Toekomstige signalering van ‘nieuwe stoffen’ door biotests

(050706)

Deelproject Evaluatie Biotests
Onderdeel Signalering (C2)
Toekomstige signalering van 'nieuwe stoffen' door biotests

1. Inleiding ... 1

2. Nieuwe stoffen .. 3
 2.1 Nieuwe probleemstoffen in baggerspecie ... 3
 2.1.1 Internationale lijsten met aandachtstoffen ... 3
 2.1.2 Voorkomen van nieuwe stoffen in het mariene milieu 4
 2.2 Samenvattend .. 5

3. Ecologische risico's nieuwe stoffen .. 6
 3.1 Milieubezwaarlijke eigenschappen nieuwe stoffen 6
 3.1.1 Etalaten (DEHP) .. 6
 3.1.2 Gebromeerde brandvertragers .. 7
 3.1.3 Geperfluorereerde verbindingen ... 8
 3.1.4 Nonylphenol ethoxylaten (A₉PEO) .. 8

4. Biotests nader bekeken .. 10
 4.1 Verschillende biotests ... 10
 4.1.1 Corophium volutator ... 10
 4.1.2 Microtox Solid phase ... 10
 4.1.3 DR-Calux .. 11
 4.1.4 Echinocardium cordatum .. 11

5. Biotests als vangnet .. 13
 5.1 Detectie van stoffen door biotests ... 13
 5.2 Detectie van combinatie van stoffen op biotests .. 14
 5.3 Chronische effecten van stoffen op biotests ... 14

6. Conclusie ... 15

7. Literatuurlijst .. 17
Project Beleidsagenda Zoute Bagger
Deelproject Evaluatie Biotests, onderdeel Signalerings (C2)
Uitbesteding RIKZ aan SDN

Toekomstige signalerings van 'nieuwe stoffen' door biotests

Opgesteld door: Jeroen Dagevos
Datum: 4 november 2005
Versie: Eindrapport, versie2

1. Inleiding

Naast toetsing van baggerslib op chemische verbindingen wordt in de CTT de biologische reactie in drie biologische tests (bioassays) gemeten: de Corophium volutator, Microtox Solid Phase en DR Calux-test (Schipper en Schout, 2003). Een potentieel voordeel van biotests is dat zij in staat zijn om onbekende of nieuwe toxische stoffen te detecteren, verbindingen die niet analytisch-chemisch in de CTT gemeten worden (Maas en van den Heuvel-Greve, 2004). Een tweede voordeel van biotests is de mogelijkheid om het effect van een combinatie van toxische stoffen te detecteren.

In opdracht van RWS-DGW evalueert het RIKZ drie bestaande (Corophium v., Microtox-SP en DR-Calux) en twee nieuwe biotests (chronische Corophium v. en Echinocardium c.). Daarbij wordt ook gekeken of de biotests in voldoende mate een vangnetfunctie kunnen vervullen voor de "nieuwe stoffenproblematiek". Het RIKZ heeft aan Stichting De Noordzee (SDN) de opdracht gegeven een bijdrage te leveren aan deze evaluatie.

De belangrijkste vragen waarop in dit rapport ingegaan wordt zijn welke ontwikkelingen SDN de komende jaren verwacht op het gebied van schadelijke baggergerelateerde stoffen en of de huidige vijf biotests deze stoffen kunnen signaleren.

Dit resulteert in de volgende centrale vraagstelling:

'Voldoen de huidige drie CTT-biotests en de twee nieuwe tests aan de vangnetfunctie voor 'nieuwe stoffen', of is een uitbreiding van het instrumentarium wenselijk?'

De centrale vraagstelling is opgesplitst in de volgende deelvragen:

1. Welke 'nieuwe' stoffen (of stofgroepen) ziet SDN als een mogelijk toekomstig ecologisch risico indien deze zich in baggerspecie bevinden?
2. Waaruit bestaat een eventueel ecologisch risico van chemische stoffen?
3. Bij welke concentraties (in baggerspecie) van chemische stoffen is sprake van een ecologisch risico bij het storten van baggerspecie in zee?
4. Welke stoffen (of stofgroepen) worden door de vijf biotests wel of niet gedetecteerd?
5. In hoeverre is op basis van de literatuur te bepalen of combinaties van chemische stoffen voldoende ondervangen worden door biotests?
6. In hoeverre is op basis van de literatuur te bepalen of chronische effecten van chemische stoffen voldoende worden ondervangen door biotests?
Toekomstige signalering van ‘nieuwe stoffen’ door biotests

(050706)

Bij de beantwoording van de centrale vraagstelling en bijbehorende deelvragen wordt rekening gehouden met een aantal voor dit project aanwezige randvoorwaarden, namelijk:

- De te onderzoeken stoffen zijn in lijn met Europese- en andere internationale ontwikkelingen op het gebied van baggergerelateerde verontreinigingen;
- Het onderzoek beperkt zich tot de eerder genoemde vijf biotests;
- Binnen het onderzoek wordt gekeken naar zoute baggerspecie.

Gezien de korte looptijd van het onderzoek wordt gebruik gemaakt van bestaande kennis. Het onderzoek zal zich beperken tot een literatuurstudie in combinatie met interviews.
2. Nieuwe stoffen

De Noordzee heeft te maken met een nieuwe groep aan verontreinigende stoffen. Het gaat hier niet om de ‘klassieke’ probleemstoffen als DDT, PCB, zware metalen, maar om een relatief nieuwe groep milieubellen terreinstof: de zogenaamde milieudodend. Het gaat hier immers niet om een werkelijk nieuwe stof. Na jaren van productie en gebruik komen de schadelijke effecten van deze chemische stoffen aan het licht of bestaat pas sinds recent de mogelijkheid deze stoffen te analyseren. Onder ‘nieuwe’ stoffen worden stoffen verstaan waarover niet of in onvoldoende mate in reguliere moningsprogramma’s informatie aangeleverd wordt, maar die wel een belangrijke rol (gaan) spelen in het waterkwaliteitbeleid (Berbee et al., 2004). In de loop der tijd zijn er door de mens meer dan 150.000 stoffen gemaakt. Ongeveer 600 hiervan staan onder (inter)nationale aandacht (Van Wezel, 1999).

In hoofdstuk 2 wordt ingegaan op deelvraag 1 van de onderzoeksvragen: Welke ‘nieuwe’ stoffen (of stofgroepen) ziet SDN als een mogelijk toekomstig ecologisch risico indien deze zich in baggerspecie bevinden?

2.1 Nieuwe probleemstoffen in baggerspecie

In de afgelopen twintig jaar zijn op basis van diverse criteria meerdere (inter)nationale zwarte en grijze stoflijsten opgesteld. Opmerkelijk is dat geen van de lijsten identiek is (Laane et al., 2001). Het selecteren van ‘nieuwe’ stoffen die met prioriteit aandacht verdienen kan gebeuren op basis van verschillende invalshoeken. Lijsten met aandachtstoffen die gebaseerd zijn op intrinsieke stofeigenschappen zoals persistentie, toxiciteit en bioaccumulatie (PTB-criteria) (EU, OSPAR). Een andere manier is om probleemstoffen te selecteren op basis van hun voorkomen in het maritieme milieu (Laane et al., 2001).

Binnen dit onderzoek wordt gefocust op ‘nieuwe’ stoffen die een mogelijk ecologisch risico met zich meebrengen indien zij in zich in baggerspecie bevinden. De keuze bij de stofselectie is sterk afhankelijk van de beschikbare kennis en het maatschappelijk probleembeleid. In dit rapport is ervoor gekozen om een pragmatische keuze te maken van nieuwe stoffen welke een mogelijk ecologisch risico vormen voor de Noordzee indien deze zich in baggerspecie bevinden. De keuze is gebaseerd op het voorkomen van de stoffen op internationale lijsten met aandachtstoffen en het voorkomen van de stoffen in het maritieme milieu.

De onderstaande stoffen(groepen) ziet SDN als belangrijke ‘nieuwe’ probleemstoffen indien deze zich in baggerspecie bevinden:
- halogenaten
- broombrandvertragers
- geperfluorideerde verbindingen
- (alkyl)fenolen

2.1.1 Internationale lijsten met aandachtstoffen

Internationale kaders waar dieper ingegaan wordt op nieuwe stoffen die mogelijk een probleem vormen voor het maritieme milieu zijn de OSPAR (Oslo-Parlisse Conventie, 1992) en de Europese Kaderrichtlijn Water (KRW) (EU, 2000). Beide kaders werken met prioritaire stoflijsten. Stoffen die op de prioritaire stoflijsten staan dienen met voorrang behandeld te worden wat betreft nader onderzoek en beleidsmaatregelen. Belangrijk criteria die gehanteerd worden voor beide lijsten zijn de zogenaamde PTB-criteria.

OSPAR
OSPAR streeft ernaar het maritieme milieu van de Noordoostelijke Atlantische Oceaan te beschermen. Wat betreft de waterwachtelijkheid heeft OSPAR de doelstelling geformuleerd dat concentraties van chemische stoffen teruggebracht moeten worden tot de achtergrondwaarde voor natuurlijke stoffen en tot het nul-niveau voor anthropogene stoffen. OSPAR heeft een lijst opgesteld met stoffen die prioriteit verdienen, de OSPAR List of Chemicals for Priority Action (OSPAR, 2004).
Alle nieuwe stoffen die SDN ziet als een potentiële risico voor het mariene milieu staan op de OSPAR List of Chemicals for Priority Action.

Kaderrichtlijn Water (KRW)
Doelstelling van de KRW is het bereiken van een ‘goede ecologische toestand’. Emissies van prioritaire gevaarlijke stoffen moeten binnen een periode van twintig jaar helemaal worden beëindigd. Broombrandvertragers, Fenolen (Nonylfenolen, octylfenolen), Tributyltin verbindingen, Ftalaten (Bis(2-ethylhexyl)ftalaat (DEHP)) staan op de prioritaire stoffenlijst van de KRW. Geperfluoreerde verbindingen staan (nog) niet op deze lijst.

Tabel 1, overzicht nieuwe probleemstoffen op internationale stoffenlijsten

<table>
<thead>
<tr>
<th>OSPAR</th>
<th>KRW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ftalaten</td>
<td>X</td>
</tr>
<tr>
<td>Broombrandvertragers</td>
<td>X</td>
</tr>
<tr>
<td>Geperfluoreerde verbindingen</td>
<td>X</td>
</tr>
<tr>
<td>Fenolen</td>
<td>X</td>
</tr>
<tr>
<td>Tributyltin</td>
<td>X</td>
</tr>
</tbody>
</table>

X: aanwezig als prioritaire stof op lijst
- afwezig als prioritaire stof op lijst

2.1.2 Voorkomen van nieuwe stoffen in het mariene milieu

Alle door SDN als ‘nieuwe’ probleemstof bestempelde stoffen zijn teruggevonden in het marient milieu.

Ftalaten
Di(2-ethylhexyl)ftalaat (DEHP) is langs de Nederlandse kust en op de Noordzee in aantoonbare concentraties aangetoond. Hoe dichter bij de grote rivieren, hoe hoger de concentraties (Akerman et al., 2004).

Gebronceerde vlamvertragers
Langs de gehele Nederlandse kust en op de Noordzee zijn gebronceerde vlamvertragers aangetroffen in zwevende stof en sediment. In sediment zijn de concentraties drie tot tien keer hoger dan in 2000 (Akerman et al., 2004). Tevens zijn broombrandvertragers teruggevonden in dieren in het wild en in mensen (De Wit, 2002).

Geperfluoreerde verbindingen
Perfluorocycloheksenzuur (PFOS) en perfluoroacetazuur (PFOA) blijken wijdverspreid voor te komen langs de Nederlandse kustzone (Akerman et al., 2004). In een vergelijkbaar onderzoek van het RIZA/RIKZ wordt dezelfde conclusie getrokken, tevens is PFOS aangetoond in vis (Schrap en Pijnenburg, 2004).

Nonylfenol ethoxylaten
Nonylfenol ethoxylaten (A₉PEO) en hun metabolieten waaronder nonylfenol, nonylfenol monoethoxylaat (A₉PEO₁) en nonylfenol di-ethoxylaat (A₉PEO₂) zijn in het milieu in zowel de water- als de sedimentfase aanwezig (Jonkers, 2004).
2.2 Samenvattend

Stoffen die op internationale stoffenlijsten staan dragen het potentieel milieubelastend te zijn. SDN ziet de verspreiding van deze stoffen in het Noordzeemilieu als onwenselijk. Indien stoffen op de 'List of Chemicals for Priority Action' staan en/of op de prioritaire (gevaarlijke) stoffenlijst van de Kaderrichtlijn Water, dienen zij uit het milieu geweerd te worden. De aanwezigheid van dergelijke stoffen in baggerspecie kan voor SDN reden zijn te pleiten voor het niet sorten van baggerspecie in zee.
3. Ecologische risico's nieuwe stoffen

Het merendeel van de nieuwe probleemstoffen zijn persistent, bioaccumulerend en/of toxisch. Verder is van een aantal stoffen aangetoond dat zij een hormoonverstorende werking hebben (endociene werking), danwel chronisch effect hebben op marinc organi
gen. De ecologische risico's van de eerder in dit onderzoek geselecteerde stoffen worden in dit hoofdstuk nader belicht. Bij welke concentraties van chemische stoffen in baggerspecie een ecologisch risico speelt wordt afgeleid aan de geldende normen; de beschikbare Maximale Toelaatbare Risico (MTR) en Verwaarloosbaar Risico (VR) gegevens.

Hiermee wordt ingegaan op deelvragen 2 en 3 van de onderzoeksvragen:
- Waaruit bestaat een eventueel ecologisch risico van chemische stoffen?
- Bij welke concentraties (in baggerspecie) van chemische stoffen is sprake van een ecologisch risico bij het sorteren van baggerspecie in zee?

3.1 Milieubezuurbare eigenschappen nieuwe stoffen

3.1.1 Flalaten (DEHP)

De meest toegepaste ftalaat is di(2-ethylhexy)ftalaat (DEHP) en di-n-butyl ftalaat (DBP) (Lützel, 1987). Geschat wordt dat 50% van alle plastics DEHP bevat. DEHP is de enige ftalaat die in aantoonbare concentraties langs de Nederlandse kust voorkomt (Åkerman et al., 2004).

PTB-criteria:
In standaard testen blijkt DEHP 'readily biodegradable' te zijn. Onder meer realistische milieuomstandigheden (gebonden aan organisch materiaal) is de afbreekbaarheid echter veel lager. In het sediment onder anaërobe omstandigheden is de afbreekbaarheid nogmaals vele malen lager. De acute toxiciteit van ftalaten is laag (Furthmann, 1994), echter een aantal studies hebben carcinogene potentieel aangetoond in knaagdieren (Kluwe et al., 1982, Morgenroth, 1993; Page en Lacroix, 1995); (David et al., 1999).

Indien DEHP in vis via voedsel wordt toegediend blijken er effecten als gedragsstoornissen, verstoring van de voortplanting op te treden in de dieren. De Predicted No-Effect Concentration (PNEC) voor bodemdieren is voor het Risk Assessment Report (RAR) van de EU op >100mg/kg d.s. gesteld (ECB, 2001). DEHP is oestrogeen gebleken tijdens in vitro test (Jobling et al., 1995).

Het grootste gevaar voor toxische effecten dan wel endociene verstoring lopen schelpdieren die blootstaan aan verontreinigd sediment (bijv. loswallen baggerspecie) aangezien ftalaten zich concentreren in het sediment en schelpdieren ftalaten langzamer metaboliseren (Sheahan et al., 2000). De estuariene kreeftachtige, Eurytemora affinis heeft een 10 dagen NOEC van 109 ± 29 µg/l voor DEHP. Resultaten van het onderzoek suggereren dat endociene verstoring optreedt in kreeftachtigen ten gevolge van DEHP, in het bijzonder wanneer de blootstelling aan de stof plaatsvindt vanaf de start van de embryonale ontwikkeling (Forget-Leray et al., 2005).

Marine zoogdieren zijn (nog) niet onderzocht op verstoring van de embryonale ontwikkeling. Onderzoek naar de effecten van DEHP op de embryonale ontwikkeling van rattis is wel reeds uitgevoerd. Histopathologische effecten (weefselziekten) zijn waargenomen in embryonale rat testis (Borch et al., 2005). Ook Voss et al. (2005) concludeert dat rat testis een doelorgaan zijn voor DEHP. Tumoren ontstaan. Tevens toont het onderzoek aan dat DEHP levertumoren veroorzaakt bij levenslang blootstelling in lage concentraties (range 300 – 0 mg/kg DEHP per dag).

Normen
In Nederland zijn formeel geen normen opgesteld voor ftalaten. Momenteel bestaat er alleen een wetenschappelijke norm voor DEHP van 1 mg/kg d.s. sediment (Van Wezel et al., 1999).
FHI-norm voor de som ftalaten (voorstel EU) is gesteld op 0,17 µg/l voor oppervlaktewater, 2620 µg/kg zwervende stof voor de zout-kust en territoriale wateren. Voor zout- overgangswateren is een norm voorgesteld van 0,33µg/l voor het oppervlaktewater en 4400 µg/kg voor het zwervende stof.

3.1.2 Gebromeerde brandvertragers

De broombrandvertragers kunnen onderscheiden worden in vier groepen, namelijk:
- Tetrabroombisfenol-A (TBBPA)
- Hexabroomcyclododecaan (HBCD)
- Polybroom Bifeny (PBB's)
- Polybroom Difenylethers (PBDE's)

PTB-criteria:
Gebromeerde brandvertragers binden in het aquatische milieu sterk aan sediment (Groshart et al., 2000). TBBPA, HBCD en pentaBDE kunnen uit water vervluchtigen met een halfwaardetijd tot ongeveer 10 dagen. TBBPA heeft een halfwaardetijd in sediment van 55 tot 100 dagen, onder anaërobe omstandigheden. De halfwaardetijden voor octaBDE en decaBDE zijn aanmerkelijk hoger, respectievelijk 38 en 380 dagen (Groshart et al., 2000). Abiotische afbraak van PentaBDE in water wordt niet verwacht, abiotische afbraak van octaBDE is geheel onbekend, maar er is zorg dat afbraak plaatsvindt naar lagere BDE's die veel schadelijker zijn. Verwacht wordt dat DecaBDE abiotisch niet wordt afgebroken (Groshart et al., 2000), al zijn er aanwijzingen dat er een potentieel voor debromering bestaat (Skoczynska et al., nog niet gepubliceerd). DecaBDE lost over het algemeen slecht op in water, het hecht zich aan zwervende stof. Maar in de natuur, onder invloed van UV-licht, kan de stof uit elkaar vallen tot lager gebromeerde moleculen die wel goed oplosbaar zijn. Zo kan de hormoonverstorende stof gaan accumuleren in onder meer zeeloven en vogels (de Boer, 2005).

TBBPA is zeer acuut toxisch voor algen, de watervlo Daphnia magna en de garnal Mysis odpis bahia en vis (Keml, 1895, 1995). In vis is de acute 96 uur LC50 waarde voor TBBPA vastgesteld op 0,5 mg/l. Verder worden tijdens de experimenten gedragstoren waargenomen, een afname in groei en verminderde overleving. TBBPA beïnvloedde de reproductie van Daphnia magna en was toxisch voor de Mysis garnalen (LC-50 van 1mg/l) (IPCS, 1995).

HBCD vertoonde een statistisch significante dosis afhankelijke toename in de recombinaat frequentie in gecultiveerde zoogdiercellen SPD8 en Sp5, hetgeen een aanwijzing is voor kanker (Helleyday et al., 1999).

PBB veroorzaakt verstoring van de reproductie en heeft een carcinogeneffect bij apen (IPCS, 1994).

Effecten van PBDE op algen, invertebraten en in vis zijn bekend. In vis werd het CYP enzym gekoppeld, ontstond een vette lever en nam het broedsucces af (Holm et al., 1993). In een 48 uur acute toxiciteit test en larf-onwikkelingstest met de kreeftachtige Acartia tonsa, werd de 2 en 5 dagen LC50 waarden van respectievelijk 2,4 en 0,013 mg/l gevonden (Breitholz et al., 2001). Toxische effecten van een teta- tot hexa-BDE mix leverde NOEC waarden voor 48 uur op van 5µg/l (Pelitola en Ylä-Mononen, 2001).

Aangetoond is dat verschillende broombrandvertragers als PentaBDE, TBBPA en HBCD accumuleren in organismen, bijvoorbeeld in mosselen (Booij et al.,2002) en in bruinvissen en dolfijnachtigen (Zegers et al., 2005).
Normen:
Voor sediment en zwevend stof zijn geen normen voor gebromeerde vlamvertragers. Wel zijn Europese normen voorgesteld door het Fraunhofer Instituut (FHI-normen) voor pentaBDE. Pelagisch 2,5 mg/kg zwevend stof drooggewicht, bentisch 62 µg/kg drooggewicht. Voor sediment- en zwevendstofnormen voor de andere broomverbindingen zijn (nog) geen normen.

3.1.3 Geperfluoreerde verbindingen

Geperfluoreerde verbindingen (PFAS) worden vooral gebruikt bij toepassingen in waterproof en vetvrij papier (Hekster et al., 2002). Perfluoroctylsulfozuur (PFOS) en perfluoroctaanzuur (PFOA) zijn twee veelgebruikte PFAS. PFOS sorbeert sterk aan zwevende stof. PFOS zal door zijn eigenschappen vooral in sediment worden aangetroffen, terwijl PFOA in de waterfase belangrijker zal zijn (Schrap en Pijnenburg, 2004).

PTB-criteria:
Zowel PFOS als PFOA zijn slecht afbreekbaar in het milieu. PFOS is zowel onder aërobe als onder anaërobe omstandigheden persistant (Hekster et al., 2002). Op basis van EU-criteria is PFOS zeer persistent (RPA, 2004).

PFOS is toxisch voor algen, evertbraten en vissen. Dat PFOS toxisch is voor aquatische organismen is niet zo vreemd, aangezien PFOS in het verleden ook wel gebruikt is als insecticide (Sanderson et al., 2002). Het grootste risico van PFOS betreft doorvergiftiging voor marine predatoren en mariene toppredatoren. Op basis van risicobeoordelingsrapporten van de OECD en van 3M wordt kallumzout van PFOS geclassificeerd als 'Risk Phrase R48': danger or serious damage to health by prolonged exposure (Schrap en Pijnenburg, 2004).

PFOA heeft invloed op de structuur van het ecosysteem. Een verandering van een diverse gemeenschap gedomineerd door grotere soorten, naar een minder diverse gemeenschap gedomineerd door kleinere, meer robuuste soorten, is waargenomen bij zoetwater zooplankton gemeenschappen die blootgesteld werden aan PFOA (Sanderson et al., 2003).

Verder is aangetoond dat PFOS en PFOA de membraanpotentiaal kunnen veranderen in dierlijke cellen en zo transportprocessen in de cellen verstoren. Dit effect is aangetoond bij cavia's (Harada et al., 2005). In zeezoogdieren zijn dergelijke proeven (nog) niet uitgevoerd.

PFOS bioaccumuleert, de stof wordt veelvuldig in hogere organismen aangetroffen (RPA, 2004 en Brook et al., 2004). De stof wordt vooral in bloed en lever van de organismen aangetroffen. PFOA accumuleert in veel mindere mate dan PFOS (Schrap en Pijnenburg, 2004). Kannan et al. (2005) spreekt over een Bio Concentration Factor (BCF) van 1000 in bentische invertebraten. Tevens blijkt uit het onderzoek dat PFOS sterk ophoopt in de voedselketen.

Normen:
In Nederland zijn formeel geen normen opgesteld voor geperfluoreerde verbindingen. Gezien de intrinsieke stofeigenschappen zijn normen echter zeer wenselijk/ noodzakelijk.

3.1.4 Nonylfenol ethoxylaten (AₙPEO)

PTB-criteria:
Onder aërobe omstandigheden trad 99% degradatie op van AₙPEO in 4 dagen. De metabolieten worden echter veel langzamer afgebroken (Jonkers, 2004). Over het algemeen wordt aangenomen dat nonylfenol (NP) de meest persistente metaboliet is van AₙPEO (Giger en Brunner, 1984).

Voor *Corphium volutator* zijn proeven uitgevoerd naar het effect van 4-n-nonyfenol (NP). *Corphium volutator* heeft een 96 uur LC50 voor NP van 1,67 mg/l (Brown et al., 1998). De overlevingskans was gereduceerd voor alle concentraties groter dan 0,6 mg NP/l na één maand blootstelling. Juveniele dieren werden voor 100 dagen blootgesteld aan realistische in de natuur voorkomende subietale concentraties van NP; een daling in de gemiddelde lengte werd waargenomen in alle blootgestelde dieren. Tevens werden inter-individuele fenotype variatie waargenomen. De antennae van mannelijke *Corphium volutator* was bijvoorbeeld significant langer in blootgestelde dieren. Dichtheid (p<0,05) en levensduur (p<0,001) van dieren was gereduceerd bij 200 mg NP/l. De vruchtbaarheid gaat omhoog bij concentraties van 10 en 50 mg NP/l, maar daalt bij hogere concentraties (Brown et al., 1998).

Kreeftachtige *Eurytemora affinis* heeft een NOEC voor 10 dagen van 7 ± 3 μg/l voor nonyfenol (NP). NP verstoort de ontwikkeling van *Eurytemora affinis*. Verder suggereren de resultaten van het onderzoek dat de kreeftachtigen die blootgesteld zijn aan NP lijden aan de gevolgen van endocriene verstoring, in het bijzonder wanneer de blootstelling heeft plaatsgevonden sinds de start van de embryonale ontwikkeling (Forget-Leray et al., 2005).

Normen

In een Europese risico beoordeling, de zogenaamde 'Environmental Risk Limit (ERL), is het Maximaal Toelaatbaar Risico (MTR) voor nonyfenol bepaald op 0,33μg/l voor water en 105 μg/kg d.w. voor sediment.
4. Biotests nader bekeken

In dit hoofdstuk worden de biotests *Corophium volutator*, Microtox Solid phase, DR-CALUX en *Echinocardium cordatum* nader bekeken. De biotests zijn beknopt toegelicht, vervolgens wordt gekeken naar het bereik dat de biotests hebben.

4.1 Verschillende biotests

4.1.1 Corophium volutator

De test wordt uitgevoerd met de *Corophium volutator*, een slijkgarnaal die op de bodem leeft. De test wordt standaard uitgevoerd met gehomogeniseerd sediment en in het veld verzamelde dieren (RIKZ, 2004d).

De garnalen werden gedurende 10 dagen blootgesteld aan verontreinigd veldsediment. Vervolgens worden de garnalen uit het sediment gezeefd en wordt de overleving vastgesteld. Het sterftepercentage, uitgedrukt in het aantal doden en vermisten ten opzichte van de in begin ingezette dieren, wordt vervolgens berekend (Ciarelli et al., 1998).

Uit fase I Toxiciteit Identificatie Evaluatie (TIE) onderzoek bleek ammonium zeer giftig te zijn voor *Corophium volutator*. Dit werd onder meer duidelijk nadat de pH gemanipuleerd werd in de *Corophium volutator* bioassay (Stronkhorst et al., 2003).

Toevoegen van de complexvormer ethyleen diamine tetra azijnzuur (EDTA) aan de monsters liet een significante reductie zien in de *Corophium volutator* test. Gesuggereerd wordt dat dit veroorzaakt wordt door niet in het onderzoek gemeten ionen (Stronkhorst et al., 2003).

De effecten van specifieke vervuilende stoffen zijn slechts in beperkte mate bekend. Bat en Raffaelli (1998) berichten van gevoeligheid van *Corophium volutator* voor metalen; koper, zink en cadmium. Duidelijke dosis-afhankelijke relaties zijn aangetoond voor deze metalen voor sterfte en gedrag. Meer dan 90% van de *Corophium volutator* overleefden gedurende een 10 daagse blootstelling bij concentraties tot 25 μg/g Cu en 21 μg/g Zn in sediment. 70% van de *Corophium volutator* overleefden bij 10 daagse blootstelling van maximaal 9,18μg/g Cd in sediment. *Corophium volutator* is gevoelig voor met metalen vervuild sediment (Bat en Raffaelli, 1998).

Corophium volutator bleek verder ook gevoelig te zijn voor nonylenfenol (Depledge en Billinghurst, 1999; Brown et al., 1999). Brown et al. (1999) vond een 96 uur LC50 voor nonylenfenol (NP) van 1,67 mg/l. De overlevingskans nam af wanneer *Corophium volutator* werd blootgesteld aan concentraties NP van meer dan 0,6 mg/l na een maand van blootstelling. Tevens werd bij juveniele organismen die 120 dagen werden blootgesteld aan subletale concentraties van NP (10 tot 200 μg/l) een afname in gemiddelde lengte waargenomen en werden veranderingen in fenotype waargenomen, zo werden bijvoorbeeld de antennen significant langer. Tevens werd geslachtsverandering waargenomen en nam de reproductie af. Groei bleek een gevoeliger eindpunt van de bioassay te zijn dan sterfte (Ciarelli et al., 1998).

Reproductie van *Corophium volutator* is reeds succesvol uitgevoerd in laboratorium. Dit vormt een essentiële basis voor de verdere ontwikkeling van een chronische toxiciteit test met *Corophium volutator* (Peters en Ahlf, 2005).

4.1.2 Microtox Solid phase

De acute toxiciteitstest Microtox is een breedspectrum assay. De test reageert op acute celtoxische effecten, welke door een groot aantal stoffen kunnen worden veroorzaakt. De Microtox test maakt gebruik van een bacterie, de *Vibrio fischeri*. Onder invloed van stoffen in sediment-, zwemend stof- of waterextracten sterven bacteriën en neemt de lichtintensiteit af. Er bestaat een relatie tussen de remming van de lichtemissie en de mate van toxiciteit. Als een maat voor de toxiciteit geldt de testconcentratie waarbij de lichtintensiteit met 50% afneemt (EC50).

Deelproject Evaluatie Biotests, onderdeel Signalering (C2)
De Microtox Solid Phase (MSP) is een specifieke test voor sedimentmonsters. De bacteriën worden blootgesteld aan een afnemende hoeveelheid gesuspendeerd sediment, waarbij een direct contact optreedt met sedimentdeeltjes (RIKZ, 2004b).

Uit fase I Toxiciteit Identificatie Evaluatie (TIE) onderzoek bleek sulfide zeer giftig te zijn voor Microtox. Dit werd geconcludeerd na pH manipulatie en interpretatie van de resultaten van de Microtox bioassay (Stronkhorst et al., 2003).

Klamper et al. (2005) toonde correlaties aan met Principal Component Analysis (PCA) tussen Microtox en kleinere PAK’s en andere aromatische componenten.

4.1.3 DR-Calux

DR-CALUX staat voor (Dioxine Responsive Chemical Activated Luciferase gene eXpression). Het betreft een in vitro op celbasis gebaseerde biotest. In de DR-Calux test wordt gebruik gemaakt van levercellen van ratten, de zogenaamde H4IIE cellijn. Het luciferase gen van een vuurvlug is gekoppeld aan de dioxine receptoren van de levercellen.

Bij blootstelling aan dioxineachtige stoffen vindt niet alleen het normale reactiepatroon plaats, maar wordt tevens een keten van biologische reacties in gang gezet waardoor de levercellen licht uit gaan zenden. De hoeveelheid licht is gerelateerd aan de hoeveelheid dioxineachtige stoffen in het aangeboden extract.

Met de DR-Calux test wordt de aanwezigheid van stoffen met een dioxineachtige activiteit bepaald. De toxiciteit wordt uitgedrukt in ‘toxiciteit equivalenten’ (TEQ) ten opzichte van dioxine (TEQ=1). De dioxineachtige toxiciteit van een monster wordt vergeleken met de toxiciteit van de dioxine zelf.

Naast dioxines, dibenzofuranen en PCB’s is DR-Calux tevens gevoelig voor andere stoffen die een dioxine-achtige toxiciteit (kunnen) hebben zoals PAK’s, stikstofhoudende PAK’s, biogene componenten en gebrommerde vlamvertragers (Pijnenburg et al., 1995; Klamper et al., 2004; Klamper et al., 2005).

4.1.4 Echinocardium cordatum

De test wordt uitgevoerd met zeeklitten of hartgels (Echinocardium cordatum). Zeeklitten leven meestal 5 tot 10 cm ingegraven in het sediment en leven van detritus. Zeeklitten vormen één van de weinige macroben planten soorten die voorkomen door de gehele Noordzee.

Daan et al. (1990) heeft bentisch onderzoek uitgevoerd naar het effect van sediment, afkomstig rond olieplatforms in de Noordzee, op zeeklitten. Biologische effecten werden aangetoond tot 50 m van het platform. Verder was de fauna dichtheid en diversiteit gereduceerd met 60 en 30% respectievelijk. De mortaliteit van de zeeklitten die blootgesteld werden aan hetzelfde sediment was na 14 dagen blootstelling 30%. Opvallend was echter wel dat na 110 dagen blootstelling aan het olieverontreinigde sediment de mortaliteit van de zeeklitten opliep tot 85% (Daan et al., 1990). Deze resultaten maken
duidelijk dat de standaard zeeklit test van 14 dagen niet de volledige risico's van het sediment weergeven (Stronkhorst et al., 2003).

Door Aquasense (2001) is een overzicht opgesteld van de kennis van werkingsmechanismen van verschillende toxische stoffen voor een drietal organismen, waaronder de zeeklit. Voor de zeeklit zijn echter weinig gegevens gevonden omtrent de werkingsmechanismen van stoffen. Alleen voor PCB’s wordt geconcludeerd dat echinodermen minder gevoelig zijn dan amphipoden.

Een relatie is aangetoond tussen de effecten op de zeeklit en de gehalten aan diverse metalen (chroom, nikkel, koper, zink, arseen en lood) (Stronkhorst et al., 1997). Tevens is een relatie gevonden tussen tinverbindingen en de respons van de zeeklit (Van den Brink en Kater, 2000).
5 Biotests als vangnet

In dit hoofdstuk wordt ingegaan op de vraag of de biotests als vangnet fungeren voor de in deze literatuurstudie bekeken stoffen. De stoffen en biotests zijn reeds toegelicht in eerdere hoofdstukken. In dit hoofdstuk wordt bekeken of de biotests kunnen fungeren als vangnet voor de eerder besproken mogelijk nieuwe probleemstoffen en combinaties van stoffen.

Biotests vormen een vangnetfunctie wanneer nieuwe, nog niet chemisch gemeten of onbekende stoffen en (nog) niet bekende combinaties van stoffen, effect hebben op de biotests wanneer deze stoffen (en/of combinaties hiervan) in het aangeboden monster aanwezig zijn. De biotests signaleren in een zeer vroege stadium dat er ‘iets’ mogelijk niet in orde is. Nader onderzoek moet uitwijzen waardoor de biotests reactie vertonen.

Hiermee wordt ingegaan op deelvragen 4, 5 en 6 van de onderzoeksvragen:

- Welke stoffen (of stofgroepen) worden door de vijf biotests wel of niet gedetecteerd?
- In hoeverre is op basis van de literatuur te bepalen of combinaties van chemische stoffen voldoende ondervangen worden door biotests?
- In hoeverre is op basis van de literatuur te bepalen of chronische effecten van chemische stoffen voldoende worden ondervangen door biotests?

De in deze literatuurstudie behandelde biotests worden beoordeeld op hun eigenschap nieuwe probleemstoffen en combinaties van stoffen te detecteren. Uit literatuurgegevens blijkt dat de in deze literatuurstudie benaderde nieuwe probleemstoffen slechts in beperkte mate invloed hebben op de verschillende biotests.

5.1 Detectie van stoffen door biotests

Corophium volutator

Van de biotest *Corophium volutator* is bekend dat zij gevoelig is voor nonylfenol. Voor de andere stoffen die in dit onderzoek zijn bekeken is geen literatuur gevonden die uitwijst of de stoffen effect hebben op de biotest. Dit geldt voor zowel de acuut toxische als de chronische biotest.

Microtox Solid phase

Microtox is op basis van voor handen zijnde literatuurgegevens niet gevoelig gebleken voor één van de in hoofdstuk 2 genoemde stoffen.

DR-CALUX

DR-CALUX is gevoelig gebleken voor een aantal broombrandvertragers, namelijk PBB en PBDE. De gevoeligheid voor PBB bleek het grootst te zijn. Voor de andere broombrandvertragers HBCB en TBBPA zijn geen gegevens gevonden wat betreft effecten op de DR-CALUX biotest.

Echinocardium cordatum

Echinocardium cordatum bleek op basis van bekende literatuurgegevens niet gevoelig te zijn voor de in dit onderzoek als probleemstoffen belichte stoffen.

In tabel 2 is een overzicht weergegeven van de verschillende in dit onderzoek belichte probleemstoffen en het wel of niet effect hebben van deze stoffen op de biotest.

| Tabel 2. Biotests en gevoeligheid voor nieuwe probleemstoffen |
|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| | DEHP | Fenolen | PBB | PBDE | TBBPA | HBCD | PFOS | PFOA |
| *Corophium v.* | - | X | - | - | - | - | - | - |
| Microtox | - | - | - | - | - | - | - | - |
| DR-CALUX | - | X | X | - | - | - | - | - |
| *Echinocardium c.* | - | - | - | - | - | - | - | - |

- : Geen effect waargenomen
X : Effect waargenomen

Deelproject Evaluatie Biotests, onderdeel Signalering (C2)
5.2 Detectie van combinatie van stoffen op biotests

Metaalmixen bleken effect te hebben op een aantal van de biotests. Metaalmixen hadden een effect op *Corophium volutator*, Microtox, en *Echinocardium cordatum*. Over het algemeen nam het effect van de metaalmix toe op de biotest, maar in een aantal gevallen bleek een metaalmix juist een verminderd effect te geven. In het algemeen blijkt nog relatief weinig bekend te zijn omtrent mengsels van stoffen en het effect dat zij hebben op de verschillende biocatal.

5.3 Chronische effecten van stoffen op biotests

Met metaal- en olie verontreinigd sediment zijn chronische effecten waargenomen in *Corophium volutator* en *Echinocardium cordatum*. Na langdurige blootstelling (100 dagen) aan oleiverontreinigde sediment werd een duidelijke stijging in mortaliteit waargenomen. Deze resultaten maken duidelijk dat acuut toxische testen alleen niet de volledige risico’s van het sediment weergeven.

Verder werd bij juveniele dieren van *Corophium v.* die voor 100 dagen werden blootgesteld aan realistische in de natuur voorkomende subletale concentraties van nonyfenol (NP) een daling in de gemiddelde lengte waargenomen. Tevens werden inter-individuele fenotype variatie waargenomen. De antenne van mannelijke *Corophium v.* was bijvoorbeeld significant langer in blootgestelde dieren.
6 Conclusie

Binnen dit onderzoek is gefocust op 'nieuwe' stoffen die een mogelijk ecologisch risico met zich meebrengen indien zij in zich in baggerspecie bevinden. De keuze bij de stofselectie is sterk afhankelijk van de beschikbare kennis en het maatschappelijk probleembeesf. Op basis van het voorkomen van stoffen op internationale stoffenlijsten en het voorkomen van de stoffen in het milieu heeft Stichting De Noordzee (SDN) een aantal stoffen geselecteerd die de milieuoorganisatie als potentieel milieugevaarlijke stoffen ziet indien deze stoffen zich in baggerspecie bevinden. Het gaat om de volgende stoffen/stofgroepen:

- Di(2-ethylhexyl)ftalaat (DEHP)
- Broombrandvertragers:
 - Tetrabroombisfenol-A (TBBPA)
 - Hexabroomcycloodecaan (HBCD)
 - Polybroom Bifenylen (PBB’s)
 - Polybroom DifenylEthers (PBDE’s)
- Geperfluoreerde verbindingen (PFAS)
 - Perflurooctylsulfonzuur (PFOS)
 - Perflurooctaanzuur (PFOA)
- Nonylfenol ethoxylaten (A9PEO)

De stoffen voldoen aan de zogenaamde PTB-criteria, Persistent Bioaccumulator en Toxisch. Verder blijken de stoffen een endocriene verstoring te veroorzaken in verschillende soorten organismen. Van nog niet alle stoffen zijn de volledige effecten op het milieu bekend. Toch kan geconcludeerd worden dat alle stoffen op basis van beschikbare onderzoeksgegevens als potentieel milieugevaarlijk gezien kunnen worden. SDN ziet de verspreiding van deze stoffen in het Noordzeemilieu dan ook als zeer onwenselijk. De aanwezigheid van dergelijke stoffen in baggerspecie is voor SDN reden te pleiten voor het niet stroten van dergelijke baggerspecie in zee.

In dit onderzoek zijn een aantal biotests nader bekeken en getoetst aan hun vermogen de in dit onderzoek geselecteerde stoffen te detecteren. Het gaat om de biotests:

- Corphium volutator (acuut + chronisch)
- Microtox Solid phase
- DR-CALUX
- Echinocardium cordatum

Acuut toxische effecten worden door de set aan biotests behoorlijk afgedekt. Het effect van nonylfenol is specifiek onderzocht op Corphium volutator. Acuut toxische effecten en chronische effecten, zoals vermindering van groei, groeiafwijkingen, werden waargenomen. De ftalaten, broombrandvertragers en geperfluoreerde verbindingen blijken op basis van eerder onderzoek een toxische werking te hebben op verschillende soorten organismen. Geen specifieke literatuur is echter voor handen met welke concentraties welke effecten optreden in de in dit onderzoek bekeken biotests. Wel is het aannemelijk dat de meeste acuut toxische effecten door de set aan biotests worden opgemerkt, aangezien de biotests een breed spectrum aan verschillende soorten organismen uit het mariene milieu vertegenwoordigen.

Acute letale toxiciteit testen alleen zijn echter onvoldoende om het ecologisch risico in te schatten. Subletale testen met biotests zijn nodig. Het merendeel van de nieuwe probleemstoffen is immers hormoonverstorend (endocriene verstoring) en bioaccumulator. De DR-CALUX test bleek gevoelig voor PBB en PBDE. Voor andere broomvertragers, TBBPA en HBCD, geperfluoreerde verbindingen, fenolen en ftalaten werd echter geen gevoeligheid waargenomen.
De centrale vraagstelling van deze literatuurstudie luidt:
'Voldoen de huidige drie CTT-biotests en de twee nieuwe tests aan de vangnetfunctie voor 'nieuwse stoffen', of is een uitbreiding van het instrumentarium wenselijk?'

Nee, de huidige drie CTT-biotests en de twee nieuwe tests voldoen niet aan de vangnetfunctie voor nieuwe stoffen. Acute toxiciteit wordt behoorlijk afgedekt door de biotests. Echter, endocriene verstoringen, chronische effecten, bioaccumulerende en carcinogene vormende stoffen (genetische veranderingen) worden niet voldoende afgedekt door de in dit onderzoek behandelde biotests. Uitbreiding van de set biotests is gewenst.

Geen enkele test is waarschijnlijk in staat alle mogelijke negatieve effecten van chemische stoffen te signaleren. Het is veel waarschijnlijker dat een set aan biotests het meest succesvolst zal zijn. De huidige set aan biotests uit de CTT dient uitgebreid te worden met biotest die endocriene verstoring, chronische effecten, bioaccumulerende en genetische veranderingen signaleren. Een dergelijke set aan biotests kan een goed vangnet vormen voor nieuwe stoffen.
7 Literatuurlijst

Toekomstige signalering van 'nieuwe stoffen' door biotests

Deelproject Evaluatie Biotests, onderdeel Signalering (C2)

Staatscourant, 18 juni 2004, nr. 114.

