie II bij het wegvallen van het getij de zoutindringing toeneemt, terwijl zich een twee-lagen systeem ontwikkelt, mag geconcludeerd worden, dat in het prototype direct na afsluiting van de Oosterschelde de zoutconcentratie bij de Volkeraksluizen toe zal nemen (zie fig. 3 t/m 7).

- Voor beschouwingen ten aanzien van de zouttoestand in het Keeten tot aan de Volkeraksluizen gedurende de periode na afsluiting van de Oosterschelde tot het moment dat het Oosterscheldebekken verzoet is, kan in eerste instantie de theorie van de stilstaande zouttong (zie par. 3.3) worden gehanteerd, op grond van het feit dat zich bij de uitgevoerde proeven bij het wegvallen van het getij een twee-lagen systeem ontwikkelde (zie fig. 3 t/m 6).

De proeven zijn er niet op gericht geweest om bij de schematisaties I en II het spuidebiet te bepalen, waarbij het zout nog net niet tot aan de sluizen (Volkerakdam) doordringt bij een getijverschil van 2,40 m. De proefresultaten kunnen evenwel toch een indicatie geven betreffende de grootte van het spuidebiet, waarbij het zout net niet tot aan de sluizen doordringt, indien er dit getij heerst.

- Daar bij schematisatie II, waarbij het zout naar verwachting gemakkelijker dan in het prototype bij de sluizen komt, het zout bijna niet bij de sluizen komt bij een spuidebiet $\tilde{Q} = 340$ m3/s en ver voor de sluizen blijft bij een spuidebiet $\tilde{Q} = 850$ m3/s, en daar bij schematisatie I, waarbij het zout moeilijker dan in het prototype bij de sluizen komt, het zout ver voor de sluizen blijft bij een spuidebiet $\tilde{Q} \geq 160$ m3/s, lijkt het waarschijnlijk, dat bij een getijverschil van 2,40 m geen zout meer bij de sluizen komt bij een spuidebiet \tilde{Q} van ongeveer 400 m3/s (bovengrens, schematisatie II).

Bij bovenstaande conclusie zijn driedimensionale effecten (zie ook par. 1.) buiten beschouwing gebleven.
3. Berekeningen ter verkrijging van een indruk van de zouttoestand bij de Volkeraksluizen bij een afgesloten, al dan niet gedeeltelijk verzoete Oosterschelde

3.1. Inleiding

Na de afsluiting van de Oosterschelde heerst er in dit bekken dat direct na de afsluiting volledig zout is, geen getij. Indien wordt uitgegaan van een in de tijd niet variërende aanvoer van zoetwater naar het Zuidelijk Deltabekken via de Volkeraksluizen, dan mag de zouttoestand in de wateren Keeten, Mastgat, Zijpe tot aan de Volkerakdam als een permanentie worden beschouwd en is het tevens mogelijk de zouttoestand te benaderen door het uitvoeren van een stilstaande zouttong berekening, waarbij het stroombeeld in bovengenoemde wateren als een twee-lagensysteem zonder menging wordt behandeld (zie ook par. 2.5.). (tweedimensionale beschouwing).

Bij de uitgevoerde berekeningen wordt het verzoeten van de Oosterschelde op twee manieren benaderd:

a door uit te gaan van een volledige menging op de Oosterschelde, waarbij de dichtheid over de vertikaal niet varieert en geleidelijk afneemt, naarmate er meer zoetwater op de Oosterschelde is gebracht. Vanwege dit uitgangspunt zijn er berekeningen uitgevoerd met verschillende waarden voor het dichtheidverschil ($\Delta \rho$) tussen het Oosterschelde water en het zoete gespuide water bij de Volkerakdam.

b door ervan uit te gaan, dat op de Oosterschelde een twee-lagensysteem gehandhaafd blijft met een onderlaag met een dichtheid van 1.020 kg/m^3 en een bovenlaag met een dichtheid van 1.000 kg/m^3, terwijl de dikte van de bovenlaag toeneemt naarmate er meer zoetwater op de Oosterschelde is gebracht. Vanwege dit uitgangspunt zijn er ook berekeningen uitgevoerd, waarbij wordt bepaald bij welke laagdikte van de bovenlaag (a_3) op de Oosterschelde er nagenoeg geen zoutwater bij de Volkeraksluizen komt.

Met de berekeningen is het mogelijk, binnen de grenzen van nauwkeurigheid opgelegd door de gebruikte geometrische schematisaties (par. 3.2.) aan te geven of volgens de rekenresultaten het water bij de sluis zoet is of niet.

Indien het water bij de sluis niet zoet is, maar volgens de rekenresultaten een zoute onderlaag (a_2) en een zoete bovenlaag (a_1) bij de sluizen aanwezig is, dan zijn er twee mogelijkheden, aangenomen dat de lagen als zodanig
gehandhaafd blijven:

A Het zoete water (spuidebiet) kan op het Zuidelijk Deltabekken worden ingelaten op het twee-lagensysteem, zonder dat er bij de sluizen menging optreedt.

In dat geval is de over de vertikaal gemiddelde dichtheid welke af te leiden is uit de met de berekening gevonden laagdikten met de bijbehorende dichtheid, maatgevend voor het zoutbezwaar vanuit het Volkerak via de schutsluizen op het Hollands Diep.

B Het inlaten van het zoete water (spuidebiet) bij de Volkeraksluizen gaat met menging gepaard. Het ter plaatse van de sluis opgemengde water wordt dan afgevoerd naar de Oosterschelde, omdat het opgenomen wordt door het ingelaten zoete water. Derhalve kan de menging alleen in stand blijven als de aanvoer van het op te mengen zoute water vanuit de Oosterschelde verzekerd is. Dit geeft de mogelijkheid om door middel van een twee-lagenberekening de maximaal mogelijke hoeveelheid zoutwater te berekenen, die kan worden aangevoerd naar de Volkeraksluizen, als functie van het spuidebiet [2]. Door aan te nemen dat deze hoeveelheid zoutwater onderschaal volledig wordt opgemengd met het gespuide zoete water, kan de situatie met maximaal mogelijke menging bij de sluis worden bekeken.

Het daarbij optredende zoutgehalte aan de oppervlakte bij de sluis kan dan worden gegeven, door uit te gaan van volledige opmenging van de maximaal aangevoerde hoeveelheid zoutwater met het gegeven spuidebiet. Dit zoutgehalte geeft dan de kleinste mogelijke zoutconcentratie, die bij de Volkeraksluizen kan optreden.

Gezien het driedimensionale karakter van de zouttoestand bij de Volkerakdam (zie ook par. 1.) kan rekenenderwijs niet meer worden gegeven dan de onder A. en B. genoemde zoutconcentraties als eerste schatting van het zoutgehalte, dat maatgevend is voor het zoutbezwaar vanuit het Volkerak via de schutsluizen op het Hollands Diep.

3.2. Schematisaties

Als uitgangspunt bij de beschouwingen over de zouttoestand bij de Volkeraksluizen wordt gesteld, dat de Oosterschelde ten zuiden van het Keeten direct na afsluiting mag worden beschouwd als een zoutwaterbekken (ρ = 1.020 kg/m³). Op dit beken mondt uit het stelsel van wateren: Keeten, Mastgat, Zijpe, Krammer, Volkerak, Hellegat. Deze wateren zijn voor het uitvoeren van de berekeningen op de volgende twee manieren geschematiseerd:
- (schematisatie I) De wateren Keeten tot en met Volkerak worden schematiserend tot een gootvormige geul met een diepte van 6 m en een breedte van 700 m, zoals aangegeven in par. 2.2., schematisatie I, evenwel met een lengte van 36 km in plaats van 35,1 km zoals genoemd in par. 2.2. De berekeningen, uitgevoerd bij deze schematisatie geven een ondergrens voor de zoutconcentratie bij de slui zen (zie par. 2.2.).

- (schematisatie III) Met behulp van profielmetingen, uitgevoerd over het traject Keeten-Volkerak, wordt per km.raai de grootste diepte naast de bij benadering grootste breedte (= breedte op N.A.P.) bepaald. Deze afmetingen worden vervolgens toegekend aan een traject van 1 km lengte, aansluitend op de desbetreffende km. raai. Op deze wijze wordt het traject Keeten-Volkerak onderverdeeld in een aantal aaneenschakelende secties, ieder met een lengte van één kilometer en met een voor dat traject geldende grootste breedte en diepte, gebaseerd op de metingen in de resp. km. raai's. (zie tabel op blz. 22 en fig. 8).

Onder deze geschematiseerde omstandigheden is het voor het zoute water uit de Oosterschelde gemakkelijker dan in het prototype om tot de slui zen door te dringen.

Beschouwingen betreffende de zouttoestand gebaseerd op berekeningen met bovenstaande schematisatie leveren dus een bovengrens voor de zoutconcentratie bij de slui zen.

3.3. Uitgevoerde berekeningen (stilstaande zouttong)

Op grond van het gestelde in par. 3.1. wordt bij de berekeningen een twee-lagensysteem beschouwd. Bij de uitgevoerde berekeningen zijn de formules toegepast, die, - uitgaande van de vergelijkingen welke voor een twee-lagensysteem gelden -, afgeleid zijn voor een situatie, waarbij de onderlaag in rust is: de zgn. stilstaande zouttong [1], [2]. De berekeningen zijn tweedimensionaal.

De basisvergelijking voor een stilstaande zouttong luidt:

\[x_2 - x_1 = \int \frac{q_1^2}{\epsilon \gamma a_1^2} - 1 \cdot \frac{1}{\epsilon \gamma a_1^2 a_2^2} \cdot \frac{q_1^2}{a_2^2} \, da_2 \]

(...(1))

(Zie ook vgl. 9 uit Publication no. 83, Density-induced return-currents in outlet channels, Delft Hydraulics Laboratory, Oct. 1970 [2]).
Na integratie van vgl. 1 vindt men:

\[
(x_2 - x_1)^{\frac{k}{a}} = \left[\frac{1}{2} - \frac{a_1}{a} + \frac{a_1^2}{a} \right] - \frac{1}{F} \left[\frac{1}{20} - \frac{1}{4} \left(\frac{a_1}{a} \right)^4 + \frac{1}{5} \left(\frac{a_1}{a} \right)^5 \right]\frac{x_2}{x_1}
\]

waarin

- \(a \): totale waterdiepte (\(a = a_1 + a_2 \))
- \(a_1 \): laagdikte van de zoete bovenlaag (c.q. lichte water)
- \(a_2 \): laagdikte van de zoute onderlaag (c.q. zware water)
- \(F \): \(F = q_1^2 / (\epsilon g a^3) \)
- \(q_1 \): debiet van het zoete water per m breedte
- \(\epsilon \): \(\epsilon = \Delta \rho / \rho_2 \)
- \(\Delta \rho \): dichtheidsverschil \(\rho_2 - \rho_1 \)
- \(\rho_2 \): dichtheid van de onderlaag (zoute of zware water)
- \(\rho_1 \): dichtheid van de bovenlaag (zoete of lichte water)
- \(g \): zwaartekrachtversnelling
- \(k_i \): wrijvingscoëfficiënt op het grensvlak. In de literatuur wordt zowel \(k_i \) als \(\lambda_i \) voor de wrijvingscoëfficiënt op het grensvlak (ook wel interne wrijvingscoëfficiënt genoemd) tussen zoute en zoete water gebruikt. De relatie tussen \(\lambda_i \) en \(k_i \) luidt: \(\lambda_i = 8k_i \) \(k_i \) en \(\lambda_i \) worden resp. gedefinieerd door:

\[
\tau_i = k_i \rho \frac{(u_1 - u_2)}{u_1 - u_2}
\]

\[
\tau_i = \frac{1}{8} \lambda_i \rho \frac{(u_1 - u_2)}{u_1 - u_2}
\]

\(\tau_i \): wrijving op het grensvlak per oppervlakte eenheid

- \(\rho \): gemiddelde dichtheid van boven- en onderlaag \(\bar{\rho} = \frac{1}{2} (\rho_1 + \rho_2) \)
- \(u_1 \): snelheid bovenlaag
- \(u_2 \): snelheid onderlaag (=0, onderlaag is in rust)
- \(x_2, x_1 \): opeenvolgende, beschouwde punten in de lengterichting

DEFINITIE SCHETS

![Diagram](attachment:diagram.png)

zee (Oosterschelde)

rivier (Keeten-Volkerak)
Indien in een gegeven punt \(x_1 \) de laag dikte van de bovenlaag \(a_1(x_1) \) bekend is, kan, bij een gegeven sectie lengte \(x_2 - x_1 \); een gegeven totale waterdiepte over de sectie \(a_1 \); een debiet \(q_1 \) (welke bepaald wordt uit het spuidebiet \(\bar{q} \) en de over de sectie gemiddelde breedte); een gegeven waarde voor \(k_1 \) en \(\Delta \rho \) c.q. \(\varepsilon \), de laag dikte van de oppervlaktelaag ter plaatse van \(x_2 \) worden berekend:

\[
\frac{1}{a_1(x_2)} \left(\text{zie fig. } 9b \right). \]

Volgens deze procedure wordt het verloop van de laag dikte van de oppervlaktelaag berekend vanaf de overgang Oosterschelde-Keeten tot aan de Volkeraksluizen bij een gegeven spuidebiet, dichthedensverschil \(\Delta \rho \) en gegeven waarde voor de interne wrijvingscoëfficiënt \(k_1 \).

Uit deze laag dikte berekening kan dan bij de gegeven dichtheden van onder- en bovenlaag de gemiddelde zout concentratie bij de Volkeraksluizen worden bepaald.

Bij de uitgevoerde berekeningen wordt per sectie de waarde van \(a_1(x_2) \) met een nauwkeurigheid van 1 cm berekend, en wel zodanig, dat de waarde van \(a_1 \) maximaal 1 cm te groot is. Daar de berekende \(a_1(x_2) \) weer de \(a_1(x_1) \) voor de volgende sectie vormt, werkt deze afwijking van maximaal 1 cm cumulatief. Voor een traject dat verdeeld wordt in \(3^4 \) secties (zoals bij schematisatie III) betekent dit, dat de zout waterlaag bij de Volkerakdam op zijn hoogst circa 34 cm te groot is. (zie ook de figuren 14 én 15 voor de situatie dat \(\bar{q} \) nadert tot nul).

Gezien de beperkingen ten aanzien van de resultaten, opgelegd door de toegepaste schematisaties, mag bovengenoemde systematische fout van onderschikte aard worden beschouwd.

Voor de uit te voeren berekeningen kunnen twee situaties ter plaatse van de overgang van Keeten naar Oosterschelde worden onderscheiden:

1. **Op de Oosterschelde treedt een volledige menging op, waarbij de dichtheid over de verticaal niet varieert.** De randvoorwaarde op de overgang van Keeten naar Oosterschelde \((x=0)\) ten aanzien van de waarde \(a_1 \) wordt dan gegeven door de voorwaarde van kritieke stroming, d.w.z. dat het grensvlak tussen onder- en bovenlaag bij benadering verticaal staat. In formule vorm:

\[
\frac{da_2}{dx} = -\infty \quad \ldots(3)
\]

Uit vgl. 1 kan dan afgeleid worden, dat moet gelden:

\[
a_1(x=0) = \left(\frac{q_1}{\varepsilon g} \right)^{2/3} \quad \ldots(4)
\]
2 Op de Oosterschelde heerst een tweelagenssysteem. De randvoorwaarde op de overgang van Keeten naar Oosterschelde (x=0) ten aanzien van de waarde a_1 is dan een gegeven grootte. Deze waarde wordt dan groter gesteld dan de $a_1(x=0)$ volgens vergelijking 4. Op deze manier kan een waarde a_1 in x=0 worden bepaald, waarbij de dikte van de onderlaag ter plaatse van de Volkeraksluizen net nul is, wat inhoudt, dat er nagenoeg geen zoutwater is bij de Volkeraksluizen.

De resultaten van de uitgevoerde berekeningen voor de diverse spuidebieten \bar{Q}, dichtheidsverschillen $\Delta\rho$ en waarden van λ_1 resp. k_1 worden gepresenteerd in de figuren 10 tot en met 15.

Tot slot wordt vermeld, dat bij schematisatie I een zoutindringingslengte L_1 (zie definitieschets) kan worden berekend om te bepalen bij welk spuidebiet deze L_1 zodanig groot is dat het zout vanuit de Oosterschelde nog net niet bij de Volkeraksluizen komt. Daartoe kan vergelijking 2 herleid worden tot:

$$L_1 = \frac{a}{k_1} \left[\frac{1}{20F} - \frac{1}{2} + \frac{3}{4} F^{1/3} - \frac{3}{10} F^{2/3} \right]^{2/3}$$

(5)

door te stellen dat in $x_1=x=0$ kritieke stroming heerst (vgl. 4) en in $x_2=x=L_1$ geldt: $a_1=a$. De resultaten van deze berekeningen worden weergegeven in de figuren 10 en 11 (zie ook fig. 12, waarin tot uitdrukking wordt gebracht in welke mate de waarde van k_1 de zoutindringingslengte L_1 beïnvloedt).

3.4. Resultaten en conclusies, stilstaande zouttong berekeningen

3.4.1. Situatie, waarbij geen menging optreedt tussen het zoute water en het ingelaten zoete water bij de Volkeraksluizen (zie par. 3.1. punt A)

Beschouwd wordt de situatie, dat er geen menging optreedt tussen het ingelaten zoetwater en het zoute ontvangende water zoals aangegeven in par. 3.1. onder punt A, terwijl in de wateren Keeten, Mastgat tot aan de Volkerakdam een tweelagenssysteem zonder menging heerst.

Uit de figuren 10 tot en met 15, welke verkregen zijn met de uitgevoerde berekeningen is het volgende te concluderen:

- Indien de Oosterschelde volledig gemengd is, waarbij de dichtheid over de vertikaal niet varieert (par. 3.1. punt a), leveren de berekeningen voor de resp. schematisaties I en III de volgende resultaten
- schematisatie I: Bij $\bar{Q} = 300 \text{ m}^3/\text{s}$, $\Delta\rho = 20 \text{ kg/m}^3$ (situatie direct naar
afsluiting), \(\lambda_1 = 0,005 \) is de zoutwaterlaag bij de Volkerak-
sluizen \((a_1)\) 3,70 m. Volgens tekening nr. 71.1461: "Situatie zoutmeet-
punten nabij de Volkerakschuizen" van de Deltadienst, Rijkswaterstaat,
afd. Waterhuishouding is de ligging van de sluisbodem op N.A.P.- 7,50 m
gefixeerd. Op grond hiervan bedraagt de zoutwaterlaag-dikte \((a_2)\) 3,80 m.

Om een vergelijkbare maat te krijgen voor de zoutbelasting vanuit het Volkerak
via de schutsluizen op het Hollands Diep, wordt de over de verticaal gemiddelde
zoutconcentratie \(c \) bepaald t.p.v. de sluisdeuren aan de Volkerak-zijde.
De diepte is daar 7,50 m (zie boven). De zoutwaterlaag-dikte \(a_2 \), benodigd voor
de bepaling van de gemiddelde zoutconcentratie t.p.v. de sluisdeuren, wordt
nu bepaald door het verschil van de bij de berekeningen gevonden zoutwaterlaag-
dikte \(a_1 \) bij de resp. schematisaties en een totale waterdiepte \(a = a_1 + a_2 = 7,50 \) m,
in plaats van een totale waterdiepte van 6 m bij schematisatie I en een totale
waterdiepte van 17 m in de laatste sectie vóór de Volkerakdam bij schematisatie
III. Het verband tussen de dichtheid \(\rho \) en de concentratie \(c \) wordt hierbij be-
naderd door de formule: \(\rho = 1,000 + 0,75 \sqrt[3]{c} \) (rapport M 896-3, par. I. 3,[5]).

De gemiddelde concentratie \(c \) is dan:

\[
\bar{c} = \frac{a_2}{7,5} \cdot c_2 + \frac{a_1}{7,5} \cdot c_1
\]

waarin
- \(a_2 \): laagdikte zoutwater t.p.v. sluisdeuren (Volkerakzijde)
- \(a_1 \): laagdikte zoutwater t.p.v. sluisdeuren (Volkerakzijde)
- \(c_2 \): zoutconcentratie onderlaag
- \(c_1 \): zoutconcentratie bovenlaag

De gemiddelde zoutconcentratie \(\bar{c} \) ter plaatse van de sluisdeuren van de
Volkeraksluizen bedraagt ongeveer 13,5 kg/m³.

Bij een spuidebiet van 300 m³/s \((Q)\) en \(\lambda_1 = 0,005 \) is er bij de Volkerak-
dam nagenoeg geen zoutwater meer indien de dichtheid \(\rho \) van het water in
de Oosterschelde circa 1,007 à 1,008 kg/m³ is geworden, zodat het dicht-
heidsverschil \(\Delta \rho \) 7 à 8 kg/m³ bedraagt.

- schematisatie III: Bij \(\bar{Q} = 300 \) m³/s, \(\Delta \rho = 20 \) kg/m³ (situatie direct na
 afsluiten Oosterschelde), \(\lambda_1 = 0,005 \) is de zoutwaterlaag bij de Volkerak-
sluizen \((a_1)\) 2,30 m. Dit beteekt ter plaatse van de sluisdeuren (zie
 boven) en zoutwaterlaag-dikte \((a_2)\) van 5,20 m, zodat de gemiddelde zout-
 concentratie \(\bar{c} \) aldaar circa 18,5 kg/m³ bedraagt. Uit fig. 14 blijkt dat
 bij een spuidebiet van 300 m³/s en een \(\lambda_1 = 0,005 \) het dichtheidsverschil
 \(\Delta \rho \) kleiner dan 1 kg/m³ moet zijn opdat bij de Volkerakdam de zoutwaterlaag-
dikte circa 7,50 m bedraagt, waarbij het zoutbezwaar via de schutslui-
zien op het Hollands Diep verwaarloosbaar klein mag worden gesteld.

- Indien in de Oosterschelde een twee-lagensysteem heerst, waarbij geen menging optreedt (zie par. 3.1. punt b.) kan nagegaan worden welke laag-
dikte van zoetwater er in de Oosterschelde moet zijn, opdat bij de resp.
schematisaties I en III het zoute water uit de onderlaag de Volkerakdam
net niet meer bereikt (zie fig. 9). Bij een gegeven spuidebiet kan dan tevens bepaald worden hoe lang het duurt totdat deze situatie is bereikt
na afsluiting van de Oosterschelde, uitgaande van een volledig selectief
afzuigen van de zoute onderlaag bij de Oosterschelbedam.

- schematisatie I. Bij \(Q = 300 \text{ m}^3/\text{s} \), \(\Delta \rho = 20 \text{ kg/m}^3 \) (bovenlaag zoet:
\(\rho = 1,000 \text{ kg/m}^3 \) en onderlaag zout: \(\rho = 1,020 \text{ kg/m}^3 \)), \(\lambda_1 = 0,005 \) moet de
zoetwaterlaag-dikte op de Oosterschelde circa 4,50 m zijn opdat bij de
gegoten schematisatie met diepte 6 m de zoetwaterlaag bij de Volkerakdam
6 m bedraagt, hetgeen bij deze schematisatie betekent dat het zout net
niet meer de Volkerakdam bereikt (fig. 13b).

Stel het oppervlak van de Oosterschelde (exclusief Keeten, Mastgat etc.)
over de diepte van N.A.P. tot N.A.P. = 4,50 m gemiddeld op 220.10^6 m^2
(zie fig. 16), dan is de tijdsduur \(T_1 \) bij een spuidebiet van 300 m^3/s
circa 39 dagen of 5 à 6 weken totdat bovengenoemde situatie wordt bereikt.

- schematisatie III. Bij \(Q = 300 \text{ m}^3/\text{s} \), \(\Delta \rho = 20 \text{ kg/m}^3 \) \(\lambda_1 = 0,005 \) moet de
zoetwaterlaag-dikte op de Oosterschelde circa 9,70 m bedragen opdat bij de
gemeten schematisatie het zout net niet meer de Volkerakdam bereikt (fig.
15). Bij deze berekeningen is de op één na laatste sectie vóór de Volke-
rakdam met een maximale diepte van 10 m maatgebend (zie fig. 8). Het
bovenstaande komt derhalve overeen met een zoetwaterlaag van bij benade-
ring 10 m op 1 à 2 km afstand van de Volkerakdam.

De tijdsduur \(T_1 \), totdat bovengenoemde situatie is bereikt, bij een spui-
debiet \(Q = 300 \text{ m}^3/\text{s} \) bedraagt circa \(2^{1/2} \) maand (zie ook fig. 16).

Voor de situatie dat de Oosterschelde volledig gemengd is, waarbij de dich-
theid over de verticaal één waarde heeft, is in het bovenstaande aangegeven
tot welke waarde de dichtheid moet afnemen opdat er bij de Volkerakdam na-
genoege geen zoutwater meer aanwezig is. In het hieronderstaande wordt bepaald
hoe lang het duurt totdat deze toestand is bereikt. Voor deze bepaling wordt
de volgende balans vergelijking opgesteld:
\[\bar{Q} (\bar{c} - c_{in}) = - v \frac{dc}{dt} \]

waarin
\(\bar{Q} \): spuildebiet - Aangenomen wordt dat het gelooide debiet bij de Oosterschelde dam hieraan gelijk is.
\(\bar{c} \): zoutconcentratie van het water in de Oosterschelde
\(c_{in} \): zoutconcentratie van het gespuide water bij de Volkeraksluizen
\(V \): inhoud Oosterscheldebekken - In de berekening wordt hiervoor de Oosterscheldebekken genomen exclusief Keeten-Hellegat (zie fig. 16)
\(t \): tijd

Daar \(c_{in} = 0 \) vindt men na integratie van vergelijking 7:

\[\bar{c} = C e \cdot \frac{\bar{Q}}{V} \cdot t \]

(\(C e \) is integratie constante).

Nu geldt op \(t = 0 \): \(\bar{c} = 26.7 \text{ kg/m}^3 \) (\(\rho = 1.020 \text{ kg/m}^3 \), de Oosterschelde is volledig zout), waarbij het gehanteerde verband tussen \(\rho \) en \(C e \) luidt:

\(\rho = 1.000 + 0.75 C e \)

Indien voor het spuildebiet \(\bar{Q} = 300 \text{ m}^3/s \) wordt aangehouden, terwijl de inhoud van het Oosterscheldebekken exclusief Keeten-Hellegat volgens fig. 16 op \(2,4 \cdot 10^9 \text{ m}^3 \) wordt gesteld, luidt vergelijking 8:

\[\bar{c} = 26.7 e^{-1/8.10^{-6} \cdot t} \]

Met behulp van vergelijking 9 is bepaald, dat bij schematisatie I het circa 3 maanden duurt, voordat er nagenoeg geen zout meer bij de Volkerakdam komt (de dichtheid van het water in de Oosterschelde is dan 1.007 à 1.008 kg/m³), terwijl bij schematisatie III het circa 9 à 10 maanden duurt, voordat er nagenoeg geen zout meer bij de Volkerakdam komt (de dichtheid van het water in de Oosterschelde is dan circa 1.001 kg/m³).

3.4.2. Situatie, waarbij menging optreedt tussen het zoute water en het ingelaten zoete water bij de Volkeraksluizen (zie par. 3.1. onder punt B)

Bij de situatie, waarbij er menging optreedt tussen het zoute water en het zoete ingelaten water bij de Volkeraksluizen en waarbij zoutwater naar de sluizen wordt aangevoerd om de menging in stand te houden (zie par. 3.1. onder punt B)
treedt er het volgende op in vergelijking met de situatie zonder menging:
- een toename van het verhang van de waterspiegel, als gevolg van de vergroting van het spuidebiet met het bij de sluis opgemengde zoute water.
- een toename van het verhang van het grensvlak als gevolg van de toestroming van zoutwater. De laagdikte van de zoute onderlaag neemt in een gegeven punt af.

De mate waarin het verhang van het grensvlak toeneemt en daarmee de laagdikte van de zoute onderlaag in een gegeven punt afneemt (de zouttong trekt zich als het ware terug) is mede afhankelijk van:
- de hoeveelheid zoutwater, die naar de sluis toestroomt.
- de toename van het tegenwerkende verhang van de waterspiegel.
- de afname van het dichtheidsverschil tussen boven- en onderlaag als gevolg van het brak worden van de bovenlaag door de menging bij de sluizen.
- de bodemwrijving.
- de toename van de wrijving τ₁ op het grensvlak.

Eén en ander is bepalend voor de maximaal mogelijk optredende menging. Immers alleen als zoutwater in voldoende mate kan toestromen is een dienovereenkomstige menging mogelijk. Door uit te gaan van een zekere hoeveelheid toestromend zoutwater, dat bij de sluizen volledig wordt opgemengd, kan bij een gegeven spuidebiet, nadat het spuidebiet wordt vergroot met het opgemengde zoutwaterdebiet, met behulp van een stillstaande zouttong berekening (par. 3.3.) worden nagegaan of er al dan niet een zoutwaterlaag bij de Volkerakdam aanwezig is. Indien dit niet het geval is, dan is de gestelde mate van menging niet mogelijk. Op deze manier kan een benadering van de maximaal mogelijke menging worden bepaald en de daarbij behorende dichtheid van de bovenlaag bij de Volkeraksluizen, zijnde de kleinste aanwezige dichtheid aldaar.

De stillstaande berekeningswijze geeft een benadering, daar de invloed van de toestroming van het zoute water buiten beschouwing is gebleven. (Bij de stillstaande zouttong berekening is de onderlaag in rust.) In werkelijkheid is de maximaal mogelijke menging dus kleiner dan de volgens bovenstaande wijze bepaalde.

De berekeningswijze is toegepast met behulp van de figuren 11 en 13a voor een spuidebiet van 300 m³/s voor schematisatie I, waarbij de maximaal mogelijke menging en de daarbij behorende kleinste mogelijke zoutconcentratie, zijnde de zoutconcentratie van de bovenlaag bij de sluizen zijn bepaald. Of een bepaalde toevoer van zoutwater naar de sluizen en de daarbij optredende maximale menging mogelijk zijn, wordt bepaald door na te gaan of de laagdikte van de zoute
(brakke) bovenlaag ter plaatse van de sluizen groter of gelijk is aan 6 m, de waterdiepte bij schematisatie I. De resultaten worden weergegeven in onderstaande tabel ($\lambda_1 = 0,005$).

<table>
<thead>
<tr>
<th>aangenomen toever zout water (m^3/s)</th>
<th>afvoer bovenlaag (m^3/s)</th>
<th>menging $(c_1/c_2)^1$</th>
<th>dichtheid bovenlaag ρ_1 (kg/m3)</th>
<th>dichtheidsverschil $\Delta\rho$ (kg/m3)</th>
<th>verschil a_1 (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>400</td>
<td>1 : 4</td>
<td>1,005</td>
<td>15</td>
<td>5,20</td>
</tr>
<tr>
<td>150</td>
<td>450</td>
<td>1 : 3</td>
<td>1,006,6</td>
<td>13,4</td>
<td>>6,00</td>
</tr>
</tbody>
</table>

$1) c_1/c_2$: menging wordt uitgedrukt in de concentratieverhouding boven- onderlaag.
$2) a_1$: zoetwaterlaag t.o.v. de Volkerakdam (zie ook de figuur 13a).

Het blijkt, dat bij de Volkeraksluizen volgens schematisatie I de maximaal mogelijke menging 1:4 is bij een spuidebiet van 300 m$^3/s$. De zoutconcentratie van de bovenlaag bedraagt daarbij 6,7 kg/m3, wat tevens de kleinste mogelijk optredende concentratie is bij de schutsluizen.

Naast bovenstaande berekeningen ter bepaling van de maximaal mogelijke menging bij de sluizen, waarbij de invloed van de toestroming van het zoute water is verwaarloosd, zijn ook enkele berekeningen uitgevoerd, waarbij wel de toestroming van zoutwater in rekening is gebracht. Deze berekeningen zijn gebaseerd op een theoretische benaderingswijze zoals wordt weergegeven in Publicatie nr. 83, "Density-induced return currents in outlet channels", Delft Hydraulics Laboratory, Oct. 1970 [2]. Deze berekeningen zijn uitgevoerd voor schematisatie I (L=36 km, zie par. 3.2.) en schematisatie II (L=23,4 km, zie par. 2.2.). Het spuidebiet was bij deze berekeningen 300 m$^3/s$, terwijl voor $\lambda_1 = 0,005$ is aangehouden en de bodemwrijvingscoëfficiënt $\lambda_0 = 0,03$ is gesteld. De berekeningen leverden de volgende resultaten:

- Bij schematisatie I is de maximaal mogelijk optredende menging circa 1:10 (verhouding zoutconcentratie bovenlaag c_1 t.o.v. zoutconcentratie onderlaag c_2), zodat de dichtheid van de bovenlaag 1,002 kg/m3 bedraagt. Dit komt overeen met een zoutconcentratie van 2,67 kg/m3. (Voor het verband tussen ρ en c, zie boven). De bijbehorende hoeveelheid, naar de sluizen toestromend, zoutwater ligt tussen de 25 en 50 m$^3/s$.

- Bij schematisatie II is de maximaal mogelijk optredende menging circa
1:2\frac{1}{3}, zodat de dichtheid van de bovenlaag 1.007 à 1.008 kg/m^3 bedraagt, wat overeenkomt met een zoutconcentratie van circa 10 kg/m^3. De bijbehorende hoeveelheid, naar de sluizen toestromend, zoutwater ligt tussen de 150 en 200 m^3/s.

Uit bovenstaande resultaten blijkt, dat het niet in beschouwing nemen van het toestromen van zoutwater bij de bepaling van de maximaal mogelijke optredende menging bij de sluizen, niet acceptabel is. Voor schematisatie I verschilt dit namelijk ongeveer een factor 3.

3.5. Samenvatting van de resultaten

De uitgevoerde berekeningen met behulp van formules geldend voor een twee-lagensysteem zonder menging (stilstaande zouttong) leveren de volgende samenvattende conclusies ten aanzien van de zouttoestand bij de Volkerakdam na afsluiting van de Oosterschelde:

- Indien bij het inlaten van zoutwater op het Zuidelijk Deltabekken bij de Volkeraksluizen geen menging optreedt, terwijl op de Oosterschelde een zuiver twee-lagensysteem aanwezig is, d.w.z. een onderlaag met een dichtheid 1.020 kg/m^3 en een bovenlaag met een dichtheid van 1.000 kg/m^3, dan zal het bij een spuidebiet van 300 m^3/s 1\frac{1}{3} à 2\frac{1}{3} maand duren totdat er nagenoeg geen zoutwater meer bij de schutsluizen komt, uitgaande van een volledig selectief afzuigen van de zoute onderlaag bij de Oosterschelbedam. De zoutconcentratie gemiddeld over de vertikaal (5) ter plaatse van het benedenpand van de schutsluizen (diepte 7,50 m, zie ook par. 3.4.1.) zal direct na afsluiting van de Oosterschelde circa 13,5 à 18,5 kg/m^3 bedragen bij een spuidebiet van 300 m^3/s.

- Indien op de Oosterschelde volledige menging optreedt, waarbij de dichtheid over de vertikaal één waarde heeft, dan moet deze dichtheid minstens (schematisatie I) afgenomen zijn tot 1.008 kg/m^3 wat overeenkomt met een zoutconcentratie van circa 11 kg/m^3, opdat bij de Volkeraksluizen een aanzienlijke reductie in de zoutconcentratie zal optreden. Hierbij is, evenals boven gesteld, dat het spuidebiet 300 m^3/s bedraagt, terwijl wordt aangenomen, dat er geen menging optreedt bij de sluizen tussen het gespuide zoete en het ontvangende zoute water.

Uitgaande van een beginstoestand, dat de Oosterschelde volledig zout is (dichtheid van het water is 1.020 kg/m^3) duurt het circa 3 maanden totdat de dichtheid gedaald is tot een waarde van 1.008 kg/m^3, eveneens bij bovengenoemde veronderstelde condities.
Indien wordt aangenomen, dat bij het inlaten van zoetwater op het Zuidelijk Deltabekken menging optreedt met het zoute water ter plaatse van de Volkeraksluizen, dan is bij een volledig zoute Oosterschelde \((\rho=1.020 \text{ kg/m}^3) \) de kleinste zoutconcentratie in de vertikaal (c.q. de waarde aan het oppervlak), die bij de schutsluizen minimaal (schematisatie I) kan optreden van de orde van 3 \text{ kg/m}^3 bij een spuidembiet van 300 \text{ m}^3/s, waarbij het zoute water nodig voor de menging, in voldoende mate naar de sluizen kan toestromen. Maximaal kan de zoutconcentratie van de bovenlaag bij de Volkeraksluizen een waarde van circa 10 \text{ kg/m}^3 bereiken (schematisatie II).

Tot slot zij er nog op gewezen, dat het driedimensionale karakter van de zouttoestand bij de Volkerakdam in het onderhavige rapport buiten beschouwing is gelaten. Het spuidembiet \(\tilde{Q} \) werd als zijnde continu verondersteld.

En wat doe je dan nog wel verder mee?
TABEL

<table>
<thead>
<tr>
<th>plaats aanduiding</th>
<th>kmr. no.</th>
<th>grootste diepte (m)</th>
<th>breedte op N.A.P. (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volkerak</td>
<td>1</td>
<td>17</td>
<td>1.300</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>1.970</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>12</td>
<td>1.800</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>12</td>
<td>1.600</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>13</td>
<td>1.900</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>16</td>
<td>1.990</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>15</td>
<td>1.720</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>19</td>
<td>1.490</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>13</td>
<td>1.750</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>13</td>
<td>1.490</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>15</td>
<td>1.790</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>15</td>
<td>2.550</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>15</td>
<td>2.600</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>13</td>
<td>3.130</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>11</td>
<td>3.850</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>13</td>
<td>4.550</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>15</td>
<td>2.900</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>21</td>
<td>3.070</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>12</td>
<td>3.210</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>15</td>
<td>2.300</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>23</td>
<td>1.840</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>26</td>
<td>1.225</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>32</td>
<td>770</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>43</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>28</td>
<td>1.710</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>30</td>
<td>1.330</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>22</td>
<td>2.275</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>20</td>
<td>1.625</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>25</td>
<td>1.500</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>39</td>
<td>1.645</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>50</td>
<td>2.000</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>18</td>
<td>2.550</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>20</td>
<td>2.970</td>
</tr>
<tr>
<td>Keeten</td>
<td>34</td>
<td>22</td>
<td>2.850</td>
</tr>
</tbody>
</table>
a. DIEPTELIJNEN

b. AANDUIDING SCHEMATISATIES

SITUATIE SCHETS KEETEN, MASTGAT
ZIJPE, KRAMMER EN VOLKERAK

WATERLOOPKUNDIG LABORATORIUM
LONGITUDINALE ZOUTVERDELING (ISOPYCNEN)

GETIJBEWEGING ZEE RAND

LEGENDA
ISOPYCNEN: DICHTHEID BIJGESCHREVEN IN kg/m³
▼ MAXIMUM ZOUTINDRURING
BOVENAFVOER : 395 m³/s
BREEDTE : 700 m
DIEPE : 6 m
DICHTHEID ZEEWATER: 1020.6 kg/m³

ZOUTMETINGEN PROEF MET GETIJ
(SCHEMATISATIE I)

WATERLOOPKUNDIG LABORATORIUM

M.896 - 1740 FIG.3
LONGITUDINALE ZOUTVERDELING (ISOPYCNEN)

GETIJBEWEGING ZEERAND

LEGENDA

ISOPYCNEN: DICHTHEID BIJGESCHREVEN IN kg/m³

Maximum zoutindringing

BOVENAFVOER: 158 m³/s
BREEDTE: 700 m
DIEPT: 6 m
DICHTHEID ZEEWATER: 1020,3 kg/m³

ZOUTMETINGEN PROEF MET GETIJ (SCHEMATISATIE I)

WATERLOOPKUNDIG LABORATORIUM

PROEF T505.01

M.896 - 1741 FIG. 4
LONGITUDINALE ZOUTVERDELING (ISOPYCNEN)

GETIJBewEGING ZEERAND

LEGALenda

ISOPYCNEN: DICHTHEID BIJGESCHREVEN IN kg/m³

MAXIMUM ZOUTINDRINGING

BOVENAFVOER : 845 m³/s
BREEDTE : 1500 m
DIEPTE : 6 m
DICHTHEID ZEEWATER: 1020,4 kg/m³

ZOUTMETINGEN PROEF MET GETIJ (SCHEMATISATIE II)

WATERLOOPKUNDIG LABORATORIUM

PROEF T 505,02

M. 896 - 1742 FIG. 5
LONGITUDINALE ZOUTVERDELING (ISOPYCCHEN)

GETIJBEWEGING ZEERAND

ZOUTMETINGEN PROEF MET GETIJ (SCHEMATISATIE II)

WATERLOOPKUNDIG LABORatorium
SCHEMATISATIE I

PROEF T505.01
\(\bar{Q} = 158 \text{ m}^3/\text{s} \)
\(B = 700 \text{ m} \)

SCHEMATISATIE II

PROEF T505.02
\(\bar{Q} = 846 \text{ m}^3/\text{s} \)
\(B = 1500 \text{ m} \)

GETIJBEWEGING
ZEERAND

MAXIMALE ZOUTINDRINGING BIJ WEGVALLEN VAN HET GETIJ

WATERLOOPKUNDIG LABORATORIUM

M.896 - 1744 FIG. 7
Schematisatie in secties van Keeten - Volkerak (Schematisatie III)

WATERLOOPKUNDIG LABORATORIUM

M.896-1745 FIG. 8
OOSTERSCHELDE

VOLKERAKDAM

1. SITUATIE OOSTERSCHELDE VOLLEDIG ZOUT
2. SITUATIE OOSTERSCHELDE 2-LAGEN-SYSTEEM, WAARBIJ NET GEEN ZOUT BIJ DE VOLKERAKDAM KOMT
3. MENGING VAN ZOUTWATER MOGELIJK BIJ VOLDOENDE AANVOER

DEFINITIE SCHETS VOOR UITGEVOERDE BEREKENINGEN BIJ DE RESP. SCHEMATISATIES I EN III

WATERLOOPKUNDIG LABORATORIUM M.896-1746 FIG. 9
Zoutindringingslengte L_i van stilstaande zouttong als functie van spuidebit Q en dichtheidsverschil $\Delta \rho$

$\lambda_i = 0,01$

PLAATS VAN VOLKERAKDAM OP 36 km VANAF OOSTERSCHELDE

$\Delta \rho = 20 \text{ kg/m}^3$
$\Delta \rho = 15$
$\Delta \rho = 10$
$\Delta \rho = 5$

Q IN m3/s

L_i IN km
ZOUTINDRINGINGSLENGTE L_i VAN STILSTAANDE ZOUTTONG ALS FUNCTIE VAN λ_i EN q MET $\Delta \rho = 20$ RESP. 10 kg/m3

PLAATS VAN VOLKERAKDAM OP 36 km VANAF OOSTERSCHELDE

PLAATS VAN VOLKERAKDAM OP 36 km VANAF OOSTERSCHELDE
a) Laagdikten zoet en zoutwater bij Volkerakdam als $f(\Delta p, \bar{q})$

b) Laagdikten zoet water in Oosterschelde (a_3) opdat zoutton niet net bij dam komt als $f(\Delta p, \bar{q})$
Laagdikten van zoet en zout water bij de Volkerakdam als functie van Δp en \bar{Q}
voor $\lambda_i = 0.01$ en $\lambda_i = 0.005$
Laagdikten zoetwater in de Oosterschelde (a_3) opdat de zouttong net niet bij de dam komt als functie van Δp, \bar{q} voor $\lambda_i = 0.01$ en $\lambda_i = 0.005$.

Schematisatie III, JM A4

Waterloopkundig Laboratorium M.896 - 1752 Fig.15
INHOUD I: N.A.P. TOT N.A.P. - 4,50 m
\[220 \times 10^6 \times 4,5 = 10^9 \text{ m}^3 \]

INHOUD II: N.A.P. TOT N.A.P. - 9,70 m
\[220 \times 10^6 \times 4,5 = 10^9 \text{ m}^3 \]
\[120 \times 10^6 \times 5,2 = 0,6 \times 10^9 \text{ m}^3 \]
\[= 1,6 \times 10^9 \text{ m}^3 \]

TOTALE INHOUD: N.A.P. TOT N.A.P. - 26 m
\[1,6 \times 10^9 \text{ m}^3 \]
\[10,3 \times 60 \times 10^6 = 0,6 \times 10^9 \text{ m}^3 \]
\[6 \times 26 \times 10^6 = 0,2 \times 10^9 \text{ m}^3 \]
\[= 24 \times 10^9 \text{ m}^3 \]