Inlaatconstructies voor noodoverloopgebieden

Mogelijkheden, haalbaarheid en effecten

Bijlagen bij afstudeerrapport

Kin Sun Lam

Technische Universiteit Delft
Faculteit Civiele Techniek en Geowetenschappen
Sectie Waterbouwkunde

Ministerie van Verkeer en Waterstaat
Directoraat-generaal Rijkswaterstaat
Dienst Weg- en Waterbouwkunde
Inlaatconstructies voor noodoverloopgebieden

Mogelijkheden, haalbaarheid en effecten

Bijlage bij afstudeerrapport

Delft, 19 april 2004
Afstudeerwerk in het kader van de studie Civiele Techniek

naam: K.S. Lam
studienummer: 9496342
e-mail: kinsunlam@hotmail.com

Afstudeercommissie:

- Prof.drs.ir. J.K. Vrijling (Voorzitter)
- ir. K.G. Bezuyen
- ir. R. Abspoel
- dr.ir. P.J. Visser
- ir. J.B.A. Weijers
- Sectie Waterbouwkunde, TU Delft
- Sectie Waterbouwkunde, TU Delft
- Sectie Staal- en Houtconstructies, TU Delft
- Sectie Waterbouwkunde, TU Delft
- Afdeling Waterkeren, DWW

Omslagfoto: Inlaatsluis in de zomerdijk bij de uiterwaard Angerensche- en Doornenburgsche Buitenpolder
INHOUDSOPGAVE

BIJLAGE A: BEKNOPTE SAMENVATTING VAN HET ADVIES VAN DE COMMISSIE NOODOVERLOOPGEBIEDEN..1

BIJLAGE B: BEVEILIGING TEGEN OVERSTROMEN..3
B.1 Relatie tussen veiligheid en risico ..3
B.2 Omgaan met risico van overstromen ...3
 B.2.1 Risico van overstromen in het verleden ...3
 B.2.2 Risico van overstromen vandaag de dag ...4
 B.2.3 Risico van overstromen in de toekomst ..5
B.3 Beveiliging tegen overstromen in Nederland ..6
 B.3.1 Veiligheidsbeschouwing ...6
 B.3.2 Onzekerheden in de huidige veiligheidsnorm ...8
B.4 NOG’s en beveiliging tegen overstromen9
 B.4.1 Het nut van NOG’s..10
 B.4.2 De noodzaak van NOG’s ..12

BIJLAGE C: VERSCHIL TUSSEN NOG’S EN RETENTIEGEBIEDEN15

BIJLAGE D: SITUATIES WAARBIJ NOG’S NIET EFFECTIEF INGEZET KUNNEN WORDEN ...17
D.1 Kritieke situatie bij zee ..17
D.2 Kritieke situatie bij meren ..17
D.3 Situatie bij neerslag ...17
D.4 Conclusies ..18

BIJLAGE E: NOG’S IN DE PRAKTIJK ..19
E.1 NOG’s of retentiegebieden in het verleden ..19
E.2 Bestaande NOG’s ...19

BIJLAGE F: GEBIEDEN WAAR DE EFFECTIVITEIT VAN EEN NOG WORDT BEÏNVLOED ..21

BIJLAGE G: VOORDELEN EN NADELEN VAN NOG’S23
G.1 Voordelen van NOG’s ...23
G.2 NadeLEN van NOG’s ..23

BIJLAGE H: BEPALEN VAN DE BENODIGDE BERGINGSCAPACITEIT25

BIJLAGE I: FREQUENTIE VAN INZET VAN BERGINGSGEBIEDEN29

BIJLAGE J: BEPERKINGEN BIJ LOKATIEKEUZE VOOR NOG’S31
J.1 Randvoorwaarden ..31
 J.1.1 Effectiviteit ..31
 J.1.2 Gewenste bergingscapaciteit ...32
 J.1.3 Inlaten van water ...32
J.2 Uitgangspunten ..32
J.3 Aannames ..34

BIJLAGE K: GESCHIKTE LOKATIES VOOR NOG’S LANGS MAAS EN RIJN .35
Inlaatconstructies voor noodoverloopgebieden

BIJLAGE L: Beperkingen bij inrichting van NOG
L.1 Randvoorwaarden ... 41
L.2 Uitgangspunten ... 41
L.3 Aannames ... 42
L.4 Inrichtingsprincipes ... 43
 L.4.1 Beperken van de gevolgen in het NOG 43
 L.4.2 Inundatiediepte .. 43
 L.4.3 Het toepassen van compartimentering 44
 L.4.4 Omdijken van gebieden ... 44
 L.4.5 Eén inlaatconstructie of meerdere inlaatconstructies 44
 L.4.6 Plaats van de inlaatconstructie 45
 L.4.7 Toepassen van uitlaatconstructies 45
 L.4.8 Methode van inlaten bij meerdere NOG’s 45

BIJLAGE M: Inlaatdebet bij de basisalternatieven
M.1 Aannames bij de berekeningen .. 47
M.2 Inlaatdebet bij overlaat .. 47
M.3 Inlaatdebet bij onderspuier ... 49
M.4 Inlaatdebet bij hevel (Gedeeltelijk overgenomen uit Vloeistofmechanica) 50
M.5 Inlaatdebet bij duiker (Gedeeltelijk overgenomen uit Vloeistofmechanica) 51

BIJLAGE O: Berekening van het inlaatdebet bij zijdelingse overlaat
O.1 Inleiding .. 55
O.2 Aannames bij de berekeningen 55
O.3 De effectieve breedte van de zijdelingse overlaat 56
 O.3.1 Verloop van de waterspiegel vóór de zijdelingse overlaat 56
 O.3.2 Berekening van de waterstanden 58
 O.3.3 Methode van Dominguez voor het bepalen van de effectieve breedte zijdelingse overlaat 60
 O.3.4 Globale methode voor het bepalen van de effectieve breedte zijdelingse overlaat 61
 O.3.5 Methode van De Marchi voor het bepalen van de effectieve breedte zijdelingse overlaat 62
 O.3.6 Invloed van de inlaatcoëfficiënt 63
 O.3.7 Het bepalen van de effectieve breedte van een zijdelingse overlaat 64
O.4 Het inlaatdebet van de zijdelingse overlaat 65
 O.4.1 Methode om het inlaatdebet van de zijdelingse overlaat te berekenen 65
 O.4.2 Berekening van het inlaatdebet van een zijdelingse overlaat met de globale methode 67
 O.4.3 Controle van het berekende inlaatdebet van de zijdelingse overlaat 67
 O.4.4 Resultaat van de berekeningen voor het inlaatdebet van de zijdelingse overlaat 68
O.5 Verloop van het inlaatdebet bij afvoergolf 68
 O.5.1 Afvoergolf .. 68
 O.5.2 Gewenste afgetopte afvoergolf 69
 O.5.3 Werkelijke afgetopte afvoergolf 70
 O.5.4 Beschouwing over de nauwkeurigheid van het verloop van het inlaatdebet 71
 O.5.5 Beoordeling van de geometrie van de overlaat 72
 O.5.6 Controle van de berekeningen 72
 O.5.7 Invoegen van controle op begin of einde van het inlaten van water in de berekeningen 72
 O.5.8 Invoegen van compartimentering van de overlaat in de berekeningen 73
 O.5.9 Invoegen van een veiligheidsmarge voor het inlaten van water 73
 O.5.10 Verschillende afvoergolven 73
BIJLAGE P: SPECIFICATIES EN HIJSTABELLEN VAN EEN 100 TONS MOBIELE KRAAN ...75
BIJLAGE Q: AANSLUITING VAN DE INLAATSLUIS OP DE OMGEVING77
BIJLAGE R: DOORSNEDE DIJK ... 79
BIJLAGE S: DOORSNEDE DIJK MET INPASSING VAN DE WAND VAN DE INLAATSLUIS ...81
BIJLAGE T: OVERZICHTSTEKENINGEN INLAATSLUIS ..83
 T.1 Bovenaanzicht inlaat ... 83
 T.2 Vooraanzicht inlaat ... 83
 T.3 Doorsnede inlaat ... 83
 T.4 Detaildoorsnede inlaat .. 83
BIJLAGE A: BEKNOPTE SAMENVATTING VAN HET ADVIES VAN DE COMMISSIE NOODOVERLOOPGEBOEDIEN

De Commissie Noodoverloopgebieden, ook wel de Commissie Luteijn genoemd naar de voorzitter van de commissie, bracht in mei 2002 advies uit aan het kabinet over inzet van NOG’s in Nederland. Hiertoe zijn verschillende studies en onderzoeken geweest naar NOG’s. Behalve maatschappelijke, sociale, juridische en bestuurlijke zaken, heeft de commissie ook gekeken naar de technische aspecten van NOG’s. Hieruit concludeert de commissie dat NOG’s zowel nuttig als noodzakelijk zijn. De belangrijkste argumenten van de commissie zijn het toenemende risico op overstromen en de beperkte gevolgen van overstromen bij inzet van een NOG.

Verder adviseert de commissie om voor de Maas het gebied de Beersche Overlaat aan te wijzen als NOG en voor de Rijn de gebieden Rijnstrangen en de Ooijpolder. Deze hebben een bergingsvolume van respectievelijk 150 miljoen m3 en 200 miljoen m3. Dit is slechts de helft van het maximale volume wat geborgen zou moeten worden bij een hoogwatergolf op de Maas en de Rijn volgens de onderzoeken waar de commissie gebruik van heeft gemaakt. De commissie acht deze kleinere bergingsvolume verantwoord, omdat de commissie ervan uitgaat dat Nederland structurele maatregelen zal nemen om een grotere afvoer mogelijk te maken (Rijn) en omdat het ruimtebeslag door de NOG’s anders zeer groot is. Voor de inrichting van de NOG’s adviseert de commissie om grote woonkernen geheel te omdijken.

Op het advies van de commissie is naderhand veel kritiek geweest. Het advies zou economisch niet rendabel zijn. De uitgevoerde kosten-baten analyse toont niet aan dat er niet-kwantificeerbare factoren zijn die ervoor zorgen dat NOG’s wel gewenst zijn. Ook rijst de vraag of de beoogde NOG’s wel groot genoeg zijn om effectief te zijn tegen de mogelijk hoogwaters. Er moet geïnvesteerd worden in constructies en voorzieningen in NOG. Het zou toch niet zo mogen zijn dat ondanks deze investeringen een hoogwater niet kan worden geborgen in het NOG.

Verder moet opgemerkt worden dat bij het advies van de commissie de inlaatconstructies niet nader zijn onderzocht. De effecten van een inlaatconstructie op het NOG zijn hierdoor ook niet meegenomen.

In het rapport zal op verschillende plaatsen vergelijkingen gemaakt worden met de onderzoeken in opdracht van de Commissie Noodoverloopgebieden en het advies van de commissie.
BIJLAGE B: BEVEILIGING TEGEN OVERSTROMEN

Om te bepalen wat de effecten zijn van het inzetten van noodoverloopgebieden op de beveiliging tegen overstromen zal in deze bijlage de beveiliging tegen overstromen centraal staan.

Er zal eerst in paragraaf B.1 de relatie tussen veiligheid en risico gegeven worden. De volgende paragraaf laat zien hoe omge gaan wordt met het risico van overstromen zowel in het verleden, heden als in de toekomst. Hoe de beveiliging tegen overstromen in Nederland is gewaarborgd, zal in paragraaf B.3 worden behandeld. In deze paragraaf zullen ook de onzekerheden aangegeven worden van de huidige Nederlandse veiligheidsnorm tegen overstromen. Uiteindelijk zal in paragraaf B.4 ter sprake komen wat noodoverloopgebieden kunnen betekenen voor de beveiliging tegen overstromen.

B.1 Relatie tussen veiligheid en risico

Beveiliging tegen overstromen is afhankelijk van het te nemen risico van overstromen. De veiligheid is voldoende als het risico van overstromen een bepaald geaccepteerde waarde niet overstijgt.

Risico is gedefinieerd als het product van de kans en het gevolg.

\[
\text{Definitie van Risico} \\
\text{Risico (R) = Kans (K) * Gevolg (G)} \\
R = K * G
\]

Uit de definitie is te zien dat het overstromingsrisico verlaagd kan worden door ofwel de kans op overstromen te verlagen of de gevolgen van overstromen te beperken.

In deze bijlage zal deze definitie gebruikt worden om duidelijk te maken wat voor invloed natuurveranderingen, maatregelen of ingrepen hebben op het risico van overstromen, en dus ook de beveiliging tegen overstromen.

B.2 Omgaan met risico van overstromen

B.2.1 Risico van overstromen in het verleden

\[
\text{Maatregelen om overstromingen te voorkomen} \\
\text{zoals de bouw of versterking van dijken, kades en dammen} \\
R(\downarrow) = K(\downarrow) * G
\]
Daarnaast werden maatregelen genomen om de gevolgen van overstromen te beperken. Er werd rekening gehouden met een mogelijke overstroming. Door alleen de meest waardevolle zaken te beschermen of te evacueren, konden de gevolgen beperkt blijven. In feite is dit een differentiatie van de kansen. Zo werden huizen op terpen gebouwd en liep alleen landbouwgrond onder water. En werd het rivierwater bij een dreigende overstroming afgeleid naar minder waardevolle gebieden, overloopgebieden of overlaten. Door het afleiden van het water konden overstromingen in waardevolle gebieden afgewend worden. Ook door zaken die niet bestand zijn tegen water te vervangen door zaken die wel tegen water kunnen zijn de gevolgen te beperken. De bewoners langs rivieren hadden vaak tegelvloeren in plaats van tapijtvloeren, met de gedachte om schade te voorkomen.

Maatregelen om de gevolgen van overstromingen te beperken
zoals de bouw van terpen en afventeling

\[
R(\downarrow) = K \cdot G_{\text{minder waardevolle zaken}} + K(\downarrow) \cdot G_{\text{waardevolle zaken}}
\]

en zoals waterbestendige objecten in plaats van niet-waterbestendige objecten

\[
R(\downarrow) = K \cdot G(\downarrow)
\]

Het risico van overstromen werd in het verleden dus zowel verlaagd door maatregelen die de kans verkleinen als maatregelen die de gevolgen bij overstromingen beperken. Het risico van overstromen werd hierdoor geminaliseerd, met de in de tijd beschikbare middelen.

B.2.2 Risico van overstromen vandaag de dag
Door de steeds verbeterde technieken om het water te kunnen beheersen zijn de kansen op overstromingen steeds kleiner geworden. Ook kunnen maatregelen zoals stormvloedkeringen, rivierverruimingen en retentie aan het arsenal voor de strijd tegen het water toegevoegd.

Overstromingen komen hierdoor minder vaak voor en het besef dat een overstroming zou kunnen plaatsvinden is langzamerhand geheel verdwenen. In het dagelijks leven wordt zelfs geen rekening meer mee gehouden met overstromingen. De vraag om steeds meer ruimte versterkt dit effect nog eens. Dit blijkt goed uit de locaties van sommige nieuwbouwwijken, die zich bevinden op de laagste plekken langs de rivieren.

Verbeterde technieken om overstromingen te voorkomen

\[
R(\downarrow) = K(\downarrow) \cdot G
\]

Maatregelen om de gevolgen van een overstroming te beperken zijn er door de verminderde aandacht niet meer. Geen overlaten die in geval van een dreigende overstroming het water afleiden naar minder waardevolle gebieden. Geen huizen meer die gebouwd worden op terpen. En geen mens die zijn waardevolle spullen op een plaats bewaard dat hoog en droog is bij een overstroming. De gevolgen bij een overstroming zijn hierdoor vele malen groter geworden. En is nog veel groter door de grotere waarde van de bedreigde gebieden en het zakkende land.

Geen gevolgenbeperkende maatregelen, wel grotere waarde in gebied

\[
R(\uparrow) = K \cdot G (\uparrow)
\]

Het risico van overstromen is in eerste instantie door de veel kleinere kans behoorlijk afgenomen. Maar de zeer grote gevolgen bij overstromen heeft dit deels weer tenietgedaan.
Hoe klein het risico ook is, een overstroming kan altijd plaatsvinden, zoals het in het verleden zo vaak is gebeurd. Af en toe worden mensen weer geconfronteerd met het risico van overstromingen, door een overstroming zoals in 1953 in het zuidwesten van Nederland of door dreigende overstromingen in 1993 en 1995 in het Nederlandse rivierengebied. Van recentere geschiedenis zijn de overstromingen in Duitsland, Oostenrijk en Tsjechië. Daar sprak men van “Jahrhundertflut” (overstroming die eens in de 100 jaar voorkomt). Hieruit blijkt maar weer eens dat een overstroming nooit uitgesloten kan worden. De gevolgen van deze overstroming zijn enorm. Niet alleen de schade, maar het verlies van mensenlevens laat duidelijk zien dat het risico van overstromen door de grotere gevolgen ook toeneemt. Hoe de beveiliging tegen overstromen nu in Nederland is geënt, zal in paragraaf B.3 Beveiliging tegen overstromen in Nederland worden beschouwd.

B.2.3 Risico van overstromen in de toekomst
Als er geen maatregelen worden genomen, komt het risico van overstromen in de toekomst onder druk te staan. Zowel de kansen als de gevolgen zullen in de toekomst groter worden door verschillende factoren, zoals zeesspiegelstijging en inklinkende bodem (zie figuur B.1).

Veranderende risico van overstromen als er geen maatregelen worden genomen

<table>
<thead>
<tr>
<th>Grotere kansen op overstromen</th>
<th>Grotere gevolgen van overstromen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• zeesspiegelstijging</td>
<td>• meer bewoners</td>
</tr>
<tr>
<td>• klimaatveranderingen</td>
<td>• grotere waarde bebouwing/infrastructuur</td>
</tr>
<tr>
<td>• snellere neerslagafvoer</td>
<td>• zakkend land (inklinking)</td>
</tr>
<tr>
<td>• grotere neerslagintensiteit</td>
<td>• hoger liggende rivieren (sedimentatie)</td>
</tr>
</tbody>
</table>

\[
R(↑↑) = K (↑) * G (↑)
\]

Door het versterken of verbeteren van waterkeringen, het verruimen van rivieren, de aanleg van groene rivieren en het aanleggen van retentiegebieden kan de kans op het reeds acceptabele lage niveau gehouden worden. Hierbij kan gedacht worden aan projecten als “DeltaPlan Grote Rivieren” en “Ruimte voor de Rivier”. Beide projecten zijn bedoeld om de grotere kans op overstromen in het rivierengebied te compenseren. Het extra verlagen van de kans, om de grotere gevolgen te compenseren, is vrijwel niet mogelijk of wenselijk. Dit door ruimtegebrek voor de constructies en weerstand tegen nog kolossalere en markante constructies.

Figuur B.1: Zeespiegelstijging en inklinking van de bodem

Bijlage bij Eindrapport Afstudeerwerk Inlaatconstructies voor Noodoverloopgebieden
Inlaatconstructies voor noodoverloopgebieden

Het risico van overstromen kan in de toekomst verlaagd worden door rekening te houden met overstromingen, zoals de maatregelen die in het verleden ook genomen werden om de gevolgen van overstromen te beperken (paragraaf B.2.2). Een noodoverloopgebied is één van de maatregelen die de gevolgen van overstromen op grootschalige wijze kan beperken.

Hierbij moet opgemerkt worden dat de bescherming tegen overstromen niet op zichzelf staat. Het is een onderdeel van de waterbeheersing. Door een integrale aanpak van het waterbeheer, kunnen verschillende onderdelen van de waterbeheersing beter op elkaar afgestemd worden. In 2000 heeft de Commissie Waterbeheer 21e eeuw hierover advies gegeven aan de overheid. Voor de integrale aanpak van de waterbeheersing wordt dan ook hier naar verwezen.

B.3 Beveiliging tegen overstromen in Nederland

Bij het schrijven van deze paragraaf is gebruik gemaakt van het TAW-rapport Grondslagen voor Waterkeringen.

B.3.1 Veiligheidsbeschouwing

Voor de stormvloedramp van 1953 werden de dijken na een doorbraak zodanig verhoogd zodat het laatste hoogwater gekeerd kon worden plus een zekere overhoogte. Na de ramp zijn deze inzichten veranderd om uniformiteit in het bepalen van de maatgevende situatie te krijgen. De norm (Wet op de Waterkering) stelt nu dat waterkeringen een waterstand met een bepaalde overschrijdingskans (Maatgevende Hoog Waterstand, MHW) moet kunnen keren. De waterkeringen worden op deze MHW ontworpen.

Voor de Maas is de overschrijdingskans van de afvoer vastgesteld op 1/250 jaar voor het onbedijkte gedeelte en 1/1250 jaar voor het bedijkte gedeelte, voor de Rijn is dat 1/1250 jaar. In het westelijk deel van Nederland zijn de overschrijdingskansen voor de Maas en Rijn kleiner door de grotere bevolkingsdichtheid en bebouwing. Aan de kust zijn de kansen weer anders. In figuur B.2 zijn overschrijdingskansen van de MHW per dijkringgebied te zien.

In principe is deze overschrijdingskansen niet gelijk aan de overstromingskansen. Overschrijding van de MHW betekent niet automatisch dat het achterliggend gebied zal overstromen.

Overschrijdingskansen is slechts een deel van de overstromingskans (en dus ook overstromingsrisico)

K = K_{overschrijding waterstand} + K_{overige overstromingsgebeurtenissen}

Veiligheid gebaseerd op overschrijdingskansen

in het algemeen, veiligheid gebaseerd op het overstromingsrisico

R = K * G

overschrijdingskans is slechts een deel van de overstromingskans (en dus ook overstromingsrisico)
In Nederland is de veiligheid dus niet direct afhankelijk van het risico van overstromen, maar bepaald aan de hand van overschrijdingskansen. Door de overschrijdingskansen voor verschillende gebieden te variëren (zie figuur B.2), wordt indirect rekening gehouden met het verschil in de gevolgen van overstromingen van verschillende gebieden. Zo hebben dichtbevolkte en dichtbebouwde gebieden een lagere overschrijdingskans dan dunbevolkte en landelijke gebieden.

Toch is het risico van overstromen niet overal gelijk. In eenzelfde gebied met gelijke overschrijdingskansen zijn er zeker verschillen in de gevolgen. Het risico van overstromen is voor beide plaatsen in hetzelfde gebied verschillend.

De vraag die dan gesteld kan worden is, of het niet verstandig is om kwetsbare gebieden, met grote gevolgen bij overstromen (dus risicovolle gebieden) beter te beschermen dan gebieden met minder gevolgen bij een overstroming, zodat het risico van overstromen overal gelijk is.

Het bovenstaande klinkt logisch, maar is in de praktijk niet gemakkelijk of nog niet te verwezenlijken. De kans op overstroming is zoals gezegd moeilijk vast te stellen. Ook de gevolgen van overstromen zijn moeilijk te bepalen. Maar maatschappelijk is het moeilijk te verkopen dat mensen meer risico’s lopen op een overstroming dan anderen, terwijl ze beiden aan dezelfde rivier leven. Duidelijk is wel dat in termen van veiligheid, behalve de kansen, ook de gevolgen een belangrijke parameter zijn om de beschermingsgraad te bepalen. Bij het bepalen van de veiligheid in de toekomst wordt gestreefd naar een meer

\[\text{Figuur B.2: Overschrijdingskans van het MHW per dijkringgegebied} \]
geavanceerde veiligheidsbenadering toe te gaan. In plaats van de overschrijdingskansen zullen de overstromingskansen, en in de verre toekomst de overstromingsrisico's, bepalend zijn voor de veiligheid. De Technische Adviescommissie voor de Waterkeringen (TAW) ontwikkelt hiervoor in het onderzoeksprogramma "Marsroute" een methode om het overstromingsrisico per dijkringgebied in kaart te brengen.

B.3.2 Onzekerheden in de huidige veiligheidsnorm
Een veiligheidsnorm die gebaseerd is op het overstromingsrisico, betekent dat het risico van overstromen – de gevolgen van overstromen bij een bepaalde kans van optreden – wordt geaccepteerd. In het geval dat de veiligheidsnorm gebaseerd is op waterkeringen die voldoen aan een overschrijdingskans, worden de gevolgen van een overstroming bij deze overschrijdingskans geaccepteerd.

Overschrijding van de MHW betekent niet automatisch dat dat leidt tot een overstroming. Waterkeringen zouden een groter waterkerend vermogen kunnen hebben. De overschrijdingskans zorgt dus voor onzekerheid over het optreden van de gevolgen van een overstroming.

Het model voor het bepalen van de MHW bevat ook onzekerheden. Zoals eerder is vermeld wordt de MHW bepaald aan de hand van historische waterstanden. Deze waterstanden beslaan slechts een relatief kort tijdsbestek. De overschrijdingskansen worden daarentegen bepaald voor meer dan 1000 jaar. Terwijl de omgeving waar het model vanuit gaat, altijd aan verandering onderhevig is. Afvoeren en waterstanden kunnen daardoor hoger zijn dan zijn berekend, de afvoergolf kan een andere vorm hebben en de duur van maatgevende omstandigheden kan afwijken zijn. Daarnaast kunnen bij splitspunten in rivieren de afvoerwaarden in de berekeningen niet gelijk zijn aan de werkelijkheid. Al deze en andere onzekerheden zorgen ervoor dat de MHW een lagere (of hogere) overschrijdingskans kan hebben dan de norm voorschrijft.

Als laatste wordt genoemd de kans op andere gebeurtenissen die kunnen leiden tot overstromingen. Zo is er al genoemd dat falen van een waterkering niet alleen afhankelijk is van de waterstand. In figuur B.3 geeft de TAW verschillende faalmechanismen voor waterkerende grondconstructies. Alleen faalmechanisme A “Overlopen” is het directe gevolg van een hoge waterstand.

Figuur B.3: Faalmechanismen voor waterkerende grondconstructies (Bron: TAW)
Het faalmechanisme overlopen wordt beschouwd als de maatgevende faalmechanisme. Andere faalmechanismen worden van ondergeschikt belang geacht, terwijl deze natuurlijk ook kans van optreden hebben.

Onzekerheden in de huidige veiligheidsnorm

huidige veiligheidsnorm is gebaseerd op de overschrijdingskans van waterstand

- Onzekerheden met betrekking tot de overschrijdingskans
 - Overschrijdingskans is niet gelijk aan de overstromingskans

- Onzekerheden met betrekking tot het bepalen van de overschrijdingskansen
 - Beschikbaarheid van slechts korte tijdreeksen
 - Veranderende omgeving
 - Verkeerde aannamen in model

- Onzekerheden met betrekking tot andere gebeurtenissen
 - Andere faalmechanismen

Uit het bovenstaande blijkt dat het voldoen aan de veiligheidsnormen tegen overstromen, niet betekent dat overstromingen niet kunnen plaats vinden. De norm laat een geaccepteerd kleine kans op overstromingen toe, de restkans (overschrijdingskans en de kansen op andere faalmechanismen). Naast deze restkans, zijn nog verschillende onzekerheden die overstromingen niet uitsluiten. Zelfs bij veiligheidsnormen gebaseerd op overstromingsrisico is dit niet anders.

De beveiliging tegen overstromen bestaat dus uit de veiligheidsnormen die overstromingen minimaliseren en het besef dat een mogelijke overstromingen met een zeer kleine kans is geaccepteerd. Door rekening te houden met een mogelijke overstromings situatie (met zeer kleine kans) kan per persoon individueel de gewenste veiligheid worden afgestemd op zijn of haar wensen. Dit betekent dat de overheid zorgt voor een acceptabel veiligheidsniveau en dat de burger zijn veiligheidsniveau ten opzichte het acceptabele veiligheidsniveau kan aanpassen door in een bepaalde mate rekening te houden met een overstoming.

B.4 NOG’s en beveiliging tegen overstromen

Om het risico van overstromen te verkleinen en de onzekerheden op te vangen, kan een maatregel uit het verleden worden ingezet. Noodoverloopgebieden hebben in het verleden al bewezen dat de gevolgen van overstromen erdoor beperkt kunnen worden. Door het paraat hebben van noodoverloopgebieden kan het risico van overstromen dus verlaagd worden. Zodoende kan de beveiliging tegen overstromen door noodoverloopgebieden zeker vergroot worden. Hoe dit precies zit zal in subparagraaf B.4.1 uit een worden gezet.

Voorgaande paragrafen hebben laten zien dat het risico van overstromen in de toekomst onder druk komt te staan door grotere kans op overstromen en grotere gevolgen van overstromen. De veiligheidsnorm tegen overstromingen eist dat de kans op overstromen niet groter wordt. Aan de grotere gevolgen van overstromen wordt (voorlopig) niets gedaan, terwijl dit wel bijdraagt aan het grotere risico van overstromen. Daarnaast is gebleken dat overstromingen niet uitgesloten kunnen worden. Sterker nog, veiligheidsnormen tegen overstromen laten een geaccepteerde kleine kans op overstromen toe. Dit wordt nog eens versterkt door de onzekerheden bij het bepalen van de veiligheidsnorm.

In subparagraaf B.4.2 gaat in op de noodzaak om NOG’s in te zetten om de risico van overstromen in de toekomst te beperken en om de onzekerheden bij de (huidige) veiligheidsnorm tegen overstromen op te vangen.
B.4.1 Het nut van NOG’s
Hierboven is zijdelings naar voren gekomen wat het nut van NOG’s zijn. In deze paragraaf zal aan de hand van de definitie van het risico van overstromen (zie paragraaf B.1) het nut van NOG’s duidelijk gemaakt worden.

Risico van overstromen zonder inzet van een NOG (uitgangssituatie)

\[
R = K \times G = K_{NOG} \times G_{NOG} + K_{Ov} \times G_{Ov}
\]

met

\[
K = K_{NOG} = K_{Ov}
\]

G = \(G_{NOG} + G_{Ov}\)

waarin

- \(R\) = Risico van overstromen voor het totale gebied
- \(K\) = Kans op overstromen
- \(K_{NOG}\) = Kans op overstromen in het NOG
- \(K_{Ov}\) = Kans op overstromen in de overige gebieden
- \(G\) = Gevolgen van overstromen in het totale gebied
- \(G_{NOG}\) = Gevolgen van overstromen in het NOG
- \(G_{Ov}\) = Gevolgen van overstromen in de overige gebieden

In de volgende situatie wordt het risico van overstromen beschreven met inzet van een NOG.

De kans op overstromen in het NOG is onveranderd ten opzichte van de uitgangssituatie. Het NOG zal niet eerder ingezet worden dan in kritieke situaties. Inzet van een NOG betekent dat het NOG bij kritieke situaties als eerste zal overstromen. Dit verlicht de kritieke situatie voor de overige gebieden. Deze zullen minder snel overstromen en de kans op overstromen wordt kleiner. Het is een differentiatie van de kansen op overstromen.

Risico van overstromen met inzet van een NOG

\[
R (\downarrow\downarrow) = K_{NOG} \times G_{NOG} (\downarrow) + K_{Ov} (\downarrow) \times G_{Ov} (\uparrow)
\]

met

\[
K = K_{NOG} >> K_{Ov}
\]

\(G_{NOG}\), met inzet NOG < \(G_{NOG}\), zonder inzet NOG

\(G_{NOG} \ll G_{Ov}\)

\(G = G_{NOG} + G_{Ov}\)

(G is kleiner dan bij geen inzet NOG, \(G_{NOG}\) kleiner door waterbestendige maatregelen)

waarin

- \(R\) = Risico van overstromen voor het totale gebied
- \(K\) = Kans op overstromen
- \(K_{NOG}\) = Kans op overstromen in het NOG
- \(K_{Ov}\) = Kans op overstromen in de overige gebieden
- \(G\) = Gevolgen van overstromen in het totale gebied
- \(G_{NOG}\) = Gevolgen van overstromen in het NOG
- \(G_{Ov}\) = Gevolgen van overstromen in de overige gebieden
In de overige gebieden worden geen maatregelen genomen zodat daar de gevolgen van overstromen niet zullen veranderen. In het NOG worden wel maatregelen genomen om de gevolgen van overstromen te beperken. Dit wordt ingegeven door het feit dat dit gebied als eerste zal overstromen bij kritieke situaties. Daarnaast kunnen risicovolle zaken van het NOG naar de overige gebieden worden verplaatst om de gevolgen in het NOG verder te verkleinen. Daar staat tegenover dat door het verplaatsen de gevolgen in de overige gebieden zullen toenemen. Maar de kans op overstromen in de overige gebieden is veel kleiner dan de kans in het NOG. Het risico van overstromen kan zo verder worden ingeperkt.

Vergeleken met de uitgangssituatie is de risico van overstromen voor het totale gebied verlaagd, door zowel een kleinere gevolgen in het NOG en een lagere kans in de overige gebieden. Zoals gezegd kan het verplaatsen van de gevolgen van het NOG naar de overige gebieden het risico nog verder verlagen. NOG’s hebben dus duidelijk nut in het verlagen van de risico van overstromen.

Als laatste zal gekeken worden of een NOG (economisch) rendabel is. Tegenover de risicoverlaging door inzet van een NOG staan de investeringen in de inrichting van een NOG en de maatregelen om de gevolgen van overstromingen te beperken. Om te kunnen concluderen of inzet van NOG rendabel is, kan de volgende afweging gemaakt worden.

Rendement van een NOG
NOG’s zijn rendabel als de volgende ongelijkheid geldt

\[I + R_{\text{met inzet NOG}} < R_{\text{zonder inzet NOG}} \]

waarin
\[R = \text{Risico van overstromen voor het totale gebied} \]
\[I = \text{Investeringen in en gevolgen van de inrichting van het NOG en de maatregelen in het NOG} \]

Uit het bovenstaande blijkt dat de investeringen kleiner moeten zijn dan de verlageningen van het risico van overstromen om te kunnen concluderen dat inzet van een NOG economisch rendabel is. Uiteraard wegen meerdere factoren mee om te bepalen of NOG’s rendabel is of niet. Zo is de waarde van het gevoel veilig te zijn tegen overstromen niet in getallen uit te drukken. Deze niet kwantificeerbare waarden kunnen een NOG dat economisch niet rendabel is, toch wenselijk maken.

In het algemeen kan gezegd worden dat het inzetten van NOG’s (economisch) rendabel is als voldaan wordt aan de onderstaande criteria.

1. De kans op overstromen is klein.
 Het inzetten van NOG’s is alleen bedoeld om de gevolgen bij calamiteiten door hoogwater te beperken. Het is niet de bedoeling dat NOG’s gebruikt worden om de kans op overstromen te verkleinen (hier zijn retentiegebieden voor) of voor andere situaties dan bij calamiteiten. Het inzetten van NOG’s brengt zowel materiële als immateriële schade met zich mee. Het is niet acceptabel dat de kans op overstroming, en dus de kans op inzet van het NOG, groot zijn.
 Moet de veiligheid verhoogd worden in gebieden met een grote kans op overstromen, dan is het voor de hand liggend om deze kans eerst te verkleinen tot een acceptabel niveau door middel van reguliere maatregelen, zoals het versterken van dijken of door het verbreden van de rivier. Alleen als de kans op overstromen een acceptabel laag niveau heeft, kan het risico van een overstroming verder worden verlaagd door de inzet van NOG’s. Hier geldt dus “voorkomen is beter dan genezen”.
2. De gevolgen bij overstroming zijn groot.
Voor het inrichten van een NOG moeten investeringen worden gedaan. En bij het
inzetten van NOG's wordt materiële en immateriële schade opgelopen in het NOG.
Dit alles in ruil voor het voorkomen van grotere gevolgen. Om te bepalen of het
inzetten van het middel “noodoverloop” efficiënt en acceptabel is, moet een afweging
gemaakt worden tussen de investeringskosten en de gevolgen bij inzet van het NOG
en de gevolgen die voorkomen kunnen worden. Alleen als enorme gevolgen kunnen
worden voorkomen, wordt de inzet van een NOG gerechtvaardigd. Bij kleine gevolgen
kunnen deze beter geaccepteerd worden, dan het toepassen van noodoverloop.

B.4.2 De noodzaak van NOG’s
Dat NOG’s in kritieke situaties de gevolgen van overstromen kunnen beperken is zowel in
hoofdstuk 3 als in paragraaf 4.2.1 al besproken. In deze paragraaf zal aan de hand van de
definitie van risico op overstromen de noodzaak van NOG’s worden aangetoond voor de
toekomstige situatie. Hiervoor zal informatie in hoofdstuk 3 over risico van overstromen in de
toekomst en de huidige veiligheidsnorm worden gebruikt.

De uitgangssituatie om de noodzaak van NOG’s te bepalen is de huidige
(veiligheids)situatie (zie hoofdstuk 3). De overschrijdingskans wordt maatgevend geacht
voor de kans op overstromen. Deze overschrijdingskans is wettelijk vastgesteld. Wordt de
kans groter door klimaatsveranderingen, veel extreme situaties of verandering in inzicht, dan
zal de kans door het nemen van maatregelen verlaagd moet worden tot het wettelijk
vastgestelde niveau.

Huidige situatie van de risico van overstromen
overschrijdingskans wordt maatgevend geacht voor de overstromingskans en is
wettelijk vastgesteld

\[R = K \times G = K_{NOG} \times G_{NOG} + K_{Ov} \times G_{Ov} \]

met

\[K = K_{NOG} = K_{Ov} = \text{constant (wettelijk vastgesteld)} \]
\[G = G_{NOG} + G_{Ov} \]

\[R = \text{Risico van overstromen voor het totale gebied} \]
\[K = \text{Wettelijk vastgestelde kans op overstromen} \]
\[G = \text{Gevolgen van overstromen in het totale gebied} \]
\[K_{NOG} = \text{Wettelijk vastgestelde kans op overstromen in het NOG} \]
\[K_{Ov} = \text{Wettelijk vastgestelde kans op overstromen in de overige gebieden} \]
\[G_{NOG} = \text{Gevolgen van overstromen in het NOG} \]
\[G_{Ov} = \text{Gevolgen van overstromen in de overige gebieden} \]

In de volgende stap wordt het veranderde risico van overstromen in de toekomst
bekeken. In paragraaf B.2.3 is dit eveneens besproken. Daar bleek dat de zowel de kansen
als de gevolgen in de toekomst toenemen door verschillende factoren.
De grotere kans op overstromen zal door maatregelen verlaagd moeten worden tot de
wettelijk gestelde norm. De grotere gevolgen zullen nu niet aangepakt worden. De risico van
overstromen wordt dus groter.
Veranderen risico van overstromen in de toekomst

Overstromingskans wordt op het wettelijk niveau gehouden door maatregelen:

\[R(\uparrow\text{toekomst}) = K \times G(\uparrow\text{toekomst}) = K_{\text{NOG}} \times G_{\text{NOG}}(\uparrow\text{toekomst}) + K_{\text{Ov}} \times G_{\text{Ov}}(\uparrow\text{toekomst}) \]

met

\[G(\uparrow\text{toekomst}) = G_{\text{NOG}}(\uparrow\text{toekomst}) + G_{\text{Ov}}(\uparrow\text{toekomst}) \]

\[R = \text{Risico van overstromen voor het totale gebied} \]
\[K = \text{Wettelijk vastgestelde kans op overstromen} \]
\[G = \text{Gevolgen van overstromen in het totale gebied} \]
\[K_{\text{NOG}} = \text{Wettelijk vastgestelde kans op overstromen in het NOG} \]
\[K_{\text{Ov}} = \text{Wettelijk vastgestelde kans op overstromen in de overige gebieden} \]
\[G_{\text{NOG}} = \text{Gevolgen van overstromen in het NOG} \]
\[G_{\text{Ov}} = \text{Gevolgen van overstromen in de overige gebieden} \]

Inzet van NOG’s geeft een verlaging van de risico van overstromen zoals dat in paragraaf 4.2.1 is beschreven. NOG’s kunnen op twee manieren worden ingezet.

- **Geval A:** een NOG worden ingericht en gevolgenbeperkende maatregelen vinden plaats
- **Geval B:** slechts een NOG aangewezen die in kritieke situatie wordt gebruikt

Beide zullen hier in beschouwing worden genomen.

Optellen van de risicoveranderingen door de verschillende factoren en maatregelen geeft het volgende.

Noodzaak van NOG’s

geval A: ingericht NOG met gevolgenbeperkende maatregelen

\[R(\downarrow\downarrow) = K_{\text{NOG}} \times G_{\text{NOG}}(\downarrow\text{inzet nog}) + K_{\text{Ov}}(\downarrow\text{inzet nog}) \times G_{\text{Ov}}(\uparrow\text{inzet nog} \uparrow\text{toekomst}) \]

met

\[K = K_{\text{NOG}} >> K_{\text{Ov}} \]
\[G_{\text{NOG}}, \text{met inzet NOG} < G_{\text{NOG}}, \text{zonder inzet NOG} \]
\[G_{\text{NOG}} << G_{\text{Ov}} \]
\[G = G_{\text{NOG}} + G_{\text{Ov}} \]

waarin

\[R = \text{Risico van overstromen voor het totale gebied} \]
\[K = \text{Wettelijke vastgestelde kans op overstromen} \]
\[G = \text{Gevolgen van overstromen in het totale gebied} \]
\[K_{\text{NOG}} = \text{Wettelijke vastgestelde kans op overstromen in het NOG} \]
\[K_{\text{Ov}} = \text{Gederifferentieerde kans op overstromen in de overige gebieden} \]
\[G_{\text{NOG}} = \text{Gevolgen van overstromen in het NOG} \]
\[G_{\text{Ov}} = \text{Gevolgen van overstromen in de overige gebieden} \]

In geval A zullen de gevolgen in het NOG niet toenemen en zelfs afnemen door de genomen gevolgenbeperkende maatregelen. In dit geval kan gedacht worden aan geen uitbreiding van woonkernen in het NOG. Door de differentiatie van de kans en gevolgen zal het risico van overstromen enorm verlaagd worden.
Noodzaak van NOG’s
geval B: NOG aangewezen, geen NOG ingericht en geen gevolgenbeperkende maatregelen

\[R (\downarrow) = K_{NOG} \ast G_{NOG} (\uparrow \text{toekomst}) + K_{OV} (\downarrow \text{inzet NOG}) \ast G_{OV} (\uparrow \text{toekomst}) \]

met

\[K = K_{NOG} \gg K_{OV} \]
\[G_{NOG}, \text{met inzet NOG} = G_{NOG}, \text{zonder inzet NOG} \]
\[G_{NOG} < G_{OV} \]
\[G = G_{NOG} + G_{OV} \]

waarin

R = Risico van overstromen voor het totale gebied
K = Wettelijk vastgestelde kans op overstromen
G = Gevolgen van overstromen in het totale gebied
\(K_{NOG} = \) Wettelijk vastgestelde kans op overstromen in het NOG
\(K_{OV} = \) Gedifferentieerde kans op overstromen in de overige gebieden
\(G_{NOG} = \) Gevolgen van overstromen in het NOG
\(G_{OV} = \) Gevolgen van overstromen in de overige gebieden

In geval B zullen de gevolgen in het NOG in de toekomst ook verder toenemen. Er zullen geen maatregelen genomen worden om de gevolgen in het NOG te beperken. Hierdoor wordt alleen de kans gedifferentieerd en niet de gevolgen. Desondanks wordt het risico van overstromen flink verlaagd, door de veel lagere kans in de overige gebieden dan de kans in het NOG op overstromen (de wettelijk vastgestelde kans).

Dit geval kan zich voordoen als geen NOG worden ingericht en maatregelen worden genomen, maar zich toch een kritieke situatie ontstaat. Er is dan een wezenlijke levensbedreigende overstromingsgevaar. Door toch een gebied als NOG in te zetten kan het risico en dus de gevolgen fors verlaagd worden.

Zowel het geval A waar het NOG wel is ingericht en er gevolgenbeperkende maatregelen zijn genomen, als het geval B zonder maatregelen, geven een verlichting van het risico van overstromen. De noodzaak om NOG’s in te zetten om het probleem van het grotere risico van overstromen in de toekomst op te kunnen vangen is hiermee bewezen. Om het risico van overstromen te houden op gelijke niveau of op lager niveau dan het geval is, is de inzet van NOG’s noodzakelijk.

Een NOG dat ingericht is en gevolgenbeperkende maatregelen heeft, geeft een nog veel grotere verlaging van de risico en veel minder onzekerheden betreft de effectiviteit en is daarom te prefereren. Goed voorbeeld zijn op een overstroming zou altijd de voorkeur moeten hebben boven een noodmaatregel als de situatie zich al voordoet, aangezien overstromingen (weliswaar met een kleine kans) zich echt kunnen voordoen.
BIJLAGE C: VERSCHIL TUSSEN NOG’S EN RETENTIEGEBIEDEN

NOG’s en retentiegebieden (ook wel retentiepolders of retentiebekkens) zijn technisch gezien hetzelfde. Beide maatregelen verlagen de waterstand door water tijdelijk in een gebied te bergen. In de volksmond worden NOG’s en retentiegebieden vaak door elkaar gebruikt.
Het verschil tussen NOG’s en retentiegebieden is zuiver een kwestie van definitie. NOG’s worden pas ingezet als de wettelijke veiligheidsmaatregelen falen en een overstroming dreigt, een noodgeval. Retentiegebieden behoren daarentegen tot de wettelijke veiligheidsmaatregelen tegen overstromen. Er wordt dus rekening mee gehouden dat retentiegebieden onder water lopen voordat de maatgevende situatie optreedt. NOG’s kunnen vergelijken worden met bijvoorbeeld branddeuren in gebouwen en retentiegebieden zijn dan de reguliere deuren.
Ondanks dat NOG’s en retentiegebieden technisch aan elkaar gelijk zijn, zijn er grote verschillen met betrekking tot het gebruik. Zo zullen retentiegebieden veel vaker ingezet worden dan NOG’s, omdat NOG’s een kans van inzetten hebben dat gelijk is aan de overstromingskans. Retentiegebieden, die dus deel uit maken van de reguliere veiligheidsmaatregelen tegen overstromen, zullen een kans van inzetten hebben die groter is dan de overstromingskans. Afhankelijk van de hoeveelheid te bergen water in het retentiegebied is de kans wel een factor tien. Een retentiegebied voldoet dan ook niet aan de wettelijke veiligheidsnorm tegen overstromen.
Omdat een retentiegebied tot de reguliere veiligheidsmaatregelen tegen overstromen behoort, is de belangrijkste functie van het gebied dan ook water bergen. Deze functie is vrij moeilijk te combineren met andere functies in het gebied. NOG’s daarentegen voldoen wel aan de veiligheidsnorm tegen overstromen. Functies in een NOG zullen technisch gezien even goed beschermd zijn tegen overstromen als in andere gebieden.
Het is van groot belang om de verschillen tussen NOG’s en retentiegebieden in het achterhoofd te houden. In dit rapport zal het alleen gaan om NOG’s. Een noodmaatregel bij hoogwater. NOG’s zijn geen alternatieven voor maatregelen om te voldoen aan de wettelijke veiligheidsnorm tegen overstromen, zoals dijken, stormvloedkeringen, rivierverruimingen en retentiegebieden.
BIJLAGE D: SITUATIES WAARBIJ NOG’S NIET EFFECTIEF INGEZET KUNNEN WORDEN

D.1 Kritieke situatie bij zee
Kritieke situatie bij zee is een stormvloed die veroorzaakt wordt door een zware storm in combinatie met springtij. Hoge waterstanden door opstuwing en hoge golven zijn het gevolg. Is de stormvloed zwaarder dan maatgevend, dan kan een overstroming dreigen.

De zwaarte van een stormvloed is niet goed te voorspellen door de directe invloed van het weer. Het weer is een zeer veranderlijk en onzeker fenomeen, zodat zeker niet 2 dagen van tevoren te voorspellen is hoe zwaar een stormvloed zal zijn.

D.2 Kritieke situatie bij meren
Bij meren is de kritieke situatie een storm dat het water van het meer opstuwt. De golven die overloop kunnen veroorzaken zijn minder hoog dan bij de zee, omdat de strijklengtes veel kleiner zijn. Zowel overloop als overslag van water zouden een overstroming kunnen veroorzaken. Inzet van een NOG om dit teveel aan water te bergen is niet realistisch. Door overloop van water kan de hoeveelheid te bergen water gigantisch zijn. Vooral door de afmetingen van het meer kunnen de bergingsvolumes zeer groot zijn.

Daarnaast zijn de stormen die het water in het meer opstuwen slechts kort van tevoren goed voorspelbaar. Het in gereedheid brengen van een dergelijk groot NOG (als de ruimte gevonden wordt) is niet mogelijk in de korte voorbereidingstijd die er is. Ook de windrichting maakt inzet van NOG niet mogelijk. Opsturing zou aan alle kanten van het meer kunnen plaats vinden afhankelijk van de windrichting. Er zou aan alle kanten van het meer NOG's moeten worden om opsturing tegen te kunnen gaan.

D.3 Situatie bij neerslag
Het afwateringssysteem is berekend op een bepaalde mate van neerslag. Als de neerslag intensiever of langer aanhoudt dan rekening mee is gehouden, heeft het afwateringssysteem niet de capaciteit om de hoeveelheid water te verwerken.

Deze kritieke situatie is vergeleken met de kritieke situaties bij rivieren, zee of meren extra moeilijk. Behalve dat deze kritieke situatie voorspeld moet kunnen worden, moet ook de lokatie van waar de kritieke situatie op zal treden voorspeld kunnen worden. Bij opstuing bij meren was dit probleem ook al aanwezig, de windrichting bepaalde de plaats van de opstuing. Neerslag kan overal vallen.

Er zijn twee verschillende situaties te onderscheiden bij een falend afwateringssysteem. In het eerste geval is de neerslag van zodanige intensiteit of duur, dat deze op de oppervlakte komt en niet afgevoerd kan worden naar het afwateringssysteem. De grond is geheel verzadigd, putten en afwateringssoortjes lopen over. Door de steeds grotere bebouwde (en verharde) oppervlakte nu en in de toekomst vergroot dit probleem.

NOG’s kunnen niet ingezet worden om in deze situatie het niet verwerkbare water tijdelijk te bergen. De neerslag is weliswaar (in de toekomst beter) te voorspellen, maar de kritieke situatie is slechts van zeer tijdelijke aard en beslaat een heel groot gebied. De waterstand zal langzaam stijgen en de maximale waterstand is meestal gering. Alleen op laaggelegen plaatsen zal door toestroom van het water uit de omgeving de waterstand hoger zijn. Er is
Inlaatconstructies voor noodoverloopgebieden

ook geen sprake van een levensbedreigende situatie. Men spreekt in dit geval niet van overstroming, maar van wateroverlast.

In de tweede situatie kan het water dat al in het afwateringsysteem zit niet verwerkt worden. Vooral in polders is dit vaak problematisch. Water van de polders wordt gelooid in boezems. Als deze boezems het water niet (snel genoeg) kunnen lozen naar de zee of rivier, dan kunnen boezemkades de bovenmaatgevende waterstand niet keren. Een doorbraak kan een overstroming veroorzaken. De grotere bebouwde (en verharde) oppervlaktes zorgen ook hier voor meer druk op de boezems.

Deze situatie is goed te voorspellen. De neerslag zal voorafgaand aan de situatie plaatsvinden. Helaas is niet bekend waar het knelpunt of knelpunten zich zullen voordoen.

Een polder heeft meestal meerdere boezems en uitwateringsmogelijkheden. Hierdoor is het moeilijk om een geschikte locatie te vinden voor een NOG. In het ergste geval moet het water van een knelpunt in een boezem naar de andere kant van de polder worden geleid waar het NOG zich bevindt. Het water zal dan door andere boezems moeten stromen die waarschijnlijk ook niet de capaciteit hebben om het water te transporteren. Er zullen dan veel NOG’s nodig zijn om effectief te functioneren.

Daar waar zeker problemen kunnen ontstaan moeten geen NOG’s komen, maar reguliere maatregelen om overstromingen of wateroverlast te voorkomen.

D.4 Conclusies

NOG’s tegen dreigende overstromingen vanuit meren en door neerslag zijn niet effectief door de onvoorspelbaarheid van de locatie waar de kritieke situatie optreedt. Inzet van een NOG tegen een dreigende overstroming vanuit de zee is eveneens niet effectief, omdat de kritieke situatie niet 2 dagen van tevoren voorspelbaar is.
BIJLAGE E: NOG’S IN DE PRAKTIJK

E.1 NOG’s of retentiegebieden in het verleden

Vroeger was er geen sprake van een veiligheidsnorm tegen overstromen. De definities hierboven van NOG’s of retentiegebieden voor gebieden die het water tijdelijk te bergen kan dan ook niet gemaakt worden. Voor het gemak worden deze gebieden hier NOG’s genoemd.

NOG’s waren in het verleden vaak aanwezig bij rivieren om hoogwaters op te vangen. Een bekende NOG’s in het verleden was de Beersche Overlaat bij Den Bosch die tot het midden van de twintigste eeuw nog functioneerde.

Deze NOG’s waren vaak onbewoond en er werd serieus rekening mee gehouden dat het gebied kon overstromen. Schadevergoedingen waren niet aan de orde. Omdat de waterkeringen in het verleden minder goed waren, liepen de NOG’s relatief vaak onder water. De NOG’s was meestal alleen landbouwgronden. De inlaatconstructies waren vrijwel allemaal overlaten (plaatselijke verlagingen in de dijken). De uitlaatconstructies waren eveneens overlaten die gesitueerd waren op een punt stroomafwaarts van de inlaatconstructie.

De NOG’s zijn allemaal verdwenen toen de waterkeringen in de negentiende en twintigste eeuw sterk verbeterden. Ook was de weerstand tegen de NOG’s vrij groot. Door gebruik van overlaten liepen NOG’s vaak onder water zonder dat werkelijk een overstoming dreigde en de steeds groter wordende bevolking had behoefte aan veilig land om te wonen en te werken.

Wordt dit historisch perspectief vergeleken met de huidige situatie, dan zou gezegd kunnen worden dat NOG’s geen haalbare zaak is. De bezwaren om schaarse land onder te laten lopen zijn nu nog veel groter, terwijl het land nog nooit zo goed tegen het water is beveiligd. Maar zoals eerder gezegd overstromingen zijn nooit te voorkomen. Daarnaast zal de frequentie voor het inzetten van NOG’s zeer klein zijn. Uit het advies van de Commissie Noodoverloopgebieden is berekend dat de kans dat een persoon die honderd jaar wordt, meemaakt dat een NOG wordt ingezet slechts 8 % is. Door goedgeregelde, ruimhartige schadevergoedingen kunnen de grootste bezwaren worden weggenomen. De situatie is nu wezenlijk anders dan op het moment dat de NOG’s werden opgeheven.

Meer historisch achtergrond over NOG’s (overlaten) wordt verwezen naar Peters (2000) en de literatuurlijst in dat rapport.

E.2 Bestaande NOG’s

NOG’s als noodmaatregel die ingezet wordt nadat de bestaande veiligheidsmaatregelen tegen overstromen heeft gefaald, bestaan nog niet. Voor zover bekend is alleen Nederland bezig met een afweging om NOG’s in te zetten tegen kritieke situaties waar overstromingen dreigen.

Retentiegebieden bestaan al wel in verschillende landen. De retentiegebieden worden vooral ingezet langs rivieren tegen hoogwater. Omdat retentiegebieden niet voldoen aan de veiligheidsnorm tegen overstromen zijn de functies in retentiegebied vrijwel altijd beperkt tot natuur en recreatie.

Het verschil met deze bestaande retentiegebieden en NOG’s is de grootte. De meeste retentiegebieden zijn gelegen aan kleine rivieren (<50 m³/s) en hebben relatief kleine oppervlaktes (10-100 ha), lage bergingscapaciteiten (0,1-2 miljoen m³) en inlaatdebieten (<25 m³/s). Deze kleine retentiegebieden komen veelvuldig voor om grote afvoer door extreme regenval op te vangen.

Grote retentiegebieden komen minder vaak voor. In Duitsland is begonnen met grote retentiegebieden (Taschenpolder) aan te leggen bij de Rijn. De grootste gerealiseerde retentiegebied is de Polder Altenheim met een oppervlakte van 520 ha en kan een volume
bergen van 17,6 miljoen m³. Grotere retentiegebieden zijn in Duitsland gepland (Katwijk, P. van, 2001). Ook in België zijn retentiegebieden gerealiseerd. Hier worden de retentiegebieden Gecontroleerde Overloop Gebieden (GOG’s) of potpolders genoemd. Stroomopwaarts van Antwerpen zijn 5 GOG’s gepland waarvan een aantal al gerealiseerd is. NOG’s zijn vele malen groter dan de retentiegebieden. Er moet gedacht worden aan 1.000 tot wel 10.000 ha aan oppervlakte en een bergingsvolume van 100 tot 500 miljoen m³. De reden dat retentiegebieden veel kleiner zijn, is dat er veel minder lege ruimte beschikbaar is voor retentiegebieden. Uit de bestaande plannen is te zien dat retentiegebieden verspreid worden aangelegd. Het gespreid aanleggen van meerdere NOG’s is niet wenselijk, omdat voor alle NOG’s constructies en voorzieningen getroffen moeten worden. De zeer kleine kans dat een NOG ingezet moet worden, maken gespreid aanleggen van meerdere NOG’s economisch vrijwel onmogelijk.
Bijlage bij Eindrapport Afstudeer werk

Inlaatconstructies voor Noodoverloopgebieden

BIJLAGE F: GEBIEDEN WAAR DE EFFECTIVITEIT VAN EEN NOG WORDT BEÏNVLOED

Het risico tegen overstomen wordt in de gebieden stroomafwaarts van een NOG door inzet van het NOG verlaagd. Deze gebieden kunnen zich in een omgeving bevinden waar de effectiviteit van een NOG om een bovenmaatgevende afvoer af te toppen, wordt beïnvloed.

De verlaging van de risico’s kan hierdoor gedeeltelijk teniet worden gedaan. Hieronder worden deze gebieden puntsgewijs besproken. Tevens worden oplossingen aangedragen om de risico’s te kunnen verlagen of om effectiviteit van de inzet van een NOG te verbeteren.

Sommige gebieden zijn al zijdelings besproken in de subparagraaf 2.2.2. Hier worden deze gebieden volledig behandeld.

Gebieden in de invloedsfeer van de zee
In deze gebieden bepalen de zee en de rivierafvoer de rivierwaterstand. Er zijn twee situaties in deze gebieden waarbij de inzet van een NOG, toch kritiek kan worden.

In het eerste geval wordt er vanuit zee ook hoogwater de rivier ingestuwd door vloedtij of storm (niet zodanig dat de stormvloedkeringen ingezet worden). De afgetopte afvoergolf wordt belemmerd in de afvoer naar zee en het water wordt zo nog hoger opgestuwd.

In het tweede geval kan een afgetopte afvoergolf niet afgevoerd worden door stormvloed. Achter de stormvloedkeringen wordt het water opgestuwd. In het meest ernstige geval duurt de stormvloed langer dan is berekend en moet de stormvloedkeringen eveneens langer gesloten blijven.

Deze gevallen komen zelden voor. De kans dat een bovenmaatgevende afvoer samenvalt met een storm(vloed) is zeer klein. Ook hebben deze gebieden vaak een kleinere kans op overstomen. Mochten deze gevallen zich toch voordoen, dan kan het opgestuwde rivierwater, als dat mogelijk is, afgeleid worden naar andere grote water(bergings)systemen, zoals meren of zeearmen waar het water wel geborgen kan worden.

Gebieden in de invloedsfeer van een grote oppervlakte open water
De grote oppervlaktes met open water die hier bedoeld worden, zijn bijvoorbeeld meren en estuaria. Hier geldt ongeveer hetzelfde als bij zeeën. Ook hier kan storm het water vanuit een meer de rivier ingestuwd worden. Of kan (langdurige) sluiting van een stormvloedkering opstuw van de rivierafvoer veroorzaken. De kans dat dit samen valt met een afgetopte bovenmaatgevende afvoer is eveneens zeer klein. Als dergelijke situaties zich toch voordoen, dan zou het afleiden van het opgestuwde rivierwater naar andere grote water(bergings)systemen een mogelijke oplossing kunnen zijn.

Gebieden benedenstrooms van zijrivieren
Zijrivieren die uitkomen op de hoofdrivier hebben invloed op de waterstand in de hoofdrivier. Extra afvoer vanuit een zijrivier bij een bovenmaatgevende afvoer op de hoofdrivier zou effecten van een NOG benedenstrooms van de hoofdrivier teniet kunnen doen. Zoals in paragraaf 2.1.2 is gemeld, zal een betere beheersing van de afvoer op de zijrivier dit probleem kunnen voorkomen. De afvoertop van de zijrivier moet zodanig gestuurd worden dat deze niet samenvalt met de afvoertop van de hoofdrivier. Waterberging in de zijrivier (in de vorm van een retentiegebied of een stuw in de rivier) is een mogelijkheid om dit te realiseren.

Een andere oplossing zou het situeren van het NOG benedenstrooms zijn in plaats van bovenstrooms van de zijrivier. In dit geval moeten de waterkeringen stroomopwaarts van het NOG worden versterkt om de bovenmaatgevende afvoer naar het NOG te kunnen leiden.

Gebieden benedenstrooms van splitspunten
Splitspunten in een rivier beïnvloeden de effectiviteit van een NOG in één van de zijtakken of een NOG bovenstrooms van een splitspunt.
Een NOG bovenstrooms van een splitspunt is een effectieve oplossing om een waterstandverlaging benedenstrooms van de rivier over beide riviertakken te realiseren. Door een andere afvoerdeling tussen de twee riviertakken, kan het gebeuren dat de waterstand in één van de twee riviertakken niet voldoende verlaagd wordt. Een afvoerregelsysteem bij het splitspunt zou een oplossing zijn. Een NOG langs één van de riviertakken zorgt voor een waterstandverlaging in de betreffende riviertak en niet direct voor een waterstandverlaging in de andere riviertak. Door het inlaten van water in een NOG in één van de riviertakken zal die riviertak meer water naar zich toetrekken. Als het NOG zich dichtbij het splitspunt bevindt, is dit effect nog veel groter. Maar in geval van calamiteit is de onzekerheid of het NOG in één van de riviertakken wel genoeg water naar zich trekt onacceptabel. Een afvoerregelsysteem bij het splitspunt kan ook hier een uitkomst bieden.

Moet een NOG in de hierboven beschreven gebieden de gevolgen van overstromen beperken, dan dient rekening gehouden te worden met de effectiviteit van het NOG die in deze gebieden beïnvloed kan worden. Aanvullende maatregelen zijn in sommige gebieden nodig om het NOG alsnog effectief te laten functioneren in deze gebieden. Bij het vinden en afwegen van een lokatie voor een NOG moet aandacht geschenken worden aan deze gebieden en de eventuele aanvullende maatregelen.
BIJLAGE G: VOORDELEN EN NADELEN VAN NOG'S

G.1 Voordelen van NOG's

De bewoners en bedrijven van het rivieren gebied weten waren zij aan toe zijn. Wonen zij of zijn zij gelegen in een NOG dan kunnen zij daar maatregelen nemen om de gevolgen van overstromingen te beperken. Eventueel kan de overheid dit stimuleren.

Rampenbestrijdingsplannen kunnen de inzet van een NOG goed en gecontroleerd laten verlopen.

Iedereen in het gebied is op de hoogte (of wordt geacht op de hoogte te zijn) van de maatregelen en handelingen bij inzet van een NOG. Uiteraard zullen oefeningen gedaan moeten worden om verzekerd te zijn van het grootste mogelijk positieve effect van de plannen.

Bij kritieke situaties zijn de gevolgen in het NOG van een gecontroleerde overstroming veel beperker dan van een ongecontroleerde overstroming.

Het gebied en de locatie van de overstroming zijn immers van tevoren bekend. Er kunnen maatregelen genomen worden en voorbereidingen om de gevolgen van de overstroming te beperken. Ook het tijdstip van inlaten is van tevoren bekend, zodat evacuatie mogelijk is. Er is de gehele tijd controle op de overstroming, en een ramp wordt beperkt.

Gevolgen van de overstroming zullen zich beperken tot het NOG. De gebieden buiten het NOG zullen naar verwachting gevrijwaard zijn van de gevolgen, die desastreus kunnen zijn.

Mensenlevens kunnen door gecontroleerd overstromen worden beperkt tot het minimum. Bij ongecontroleerd overstromen zal het mensenverlies zeker groter zijn. Daarnaast is het ook mogelijk om huisdieren en vee te sparen van een verdrinkingsdood.

De maatschappelijke ontwrichting bij inzet van een NOG in een kritieke situatie is minder groot. Men is voorbereid op de situatie en kan gecontroleerd en beheerst handelen.

Onzekerheden in het bepalen van de overschrijdingskans kunnen worden opgevangen. Hierbij kan gedacht worden aan afwijkende afvoervorm of een hoger waterstand bij een maatgevende afvoer.

G.2 Nadelen van NOG's

Om NOG effectief in te kunnen zetten moet de kritieke situatie tijdig en goed voorspeld kunnen worden. Tijdig om de voorbereidingen, maatregelen en evacuaties in het NOG te kunnen uitvoeren en goed om op het juiste moment en periode de juiste hoeveelheid niet verwerkbare water in te kunnen laten. De effectiviteit van het NOG zeer afhankelijk van de voorspelling.

Door de zeer kleine kans op overstroming (of zoals het nu is: overschrijdingskans) zal het NOG en de benodigde constructies waarschijnlijk nooit gebruikt worden. Investeringen die nodig zijn voor het aanwijzen, inrichten en inzetten van NOG’s kunnen economisch niet rendabel zijn, maar maatschappelijk wel gewenst. NOG's kunnen
Inlaatconstructies voor noodoverloopgebieden

vergelijken worden met een defensiesysteem. Niemand wil of verwacht een oorlog, maar een leger is (nu nog) maatschappelijk gewenst.

Ondanks dat de kans op overstromen in het NOG voldoet aan de wettelijk vastgestelde normen, is de kans in het NOG op overstromen vele malen groter dan buiten het NOG. Het risico van overstromen wordt afgewenteld op het NOG. Er is dus een ongelijkheid tussen het NOG en de gebieden buiten het NOG. Het is goed om in dit geval te kijken naar de situatie dat een NOG worden inzet. De kans dat het NOG overstroomt blijft gelijk. Een gebied dat is toegewezen als NOG zal bijvoorbeeld door zijn ligging bovenstrooms van de rivier bij een ongecontroleerde overstroming waarschijnlijk ook als eerste overstromen. In dat geval zijn de andere gebieden ook gevrijwaard van overstromingen. Het is met de inzet van NOG's niet veel anders. Met van tevoren goedgeregelde, eerlijke, ruimhartige schaderegelingen, zijn de gevolgen van toewijzing en inzetten van NOG's voor de bewoners en bedrijven van het gebied zelfs beter uit dan in geval van een ongecontroleerde overstroming.

NOG's kennen ook grenzen en onzekerheden. De bergingscapaciteit van een NOG bepaalt tot welke kritieke situatie de kans op overstroming wordt gedifferentieerd. Levert de kritieke situatie meer onverwerkbare hoeveelheden water op dan aan bergingscapaciteit in het NOG, dan is er de kans dat andere gebieden eveneens overstromen. De gevolgen zullen toch enigszins kleiner zijn omdat maatregelen genomen zijn die uitgaan van een overstroming (zonder meer in het NOG). Ook kent het NOG faalkansen, door bijvoorbeeld het bezwijken van constructies. Er is dus kans dat een NOG niet naar behoren werkt. Daarnaast is er een onzekerheid of andere gebieden waren overstroomd als geen NOG was ingezet. Dit alles neemt niet weg dat de risico van overstromen kleiner is bij inzet van NOG's. Nog extreemere omstandigheden zijn ook niet uit te sluiten, maar er moet gezocht worden naar een acceptabel evenwicht tussen de investeringen en de te beperken gevolgen.

Inzet van NOG’s geeft alleen maar verlaging van de waterstanden. Er wordt dus alleen uitgegaan van een faalmechanisme overloop bij de waterkeringen. Andere faalmechanismen kunnen zich ook voordoen (bij kritieke en bij niet maatgevende situatie), waartegen inzet van een NOG geen of beperkt effect heeft. Ongecontroleerde overstromingen kunnen hierdoor toch optreden.

Deze nadelen moeten afgewogen worden tegen de voordelen, het nut en de noodzaak van NOG's. Bij sommige nadelen is al aangegeven hoe deze opgeheven dan wel verminderd kunnen worden. Andere maatregelen en door rekening mee te houden met de verschillende aspecten kunnen de nadelen tegen NOG's verder beperken. Het wel of niet inzetten van NOG's zal door de overheid afgewogen moeten worden. Belangrijk hierbij is om bij de afweging de noodzaak van NOG's niet uit het oog te verliezen.
BIJLAGE H: BEPALEN VAN DE BENODIGDE BERGINGSCAPACITEIT

Het verschil tussen de bovenmaatgevende afvoer en de maatgevende afvoer is de afvoer dat niet verwerkt kan worden door de rivier (zie 3.2.1, punt 1). Het afvoerverschil moet bij de huidige situatie bepaald worden en de toekomstige situatie. Het grootste afvoerverschil is maatgevend bij het bepalen van de bergingscapaciteit van het NOG.

Het stappenplan voor het bepalen van de benodigde bergingscapaciteit
Het stappenplan bestaat uit de volgende stappen:

Stap 1. Bepaal de maximaal mogelijke bovenmaatgevende afvoer(top) zowel voor de huidige situatie als voor de toekomst;

\[\text{Bovenmaatgevende afvoer} \]

\[\text{Tijd} \]

Maximaal mogelijke bovenmaatgevende afvoer
Wat voor waarde voor de bovenmaatgevende afvoer genomen moet worden is afhankelijk van wat de maximaal mogelijke afvoer kan zijn. Als de afvoer van de rivier bovenstrooms beperkt is, dan is de verwerkbare afvoer bovenstrooms de maximaal mogelijke afvoer van de rivier. Er dient uiteraard rekening mee gehouden wordt dat versterking van de waterkeringen een vergroting betekent voor de verwerkbare afvoer. Door toekomstige maatregelen kan de maximaal mogelijke afvoer ook groter worden.

Kan de afvoer bovenstrooms van de rivier onbeperkt verwerken (zoals in een dal), dan wordt de bovengrens van de afvoer bepaald aan de hand van het afvoergebied. De methode hiervoor is door velen beschreven. Het komt erop neer dat aan de hand van neerslag en smeltwater in het afvoergebied een afvoergolf bepaald wordt. Door dit te doen voor de meest ongunstigste omstandigheden (rekeninghoudend met toekomstige klimaatsveranderingen) kan de maximaal mogelijke afvoer bepaald worden. In Hall (1993) wordt deze methode beschreven voor het bepalen van de afvoergolf voor retentiegebieden.

Hoe de maximale mogelijke afvoer in de verre toekomst zal zijn, is uiteraard niet bekend. Er kan op deze wijze wel een goede schatting worden gemaakt.

Onzekerheden bij het bepalen van de maximale bovenmaatgevende afvoer
Deze fysische grenzen van de afvoer is omgeven door onzekerheden. Door maatregelen te nemen bij extreem hoog water, zoals het versterken van de waterkeringen met zandzakken, kan er meer water worden afgevoerd. Of deze maatregelen worden genomen is onzeker, en wat de effecten zijn op de afvoer is ook van tevoren niet te voorspellen. Daarnaast geldt, wat door het bovenstroomse rivierstelsel verwerkt kan worden, hoeft niet op te treden. Ook de bepaling van de maximale afvoer aan de hand van neerslag en smeltwater uit het afvoergebied kent vele onzekere factoren. De belangrijkst zijn klimatologische veranderingen. Deze zijn voor de toekomst slechts globaal te
Inlaatconstructies voor noodoverloopgebieden

schatten. Maar ook veranderingen in de afstroomsnelheid van het regenwater door onttabling en inklinking van het land kunnen de maximale afvoer beïnvloeden.

Stap 2. Bepaal de maatgevende afvoer(top) zowel voor de huidige situatie als voor de toekomst;

Maatgevende afvoer
De huidige maatgevende afvoer van een rivier is vastgesteld. De toekomstige maatgevende afvoer is voor de nabije toekomst vaak ook wel bekend of er zijn verkennende studies naar gedaan. Met welke afvoer men in de verre toekomst rekening zal houden is niet bekend.

Onzekerheden bij het bepalen van de maatgevende afvoer
En ook hier hebben we te maken met onzekerheden. Een maatgevende afvoer heeft zich nog nooit voorgedaan. Het is dus onzeker of de rivier die ontworpen is op deze maatgevende afvoer, wel deze afvoer kan verwerken. Dit zijn fouten en onzekerheden in het model voor het bepalen van de maatgevende afvoer.

Stap 3. Bepaal uit het resultaat van stap 1 en 2 het maximale afvoerverschil zowel voor de huidige situatie als voor de toekomst;

Afvoerverschil
Het afvoerverschil is dus voor de huidige situatie en voor de nabije toekomst bekend. In de verre toekomst wordt aangenomen dat het afvoerverschil niet merkbaar zal veranderen. Klimageveranderingen zouden de maximaal mogelijke afvoer kunnen vergroten, maar waarschijnlijker is dat het effect van een hogere frequentie van extreme afvoeren groter zal zijn. De normen zullen dan ook een hogere maatgevende afvoer voorschrijven. Het afvoerverschil tussen maximaal mogelijk afvoer en de maatgevende afvoer zal naar waarschijnlijkheid eerder afnemen dan toenemen. Het afvoerverschil is dus een goede methode om de

Stap 4. Bepaal de vorm van de maximaal mogelijke bovenmaatgevende afvoergolf zowel voor de huidige situatie als voor de toekomst;

![Diagram van afvoergolf]

Vorm van de afvoergolf
Hierboven is de maximaal mogelijke bovenmaatgevende afvoer bepaald. Deze afvoergolf kan verschillende vormen hebben. Om de gewenste waterstandverlaging te krijgen zal het water in de top van deze afvoergolf afgeschoren worden tot de maatgevende afvoer. De vorm van de afvoergolf bepaalt dus het watervolume dat niet door de rivier verwerkt kan worden.

Behalve dat een bepaalde afvoer een bepaalde herhalingsfrequentie heeft, heeft ook de vorm van een afvoergolf een bepaalde kans van voorkomen. Moeten de toppen van vrijwel alle mogelijke golfvormen van een bepaalde afvoer geborgen kunnen worden in een NOG, dan moet het NOG een zeer grote capaciteit hebben, die waarschijnlijk nooit geheel gebruikt zal worden. Om toch tot een realistisch capaciteit te komen, kunnen twee wegen bewandeld worden. In het eerste geval wordt bepaald welk percentage van alle golfvormen door het NOG geborgen moet kunnen worden. Hieruit kan dan de bergingscapaciteit van het NOG worden bepaald.
In het tweede geval wordt een frequentie bepaald, waarbij de toppen van de golfvormen met een lagere frequentie in het NOG geborgen moet kunnen worden. In beide gevallen dient een grens getrokken te worden die discutabel is. Er moet een afweging gemaakt worden tussen wat nog door een NOG geborgen moet kunnen worden en de ruimte en investeringen die hiervoor nodig zijn.

Stap 5. Bepaal de af te toppen hoeveelheid water door het volume van de bovenmaatgevende afvoergolf boven de maatgevend afvoer te bepalen;

![Diagram van afvoergolf]
Volume van de afgetopte afvoer

Is de vorm van de bovenmaatgevende afvoergolf bekend, dan kan het de af te toppen hoeveelheid water berekend worden. Hiertoe wordt het volume van de bovenmaatgevende afvoergolf boven de maatgevende afvoer bepaald.

Onzekerheden bij het bepalen van het volume van de afgetopte afvoer

Bepaling van het afgetopte volume kent veel onzekerheden. Bepaling van de herhalingsfrequenties van de afvoergolven kan namelijk verkeerd zijn. Of de golfvorm is anders bij het gekozen percentage dat door het NOG geborgen moet kunnen worden. Hiermee dient bij het bepalen van het afgetopte volume rekening mee gehouden te worden.

Stap 6. Bepaal de benodigde bergingscapaciteit door het resultaat uit stap 5 te vermeerderen met 20% voor het teveel ingelaten water door de inlaatconstructie.

Het teveel ingelaten water

In paragraaf 3.2.1 komt dit onder aanname 6 ook aan de orde. Inlaatconstructies kunnen niet precies het af te toppen water inlaten. Ze zullen altijd meer water inlaten dat strikt nodig, om er zeker van te zijn dat de maatgevende afvoer niet wordt overschreden.

Hoeveel water er teveel wordt ingelaten, is afhankelijk van de inlaatconstructie. Een restrictie hierop is noodzakelijk om het teveel ingelaten water te beperken. Al het onnodig ingelaten water zorgt namelijk voor meer schade. Zo min mogelijk water inlaten is dus het devies. Dit moet aan de andere kant niet leiden tot extreem hoge eisen aan de inlaatconstructies. Hoge eisen zorgen voor hogere kosten voor de inlaatconstructie. Een evenwicht moet gevonden worden. Er zal later teruggekeken moeten worden of het maximum van 20% realistisch is geweest.

De benodigde bergingscapaciteit bestaat dus uit de gewenste afgetopte hoeveelheid water en de teveel ingelaten hoeveelheid water.
BIJLAGE I: FREQUENTIE VAN INZET VAN BERGINGSGEBIEDEN

Overgenomen uit:

“Frequentie van inzet van bergingsgebieden”
Ferdinand Diemanse, 2002
frequentie van inzet van bergingsgebieden

Ferdinand Diermanse

February, 2002
Contents

1 Inleiding.. 1–1

2 Overschrijdingsfrequenties van te bergen volumina voor Rijn en Maas 2–1

 2.1 Inleiding .. 2–1

 2.2 Bepalen van overschrijdingsfrequenties van benodigde volumina berging..... 2–1

 2.3 Analyse van golfvormen van de Maas bij Borgharen ... 2–2

 2.4 Resultaten... 2–7

 2.4.1 Rijn .. 2–7
 2.4.2 Maas.. 2–9

3 Alternatieve berekeningsmethode voor de Rijn .. 3–1

 3.1 Inleiding .. 3–1

 3.2 Golfvormen .. 3–1

 3.2.1 Gemiddelde golfvorm... 3–1
 3.2.2 Spreiding in de breedte van golfvormen.. 3–2
 3.2.3 Toepassing van de golfvorm-statistiek.. 3–3

 3.3 Resultaten... 3–3

4 Referenties... 4–1

 A Bepaling golfvorm voor de Rijntakken .. 1

 B Opschalen van golven van de Maas bij Borgharen .. 1

 C Frequentietabellen... 1
I Inleiding

#Jos/Karel?
2 Overschrijdingsfrequenties van te bergen volumina voor Rijn en Maas

2.1 Inleiding

 Dit hoofdstuk geeft frequentie-functies voor het volume water dat geborgen dient te worden langs de Rijn en de Maas door inzet van retentiegebieden en/of calamiteitengebieden. Doel van de inzet van deze gebieden is uiteraard het voorkomen van overstromingen benedenstrooms. Bij het afleiden van deze frequentie wordt rekening gehouden met het hele scala van mogelijke afvoergolven, welke gekarakteriseerd worden door de piekafoer en een maat voor de breedte van de golf.

 Paragraaf 2.2 beschrijft de methode waarmee de overschrijdingsfrequenties worden afgeleid. Paragraaf 2.3 beschrijft het benodigde statistische onderzoek naar golfvormen van de Rijn en de Maas. In paragraaf 2.4, ten slotte, worden de resultaten gepresenteerd.

2.2 Bepalen van overschrijdingsfrequenties van benodigde volumina berging

 Voor het afleiden van de frequentieverdeling van de benodigde volumina aan berging wordt allereerst gedefinieerd:

\[C_R = \] de afvoercapaciteit van de rivier benedenstrooms (bijv. 15.000 m³/s voor de Rijn of 3.800 m³/s voor de Maas).

\[V_R = \] totaal bergingsvolume van de beschikbare retentiebekkens/calamiteitengebieden

 Voor dit systeem zal afgeleid worden met welke frequentie falen optreedt, m.a.w. met welke frequentie hoogwaters voorkomen waarvan de afvoergolf niet door inzet van de beschikbare retentiebekkens afgetopt kan worden tot een maximum van \(C_R \). Deze frequentie wordt vervolgens voor meerdere waarden van \(V_R \) afgeleid, opdat een frequentieverloop van het benodigd retentievolume verkregen wordt.

 De berekening voor één waarde van \(V_R \) is als volgt: de jaarlijkse frequentie van hoogwatergebeurtenissen waarvoor geldt dat [a] de piekafoer groter is dan capaciteit \(C_R \) en [b] het volume boven afvoerdrempel \(C_R \) groter is dan \(V_R \), is:

\[
G(V_R, C_R) = \int_{C_R}^{\infty} - \frac{dF(Q_p)}{dQ_p} P(V > V_R| Q_p)dQ_p
\]

waarin:
G(.) = de faalfrequentie, d.w.z. de frequentie van voorkomen van afvoergolven die niet volledig afgetopt kunnen worden tot het gewenste niveau
F(.) = de frequentieverdeling van piekafvoeren
Q_p = piekafvoer
V_R = beschikbaar bergingsvolume
V = volume boven drempelwaarde C_R

Het minteken in de integraal ontstaat doordat de frequentieverdeling een strict dalende functie van Q_p is.

Om bovenstaande integraal te kunnen berekenen moeten derhalve bekend zijn:
1. De frequentieverdeling F(Q_p) van piekafvoeren.
2. P(V>V_R | Q_p): de kans dat bij gegeven piekafvoer Q_p het volume boven afvoerniveau C_R groter is dan het totaal beschikbare retentievolume V_R.

ad 1. De jaarlijkse overschrijdingsfunctie van afvoeren in Rijn en Maas wordt beschreven met de werklijn (zie Tabel 2.1 en Tabel 2.2)

<table>
<thead>
<tr>
<th>werklijn</th>
<th>toepassingsbereik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_p = 1.517,78 * ln(T) + 5.964,63</td>
<td>2 ≤ T ≤ 25</td>
</tr>
<tr>
<td>Q_p = 1.316,43 * ln(T) + 6.612,61</td>
<td>25 ≤ T ≤ 10.000</td>
</tr>
<tr>
<td>T staat voor de herhalingstijd [jaren]</td>
<td></td>
</tr>
<tr>
<td>Q_p staat voor de bijbehorende piekafvoer [m³/s]</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 2.1 De werklijn voor de Rijn bij Lobith bij een maatgevende afvoer van 16.000 m³/s; Uit: (RIZA, 1999a).

<table>
<thead>
<tr>
<th>werklijn</th>
<th>toepassingsbereik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_p =353,4 * ln(T) + 1331,4</td>
<td>2 ≤ T ≤ 250</td>
</tr>
<tr>
<td>Q_p =324,8 * ln(T) + 1488,7</td>
<td>250 ≤ T ≤ 10.000</td>
</tr>
<tr>
<td>T staat voor de herhalingstijd [jaren]</td>
<td></td>
</tr>
<tr>
<td>Q_p staat voor de bijbehorende piekafvoer [m³/s]</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 2.2 De werklijn van de Maas bij Borgharen bij een maatgevende afvoer van 3.800 m³/s; Uit: (RIZA, 1999b).

Voor de volledigheid wordt opgemerkt dat de frequentie van voorkomen, F(Q_p), de inverse is van herhalingstijd T. Voor herhalingstijd T=1250 jaar geeft de werklijn een afvoer van 16.000 m³/s voor de Rijn en 3.800 m³/s voor de Maas.

ad 2. Om de kans te bepalen dat bij gegeven piekafvoer Q_p het volume boven afvoerniveau C_R groter is dan het totaal beschikbare retentievolume V_R dient de statistiek van de breedte van golfvormen bekend te zijn. Paragraaf 2.3 beschrijft de analyse naar golfvormen van de Rijn en de Maas, op basis waarvan de benodigde statsitieken zijn afgeleid.

2.3 Analyse van golfvormen

Gekozen is om voor de bepaling van golfvorm-statistieken gebruik te maken van de golfvorm-generator van HKV. Deze applicatie is uitgebreid beschreven in (HKV, 1999a) en (HKV, 1999b). Met behulp van de golfvorm-generator kan voor een gegeven piekafvoer Q_p
alle denkbare golfvorm-kwantielen afgeleid worden. Ter verduidelijking: bijvoorbeeld het 75%-kwantiel is die golfvorm waarvoor geldt dat 75% van de golfvormen met piekafvoer Q_p smaller zijn, en 25% van de golfvormen met piekafvoer Q_p breder. Deze kwantielen geven de mate van spreiding weer. In het restant van deze paragraaf wordt beschreven hoe de kwantielen gebruikt worden om de in formule (2.1) beschreven kans, P(V>V_p | Q_p), te kunnen bepalen.

Stap 1: Bepalen van de kwantielen

Het 5%, 10%, ..., 90% en 95% kwantiel van de golf met een piekafvoer van 16.000 m³/s voor de Rijn bij Lobith en 3.800 m³/s voor de Maas bij Borgharen is bepaald met de golfvorm-generator (d.w.z. in totaal 19 kwantielen zijn bepaald). De golfvorm-generator geeft voor elk kwantiel de duur boven een aantal, door de gebruiker op te geven, drempelniveau’s. Daarbij wordt onderscheid gemaakt tussen duur van de was en duur van de val. Voor onderhavige toepassing zijn deze echter bij elkaar opgeteld. Tabel 2.3 bevat ter illustratie de resultaten voor 3 van de 19 kwantielen.

Stap 2: Afleiden van volumina

Voor elk van de kwantielen zijn de volumina boven de afvoerdrempels bepaald. Hiertoe is de volgende formule gehanteerd:

\[
V_n = \frac{2}{3} T_i (Q_p - Q_i) + \sum_{i=2}^{n} \frac{T_{i-1} + T_i}{2} \times (Q_{i-1} - Q_i)
\]

met:

- \(Q_p\) = piekafvoer (hier:16.000 m³/s voor de Rijn en 3.800 m³/s voor de Maas)
Q_i = afvoerdrempel i, gerekend vanaf de top van de afvoergolf
V_n = golfvolume bij boven drempel n, gerekend vanaf de top van de afvoergolf
T_i = overschrijdingsduur van drempelwaarde i.

Hiermee is aangenomen dat de golfvorm in de top parabolisch is, en dat tussen genoemde drempelwaarden het verloop lineair is. Tabel 2.4 bevat ter illustratie de resultaten voor 3 van de 19 kwintielen.

Tabel 2.4 Volume (in miljoen m³) boven afvoerdrempels voor het 25%, 50% en 75% kwintiel voor een golven met een piekafvoer van 16.000 m³/s (Rijn) en 3.800 m³/s (Maas)

<table>
<thead>
<tr>
<th>Rijn bij Lobith</th>
<th>Maas bij Borgharen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>drempel (m³/s)</td>
<td>25% kwantiel</td>
</tr>
<tr>
<td>16000</td>
<td>0.0</td>
</tr>
<tr>
<td>15750</td>
<td>8.0</td>
</tr>
<tr>
<td>15500</td>
<td>25.6</td>
</tr>
<tr>
<td>15250</td>
<td>53.5</td>
</tr>
<tr>
<td>15000</td>
<td>90.3</td>
</tr>
<tr>
<td>14750</td>
<td>135.1</td>
</tr>
<tr>
<td>14500</td>
<td>187.2</td>
</tr>
<tr>
<td>14250</td>
<td>246.5</td>
</tr>
<tr>
<td>14000</td>
<td>312.6</td>
</tr>
<tr>
<td>13750</td>
<td>385.3</td>
</tr>
<tr>
<td>13500</td>
<td>464.6</td>
</tr>
<tr>
<td>13250</td>
<td>550.4</td>
</tr>
<tr>
<td>13000</td>
<td>642.0</td>
</tr>
</tbody>
</table>

Stap 3: Afleiden van functiebeschrijvingen voor de kwintielen

Tabel 2.4 geeft volumina boven afvoerdrempels voor (kwintielen van) afvoergolven met een piek van 16.000 m³/s voor de Rijn bij Lobith en 3.800 m³/s voor de Maas bij Borgharen. Voor onderhavige studie zijn dergelijke gegevens benodigd voor het hele spectrum aan mogelijke afvoerpieken. Daarom zijn functiebeschrijvingen afgeleid voor de kwintielen.

Vanwege de goede mate van de fits is hiervoor de volgende machtsfunctie gekozen:

$$ V(Q_{dr}) = a \left(\frac{Q_P - Q_{dr}}{1000} \right)^b $$ (2.3)

Waarbij:
- Q_{dr} = de beschouwde afvoerdrempel (m³/s)
- V = volume boven afvoerdrempel Q_{dr} (in miljoen m³)
- a, b = gemeten parameters
- Q_P = piekafvoer (m³/s)

Deze functie heeft dus drie parameters, waarvan er twee, a en b, bepaald zijn op basis van de optimale fit, en één, Q_P, gelijk is aan de piekafvoer om te garanderen dat het volume exact
gelijk is aan 0 indien de drempelwaarde gelijk is aan de piekafvoer. Voor alle duidelijkheid: voor elk van de 19 beschouwde kwantielen zijn parameters a en b afgeleid. Figuur 2.1 en Figuur 2.2 geven voorbeelden van de resulterende fits die met deze machtsfunctie verkregen worden.

Figuur 2.1 Volumina boven afvoerdrempels voor (kwantielen van) afvoergolven met een piek van 16.000 m³/s voor de Rijn bij Lobith. De gefitte lijnen zijn machtsfuncties

Figuur 2.2 Volumina boven afvoerdrempels voor (kwantielen van) afvoergolven met een piek van 3.800 m³/s voor de Maas bij Borgharen. De gefitte lijnen zijn machtsfuncties
Tabel 2.5 bevat voor elk van de 19 kwantielen de waarde van parameters a en b.

<table>
<thead>
<tr>
<th>Rijn bij Lobith</th>
<th>Maas bij Borgharen</th>
</tr>
</thead>
<tbody>
<tr>
<td>kwintiel</td>
<td>a</td>
</tr>
<tr>
<td>5%</td>
<td>64.5</td>
</tr>
<tr>
<td>10%</td>
<td>73.3</td>
</tr>
<tr>
<td>15%</td>
<td>79.9</td>
</tr>
<tr>
<td>20%</td>
<td>85.7</td>
</tr>
<tr>
<td>25%</td>
<td>90.9</td>
</tr>
<tr>
<td>30%</td>
<td>96.0</td>
</tr>
<tr>
<td>35%</td>
<td>100.9</td>
</tr>
<tr>
<td>40%</td>
<td>105.8</td>
</tr>
<tr>
<td>45%</td>
<td>111.1</td>
</tr>
<tr>
<td>50%</td>
<td>116.0</td>
</tr>
<tr>
<td>55%</td>
<td>121.8</td>
</tr>
<tr>
<td>60%</td>
<td>127.7</td>
</tr>
<tr>
<td>65%</td>
<td>134.1</td>
</tr>
<tr>
<td>70%</td>
<td>141.3</td>
</tr>
<tr>
<td>75%</td>
<td>149.6</td>
</tr>
<tr>
<td>80%</td>
<td>159.6</td>
</tr>
<tr>
<td>85%</td>
<td>171.7</td>
</tr>
<tr>
<td>90%</td>
<td>188.7</td>
</tr>
<tr>
<td>95%</td>
<td>217.8</td>
</tr>
</tbody>
</table>

Stap 4: Opschalen van golfvormen

De waarden van a en b zijn alleen bepaald voor de situatie dat $Q_p=16.000$ m³/s voor de Rijn bij Lobith en $Q_b=3.800$ m³/s voor de Maas bij Borgharen. In appendix B wordt echter aangetoond dat voor een piekaflvoer Q_b, ongeëindigd aan deze waarden geldt:

$$V(Q_p) = egin{cases} a \left(\frac{Q_p}{16000} \right)^{1-b} \left(\frac{Q_p - Q_{ul}}{1000} \right)^b \text{ voor de Rijn} \\ a \left(\frac{Q_p}{3800} \right)^{1-b} \left(\frac{Q_p - Q_{ul}}{1000} \right)^b \text{ voor de Maas} \end{cases}$$

waarbij parameters a en b dezelfde waarden hebben als in Tabel 2.5. De functies schrijvingen van kwantielen, die zijn afgeleid voor afvoerpieken van 16.000 m³/s voor de Rijn bij Lobith en 3.800 m³/s voor de Maas bij Borgharen, zijn met formule (2.4) dus eenvoudig op te schalen naar elke mogelijke waarde van de piekaflvoer.

Stap 5: bepalen van de kans $P(V>V_R \mid Q_b)$
Stap 1 t/m 4 zijn uitgevoerd om de in formule (2.1) beschreven kans, $P(V>V_{R} \mid Q_{B})$, te kunnen bepalen. De wijze waarop $P(V>V_{R} \mid Q_{B})$ berekend wordt, zal aan de hand van onderstaand voorbeeld geïllustreerd worden.

Voorbeeld

Stel dat de capaciteit van de Maas benedenstrooms gelijk is aan 3.800 m3/s en dat een hoogwatergebeurtenis plaatsvindt met een piekafvoer, Q_{B}, van 4.200 m3/s. Veronderstel verder dat een retentiegebied beschikbaar is met een capaciteit van 20 miljoen m3. Toepassen van formule (2.4) en de parameters van Tabel 2.5 geeft aan dat voor het 25% kwartiel van piekafvoeren van 4.200 m3/s het volume van de golf boven een drempel van 3.800 m3/s gelijk is aan 19.61 miljoen m3. Voor het 30% kwartiel is dit volume gelijk aan 21.73 miljoen m3.

Door middel van interpolatie volgt dat voor het 25,9% kwartiel van piekafvoeren van 4.200 m3/s het volume van de golf boven een drempel van 3.800 m3/s exact gelijk is aan 20 miljoen m3. Dus indien een hoogwatergebeurtenis plaatsvindt met een piekafvoer van 4.200 m3/s, dan is de kans dat deze golf afgetopt kan worden tot 3.800 m3/s gelijk aan 0,259.

2.4 Resultaten

2.4.1 Rijn

De procedure zoals in paragraaf 2.2 beschreven is toegepast op vijf mogelijke condities voor de Rijn (zie Tabel 2.6). Deze condities zijn combinaties van enerzijds de afvoercapaciteit van de Oberrhein en anderzijds de totale afvoercapaciteit van de Rijntakken.

<table>
<thead>
<tr>
<th>situatie nr.</th>
<th>Capaciteit Oberrhein (m3/s)</th>
<th>capaciteit Rijntakken (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.000</td>
<td>15.000</td>
</tr>
<tr>
<td>2</td>
<td>18.000</td>
<td>15.000</td>
</tr>
<tr>
<td>3</td>
<td>oneindig</td>
<td>15.000</td>
</tr>
<tr>
<td>4</td>
<td>18.000</td>
<td>16.000</td>
</tr>
<tr>
<td>5</td>
<td>oneindig</td>
<td>16.000</td>
</tr>
</tbody>
</table>

De rol van de capaciteit van de Oberrhein in de berekeningen behoeft enige toelichting.

Zoals beschreven in (Silva en Dijkman, 2000) stelt de Niederrhein in de huidige omstandigheden een bovengrens van ongeveer 18.000 m3/s aan de hoeveelheid water die Nederland kan bereiken. Dit is de geschatte waarde van de afvoer waarbij overstromingen langs de Niederrhein kunnen optreden.

De gevolgen hiervan voor de benodigde volumina retentie langs de Rijn in Nederland worden in onderhavige studie meegenomen. Aangenomen dat de capaciteit van de Niederrhein gelijk is aan 18.000 m3/s, verandert de golfvorm van hoogwaters met een afvoerpiek van meer dan 18.000 m3/s door de overstromingen langs de Niederrhein (Figuur
2.3). Gedurende de periode dat de toevoer aan de Niederrhein *grooter is* dan 18.000 m³/s zal de afvoer bij Lobith *gelijk zijn* aan 18.000 m³/s. Verder wordt aangenomen dat het overstroomde water pas na afloop van het hoogwater in de Rijn terecht zal komen. Het gebied langs de Niederhein functioneert derhalve als een extra retentie-bekken met een volume dat gelijk is aan het volume van de golf boven de drempel van 18.000 m³/s (het gearceerde deel in Figuur 2.3).

![Diagram](image)

Figuur 2.3 Schematische weergave van een afvorgolf met een piekafvoer van 20.000 m³/s bij Lobith die afgetopt is doordat vanaf 18.000 m³/s langs de Niederrhein overstromingen plaats vinden

Figuur 2.4 en Figuur 2.5. geven een overzicht van de uiteindelijke resultaten van de berekeningen. Verder staat in appendix C een tabel met uitkomsten weergegeven.

![Diagram](image)

Figuur 2.4 Frequentielijn voor het benodigd retentievolume langs de Rijn voor 5 combinaties van CO (capaciteit Oberrhein) en CRt (gesommeerde capaciteit van de Rijntakken)
Figuur 2.5 Frequentielijn voor het benodigd retentievolume langs de Rijn voor 5 combinaties van CO (capaciteit Oberrhein) en CRt (gesommeerde capaciteit van de Rijntakken). Dit is dezelfde grafiek als in Figuur 2.4, maar met een groter bereik.

2.4.2 Maas

De procedure zoals in paragraaf 2.2 beschreven is toegepast op twee mogelijke condities voor de Maas (zie Tabel 2.7). Deze condities zijn combinaties van enerzijds de afvoercapaciteit van de Maas, bovenstrooms van Borgharen en anderzijds de afvoercapaciteit van de de Maas, benedenstrooms van de in te zetten retentiebekkens.

Tabel 2.7 Doorgerekende combinaties van systeemeigenschappen van de Maas

<table>
<thead>
<tr>
<th>situatie nr.</th>
<th>capaciteit bovenstrooms (m³/s)</th>
<th>capaciteit benedenstrooms (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.600</td>
<td>3.800</td>
</tr>
<tr>
<td>2</td>
<td>oneindig</td>
<td>3.800</td>
</tr>
</tbody>
</table>

Figuur 2.6 en Figuur 2.7 geven een overzicht van de uiteindelijke resultaten van de berekeningen. Verder staat in appendix C een tabel met uitkomsten weergegeven.
Figuur 2.6 Frequentielijn voor het benodigd retentievolume langs de Maas voor 2 combinaties van Cbo (afvoercapaciteit bovenstroms van Borgharen) en Cbe (afvoercapaciteit benedenstroms van de in te zetten retentiebekkens).

Figuur 2.7 Frequentielijn voor het benodigd retentievolume langs de Maas voor 2 combinaties van Cbo (afvoercapaciteit bovenstroms van Borgharen) en Cbe (afvoercapaciteit benedenstroms van de in te zetten retentiebekkens). Dit is dezelfdegrafiek als in Figuur 2.6 maar met een groter bereik.
3 Alternatieve berekeningsmethode voor de Rijn

3.1 Inleiding

In (WL, 2001) is een statistische analyse uitgevoerd van alle hoogwaters in de Rijn met een piekafvoer bij Lobith groter dan 8.000 m³/s. Op basis van deze analyse zijn functiesbeschrijvingen afgeleid van standaard golfvormen. De aannames die zij gedaan bij het afleiden van deze functiesbeschrijvingen verschillen enigszins van de aannames die ten grondslag liggen aan de golfvormgenerator (waarmee in hoofdstuk 2 is gewerkt). Op basis van de resultaten van (WL, 2001) wordt de analyse zoals beschreven in hoofdstuk 2 opnieuw uitgevoerd en worden de resultaten onderling vergeleken.

3.2 Golfvormen

Tabel 3.1 geeft een overzicht van de hoogwaters in de Rijn met een piekafvoer bij Lobith groter dan 8.000 m³/s, waarop de analyse van (WL, 2001) is uitgevoerd.

Tabel 3.1 Geanalyseerde afvoergolven van de Rijn bij Lobith

<table>
<thead>
<tr>
<th>Periode</th>
<th>Pick</th>
<th>Q<sub>max</sub> (m³/s)</th>
<th>Periode</th>
<th>Pick</th>
<th>Q<sub>max</sub> (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/11/1919-21/01/1920</td>
<td>02/01/1920</td>
<td>10.000</td>
<td>02/12/1954-14/03/1955</td>
<td>21/01/1955</td>
<td>9.510</td>
</tr>
<tr>
<td>09/01/1920-24/02/1920</td>
<td>18/01/1920</td>
<td>11.365</td>
<td>06/02/1958-20/04/1958</td>
<td>01/03/1958</td>
<td>9.120</td>
</tr>
<tr>
<td>22/12/1925-22/01/1926</td>
<td>04/01/1926</td>
<td>12.280</td>
<td>24/01/1980-20/03/1980</td>
<td>09/02/1980</td>
<td>8.811</td>
</tr>
<tr>
<td>07/03/1942-01/05/1942</td>
<td>23/03/1942</td>
<td>8.475</td>
<td>26/12/1983-15/03/1984</td>
<td>11/02/1984</td>
<td>8.697</td>
</tr>
<tr>
<td>02/02/1945-20/03/1945</td>
<td>17/02/1945</td>
<td>8.585</td>
<td>12/12/1993-20/02/1994</td>
<td>25/12/1993</td>
<td>10.940</td>
</tr>
<tr>
<td>02/02/1946-13/04/1946</td>
<td>12/02/1946</td>
<td>9.140</td>
<td>29/12/1994-12/05/1995</td>
<td>31/01/1995</td>
<td>11.885</td>
</tr>
</tbody>
</table>

3.2.1 Gemiddelde golfvorm

Op basis van de analyse is onder andere een relatie afgeleid voor het volume van de gemiddelde golfvorm:

\[
V / Q_p = 1143.5 \left(\frac{Q_p}{Q_p} \right)^2 - 2354.1 \left(\frac{Q_p}{Q_p} \right) + 1210.3 \tag{3.1}
\]

Waarbij:
Q_p = de piekafvoer (m³/s)
Q_d = drempelwaarde (m³/s), lager dan Q_p
V = Volume boven drempelwaarde Q (10³ m³)

In bovenstaande formule zijn de resultaten van de hoogwatergolven van 1944 en 1945 niet verwerkt daar zij sterk afwijken van het gedrag van de overige 20 hoogwatergolven.

Ter verduidelijking van bovenstaande formule een voorbeeld: Met Q_p = 16.000 m³/s en Q_d = 15.000 m³/s volgt voor V/Q_p = 8.361 s, zodat een afvoergolf met een piekwaarde van 16.000 m³/s boven het niveau van 15.000 m³/s een gemiddeld volume heeft van 8.361 x 16.000 = 134 miljoen m³. Dit betekent dat een retentiebekken langs de Bovenrijn (bijvoorbeeld het Rijnstrangengebied) een volume van tenminste 134 miljoen m³ moet bevatten om een gemiddelde golf met piekafvoer 16.000 m³/s af te toppen tot 15.000 m³/s.

Formule (3.1) is in principe toepasbaar voor alle denkbare waarden van piekafvoer Q_p. Op statistische grond is aangetoond dat de top van een hoogwatergolf naar duur en volume/Q_max opgeschaald mag worden. Het verdient aanbeveling nader te onderzoeken in hoeveer dit hydraulisch correct is. Bij een dergelijke opschaling wordt namelijk geen rekening gehouden met de fysische maxima van de Rijn en de zijrivieren. Deze maxima zullen naar verwachting bij een golf van 16.000 m³/s een grotere rol spelen dan bij een golf van 12.000 m³/s. Vooral nog wordt in onderhavige studie verondersteld dat formule (3.1) valide is voor alle mogelijke waarden van Q_p.

Zoals gemeld is de in formule (3.1) beschreven golfvorm afgeleid voor de Rijn bij Lobith. De golfvorm over de Waal, Nederrijn/Lek en de IJssel volgt uit herschaling van bovenstaande golfvorm, met een reductiefactor die gebaseerd is op de afvoerverdeling over de Rijnwateren (zie Appendix A).

3.2.2 Spreiding in de breedte van golfvormen

Formule (3.1) in de voorgaande paragraaf is een beschrijving van de gemiddelde golfvorm, d.w.z. een golfvorm met een voor de gegeven piekafvoer gemiddelde breedte. In onderhavige studie is het echter van belang rekening te houden met het feit dat voor een gegeven piekafvoer een heel scala aan golfvormen mogelijk is.

In (WL, 2001) is op basis van de afvoeren van Tabel 3.1 een analyse uitgevoerd naar de variatie in de breedte van de golfvormen. Wederom geldt dat de hoogwaters van 1944 en 1945 niet in de analyse zijn betrokken. Voor elk afvoerniveau is aangenomen dat de verdeling van V/Q_max rond het gemiddelde normaal is die gezien de beperkte omvang van de dataset benaderd wordt met een Student verdeling, met 20 - 1 = 19 vrijheidsgraden. Aangetoond is dat de aannamae van een normale verdeling rond het gemiddelde goed blijkt te voldoen (WL, 2001).

Op basis van de analyses van de gemeten golfvormen is de volgende uitdrukking afgeleid voor de standaardafwijking van het volume boven een drempel:
\[
s(V/Q_p) = 205 \left(\frac{Q_{dr}}{Q_p} \right)^2 - 421.56 \left(\frac{Q_{dr}}{Q_p} \right) + 216.6
\]

Waarin:
- \(s \) = standaard deviatie
- \(Q_p \) = de piekafvoer (m\(^3\)/s)
- \(Q_{dr} \) = drempelwaarde (m\(^3\)/s)), lager dan \(Q_p \)
- \(V_R \) = Volume boven drempelwaarde Q (10\(^3\) m\(^3\))

Wederom geldt dat deze formule, onder hetzelfde voorbehoud als bij formule (3.1), toepasbaar is voor alle denkbare waarden van piekafvoer \(Q_p \).

3.2.3 Toepassing van de golfvorm-statistiek

Formules (3.1) en (3.2) zijn afgeleid om de in formule (2.1) beschreven kans, \(P(V>V_R \mid Q_p) \), te kunnen bepalen. De wijze waarop \(P(V>V_R \mid Q_p) \) berekend wordt, zal aan de hand van onderstaand voorbeeld geïllustreerd worden.

Voorbeeld

Stel dat de capaciteit van de Rijn benedenstrooms gelijk is aan 15.000 m\(^3\)/s en dat een hoogwatergebeurtenis plaatsvindt met een piekafvoer, \(Q_p \), van 16.000 m\(^3\)/s. Veronderstel verder dat een retentiegebied (bijv. Rijnstrangen) beschikbaar is met een capaciteit van 150 miljoen m\(^3\). Met behulp van formules (3.1) en (3.2) kan nu bepaald worden hoe groot de kans is dat de capaciteit van het retentiebekken toereikend is om overstromingen benedenstrooms te kunnen voorkomen:

Met: \(Q_{max} = 16.000 \text{ m}^3/\text{s} \) en \(Q_{dr} = 15.000 \text{ m}^3/\text{s} \) volgt uit (3.1) dat \(V/Q_p \) gemiddeld gelijk is aan 8.361 s, terwijl uit (3.2) volgt dat \(s(V/Q_p) \) gelijk is aan 1.563 s. Dit betekent dat een afvoergolf met een piekwaarde van 16.000 m\(^3\)/s boven het niveau van 15.000 m\(^3\)/s een gemiddeld volume heeft van 8.361 x 16.000 = 134 miljoen m\(^3\) met een standaardafwijking van 1.563 x 16.000 = 25 miljoen m\(^3\). Met behulp van de Studentverdeling volgt dan dat 74% van de hoogwatergolven met een piekafvoer van 16.000 m\(^3\)/s een volume boven de drempel 15.000 m\(^3\)/s hebben dat kleiner is dan 150 miljoen m\(^3\). Dit wijst erop dat een hoogwatergebeurtenis plaatsvindt met een piekafvoer van 16.000 m\(^3\)/s, dan is de kans dat deze golf afgetopt kan worden tot 15.000 m\(^3\)/s, gelijk aan 0.74.

3.3 Resultaten

Figuur 3.1 en Figuur 3.2 geven een overzicht van de uiteindelijke resultaten van de berekeningen. In dit geval is echter met name de vergelijking met de resultaten van de methode uit het vorige hoofdstuk van belang. Figuur 3.3 en Figuur 3.4 laten zien dat de verschillen klein zijn.
Figuur 3.1 Frequentielijn voor het benodigd retentievolume langs de Rijn voor 5 combinaties van CO (capaciteit Oberhein) en CRt (gesommeerde capaciteit van de Rijntakken).

Figuur 3.2 Frequentielijn voor het benodigd retentievolume langs de Rijn voor 5 combinaties van CO (capaciteit Oberhein) en CRt (gesommeerde capaciteit van de Rijntakken). Dit is dezelfde grafiek als in Figuur 3.1, maar met een groter bereik.
Figuur 3.3 Vergelijking van de resultaten van dit hoofdstuk (methode 2) met de resultaten van het vorige hoofdstuk (methode 1). De grafiek bevat voor beide methoden de frequentielijn voor het benodigd retentievolume langs de Rijn als de capaciteit van de Rijntakken gelijk is aan 15.000 m³/s (de capaciteit van de Oberrhein is oneindig verondersteld).

Figuur 3.4 Vergelijking van de resultaten van dit hoofdstuk (methode 2) met de resultaten van het vorige hoofdstuk (methode 1). De grafiek bevat voor beide methoden de frequentielijn voor het benodigd retentievolume langs de Rijn als de capaciteit van de Rijntakken gelijk is aan 16.000 m³/s (de capaciteit van de Oberrhein is oneindig verondersteld).
4 Referenties

WL, 2001: Effectiviteit van retentie in de Rinstrangen, Rapport WL | Delft Hydraulics in opdracht van Rijkswaterstaat, RIZA
Appendices
A Bepaling golfvorm voor de Rijntakken

Voor golfvormen in de Bovenrijn is de volgende formule afgeleid (zie hoofdstuk 3):

\[1000 \frac{V}{Q_p} = 1143.5 \left(\frac{Q_{dr}}{Q_p} \right)^2 - 2354.1 \left(\frac{Q_{dr}}{Q_p} \right) + 1210.3\] \hspace{1cm} (A1)

Waarin:
- \(Q_p\) = de piekafvoer (m\(^3\)/s)
- \(Q_{dr}\) = drempelwaarde (m\(^3\)/s)
- \(V\) = Volume boven drempelwaarde \(Q_{dr}\) (Mm\(^3\))

Kortom een kwadratische formule van de vorm:

\[V_1(Q_{dr}) = a_1 Q_{dr}^2 + b_1 Q_{dr} + c_1 \hspace{1cm} \text{waarin:}\]

\[a_1 = \frac{1143.5}{1000 Q_p}, \hspace{0.5cm} b_1 = - \frac{2354.1}{1000}, \hspace{0.5cm} c_1 = \frac{1210.3 Q_p}{1000}\]

De golfvorm over de Rijntakken (Waal, Nederrijn/Lek, IJssel) kan bepaald worden uit herschaling van bovenstaande golfvorm, met een reductiefactor die gebaseerd is op de afvoerbeperking over de Rijntakken.

Als nu vogens de afvoerbeperking voor een bepaalde Rijntak geldt: afvoer Rijntak = c*afvoer Bovenrijn, dan moet de golfvorm herschaald worden. Omdat we hier met volumina werken, is deze herschaling niet een directe vermenigvuldiging van formule (A1) of (A2) met factor c. Wel is eenvoudig na te gaan dat wanneer \(V_2(Q_{dr})\) gedefinieerd wordt als de volume/drempel verhouding voor de bewuste Rijntak, dat geldt:

\[(I) \hspace{1cm} V_2(Q_{dr}) \text{is kwadratisch:} \hspace{1cm} V_2(Q_{dr}) = a_2 Q_{dr}^2 + b_2 Q_{dr} + c_2\] \hspace{1cm} (A3)

\[(II) \hspace{1cm} V_2(cQ_{dr}) = cV_1(Q_{dr}) \hspace{1cm} \forall Q_{dr}\] \hspace{1cm} (A4)

Formule (A4) behoeft wellicht enige toelichting. Stel:

\[Q_1(t) = \text{afvoer Bovenrijn als functie van de tijd } t\]
\[Q_2(t) = \text{afvoer van de bewuste Rijntak als functie van tijd } t (=c*Q_1(t))\]
\[t_1 = \text{tijdstip van overschrijden van afvoer } Q_{dr} \text{ in de Bovenrijn}\]
\[t_2 = \text{tijdstip van onderschrijden van afvoer } Q_{dr} \text{ in de Bovenrijn}\]

Nu geldt:

\[V_1(Q_{dr}) = \int_{t_1}^{t_2} \left[Q_1(t) - Q_{dr}\right] dt\] \hspace{1cm} (A5)
En:

\[V_2(cQ_{dr}) = \int_{t_1}^{t_2}
[Q_2(t) - cQ_{dr}] \, dt = \int_{t_1}^{t_2}
[cQ_1(t) - cQ_{dr}] \, dt = c \int_{t_1}^{t_2}
[Q_1(t) - Q_{dr}] \, dt = cV_1(Q_{dr}) \quad (A6) \]

Waarmee (A4) bewezen is. Uitwerken van formule (A4) geeft:

\[a_2(cQ_{dr})^2 + b_2(cQ_{dr}) + c_2 = c \left[a_1Q_{dr}^2 + b_1Q_{dr} + c_1 \right] \]

\[\rightarrow (c^2a_2)Q_{dr}^2 + (cb_2)Q_{dr} + c_2 = (ca_1)Q_{dr}^2 + (cb_2)Q_{dr} + c_1 \]

\[\rightarrow a_2 = \frac{a_1}{c} \quad ; \quad b_2 = b_1 \quad ; \quad c_2 = c \cdot c_1 \]

\[\rightarrow a_2 = \frac{1143.5}{1000cQ_p} , b_2 = -\frac{2354.1}{1000} , c_2 = \frac{1210.3cQ_p}{1000} \]

\[\rightarrow V_2(Q_{dr}) = \frac{1143.5}{1000cQ_p} Q_{dr}^2 - \frac{2354.1}{1000} Q_{dr} + \frac{1210.3cQ_p}{1000} \quad (A7) \]
B Opschalen van golven van de Maas bij Borgharen

Voor Afvoeren in de Maas met een piekafvoer van 3.800 m³/s bij Borgharen zijn golfd轀men afgeleid voor een aantal kwantiel1. Voor elk van de kwantiel is een relatie afgeleid voor het volume boven een afvoerdrempel. Deze relaties hebben de volgende vorm (zie hoofdstuk 2):

\[
V(Q_{dr}) = a\left(\frac{Q_p - Q_{dr}}{1000}\right)^b
\]
(B1)

Waarbij:
- \(Q_{dr}\) = de beschouwde afvoerdrempel (m³/s)
- \(V\) = volume boven afvoerdrempel \(Q_{dr}\) (in miljoen m³)
- \(a, b\) = gefitte parameters
- \(Q_p\) = piekafvoer (m³/s)

Deze functie heeft dus drie parameters, waarvan er twee, a en b, bepaald zijn op basis van de optimale fit, en één, \(Q_p\), gelijk is aan de piekafvoer om te garanderen dat het volume exact gelijk is aan 0 indien de drempelwaarde gelijk is aan de piekafvoer. De waarden van a en b zijn alleen bepaald voor de situatie dat \(Q_p = 3.800\) m³/s. Voor een andere waarden van de piekafvoer, \(Q_p^*\), kan de functie \(V^*(Q_{dr})\) worden uit \(V(Q_{dr})\). Hierbij wordt aangenomen dat afvoergolven lineair zijn op te schalen met het quotiënt van de afvoerpieken \(Q_p^*/Q_p\) (een aanname die ten grondslag ligt aan de golfvorm-generator en waarvan de validiteit in (WL, 2001) voor de Rijn is aangetoond). Stel \(c = Q_p^*/Q_p\), dan geldt:

\[
V^*(cQ_{dr}) = cV(Q_{dr}) \quad \forall Q_{dr}
\]
(B2)

De bewijsvoering hiervoor is reeds in appendix A gegeven. Uit vergelijking (B2) volgt:

1 Bijvoorbeeld het 75%-kwantiel is die golfvorm waarvoor geldt dat 75% van de golfvormen met een piekafvoer van 3.800 m³/s smaller zijn, en 25% van de golfvormen met een piekafvoer van 3.800 m³/s breder.
\[
ca \left(\frac{Q_p - Q_{de}}{1000} \right)^b = a \cdot \left(\frac{Q_p - c Q_{de}}{1000} \right)^{b'} \forall Q_{de}
\]

\[
\Rightarrow ca \left(\frac{Q_p - Q_{de}}{1000} \right)^b = a' \cdot \left(\frac{c Q_p - c Q_{de}}{1000} \right)^{b''} \forall Q_{de}
\]

\[
\Rightarrow ca \left(\frac{Q_p - Q_{de}}{1000} \right)^b = a' \cdot (c)^{b'} \left(\frac{Q_p - Q_{de}}{1000} \right)^{b''} \forall Q_{de}
\]

\[\Rightarrow a' (c)^{b'} = ca; \quad b' = b\]

\[\Rightarrow a' = ac^{1-b}; \quad b' = b\]

\[\Rightarrow V^* (Q_{de}) = ac^{1-b} \left(\frac{Q_p - Q_{de}}{1000} \right)^b\] (B2)
C Frequentietabellen

Rijn

Benodigd volume berging (in miljoen m³) als functie van herhalingstijd T. De afkorting CO in onderstaande tabel staat voor capaciteit van de Oberrhein, en CRt staat voor de capaciteit van de Rijntakken.

<table>
<thead>
<tr>
<th>T</th>
<th>CO=18000 m³/s CRt=15000 m³/s</th>
<th>CO=17000 m³/s CRt=15000 m³/s</th>
<th>CO=oneindig CRt=15000 m³/s</th>
<th>CO=18000 m³/s CRt=16000 m³/s</th>
<th>CO=oneindig CRt=16000 m³/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>700</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>800</td>
<td>26.1</td>
<td>26.1</td>
<td>26.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>900</td>
<td>45.0</td>
<td>45.0</td>
<td>45.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1000</td>
<td>65.3</td>
<td>65.3</td>
<td>65.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1100</td>
<td>86.3</td>
<td>86.3</td>
<td>86.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1200</td>
<td>107.4</td>
<td>107.4</td>
<td>107.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1300</td>
<td>128.5</td>
<td>128.5</td>
<td>128.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1400</td>
<td>149.2</td>
<td>149.2</td>
<td>149.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1500</td>
<td>169.7</td>
<td>169.7</td>
<td>169.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1600</td>
<td>189.7</td>
<td>189.7</td>
<td>189.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1700</td>
<td>208.7</td>
<td>208.7</td>
<td>208.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1800</td>
<td>227.0</td>
<td>227.0</td>
<td>227.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1900</td>
<td>245.4</td>
<td>244.8</td>
<td>245.4</td>
<td>49.0</td>
<td>40.9</td>
</tr>
<tr>
<td>2000</td>
<td>263.7</td>
<td>262.9</td>
<td>263.7</td>
<td>49.8</td>
<td>49.8</td>
</tr>
<tr>
<td>2100</td>
<td>282.1</td>
<td>281.1</td>
<td>282.1</td>
<td>59.0</td>
<td>59.0</td>
</tr>
<tr>
<td>2200</td>
<td>300.4</td>
<td>299.2</td>
<td>300.4</td>
<td>68.3</td>
<td>68.3</td>
</tr>
<tr>
<td>2300</td>
<td>316.3</td>
<td>313.8</td>
<td>316.3</td>
<td>77.8</td>
<td>77.8</td>
</tr>
<tr>
<td>2400</td>
<td>332.3</td>
<td>328.2</td>
<td>332.3</td>
<td>87.2</td>
<td>87.2</td>
</tr>
<tr>
<td>2500</td>
<td>348.2</td>
<td>342.7</td>
<td>348.2</td>
<td>96.7</td>
<td>96.7</td>
</tr>
<tr>
<td>2600</td>
<td>364.2</td>
<td>357.2</td>
<td>364.2</td>
<td>106.2</td>
<td>106.2</td>
</tr>
<tr>
<td>2700</td>
<td>380.2</td>
<td>371.6</td>
<td>380.2</td>
<td>115.7</td>
<td>115.7</td>
</tr>
<tr>
<td>2800</td>
<td>396.1</td>
<td>386.1</td>
<td>396.1</td>
<td>125.1</td>
<td>125.1</td>
</tr>
<tr>
<td>2900</td>
<td>410.4</td>
<td>400.4</td>
<td>410.4</td>
<td>134.4</td>
<td>134.4</td>
</tr>
<tr>
<td>3000</td>
<td>424.2</td>
<td>410.7</td>
<td>424.2</td>
<td>143.7</td>
<td>143.7</td>
</tr>
<tr>
<td>3100</td>
<td>437.9</td>
<td>421.1</td>
<td>438.0</td>
<td>152.9</td>
<td>152.9</td>
</tr>
<tr>
<td>3200</td>
<td>451.7</td>
<td>431.5</td>
<td>451.8</td>
<td>162.1</td>
<td>162.1</td>
</tr>
<tr>
<td>3300</td>
<td>465.5</td>
<td>441.8</td>
<td>465.6</td>
<td>171.1</td>
<td>171.1</td>
</tr>
<tr>
<td>3400</td>
<td>479.2</td>
<td>452.2</td>
<td>479.4</td>
<td>180.1</td>
<td>180.1</td>
</tr>
<tr>
<td>3500</td>
<td>493.0</td>
<td>462.6</td>
<td>493.2</td>
<td>189.0</td>
<td>189.0</td>
</tr>
<tr>
<td>3600</td>
<td>505.7</td>
<td>473.0</td>
<td>506.0</td>
<td>197.8</td>
<td>197.8</td>
</tr>
<tr>
<td>3700</td>
<td>517.4</td>
<td>483.3</td>
<td>517.9</td>
<td>205.9</td>
<td>206.1</td>
</tr>
<tr>
<td>3800</td>
<td>529.1</td>
<td>493.7</td>
<td>529.8</td>
<td>213.9</td>
<td>214.2</td>
</tr>
<tr>
<td>3900</td>
<td>540.8</td>
<td>502.7</td>
<td>541.7</td>
<td>221.9</td>
<td>222.3</td>
</tr>
<tr>
<td>4000</td>
<td>552.5</td>
<td>509.7</td>
<td>553.6</td>
<td>229.9</td>
<td>230.5</td>
</tr>
<tr>
<td>4100</td>
<td>564.1</td>
<td>516.7</td>
<td>565.5</td>
<td>237.9</td>
<td>238.6</td>
</tr>
<tr>
<td>4200</td>
<td>575.8</td>
<td>523.6</td>
<td>577.4</td>
<td>245.9</td>
<td>246.8</td>
</tr>
<tr>
<td>4300</td>
<td>587.5</td>
<td>530.6</td>
<td>589.3</td>
<td>253.9</td>
<td>254.9</td>
</tr>
<tr>
<td>4400</td>
<td>599.2</td>
<td>537.5</td>
<td>601.0</td>
<td>261.9</td>
<td>263.1</td>
</tr>
<tr>
<td>T</td>
<td>CO=18000 m³/s CRT=15000 m³/s</td>
<td>CO=17000 m³/s CRT=15000 m³/s</td>
<td>CO=oneindig CRT=15000 m³/s</td>
<td>CO=18000 m³/s CRT=16000 m³/s</td>
<td>CO=oneindig CRT=16000 m³/s</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>4500</td>
<td>609.0</td>
<td>544.5</td>
<td>611.3</td>
<td>269.9</td>
<td>271.2</td>
</tr>
<tr>
<td>4600</td>
<td>618.6</td>
<td>551.5</td>
<td>621.6</td>
<td>277.9</td>
<td>279.4</td>
</tr>
<tr>
<td>4700</td>
<td>628.3</td>
<td>558.4</td>
<td>631.9</td>
<td>285.9</td>
<td>287.5</td>
</tr>
<tr>
<td>4800</td>
<td>637.9</td>
<td>565.4</td>
<td>642.1</td>
<td>293.9</td>
<td>295.7</td>
</tr>
<tr>
<td>4900</td>
<td>647.6</td>
<td>572.4</td>
<td>652.4</td>
<td>301.5</td>
<td>303.3</td>
</tr>
<tr>
<td>5000</td>
<td>657.2</td>
<td>579.3</td>
<td>662.7</td>
<td>307.8</td>
<td>310.3</td>
</tr>
<tr>
<td>5100</td>
<td>666.9</td>
<td>586.3</td>
<td>673.0</td>
<td>314.0</td>
<td>317.4</td>
</tr>
<tr>
<td>5200</td>
<td>676.5</td>
<td>593.3</td>
<td>683.2</td>
<td>320.3</td>
<td>324.4</td>
</tr>
<tr>
<td>5300</td>
<td>686.2</td>
<td>600.1</td>
<td>693.5</td>
<td>326.5</td>
<td>331.5</td>
</tr>
<tr>
<td>5400</td>
<td>695.8</td>
<td>604.6</td>
<td>703.3</td>
<td>332.7</td>
<td>338.5</td>
</tr>
<tr>
<td>5500</td>
<td>704.4</td>
<td>609.1</td>
<td>712.2</td>
<td>339.0</td>
<td>345.6</td>
</tr>
<tr>
<td>5600</td>
<td>712.1</td>
<td>613.6</td>
<td>721.0</td>
<td>345.2</td>
<td>352.7</td>
</tr>
<tr>
<td>5700</td>
<td>719.8</td>
<td>618.1</td>
<td>729.9</td>
<td>351.5</td>
<td>359.7</td>
</tr>
<tr>
<td>5800</td>
<td>727.5</td>
<td>622.5</td>
<td>738.8</td>
<td>357.7</td>
<td>366.8</td>
</tr>
<tr>
<td>5900</td>
<td>735.2</td>
<td>627.0</td>
<td>747.7</td>
<td>364.0</td>
<td>373.8</td>
</tr>
<tr>
<td>6000</td>
<td>742.9</td>
<td>631.5</td>
<td>756.6</td>
<td>370.2</td>
<td>380.9</td>
</tr>
<tr>
<td>6100</td>
<td>750.6</td>
<td>636.0</td>
<td>765.5</td>
<td>376.4</td>
<td>387.9</td>
</tr>
<tr>
<td>6200</td>
<td>758.3</td>
<td>640.5</td>
<td>774.3</td>
<td>382.7</td>
<td>395.0</td>
</tr>
<tr>
<td>6300</td>
<td>766.0</td>
<td>644.9</td>
<td>783.2</td>
<td>388.9</td>
<td>401.7</td>
</tr>
<tr>
<td>6400</td>
<td>773.7</td>
<td>649.4</td>
<td>792.1</td>
<td>395.2</td>
<td>407.8</td>
</tr>
<tr>
<td>6500</td>
<td>781.4</td>
<td>653.9</td>
<td>800.9</td>
<td>401.0</td>
<td>413.9</td>
</tr>
<tr>
<td>6600</td>
<td>789.1</td>
<td>658.4</td>
<td>808.6</td>
<td>405.4</td>
<td>419.9</td>
</tr>
<tr>
<td>6700</td>
<td>796.9</td>
<td>662.8</td>
<td>816.3</td>
<td>409.8</td>
<td>426.0</td>
</tr>
<tr>
<td>6800</td>
<td>803.5</td>
<td>667.3</td>
<td>824.0</td>
<td>414.1</td>
<td>432.1</td>
</tr>
<tr>
<td>6900</td>
<td>809.5</td>
<td>671.8</td>
<td>831.7</td>
<td>418.5</td>
<td>438.1</td>
</tr>
<tr>
<td>7000</td>
<td>815.4</td>
<td>676.3</td>
<td>839.4</td>
<td>422.9</td>
<td>444.2</td>
</tr>
<tr>
<td>7100</td>
<td>821.4</td>
<td>680.8</td>
<td>847.1</td>
<td>427.3</td>
<td>450.3</td>
</tr>
<tr>
<td>7200</td>
<td>827.3</td>
<td>685.2</td>
<td>854.8</td>
<td>431.7</td>
<td>456.3</td>
</tr>
<tr>
<td>7300</td>
<td>833.3</td>
<td>689.7</td>
<td>862.5</td>
<td>436.0</td>
<td>462.4</td>
</tr>
<tr>
<td>7400</td>
<td>839.2</td>
<td>694.2</td>
<td>870.2</td>
<td>440.4</td>
<td>468.5</td>
</tr>
<tr>
<td>7500</td>
<td>845.2</td>
<td>698.7</td>
<td>877.9</td>
<td>444.8</td>
<td>474.5</td>
</tr>
<tr>
<td>7600</td>
<td>851.2</td>
<td>701.9</td>
<td>885.6</td>
<td>449.2</td>
<td>480.6</td>
</tr>
<tr>
<td>7700</td>
<td>857.1</td>
<td>704.7</td>
<td>893.2</td>
<td>453.6</td>
<td>486.7</td>
</tr>
<tr>
<td>7800</td>
<td>863.1</td>
<td>707.5</td>
<td>900.8</td>
<td>457.9</td>
<td>492.7</td>
</tr>
<tr>
<td>7900</td>
<td>869.0</td>
<td>710.2</td>
<td>907.5</td>
<td>462.3</td>
<td>498.8</td>
</tr>
<tr>
<td>8000</td>
<td>875.0</td>
<td>713.0</td>
<td>914.2</td>
<td>466.7</td>
<td>504.2</td>
</tr>
<tr>
<td>8100</td>
<td>880.9</td>
<td>715.8</td>
<td>920.9</td>
<td>471.1</td>
<td>509.4</td>
</tr>
<tr>
<td>8200</td>
<td>886.9</td>
<td>718.5</td>
<td>927.6</td>
<td>475.5</td>
<td>514.6</td>
</tr>
<tr>
<td>8300</td>
<td>892.8</td>
<td>721.3</td>
<td>934.2</td>
<td>479.8</td>
<td>519.8</td>
</tr>
<tr>
<td>8400</td>
<td>898.8</td>
<td>724.0</td>
<td>940.9</td>
<td>484.2</td>
<td>525.0</td>
</tr>
<tr>
<td>8500</td>
<td>903.6</td>
<td>726.8</td>
<td>947.6</td>
<td>488.6</td>
<td>530.2</td>
</tr>
<tr>
<td>8600</td>
<td>908.1</td>
<td>729.6</td>
<td>954.3</td>
<td>493.0</td>
<td>535.5</td>
</tr>
<tr>
<td>8700</td>
<td>912.5</td>
<td>732.3</td>
<td>961.0</td>
<td>497.4</td>
<td>540.7</td>
</tr>
<tr>
<td>8800</td>
<td>917.0</td>
<td>735.1</td>
<td>967.6</td>
<td>501.1</td>
<td>545.9</td>
</tr>
<tr>
<td>8900</td>
<td>921.5</td>
<td>737.8</td>
<td>974.3</td>
<td>504.0</td>
<td>551.1</td>
</tr>
<tr>
<td>9000</td>
<td>926.0</td>
<td>740.6</td>
<td>981.0</td>
<td>506.9</td>
<td>556.3</td>
</tr>
<tr>
<td>9100</td>
<td>930.5</td>
<td>743.4</td>
<td>987.7</td>
<td>509.8</td>
<td>561.5</td>
</tr>
<tr>
<td>9200</td>
<td>934.9</td>
<td>746.1</td>
<td>994.4</td>
<td>512.7</td>
<td>566.7</td>
</tr>
<tr>
<td>9300</td>
<td>939.4</td>
<td>748.9</td>
<td>1000.9</td>
<td>515.6</td>
<td>572.0</td>
</tr>
<tr>
<td>9400</td>
<td>943.9</td>
<td>751.7</td>
<td>1006.7</td>
<td>518.5</td>
<td>577.2</td>
</tr>
<tr>
<td>T</td>
<td>CO=18000 m³/s Crt=15000 m³/s</td>
<td>CO=17000 m³/s Crt=15000 m³/s</td>
<td>CO=oneindig Crt=15000 m³/s</td>
<td>CO=18000 m³/s Crt=16000 m³/s</td>
<td>CO=oneindig Crt=16000 m³/s</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>9500</td>
<td>948.4</td>
<td>754.4</td>
<td>1012.5</td>
<td>521.4</td>
<td>582.4</td>
</tr>
<tr>
<td>9600</td>
<td>952.9</td>
<td>757.2</td>
<td>1015.4</td>
<td>524.3</td>
<td>587.6</td>
</tr>
<tr>
<td>9700</td>
<td>957.3</td>
<td>759.9</td>
<td>1018.2</td>
<td>527.1</td>
<td>592.8</td>
</tr>
<tr>
<td>9800</td>
<td>961.8</td>
<td>762.7</td>
<td>1021.0</td>
<td>530.0</td>
<td>598.0</td>
</tr>
<tr>
<td>9900</td>
<td>966.3</td>
<td>765.5</td>
<td>1023.8</td>
<td>532.9</td>
<td>602.8</td>
</tr>
<tr>
<td>10000</td>
<td>970.8</td>
<td>768.2</td>
<td>1026.4</td>
<td>535.8</td>
<td>607.3</td>
</tr>
<tr>
<td>10500</td>
<td>993.2</td>
<td>782.0</td>
<td>1037.0</td>
<td>550.3</td>
<td>629.7</td>
</tr>
<tr>
<td>11000</td>
<td>1011.5</td>
<td>795.8</td>
<td>1049.7</td>
<td>564.7</td>
<td>652.1</td>
</tr>
<tr>
<td>11500</td>
<td>1028.0</td>
<td>805.7</td>
<td>1061.1</td>
<td>579.1</td>
<td>674.5</td>
</tr>
<tr>
<td>12000</td>
<td>1044.5</td>
<td>814.0</td>
<td>1105.4</td>
<td>593.6</td>
<td>696.9</td>
</tr>
<tr>
<td>12500</td>
<td>1061.0</td>
<td>822.2</td>
<td>1135.8</td>
<td>605.1</td>
<td>716.7</td>
</tr>
<tr>
<td>13000</td>
<td>1077.6</td>
<td>830.4</td>
<td>1161.0</td>
<td>614.2</td>
<td>736.0</td>
</tr>
<tr>
<td>13500</td>
<td>1094.1</td>
<td>838.6</td>
<td>1223.1</td>
<td>623.3</td>
<td>755.3</td>
</tr>
<tr>
<td>14000</td>
<td>1107.6</td>
<td>846.9</td>
<td>1245.2</td>
<td>632.4</td>
<td>774.7</td>
</tr>
<tr>
<td>14500</td>
<td>1119.6</td>
<td>855.1</td>
<td>1267.3</td>
<td>641.5</td>
<td>794.0</td>
</tr>
<tr>
<td>15000</td>
<td>1131.5</td>
<td>863.3</td>
<td>1289.4</td>
<td>650.5</td>
<td>811.5</td>
</tr>
<tr>
<td>15500</td>
<td>1143.4</td>
<td>871.5</td>
<td>1310.1</td>
<td>659.7</td>
<td>828.2</td>
</tr>
<tr>
<td>16000</td>
<td>1153.3</td>
<td>879.8</td>
<td>1329.4</td>
<td>668.8</td>
<td>844.9</td>
</tr>
<tr>
<td>16500</td>
<td>1167.2</td>
<td>888.0</td>
<td>1348.8</td>
<td>678.0</td>
<td>861.6</td>
</tr>
<tr>
<td>17000</td>
<td>1179.1</td>
<td>896.2</td>
<td>1368.1</td>
<td>687.1</td>
<td>878.3</td>
</tr>
<tr>
<td>17500</td>
<td>1191.0</td>
<td>902.5</td>
<td>1387.5</td>
<td>696.2</td>
<td>895.0</td>
</tr>
<tr>
<td>18000</td>
<td>1202.1</td>
<td>907.2</td>
<td>1406.0</td>
<td>703.2</td>
<td>910.1</td>
</tr>
<tr>
<td>18500</td>
<td>1210.4</td>
<td>911.9</td>
<td>1422.9</td>
<td>708.7</td>
<td>924.5</td>
</tr>
<tr>
<td>19000</td>
<td>1218.8</td>
<td>916.6</td>
<td>1439.9</td>
<td>714.2</td>
<td>939.0</td>
</tr>
<tr>
<td>19500</td>
<td>1227.2</td>
<td>921.3</td>
<td>1456.8</td>
<td>719.8</td>
<td>953.4</td>
</tr>
<tr>
<td>20000</td>
<td>1235.6</td>
<td>926.0</td>
<td>1473.8</td>
<td>725.3</td>
<td>967.9</td>
</tr>
<tr>
<td>20500</td>
<td>1243.9</td>
<td>930.7</td>
<td>1490.7</td>
<td>730.8</td>
<td>982.3</td>
</tr>
<tr>
<td>21000</td>
<td>1252.3</td>
<td>935.4</td>
<td>1506.7</td>
<td>736.3</td>
<td>996.7</td>
</tr>
<tr>
<td>21500</td>
<td>1260.7</td>
<td>940.1</td>
<td>1521.6</td>
<td>741.8</td>
<td>1009.7</td>
</tr>
<tr>
<td>22000</td>
<td>1269.0</td>
<td>944.8</td>
<td>1536.5</td>
<td>747.3</td>
<td>1022.2</td>
</tr>
<tr>
<td>22500</td>
<td>1277.4</td>
<td>949.5</td>
<td>1551.3</td>
<td>752.9</td>
<td>1034.8</td>
</tr>
<tr>
<td>23000</td>
<td>1285.8</td>
<td>954.2</td>
<td>1566.2</td>
<td>758.4</td>
<td>1047.3</td>
</tr>
<tr>
<td>23500</td>
<td>1294.2</td>
<td>958.9</td>
<td>1581.1</td>
<td>763.9</td>
<td>1059.8</td>
</tr>
<tr>
<td>24000</td>
<td>1301.7</td>
<td>963.6</td>
<td>1596.0</td>
<td>769.4</td>
<td>1072.4</td>
</tr>
<tr>
<td>24500</td>
<td>1307.5</td>
<td>968.3</td>
<td>1609.5</td>
<td>774.9</td>
<td>1084.9</td>
</tr>
<tr>
<td>25000</td>
<td>1313.3</td>
<td>973.0</td>
<td>1622.6</td>
<td>780.4</td>
<td>1097.4</td>
</tr>
<tr>
<td>25500</td>
<td>1319.1</td>
<td>977.7</td>
<td>1635.7</td>
<td>786.0</td>
<td>1108.6</td>
</tr>
<tr>
<td>26000</td>
<td>1324.8</td>
<td>982.4</td>
<td>1648.7</td>
<td>791.5</td>
<td>1119.5</td>
</tr>
<tr>
<td>26500</td>
<td>1330.6</td>
<td>987.1</td>
<td>1661.8</td>
<td>797.0</td>
<td>1130.4</td>
</tr>
<tr>
<td>27000</td>
<td>1336.4</td>
<td>991.8</td>
<td>1674.9</td>
<td>801.5</td>
<td>1141.3</td>
</tr>
<tr>
<td>27500</td>
<td>1342.2</td>
<td>996.5</td>
<td>1687.9</td>
<td>804.7</td>
<td>1152.2</td>
</tr>
<tr>
<td>28000</td>
<td>1348.0</td>
<td>1000.6</td>
<td>1700.9</td>
<td>807.9</td>
<td>1163.1</td>
</tr>
<tr>
<td>28500</td>
<td>1353.7</td>
<td>1003.2</td>
<td>1712.4</td>
<td>811.1</td>
<td>1174.0</td>
</tr>
<tr>
<td>29000</td>
<td>1359.5</td>
<td>1005.7</td>
<td>1723.9</td>
<td>814.3</td>
<td>1184.9</td>
</tr>
<tr>
<td>29500</td>
<td>1365.3</td>
<td>1008.3</td>
<td>1735.4</td>
<td>817.6</td>
<td>1195.8</td>
</tr>
<tr>
<td>30000</td>
<td>1371.1</td>
<td>1010.8</td>
<td>1746.9</td>
<td>820.8</td>
<td>1205.8</td>
</tr>
<tr>
<td>30500</td>
<td>1376.8</td>
<td>1013.4</td>
<td>1758.4</td>
<td>824.0</td>
<td>1215.3</td>
</tr>
<tr>
<td>31000</td>
<td>1382.6</td>
<td>1016.0</td>
<td>1769.9</td>
<td>827.2</td>
<td>1224.8</td>
</tr>
<tr>
<td>31500</td>
<td>1388.4</td>
<td>1018.5</td>
<td>1781.4</td>
<td>830.4</td>
<td>1234.3</td>
</tr>
<tr>
<td>32000</td>
<td>1394.2</td>
<td>1021.1</td>
<td>1792.9</td>
<td>833.7</td>
<td>1243.7</td>
</tr>
<tr>
<td>T</td>
<td>CO=18000 m³/s</td>
<td>CO=17000 m³/s</td>
<td>CO=oneindig CRT=15000 m³/s</td>
<td>CO=18000 m³/s</td>
<td>CO=oneindig CRT=16000 m³/s</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------------------</td>
<td>---------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>32500</td>
<td>1399.9</td>
<td>1023.6</td>
<td>1803.9</td>
<td>836.9</td>
<td>1253.2</td>
</tr>
<tr>
<td>33000</td>
<td>1403.9</td>
<td>1026.2</td>
<td>1814.0</td>
<td>840.1</td>
<td>1262.7</td>
</tr>
<tr>
<td>33500</td>
<td>1407.8</td>
<td>1028.7</td>
<td>1824.2</td>
<td>843.3</td>
<td>1272.2</td>
</tr>
<tr>
<td>34000</td>
<td>1411.7</td>
<td>1031.3</td>
<td>1834.3</td>
<td>846.6</td>
<td>1281.7</td>
</tr>
<tr>
<td>34500</td>
<td>1415.6</td>
<td>1033.8</td>
<td>1844.5</td>
<td>849.8</td>
<td>1291.2</td>
</tr>
<tr>
<td>35000</td>
<td>1419.5</td>
<td>1036.4</td>
<td>1854.6</td>
<td>853.0</td>
<td>1300.6</td>
</tr>
<tr>
<td>35500</td>
<td>1423.4</td>
<td>1038.9</td>
<td>1864.7</td>
<td>856.2</td>
<td>1308.8</td>
</tr>
<tr>
<td>36000</td>
<td>1427.3</td>
<td>1041.5</td>
<td>1874.9</td>
<td>859.4</td>
<td>1317.1</td>
</tr>
<tr>
<td>36500</td>
<td>1431.2</td>
<td>1044.1</td>
<td>1885.0</td>
<td>862.7</td>
<td>1325.4</td>
</tr>
<tr>
<td>37000</td>
<td>1435.1</td>
<td>1046.6</td>
<td>1895.1</td>
<td>865.9</td>
<td>1333.7</td>
</tr>
<tr>
<td>37500</td>
<td>1439.0</td>
<td>1049.2</td>
<td>1904.7</td>
<td>869.1</td>
<td>1341.9</td>
</tr>
<tr>
<td>38000</td>
<td>1443.0</td>
<td>1051.7</td>
<td>1913.6</td>
<td>872.3</td>
<td>1350.2</td>
</tr>
<tr>
<td>38500</td>
<td>1446.9</td>
<td>1054.3</td>
<td>1922.5</td>
<td>875.5</td>
<td>1358.5</td>
</tr>
<tr>
<td>39000</td>
<td>1450.8</td>
<td>1056.8</td>
<td>1931.5</td>
<td>878.8</td>
<td>1366.8</td>
</tr>
<tr>
<td>39500</td>
<td>1454.7</td>
<td>1059.4</td>
<td>1940.4</td>
<td>882.0</td>
<td>1375.1</td>
</tr>
<tr>
<td>40000</td>
<td>1458.6</td>
<td>1061.9</td>
<td>1949.4</td>
<td>885.2</td>
<td>1383.3</td>
</tr>
<tr>
<td>40500</td>
<td>1462.5</td>
<td>1064.5</td>
<td>1958.3</td>
<td>888.4</td>
<td>1391.6</td>
</tr>
<tr>
<td>41000</td>
<td>1466.4</td>
<td>1067.0</td>
<td>1967.3</td>
<td>891.6</td>
<td>1399.9</td>
</tr>
<tr>
<td>41500</td>
<td>1470.3</td>
<td>1069.6</td>
<td>1976.2</td>
<td>894.9</td>
<td>1407.1</td>
</tr>
<tr>
<td>42000</td>
<td>1474.2</td>
<td>1072.1</td>
<td>1985.2</td>
<td>898.1</td>
<td>1414.4</td>
</tr>
<tr>
<td>42500</td>
<td>1478.1</td>
<td>1074.7</td>
<td>1994.1</td>
<td>900.7</td>
<td>1421.6</td>
</tr>
<tr>
<td>43000</td>
<td>1482.0</td>
<td>1077.3</td>
<td>2007.9</td>
<td>902.5</td>
<td>1428.8</td>
</tr>
<tr>
<td>43500</td>
<td>1486.0</td>
<td>1079.8</td>
<td>2031.3</td>
<td>904.3</td>
<td>1436.1</td>
</tr>
<tr>
<td>44000</td>
<td>1489.9</td>
<td>1082.4</td>
<td>2054.6</td>
<td>906.1</td>
<td>1443.3</td>
</tr>
<tr>
<td>44500</td>
<td>1493.8</td>
<td>1084.9</td>
<td>2078.0</td>
<td>907.9</td>
<td>1450.5</td>
</tr>
<tr>
<td>45000</td>
<td>1497.7</td>
<td>1087.5</td>
<td>2101.3</td>
<td>909.7</td>
<td>1457.8</td>
</tr>
<tr>
<td>45500</td>
<td>1501.1</td>
<td>1090.0</td>
<td>2124.7</td>
<td>911.5</td>
<td>1465.0</td>
</tr>
<tr>
<td>46000</td>
<td>1503.6</td>
<td>1092.6</td>
<td>2148.0</td>
<td>913.3</td>
<td>1472.2</td>
</tr>
<tr>
<td>46500</td>
<td>1506.2</td>
<td>1095.1</td>
<td>2171.4</td>
<td>915.1</td>
<td>1479.5</td>
</tr>
<tr>
<td>47000</td>
<td>1508.8</td>
<td>1097.7</td>
<td>2194.7</td>
<td>916.9</td>
<td>1486.7</td>
</tr>
<tr>
<td>47500</td>
<td>1511.4</td>
<td>1100.1</td>
<td>2218.1</td>
<td>918.7</td>
<td>1493.9</td>
</tr>
<tr>
<td>48000</td>
<td>1514.0</td>
<td>1101.4</td>
<td>2241.4</td>
<td>920.5</td>
<td>1501.0</td>
</tr>
<tr>
<td>48500</td>
<td>1516.6</td>
<td>1102.7</td>
<td>2264.8</td>
<td>922.3</td>
<td>1507.3</td>
</tr>
<tr>
<td>49000</td>
<td>1519.2</td>
<td>1104.1</td>
<td>2288.1</td>
<td>924.1</td>
<td>1513.7</td>
</tr>
<tr>
<td>49500</td>
<td>1521.8</td>
<td>1105.4</td>
<td>2311.5</td>
<td>925.9</td>
<td>1520.0</td>
</tr>
<tr>
<td>50000</td>
<td>1524.3</td>
<td>1106.7</td>
<td>2334.8</td>
<td>927.7</td>
<td>1526.3</td>
</tr>
<tr>
<td>50500</td>
<td>1526.9</td>
<td>1108.0</td>
<td>2358.2</td>
<td>929.5</td>
<td>1532.7</td>
</tr>
<tr>
<td>51000</td>
<td>1529.5</td>
<td>1109.3</td>
<td>2381.5</td>
<td>931.3</td>
<td>1539.0</td>
</tr>
<tr>
<td>51500</td>
<td>1532.1</td>
<td>1110.6</td>
<td>2404.9</td>
<td>933.1</td>
<td>1545.3</td>
</tr>
<tr>
<td>52000</td>
<td>1534.7</td>
<td>1111.9</td>
<td>2428.2</td>
<td>934.9</td>
<td>1551.7</td>
</tr>
<tr>
<td>52500</td>
<td>1537.3</td>
<td>1113.2</td>
<td>2451.6</td>
<td>936.7</td>
<td>1558.0</td>
</tr>
<tr>
<td>53000</td>
<td>1539.9</td>
<td>1114.6</td>
<td>2474.9</td>
<td>938.5</td>
<td>1564.4</td>
</tr>
<tr>
<td>53500</td>
<td>1542.5</td>
<td>1115.9</td>
<td>2498.2</td>
<td>940.3</td>
<td>1570.7</td>
</tr>
<tr>
<td>54000</td>
<td>1545.0</td>
<td>1117.2</td>
<td>2521.6</td>
<td>942.1</td>
<td>1577.0</td>
</tr>
<tr>
<td>54500</td>
<td>1547.6</td>
<td>1118.5</td>
<td>2544.9</td>
<td>943.9</td>
<td>1583.4</td>
</tr>
<tr>
<td>55000</td>
<td>1550.2</td>
<td>1119.8</td>
<td>2568.3</td>
<td>945.7</td>
<td>1589.7</td>
</tr>
<tr>
<td>55500</td>
<td>1552.8</td>
<td>1121.1</td>
<td>2591.6</td>
<td>947.5</td>
<td>1596.0</td>
</tr>
<tr>
<td>56000</td>
<td>1555.4</td>
<td>1122.4</td>
<td>2615.0</td>
<td>949.3</td>
<td>1602.1</td>
</tr>
<tr>
<td>56500</td>
<td>1558.0</td>
<td>1123.7</td>
<td>2638.3</td>
<td>951.1</td>
<td>1607.6</td>
</tr>
<tr>
<td>57000</td>
<td>1560.6</td>
<td>1125.1</td>
<td>2661.7</td>
<td>952.9</td>
<td>1613.2</td>
</tr>
<tr>
<td>T</td>
<td>CO=18000 m³/s CRt=16000 m³/s</td>
<td>CO=17000 m³/s CRt=15000 m³/s</td>
<td>CO=oneindig CRt=15000 m³/s</td>
<td>CO=18000 m³/s CRt=16000 m³/s</td>
<td>CO=oneindig CRt=16000 m³/s</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>57500</td>
<td>1563.2</td>
<td>1126.4</td>
<td>2685.0</td>
<td>954.7</td>
<td>1618.7</td>
</tr>
<tr>
<td>58000</td>
<td>1565.8</td>
<td>1127.7</td>
<td>2708.4</td>
<td>956.5</td>
<td>1624.3</td>
</tr>
<tr>
<td>58500</td>
<td>1568.3</td>
<td>1129.0</td>
<td>2731.7</td>
<td>958.3</td>
<td>1629.8</td>
</tr>
<tr>
<td>59000</td>
<td>1570.9</td>
<td>1130.3</td>
<td>2755.1</td>
<td>960.1</td>
<td>1635.4</td>
</tr>
<tr>
<td>59500</td>
<td>1573.5</td>
<td>1131.6</td>
<td>2778.4</td>
<td>961.9</td>
<td>1640.9</td>
</tr>
<tr>
<td>60000</td>
<td>1576.1</td>
<td>1132.9</td>
<td>2801.8</td>
<td>963.7</td>
<td>1646.5</td>
</tr>
<tr>
<td>60500</td>
<td>1578.7</td>
<td>1134.2</td>
<td>2825.1</td>
<td>965.5</td>
<td>1652.0</td>
</tr>
<tr>
<td>61000</td>
<td>1581.3</td>
<td>1135.6</td>
<td>2848.5</td>
<td>967.3</td>
<td>1657.6</td>
</tr>
<tr>
<td>61500</td>
<td>1583.9</td>
<td>1136.9</td>
<td>2871.8</td>
<td>969.1</td>
<td>1663.2</td>
</tr>
<tr>
<td>62000</td>
<td>1586.5</td>
<td>1138.2</td>
<td>2895.2</td>
<td>970.9</td>
<td>1668.7</td>
</tr>
<tr>
<td>62500</td>
<td>1589.0</td>
<td>1139.5</td>
<td>2918.5</td>
<td>972.7</td>
<td>1674.3</td>
</tr>
<tr>
<td>63000</td>
<td>1591.6</td>
<td>1140.8</td>
<td>2941.9</td>
<td>974.5</td>
<td>1679.8</td>
</tr>
<tr>
<td>63500</td>
<td>1594.2</td>
<td>1142.1</td>
<td>2965.2</td>
<td>976.3</td>
<td>1685.4</td>
</tr>
<tr>
<td>64000</td>
<td>1596.8</td>
<td>1143.4</td>
<td>2988.6</td>
<td>978.1</td>
<td>1690.9</td>
</tr>
<tr>
<td>64500</td>
<td>1599.4</td>
<td>1144.7</td>
<td>3011.9</td>
<td>979.9</td>
<td>1696.5</td>
</tr>
<tr>
<td>65000</td>
<td>1601.3</td>
<td>1146.1</td>
<td>3035.3</td>
<td>981.7</td>
<td>1701.8</td>
</tr>
<tr>
<td>65500</td>
<td>1603.0</td>
<td>1147.4</td>
<td>3058.6</td>
<td>983.5</td>
<td>1706.7</td>
</tr>
<tr>
<td>66000</td>
<td>1604.6</td>
<td>1148.7</td>
<td>3082.0</td>
<td>985.3</td>
<td>1711.5</td>
</tr>
<tr>
<td>66500</td>
<td>1606.3</td>
<td>1150.0</td>
<td>3105.3</td>
<td>987.1</td>
<td>1716.4</td>
</tr>
<tr>
<td>67000</td>
<td>1608.0</td>
<td>1151.3</td>
<td>3128.6</td>
<td>988.9</td>
<td>1721.3</td>
</tr>
<tr>
<td>67500</td>
<td>1609.6</td>
<td>1152.6</td>
<td>3152.0</td>
<td>990.7</td>
<td>1726.2</td>
</tr>
<tr>
<td>68000</td>
<td>1611.3</td>
<td>1153.9</td>
<td>3175.3</td>
<td>992.5</td>
<td>1731.0</td>
</tr>
<tr>
<td>68500</td>
<td>1613.0</td>
<td>1155.2</td>
<td>3198.7</td>
<td>994.3</td>
<td>1735.9</td>
</tr>
<tr>
<td>69000</td>
<td>1614.6</td>
<td>1156.6</td>
<td>3222.0</td>
<td>996.1</td>
<td>1740.8</td>
</tr>
<tr>
<td>69500</td>
<td>1616.3</td>
<td>1157.9</td>
<td>3245.4</td>
<td>997.9</td>
<td>1745.7</td>
</tr>
<tr>
<td>70000</td>
<td>1618.0</td>
<td>1159.2</td>
<td>3268.7</td>
<td>999.7</td>
<td>1750.6</td>
</tr>
<tr>
<td>70500</td>
<td>1619.7</td>
<td>1160.5</td>
<td>3292.1</td>
<td>1000.8</td>
<td>1755.4</td>
</tr>
<tr>
<td>71000</td>
<td>1621.3</td>
<td>1161.8</td>
<td>3315.4</td>
<td>1001.7</td>
<td>1760.3</td>
</tr>
<tr>
<td>71500</td>
<td>1623.0</td>
<td>1163.1</td>
<td>3338.8</td>
<td>1002.7</td>
<td>1765.2</td>
</tr>
<tr>
<td>72000</td>
<td>1624.7</td>
<td>1164.4</td>
<td>3362.1</td>
<td>1003.6</td>
<td>1770.1</td>
</tr>
<tr>
<td>72500</td>
<td>1626.3</td>
<td>1165.7</td>
<td>3385.5</td>
<td>1004.6</td>
<td>1774.9</td>
</tr>
<tr>
<td>73000</td>
<td>1628.0</td>
<td>1167.1</td>
<td>3408.8</td>
<td>1005.6</td>
<td>1779.8</td>
</tr>
<tr>
<td>73500</td>
<td>1629.7</td>
<td>1168.4</td>
<td>3432.2</td>
<td>1006.5</td>
<td>1784.7</td>
</tr>
<tr>
<td>74000</td>
<td>1631.4</td>
<td>1169.7</td>
<td>3455.5</td>
<td>1007.5</td>
<td>1789.6</td>
</tr>
<tr>
<td>74500</td>
<td>1633.0</td>
<td>1171.0</td>
<td>3478.9</td>
<td>1008.4</td>
<td>1794.5</td>
</tr>
<tr>
<td>75000</td>
<td>1634.7</td>
<td>1172.3</td>
<td>3502.2</td>
<td>1009.4</td>
<td>1799.3</td>
</tr>
<tr>
<td>75500</td>
<td>1636.4</td>
<td>1173.6</td>
<td>3525.6</td>
<td>1010.3</td>
<td>1803.7</td>
</tr>
<tr>
<td>76000</td>
<td>1638.0</td>
<td>1174.9</td>
<td>3548.9</td>
<td>1011.3</td>
<td>1808.0</td>
</tr>
<tr>
<td>76500</td>
<td>1639.7</td>
<td>1176.2</td>
<td>3572.3</td>
<td>1012.2</td>
<td>1812.3</td>
</tr>
<tr>
<td>77000</td>
<td>1641.4</td>
<td>1177.6</td>
<td>3595.6</td>
<td>1013.2</td>
<td>1816.6</td>
</tr>
<tr>
<td>77500</td>
<td>1643.0</td>
<td>1178.9</td>
<td>3619.0</td>
<td>1014.1</td>
<td>1820.9</td>
</tr>
<tr>
<td>78000</td>
<td>1644.7</td>
<td>1180.2</td>
<td>3642.3</td>
<td>1015.1</td>
<td>1825.1</td>
</tr>
<tr>
<td>78500</td>
<td>1646.4</td>
<td>1181.5</td>
<td>3665.7</td>
<td>1016.1</td>
<td>1829.4</td>
</tr>
<tr>
<td>79000</td>
<td>1648.1</td>
<td>1182.8</td>
<td>3689.0</td>
<td>1017.0</td>
<td>1833.7</td>
</tr>
<tr>
<td>79500</td>
<td>1649.7</td>
<td>1184.1</td>
<td>3712.4</td>
<td>1018.0</td>
<td>1838.0</td>
</tr>
<tr>
<td>80000</td>
<td>1651.4</td>
<td>1185.4</td>
<td>3735.7</td>
<td>1018.9</td>
<td>1842.3</td>
</tr>
</tbody>
</table>
Benodigd volume berging (in miljoen m3) als functie van herhalingstijd T. De afkorting C_{bo} in onderstaande tabel staat voor afvoercapaciteit bovenstrooms van Borrharen, terwijl C_{be} staat voor de afvoercapaciteit benedenstrooms van het in te zetten retentiegebied.

<table>
<thead>
<tr>
<th>T</th>
<th>$C_{bo}=4.600$</th>
<th>$C_{bo}=3.800$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$C_{be}=3.800$</td>
<td>$C_{be}=3.800$</td>
</tr>
<tr>
<td>1370</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>1400</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>1500</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>1600</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1700</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>1800</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>1900</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>2000</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>2100</td>
<td>6.4</td>
<td>6.4</td>
</tr>
<tr>
<td>2200</td>
<td>7.6</td>
<td>7.6</td>
</tr>
<tr>
<td>2300</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>2400</td>
<td>9.9</td>
<td>9.9</td>
</tr>
<tr>
<td>2500</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>2600</td>
<td>12.4</td>
<td>12.4</td>
</tr>
<tr>
<td>2700</td>
<td>13.6</td>
<td>13.6</td>
</tr>
<tr>
<td>2800</td>
<td>14.9</td>
<td>14.9</td>
</tr>
<tr>
<td>2900</td>
<td>16.1</td>
<td>16.1</td>
</tr>
<tr>
<td>3000</td>
<td>17.4</td>
<td>17.4</td>
</tr>
<tr>
<td>3100</td>
<td>18.6</td>
<td>18.6</td>
</tr>
<tr>
<td>3200</td>
<td>19.9</td>
<td>19.9</td>
</tr>
<tr>
<td>3300</td>
<td>21.1</td>
<td>21.1</td>
</tr>
<tr>
<td>3400</td>
<td>22.4</td>
<td>22.4</td>
</tr>
<tr>
<td>3500</td>
<td>23.7</td>
<td>23.7</td>
</tr>
<tr>
<td>3600</td>
<td>24.9</td>
<td>24.9</td>
</tr>
<tr>
<td>3700</td>
<td>26.1</td>
<td>26.1</td>
</tr>
<tr>
<td>3800</td>
<td>27.4</td>
<td>27.4</td>
</tr>
<tr>
<td>3900</td>
<td>28.6</td>
<td>28.6</td>
</tr>
<tr>
<td>4000</td>
<td>29.8</td>
<td>29.8</td>
</tr>
<tr>
<td>4100</td>
<td>31.0</td>
<td>31.0</td>
</tr>
<tr>
<td>4200</td>
<td>32.2</td>
<td>32.2</td>
</tr>
<tr>
<td>4300</td>
<td>33.4</td>
<td>33.4</td>
</tr>
<tr>
<td>4400</td>
<td>34.6</td>
<td>34.6</td>
</tr>
<tr>
<td>4500</td>
<td>35.8</td>
<td>35.8</td>
</tr>
<tr>
<td>4600</td>
<td>37.0</td>
<td>37.0</td>
</tr>
<tr>
<td>4700</td>
<td>38.1</td>
<td>38.2</td>
</tr>
<tr>
<td>4800</td>
<td>39.3</td>
<td>39.3</td>
</tr>
<tr>
<td>4900</td>
<td>40.5</td>
<td>40.5</td>
</tr>
<tr>
<td>5000</td>
<td>41.6</td>
<td>41.6</td>
</tr>
<tr>
<td>5100</td>
<td>42.7</td>
<td>42.7</td>
</tr>
<tr>
<td>5200</td>
<td>43.8</td>
<td>43.8</td>
</tr>
<tr>
<td>5300</td>
<td>44.9</td>
<td>44.9</td>
</tr>
<tr>
<td>5400</td>
<td>46.0</td>
<td>46.0</td>
</tr>
<tr>
<td>5500</td>
<td>47.1</td>
<td>47.1</td>
</tr>
<tr>
<td>5600</td>
<td>48.2</td>
<td>48.3</td>
</tr>
<tr>
<td>T</td>
<td>$C_{bo}=4.600$</td>
<td>$C_{bo}=\infty$</td>
</tr>
<tr>
<td>----</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>5700</td>
<td>49.3</td>
<td>49.4</td>
</tr>
<tr>
<td>5800</td>
<td>50.4</td>
<td>50.5</td>
</tr>
<tr>
<td>5900</td>
<td>51.4</td>
<td>51.5</td>
</tr>
<tr>
<td>6000</td>
<td>52.5</td>
<td>52.5</td>
</tr>
<tr>
<td>6100</td>
<td>53.5</td>
<td>53.6</td>
</tr>
<tr>
<td>6200</td>
<td>54.5</td>
<td>54.6</td>
</tr>
<tr>
<td>6300</td>
<td>55.6</td>
<td>55.7</td>
</tr>
<tr>
<td>6400</td>
<td>56.6</td>
<td>56.7</td>
</tr>
<tr>
<td>6500</td>
<td>57.6</td>
<td>57.7</td>
</tr>
<tr>
<td>6600</td>
<td>58.7</td>
<td>58.8</td>
</tr>
<tr>
<td>6700</td>
<td>59.7</td>
<td>59.8</td>
</tr>
<tr>
<td>6800</td>
<td>60.6</td>
<td>60.8</td>
</tr>
<tr>
<td>6900</td>
<td>61.6</td>
<td>61.7</td>
</tr>
<tr>
<td>7000</td>
<td>62.5</td>
<td>62.6</td>
</tr>
<tr>
<td>7100</td>
<td>63.4</td>
<td>63.6</td>
</tr>
<tr>
<td>7200</td>
<td>64.3</td>
<td>64.5</td>
</tr>
<tr>
<td>7300</td>
<td>65.2</td>
<td>65.5</td>
</tr>
<tr>
<td>7400</td>
<td>66.1</td>
<td>66.4</td>
</tr>
<tr>
<td>7500</td>
<td>67.0</td>
<td>67.3</td>
</tr>
<tr>
<td>7600</td>
<td>68.0</td>
<td>68.3</td>
</tr>
<tr>
<td>7700</td>
<td>68.9</td>
<td>69.2</td>
</tr>
<tr>
<td>7800</td>
<td>69.8</td>
<td>70.1</td>
</tr>
<tr>
<td>7900</td>
<td>70.7</td>
<td>71.1</td>
</tr>
<tr>
<td>8000</td>
<td>71.6</td>
<td>72.0</td>
</tr>
<tr>
<td>8100</td>
<td>72.5</td>
<td>72.9</td>
</tr>
<tr>
<td>8200</td>
<td>73.4</td>
<td>73.9</td>
</tr>
<tr>
<td>8300</td>
<td>74.3</td>
<td>74.8</td>
</tr>
<tr>
<td>8400</td>
<td>75.3</td>
<td>75.7</td>
</tr>
<tr>
<td>8500</td>
<td>76.2</td>
<td>76.7</td>
</tr>
<tr>
<td>8600</td>
<td>77.1</td>
<td>77.6</td>
</tr>
<tr>
<td>8700</td>
<td>78.0</td>
<td>78.6</td>
</tr>
<tr>
<td>8800</td>
<td>78.9</td>
<td>79.5</td>
</tr>
<tr>
<td>8900</td>
<td>79.8</td>
<td>80.4</td>
</tr>
<tr>
<td>9000</td>
<td>80.6</td>
<td>81.2</td>
</tr>
<tr>
<td>9100</td>
<td>81.4</td>
<td>82.0</td>
</tr>
<tr>
<td>9200</td>
<td>82.2</td>
<td>82.8</td>
</tr>
<tr>
<td>9300</td>
<td>82.9</td>
<td>83.6</td>
</tr>
<tr>
<td>9400</td>
<td>83.7</td>
<td>84.4</td>
</tr>
<tr>
<td>9500</td>
<td>84.5</td>
<td>85.2</td>
</tr>
<tr>
<td>9600</td>
<td>85.2</td>
<td>86.0</td>
</tr>
<tr>
<td>9700</td>
<td>86.0</td>
<td>86.9</td>
</tr>
<tr>
<td>9800</td>
<td>86.8</td>
<td>87.7</td>
</tr>
<tr>
<td>9900</td>
<td>87.5</td>
<td>88.5</td>
</tr>
<tr>
<td>10000</td>
<td>88.3</td>
<td>89.3</td>
</tr>
<tr>
<td>10100</td>
<td>89.1</td>
<td>90.1</td>
</tr>
<tr>
<td>10200</td>
<td>89.8</td>
<td>90.9</td>
</tr>
<tr>
<td>10300</td>
<td>90.6</td>
<td>91.7</td>
</tr>
<tr>
<td>10400</td>
<td>91.4</td>
<td>92.5</td>
</tr>
<tr>
<td>10500</td>
<td>92.2</td>
<td>93.3</td>
</tr>
<tr>
<td>10600</td>
<td>92.9</td>
<td>94.2</td>
</tr>
<tr>
<td>T</td>
<td>Cbo=4.600 Cbe = 3.800</td>
<td>Cbo=oneindig Cbe = 3.800</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>11100</td>
<td>96.8</td>
<td>98.2</td>
</tr>
<tr>
<td>11600</td>
<td>100.5</td>
<td>101.9</td>
</tr>
<tr>
<td>12100</td>
<td>103.6</td>
<td>105.4</td>
</tr>
<tr>
<td>12600</td>
<td>106.8</td>
<td>108.9</td>
</tr>
<tr>
<td>13100</td>
<td>109.9</td>
<td>112.3</td>
</tr>
<tr>
<td>13600</td>
<td>113.0</td>
<td>115.8</td>
</tr>
<tr>
<td>14100</td>
<td>116.1</td>
<td>119.3</td>
</tr>
<tr>
<td>14600</td>
<td>119.3</td>
<td>122.7</td>
</tr>
<tr>
<td>15100</td>
<td>122.4</td>
<td>126.0</td>
</tr>
<tr>
<td>15600</td>
<td>125.4</td>
<td>128.9</td>
</tr>
<tr>
<td>16100</td>
<td>127.9</td>
<td>131.8</td>
</tr>
<tr>
<td>16600</td>
<td>130.4</td>
<td>134.7</td>
</tr>
<tr>
<td>17100</td>
<td>132.9</td>
<td>137.7</td>
</tr>
<tr>
<td>17600</td>
<td>135.3</td>
<td>140.6</td>
</tr>
<tr>
<td>18100</td>
<td>137.8</td>
<td>143.5</td>
</tr>
<tr>
<td>18600</td>
<td>140.3</td>
<td>146.4</td>
</tr>
<tr>
<td>19100</td>
<td>142.8</td>
<td>149.3</td>
</tr>
<tr>
<td>19600</td>
<td>145.3</td>
<td>151.8</td>
</tr>
<tr>
<td>20100</td>
<td>147.7</td>
<td>154.0</td>
</tr>
<tr>
<td>20600</td>
<td>150.2</td>
<td>156.3</td>
</tr>
<tr>
<td>21100</td>
<td>151.9</td>
<td>158.6</td>
</tr>
<tr>
<td>21600</td>
<td>153.6</td>
<td>160.9</td>
</tr>
<tr>
<td>22100</td>
<td>155.3</td>
<td>163.2</td>
</tr>
<tr>
<td>22600</td>
<td>157.1</td>
<td>165.4</td>
</tr>
<tr>
<td>23100</td>
<td>158.8</td>
<td>167.7</td>
</tr>
<tr>
<td>23600</td>
<td>160.5</td>
<td>170.0</td>
</tr>
<tr>
<td>24100</td>
<td>162.3</td>
<td>172.3</td>
</tr>
<tr>
<td>24600</td>
<td>164.0</td>
<td>174.5</td>
</tr>
<tr>
<td>25100</td>
<td>165.7</td>
<td>176.8</td>
</tr>
<tr>
<td>25600</td>
<td>167.4</td>
<td>179.1</td>
</tr>
<tr>
<td>26100</td>
<td>169.2</td>
<td>181.4</td>
</tr>
<tr>
<td>26600</td>
<td>170.9</td>
<td>183.7</td>
</tr>
<tr>
<td>27100</td>
<td>172.6</td>
<td>185.9</td>
</tr>
<tr>
<td>27600</td>
<td>174.4</td>
<td>188.2</td>
</tr>
<tr>
<td>28100</td>
<td>176.1</td>
<td>190.5</td>
</tr>
<tr>
<td>28600</td>
<td>177.8</td>
<td>192.8</td>
</tr>
<tr>
<td>29100</td>
<td>179.5</td>
<td>195.1</td>
</tr>
<tr>
<td>29600</td>
<td>181.3</td>
<td>197.3</td>
</tr>
<tr>
<td>30100</td>
<td>183.0</td>
<td>199.6</td>
</tr>
<tr>
<td>30600</td>
<td>184.7</td>
<td>201.4</td>
</tr>
<tr>
<td>31100</td>
<td>186.5</td>
<td>203.1</td>
</tr>
<tr>
<td>31600</td>
<td>188.2</td>
<td>204.7</td>
</tr>
<tr>
<td>32100</td>
<td>189.9</td>
<td>206.4</td>
</tr>
<tr>
<td>32600</td>
<td>191.7</td>
<td>208.1</td>
</tr>
<tr>
<td>33100</td>
<td>193.4</td>
<td>209.7</td>
</tr>
<tr>
<td>33600</td>
<td>195.1</td>
<td>211.4</td>
</tr>
<tr>
<td>34100</td>
<td>196.8</td>
<td>213.1</td>
</tr>
<tr>
<td>34600</td>
<td>198.6</td>
<td>214.8</td>
</tr>
<tr>
<td>35100</td>
<td>200.2</td>
<td>216.4</td>
</tr>
<tr>
<td>35600</td>
<td>201.3</td>
<td>218.1</td>
</tr>
<tr>
<td>T</td>
<td>$Cbo=4.600$</td>
<td>$Cbo=oneindig$</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>$Cbe=3.800$</td>
<td>$Cbe=3.800$</td>
</tr>
<tr>
<td>36100</td>
<td>202.4</td>
<td>219.8</td>
</tr>
<tr>
<td>36600</td>
<td>203.4</td>
<td>221.5</td>
</tr>
<tr>
<td>37100</td>
<td>204.5</td>
<td>223.1</td>
</tr>
<tr>
<td>37600</td>
<td>205.6</td>
<td>224.8</td>
</tr>
<tr>
<td>38100</td>
<td>206.7</td>
<td>226.5</td>
</tr>
<tr>
<td>38600</td>
<td>207.8</td>
<td>228.1</td>
</tr>
<tr>
<td>39100</td>
<td>208.8</td>
<td>229.8</td>
</tr>
<tr>
<td>39600</td>
<td>209.9</td>
<td>231.5</td>
</tr>
<tr>
<td>40100</td>
<td>211.0</td>
<td>233.2</td>
</tr>
<tr>
<td>40600</td>
<td>212.1</td>
<td>234.8</td>
</tr>
<tr>
<td>41100</td>
<td>213.2</td>
<td>236.5</td>
</tr>
<tr>
<td>41600</td>
<td>214.3</td>
<td>238.2</td>
</tr>
<tr>
<td>42100</td>
<td>215.3</td>
<td>239.9</td>
</tr>
<tr>
<td>42600</td>
<td>216.4</td>
<td>241.5</td>
</tr>
<tr>
<td>43100</td>
<td>217.5</td>
<td>243.2</td>
</tr>
<tr>
<td>43600</td>
<td>218.6</td>
<td>244.9</td>
</tr>
<tr>
<td>44100</td>
<td>219.7</td>
<td>246.5</td>
</tr>
<tr>
<td>44600</td>
<td>220.8</td>
<td>248.2</td>
</tr>
<tr>
<td>45100</td>
<td>221.8</td>
<td>249.9</td>
</tr>
</tbody>
</table>
BIJLAGE J: BEPERKINGEN BIJ LOKATIEKEUZE VOOR NOG’S

In deze bijlage worden de randvoorwaarden voor de lokaties voor NOG’s gegeven (paragraaf J.1). Een mogelijke lokatie voor een NOG zal hier aan moeten voldoen. Daarna zullen de uitgangspunten aan de orde komen (paragraaf J.2). Deze uitgangspunten bepalen de geschiktheid van een mogelijke lokatie. Hoe beter een lokatie voldoet aan de uitgangspunten, des te geschikter de lokatie is om te dienen als NOG. Bij een beslissing tussen de verschillende lokaties kunnen de belangrijker geachte uitgangspunten zwaarder meegenomen worden. Bij de randvoorwaarden zijn aannames gedaan om met de onzekerheden en de onbekende gegevens toch te kunnen bepalen wat de geschikte lokaties voor NOG’s zijn. Deze aannames zijn in paragraaf J.3 gesommeerd.

J.1 Randvoorwaarden

Om de gevolgen van overstromen voor gebieden te kunnen beperken moeten de lokaties van de NOG’s aan een aantal randvoorwaarden voldoen. Deze randvoorwaarden bestaan alleen uit technische randvoorwaarden die afgeleid zijn van de doelstelling, functie en informatie uit hoofdstuk 2.

1. De NOG’s moeten effectief zijn voor het gehele gebied waar de gevolgen van overstromen beperkt moeten worden.
2. De lokatie moet voldoende bergingscapaciteit (gewenste bergingscapaciteit) hebben.
3. Het water in de rivier moet onder vrije verval de lokatie kunnen bereiken.

De randvoorwaarden zullen hieronder nader toegelicht worden.

J.1.1 Effectiviteit

Het waterstandverlagend effect van een NOG is in principe stroomafwaarts van het NOG tot aan de monding van de rivier aanwezig. Door het NOG op een zo stroomopwaarts gelegen gebied aan te leggen kan een zo groot mogelijk gebied stroomafwaarts van het waterstandverlagend effect profiteren.

Tabel J.1: Maatregelen om de invloed van de (omgevings)factoren op de effectiviteit van een NOG uit te sluiten.

<table>
<thead>
<tr>
<th>(omgevings)factoren die de effectiviteit verminderen</th>
<th>vermindereffectiviteit door</th>
<th>maatregel om effectiviteit te behouden</th>
</tr>
</thead>
<tbody>
<tr>
<td>in de invloedsfeer van de zee of grote oppervlakte open water</td>
<td>opstuwen van water door storm of door gesloten stormvloedkering</td>
<td>• geen maatregelen, omdat de kans op gelijktijdig optreden van een bovenmaatgevende afvoer en storm is zeer klein • afleiden van het opgestuwde water naar andere grote water(bergings)systemen</td>
</tr>
<tr>
<td>Zijrivier</td>
<td>afvoertop van zijrivier valt samen met de afgetopte afvoertop</td>
<td>• situeren van NOG stroomafwaarts van de zijrivier • berging van de afvoertop van de zijrivier</td>
</tr>
<tr>
<td>splitspunt in de rivier</td>
<td>onzekerheid afvoerdeling</td>
<td>• NOG stroomopwaarts van splitspunt realiseren • NOG dichtbij de splitspunt realiseren bij ligging langs één van de riviertakken • aanleg van een afvoerregeelsysteem</td>
</tr>
</tbody>
</table>
De invloed van de lokatie van het NOG op de effectiviteit is al in paragraaf 2.3 aan de orde gekomen (zie tabel J.1). Moet een NOG ook effectief zijn voor deze gebieden waar de effectiviteit beïnvloed wordt door (omgevings)factoren, dan zal het NOG op een strategische lokatie gesitueerd moeten worden of maatregelen genomen worden.

J.1.2 Gewenste bergingscapaciteit

In paragraaf 3.2 en bijlage H is uiteengezet hoe het benodigde bergingscapaciteit moet worden bepaald. In subparagraaf 3.3.1 is uitgelegd hoe met de benodigde bergingscapaciteit de gewenste bergingscapaciteit kan worden uitgerekend. Er wordt ook naar deze subparagrafen verwezen voor meer informatie en de aannames die gebruikt worden bij het bepalen van de gewenste bergingscapaciteit.

J.1.3 Inlaten van water

De grote hoeveelheden water die in een korte tijd geborgen moeten worden, vereist een grote inlaatdebiet naar het gebied toe. Een groot inlaatdebiet is eenvoudig te verkrijgen door het water onder verval in te laten in het NOG. Er hoeft geen energie worden toegevoegd en pompen of gemalen zijn niet nodig, wat zorgt voor een hoge betrouwbaarheid. Buiten dit, levert het gebruik van pompen of gemalen niet genoeg capaciteit (of een flink aantal pompen of gemalen zijn nodig) om de hoeveelheden water in korte tijd het NOG in te laten. Het water uit de rivier moet dus bij bovenmaatgevende afvoer onder verval het NOG in kunnen stromen en het hele NOG kunnen bereiken, zodat de maximale bergingscapaciteit van het NOG benut kan worden.

J.2 Uitgangspunten

Technische uitgangspunten

Het eerste uitgangspunt bepaalt de geschiktheid van een gebied om in te zetten als NOG. De 4 overgebleven uitgangspunten bepalen de geschiktheid van een gebied om in te richten als NOG. Door te voldoen aan deze laatste uitgangspunten kan het NOG economischer ingericht worden.

1. **Voorspelbaarheid**
 - De hoogwatergolf moet op de locatie van het NOG zo goed mogelijk voorspelbaar zijn. De voorspelbaarheid voor een locatie kan beïnvloed worden door de plaatselijk morfologie van de rivier. Hierbij kan gedacht worden aan splitsingen en samenkomen van zijtakken en snelveranderende rivierbedding. Hoe beter de afvoer voorspeld kan worden, hoe effectiever het NOG ingezet kan worden.

2. **Verbindingafstand tussen rivier en NOG**
 - De locatie moet direct mogelijk langs de rivier gesitueerd zijn. Zodat de verbinding tussen NOG en rivier zo kort mogelijk is, en groene rivieren overbodig zijn. Dit bespaart kosten.

3. **Bestaande gebiedsafbakening**
 - Als het gebied al een bestaande of natuurlijke afbakening heeft om het water te bergen, dan heeft dat voordelen ten opzichte van nieuw te bouwen kades of dijken. Behalve de primaire waterkeringen om het gebied heen, zijn verhogingen in het landschap eveneens voordelig om flexibel met de gebiedsafbakening om te gaan.

4. **Dijkversterking bovenstrooms van NOG**
 - Bovenstrooms van een NOG is het waterstandverlagend effect niet of nauwelijks aanwezig. De dijken bovenstrooms van een NOG moeten versterkt worden om de bovenmaatgevende afvoer te kunnen verwerken. Hoe meer het NOG stroomopwaarts is gesitueerd, hoe minder dijken versterkt hoeven worden om de extreme afvoer te kunnen verwerken.

5. **Aanwezige of aan te passen constructies**
 - Als bepaalde componenten van NOG’s aanwezig zijn, is dat gunstig. Deze componenten hoeven niet aangelegd te worden of zullen slechts aangepast hoeven

Niet-technische uitgangpunten

De hier genoemde uitgangspunten bepalen de geschiktheid van een gebied om bij inzet als NOG de gevolgen in het gebied te minimaliseren.

6. Evacuatietijd

De beschikbare evacuatietijd moet zo lang mogelijk zijn en de benodigde evacuatietijd van het gebied moet zo kort mogelijk zijn. Hoe sneller het NOG geëvacueerd kan worden, hoe meer maatregelen getroffen kunnen worden om de gevolgen van een inundatie te beperken in een zelfde tijdsbestek. De snelheid van het evacueren hang onder meer af van de beschikbare infrastructuur in het gebied, grootte van het gebied, de bebouwingsgraad, spreiding van de bebouwing over het gebied, aantal inwoners, aanwezigen en eventueel aantal stuks vee. Ook de tijd die nodig is om maatregelen te treffen en het aantal maatregelen om de schade te beperken, speelt mee. Kan er op die locatie eerder een voorspelling gedaan worden over de afvoer, dan is er meer evacuatietijd beschikbaar.

7. Inwoners/woonkernen/bedrijvigheid/risicovolle objecten

Gebieden met veel inwoners, woonkernen, bedrijvigheid en risicovolle objecten zijn minder geschikt om te dienen als NOG. Bij risicovolle objecten moet gedacht worden aan opslag van en bedrijven met gevaarlijke stoffen, nusvoorzieningen, infrastructuur, zorginstellingen en gevangenissen. Niet alleen is de evacuatietijd langer, maar ook de gevolgen zijn groter. De wens om deze woonkernen of bedrijfsterreinen te omdijken zal groter zijn. Dit alles geeft meer kosten met zich mee dan gebieden waar maar weinig inwoners, woonkernen en bedrijvigheid zijn.

8. Gevolgen door NOG

Hoe groter de gevolgen aangericht door het NOG, des te ongunstiger het gebied om te gebruiken als NOG. Gevolgen kunnen ontstaan bij aanwijzing, inrichting en inzetten van een NOG. Behalve de gevolgen die hierboven beschreven zijn, zijn er ook gevolgen voor landschapswaarde, natuur en cultuurhistorie, recreatie en landbouw (zie tabel J.2).

Tabel J.2: De gevolgen voor de verschillende aspecten in verschillende situatie welk meegenomen kunnen worden bij de afweging.

<table>
<thead>
<tr>
<th>Aspecten</th>
<th>Gevolgen bij aanwijzing</th>
<th>Gevolgen bij inrichting</th>
<th>Gevolgen bij inzet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bewoning en bewoners</td>
<td>-</td>
<td>-</td>
<td>schade bewoning en eigendommen, psychische schade</td>
</tr>
<tr>
<td>Economie en bedrijven</td>
<td>-</td>
<td>-</td>
<td>schade eigendommen en economische schade</td>
</tr>
<tr>
<td>Infrastructuur en publieke objecten</td>
<td>-</td>
<td>aanpassen infrastructuur en publieke objecten</td>
<td>schade aan publieke objecten en infrastructuur</td>
</tr>
<tr>
<td>Risicovolle objecten</td>
<td>planologische maatregelen</td>
<td>-</td>
<td>grote schade door aanwezige risicovolle objecten</td>
</tr>
<tr>
<td>Landbouw</td>
<td>-</td>
<td>-</td>
<td>Veel ruimtegebruik, onvoorkombare schade</td>
</tr>
<tr>
<td>Recreatie</td>
<td>-</td>
<td>-</td>
<td>minimale schade</td>
</tr>
<tr>
<td>Landschapwaarde, natuur en cultuurhistorie (LNC)</td>
<td>-</td>
<td>grote veranderingen in LNC bij constructies</td>
<td>gedeeltelijk blijvende schade aan LNC</td>
</tr>
</tbody>
</table>

Bij de inrichting zijn er voornamelijk gevolgen voor de LNC-waarden door bouw van constructies als inlaatwerken, uitlaatwerken, compartimenteringdijken en versterken van dijken. Deze veranderingen zijn blijvend.

De nadruk van de gevolgen liggen vooral bij de inzet van de het NOG. De gevolgen zullen dan het grootst zijn.

J.3 Aannames

Hier worden een aantal aannames gemaakt om ondanks de onzekerheden en onbekende gegevens toch een lokatiekeuze te kunnen maken voor een NOG.

1. Het mogelijk uitdempen van het waterstandverlagend effect benedenstrooms van het NOG wordt minimaal geacht. Hier zal geen rekening mee gehouden worden bij de lokatiekeuze.
2. Voor de aannames bij het bepalen van de gewenste bergingscapaciteit worden verwezen naar de paragrafen 3.2 en 3.3.1 en bijlage H.
BIJLAGE K: GESCHIKTE LOKATIES VOOR NOG’S LANGS MAAS EN RIJN

Voor de geschikte locaties worden in eerste instantie dijkringgebieden genomen. Een dijkringgebied is omringd door primaire dijken en hoge gronden zodat deze een afgesloten gebied kunnen vormen voor waterberging. NOG’s kunnen dan het hele of een gedeelte van een dijkringgebied omvatten al naargelang de gewenste bergingscapaciteit. Ook zal gezocht worden naar locaties binnen Nederland. NOG’s die geheel in het buitenland zijn gelegen, zijn niet reëel, aangezien Nederland in principe geen zeggenschap heeft over gebieden buiten Nederland. Het is ook niet waarschijnlijk dat Duitsland of België in zal stemmen met een NOG dat dient om de gevolgen van overstromen in Nederland te beperken. Met internationale verdragen is een dergelijke drempel weg te nemen, maar in eerste instantie zal Nederland gebieden moeten vinden die zich voor een groot deel) in eigen land bevinden. Dit is ook het uitgangspunt van dit onderzoek. Voor de Maas en de Rijn zal hieronder aangegeven worden welke dijkringgebieden langs deze rivieren mogelijk zijn om als NOG’s te dienen. Daarna zal er gekozen worden welke gebieden voldoen aan de randvoorwaarden (zie bijlage J.1). Van belang zijn hierbij de gewenste bergingscapaciteit en de beschikbare bergingscapaciteit van deze gebieden.

De Maas

Om het NOG zo effectief mogelijk te laten zijn voor een zeer groot gebied benedenstrooms van het NOG, zal het zo ver mogelijk stroomopwaarts gesitueerd moeten worden. In de paragraaf 3.2 is vastgesteld dat een NOG langs de Maas, de gebieden langs de bedijkte Maas moet bedienen. Met dit gegeven, zal een NOG bovenstrooms van het bedijkte deel van de Maas het meest effectief zijn. Helaas zijn er maar weinig gebieden in het onbedijkte deel van de Maas geschikt om te gebruiken als NOG. Dit komt door de hoge gronden langs de Maas, waardoor berging van water uit de Maas vrijwel onmogelijk is. Geschikte NOG’s voor de Maas zullen dan ook gezocht moeten worden in dijkringgebieden benedenstrooms van de onbedijkte Maas, maar wel zo ver mogelijk stroomopwaarts. Het benodigde bergingsvolume voor de Maas is bepaald in subparagraaf 3.2.3. De gewenste bergingscapaciteit voor de Maas is vastgesteld in subparagraaf 3.3.1.

Kerngetallen NOG langs de Maas

<table>
<thead>
<tr>
<th>Af te toppen volume</th>
<th>90 miljoen m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benodigde bergingscapaciteit NOG (af te toppen volume + 20%)</td>
<td>108 miljoen m³</td>
</tr>
<tr>
<td>Gewenste bergingscapaciteit NOG (Benodigde bergingscapaciteit * 1,2)</td>
<td>130 miljoen m³</td>
</tr>
</tbody>
</table>

Een NOG langs de Maas moet een bergingscapaciteit hebben van 130 miljoen m³. Hieronder zullen de gebieden gepresenteerd worden die minimaal 36 miljoen m³ aan bergingscapaciteit hebben en zo ver mogelijk stroomopwaarts gelegen zijn. (Deze gebieden worden eveneens door de Commissie Noodoverloopgebieden als geschikte gebieden genoemd. De bergingscapaciteit van de gebieden zijn overgenomen uit Werkzaamheden aan het Maassysteem ten behoeve van de Commissie Noodoverloopgebieden, Udo e.a., 2002, p.V)

1. Dijkringgebied 41 “Land van Maas en Waal” (275-350 miljoen m³)
2. Dijkringgebied 36 “Land van Heusden/de Maaskant” (365-375 miljoen m³)
3. Het oostelijk gebied van het Julianakanaal bij Born (30-40 miljoen m³)

Bij de gegevens van de gebieden wordt met “Maximale bergingscapaciteit” bedoeld: de bergingscapaciteit van het gebied als alles onderwater wordt gezet met eventueel gebruik van compartimenteringsdijken. De “Effectieve bergingscapaciteit” is de bergingscapaciteit waarbij een zo positief mogelijk evenwicht bestaat tussen berging van water en de gevolgen en kosten.
Inlaatconstructies voor noodoverloopgebieden

<table>
<thead>
<tr>
<th>Dijkringgebied 41 "Land van Maas en Waal"</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Totale oppervlakte</td>
<td>29.000 ha</td>
</tr>
<tr>
<td>Maximale bergingscapaciteit</td>
<td>1.153 miljoen m³</td>
</tr>
<tr>
<td>Inundeerbare oppervlakte</td>
<td>11.500-21.500 ha</td>
</tr>
<tr>
<td>Effectieve bergingscapaciteit</td>
<td>275-350 miljoen m³</td>
</tr>
<tr>
<td>In combinatie met andere gebieden</td>
<td>Nee</td>
</tr>
<tr>
<td>Factoren die de capaciteit beïnvloeden</td>
<td>De lokatie heeft een hellend maaiveld</td>
</tr>
<tr>
<td></td>
<td>Aantal grote steden/woonkern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dijkringgebied 36 "Land van Heusden/de Maaskant"</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Totale oppervlakte</td>
<td>48.000 ha</td>
</tr>
<tr>
<td>Maximale bergingscapaciteit</td>
<td>900 miljoen m³ (geschat)</td>
</tr>
<tr>
<td>Inundeerbare oppervlakte</td>
<td>17.000-18.000 ha</td>
</tr>
<tr>
<td>Effectieve bergingscapaciteit</td>
<td>365-375 miljoen m³</td>
</tr>
<tr>
<td>In combinatie met andere gebieden</td>
<td>Nee</td>
</tr>
<tr>
<td>Factoren die de capaciteit beïnvloeden</td>
<td>De lokatie heeft een hellend maaiveld</td>
</tr>
<tr>
<td></td>
<td>Aantal grote steden/woonkern</td>
</tr>
</tbody>
</table>

Het oostelijk gebied van het Julianakanaal bij Born

Totale oppervlakte	979 ha
Maximale bergingscapaciteit	30-40 miljoen m³ (geschat)
Inundeerbare oppervlakte	979 ha
Effectieve bergingscapaciteit	41 miljoen m³
In combinatie met andere gebieden	Ja
Factoren die de capaciteit beïnvloeden	

Dijkringgebieden 41 “Land van Maas en Waal” en 36 “Land van Heusden/de Maaskant” hebben een relatief grote bergingscapaciteit. Berging van de afgetopte hoogwatergolf zal
geen problemen opleveren. Eventueel kan inzet van slechts een deel van het dijkringgebied overwogen worden. Daarnaast moet opgemerkt worden dat dijkringgebied 36 vroeger gebruikt werd als overloopgebied, namelijk de Beersche Overlaat. Het oostelijk gebied van het Julianakanaal bij Born is relatief vrij klein. Toch wordt dit genoemd omdat het de grootst mogelijke lokatie is langs de onbedijkte Maas. Het waterstandverlagend effect is over een veel grotere lengte benedenstrooms merkbaar dan in de andere gebieden. Het gebied zal in combinatie met andere gebieden ingezet moeten worden om de gewenste capaciteit te halen.

Verdere beschrijving van deze gebieden behoeft niet tot dit onderzoek. Er zijn door vele andere studies uitgevoerd waar men informatie uit kan putten. Voor de beschrijving van de gebieden wordt verwezen naar Werkzaamheden aan het Maassysteem ten behoeve van de Commissie Noodoverloopgebieden, Udo e.a., 2002.

De Rijn
Voor de Rijn zullen gebieden geselecteerd worden, die zich direct stroomafwaarts bevinden van Lobith. Dit zijn de meest stroomopwaartse gebieden voor de Rijn. Het effect van een NOG die daar gesitueerd is, zal voor het gehele benedenstroomse gebied merkbaar zijn. Het gewenste bergingsvolume voor de Rijn is eveneens bepaald in paragraaf 3.3.1.

<table>
<thead>
<tr>
<th>Kerngetallen NOG langs de Rijn</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Af te toppen volume</td>
<td>423 miljoen m3</td>
</tr>
<tr>
<td>Benodigde bergingscapaciteit NOG (af te toppen volume + 20%)</td>
<td>508 miljoen m3</td>
</tr>
<tr>
<td>Gewenste bergingscapaciteit NOG (Benodigde bergingscapaciteit * 1,2)</td>
<td>610 miljoen m3</td>
</tr>
</tbody>
</table>

Een NOG voor de Rijn moet een bergingscapaciteit hebben van 610 miljoen m3. Bij het gebruik van meerdere NOG's, zal de bergingscapaciteit minimaal 170 miljoen m3 moeten bedragen om het aantal NOG's te beperken. Dit is een derde van de totale bergingscapaciteit. De volgende dijkringgebieden komen in aanmerking om als NOG te dienen. (Ook deze gebieden worden door de Commissie Noodoverloopgebieden als geschikte gebieden genoemd. De bergingscapaciteit is overgenomen uit Werkzaamheden aan het Rijnsysteem ten behoeve van de Commissie Noodoverloopgebieden, Heynert e.a., 2002, p.5 en Bepaling van de potentiële noodoverloopgebieden, RWS e.a., 2001)

1. Dijkringgebied 42 “Ooij en Millingen” (115-130 miljoen m3, Heynert e.a. 2002)
2. Dijkringgebied 48 “Rijn en IJssel” (150-200 miljoen m3, RWS e.a., 2001)
3. Dijkringgebied 43 “Betuwe, Tieler- en Culemborgerwaarden” (4.180 miljoen m3, RWS e.a., 2001)
4. Dijkringgebied 41 “Land van Maas en Waal” (275-350 miljoen m3)

<table>
<thead>
<tr>
<th>Dijkringgebied 42 “Ooij en Millingen”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totale oppervlakte</td>
</tr>
<tr>
<td>Maximale bergingscapaciteit</td>
</tr>
<tr>
<td>Inundeerbare oppervlakte</td>
</tr>
<tr>
<td>Effectieve bergingscapaciteit</td>
</tr>
<tr>
<td>In combinatie met andere gebieden</td>
</tr>
<tr>
<td>Factoren die de capaciteit beïnvloeden</td>
</tr>
</tbody>
</table>
Dijkringgebied 48 “Rijn en IJssel”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totale oppervlakte</td>
<td>28.500 ha (Duitse deel 20.000 ha geschat)</td>
</tr>
<tr>
<td>Maximale bergingscapaciteit</td>
<td>1.361 miljoen m³ (Duitse deel 700 milj. m³ geschat)</td>
</tr>
<tr>
<td>Inundeerbare oppervlakte</td>
<td>10.000 ha geschat</td>
</tr>
<tr>
<td>Effectieve bergingscapaciteit</td>
<td>150-200 miljoen m³ (geschat voor Rijnstrangen en Duivense Broek)</td>
</tr>
<tr>
<td>In combinatie met andere gebieden</td>
<td>Ja</td>
</tr>
<tr>
<td>Factoren die de capaciteit beïnvloeden</td>
<td>Aantal grote steden/woonkernen</td>
</tr>
</tbody>
</table>

Dijkringgebied 43 “Betuwe, Tieler- en Culemborgerwaarden”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totale oppervlakte</td>
<td>63.000 ha</td>
</tr>
<tr>
<td>Maximale bergingscapaciteit</td>
<td>4.180 miljoen m³</td>
</tr>
<tr>
<td>Inundeerbare oppervlakte</td>
<td>29.000 ha Betuwe geschat</td>
</tr>
<tr>
<td>Effectieve bergingscapaciteit</td>
<td>729 miljoen m³ Betuwe geschat</td>
</tr>
<tr>
<td>In combinatie met andere gebieden</td>
<td>Nee</td>
</tr>
<tr>
<td>Factoren die de capaciteit beïnvloeden</td>
<td>De lokatie heeft een hellend maaiveld Aantal grote steden/woonkernen</td>
</tr>
</tbody>
</table>

Dijkringgebied 41 “Land van Maas en Waal”

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totale oppervlakte</td>
<td>29.000 ha</td>
</tr>
<tr>
<td>Maximale bergingscapaciteit</td>
<td>1.153 miljoen m³</td>
</tr>
<tr>
<td>Inundeerbare oppervlakte</td>
<td>11.500-21.500 ha</td>
</tr>
<tr>
<td>Effectieve bergingscapaciteit</td>
<td>275-350 miljoen m³</td>
</tr>
<tr>
<td>In combinatie met andere gebieden</td>
<td>Ja</td>
</tr>
<tr>
<td>Factoren die de capaciteit beïnvloeden</td>
<td>De lokatie heeft een hellend maaiveld Aantal grote steden/woonkern</td>
</tr>
</tbody>
</table>

Door de splitsing van de Rijntakken zijn de mogelijkheden bij de Rijn ten opzicht van de Maas veel groter. Bij de dijkringgebieden die hierboven genoemd zijn, moet dan ook het nodige worden opgemerkt.

Dijkringgebied 42 “Ooij en Millingen” ligt voor een groot gedeelte in Duitsland. De hier gestelde bergingscapaciteit heeft alleen betrekking op het Nederlandse gedeelte en is minder dan de minimaal gestelde 170 miljoen m³. De reden dat dit dijkringgebied toch is geselecteerd, is dat dit gebied direct benedenstrooms ligt van Lobith. Het effect van een

![Overzichtskaart van de dijkringgebieden langs de Rijn(takken). Bron Randvoorwaardenboek 2001.](image-url)
NOG op deze lokatie is groter dan van de grotere gebieden meer benedenstrooms. Het Duitse gedeelte van het dijkringgebied is daarnaast ook nog een aantal malen groter dan het Nederlandse gedeelte en heeft in totaal wel genoeg bergingscapaciteit (het gebied in Duitsland wordt geschat op 400 miljoen m3 en is ongeveer 3 keer zo groot als het Nederlandse deel, 10.000 ha ten opzichte van 3.400 ha). Een klein deel van dit dijkringgebied is vroeger gebruikt als overlaat.

Dijkringgebied 48 “Rijn en IJssel” ligt ook deels in Duitsland. De aangegeven bergingscapaciteit is inclusief het Duitse grondgebied. In totaal heeft deze locatie wel genoeg bergingscapaciteit. Maar het dijkringgebied moet gezien worden als twee lokaties die gescheiden worden door het hogere Montferland midden in het dijkringgebied. Het gebied boven Montferland kan alleen water bergen als dit over Duits grondgebied van de Rijn ingelaten kan worden. Dit is niet realistisch, omdat dit gebied redelijk bebouwd is. Een groene rivier die het water van de Niederrhein naar het gebied leidt, is evenmin een oplossing. Hiervoor zou langs de hele grens tussen Nederland en Duitsland een dijk moeten worden opgeworpen. Daarnaast is het uitlaten van het water een probleem, omdat het niet stroomafwaarts van de Rijn kan lozen. Er zal geloosd moeten worden via de Oude IJssel. Deze lokatie wordt dan ook verder uitgesloten om te dienen als NOG. Het gebied beneden Montferland kan wel vanuit Nederlandse bodem worden ingelaten. Maar door het lagere inlaatpunt is het niet mogelijk om het hele gebied beneden Montferland onder water te zetten. Hierdoor is de werkelijke bergingscapaciteit van het gebied een stuk kleiner (geschat op 10.000 ha en 200 miljoen m3). Dit gebied wordt Rijnstrangen en Duivense Broek genoemd. Delen van dit dijkringgebied zijn vroeger gebruikt als overlaat.

Dijkringgebied 43 “Betuwe, Tieler- en Culemborgerwaarden” is een zeer groot gebied. Inzet van het gehele gebied als NOG is uitgesloten. Een deel van het gebied is meer dan voldoende om het benodigde volume te kunnen bergen. Voor de keuze van een lokatie moet voor dit dijkringgebied alleen gekeken worden naar het meest stroomopwaartse deel. Dat is de Betuwe en dit gebied heeft een capaciteit van 729 miljoen m3.

Voor verder beschrijving van de lokaties wordt verwezen naar Werkzaamheden aan het Rijnsysteem ten behoeve van de Commissie Noodoverloopgebieden, Heynert e.a., 2002.
Inlaatconstructies voor noodoverloopgebieden
BIJLAGE L: BEPERKINGEN BIJ INRICHTING VAN NOG

In deze bijlage komen de beperkingen voor de inrichting van een NOG naar voren. Daarvoor zijn in paragraaf L.1 de randvoorwaarden bepaald, L.2 de uitgangspunten en in L.3 de aannames. In paragraaf L.4 wordt aangegeven welke principes bij het inrichten van een NOG gehanteerd kunnen worden.

L.1 Randvoorwaarden

De inrichting van NOG moet voldoen aan de hieronder opgesomde randvoorwaarden.

1. Het NOG moet voldoende bergingscapaciteit hebben.
2. Het water van de rivier moet onder vrij verval het NOG kunnen vullen.
3. Inlaat- en uitlaatconstructies moeten altijd bereikbaar zijn.
 Deze randvoorwaarde wordt gesteld om steeds op de hoogte te zijn van de situatie bij de inlaat- en uitlaatconstructie. Dit is van belang van het verloop van de inundatie en het uitlaten. Daarnaast is sturing mogelijk.
4. De inrichting mag het verloop van de evacuatie van het gebied niet bemoeilijken.

L.2 Uitgangspunten

De uitgangspunten voor het inrichten van een NOG worden opgedeeld in technische en niet-technische uitgangspunten. En worden verder onderverdeeld in groepen.

Technische uitgangspunten

Bergingscapaciteit

1. Het NOG moet zo groot mogelijk bergingscapaciteit hebben
 Met meer bergingscapaciteit dan vereist, kan het NOG voor meer afvoergolven worden ingezet. Ook geeft dit een groter zekerheid dat de afvoergolven afgetopt kunnen worden
2. Het NOG moet flexibel ingezet kunnen worden afhankelijk van de benodigde bergingscapaciteit.
 Hiermee wordt bedoeld dat een deel van het NOG wordt ingezet, dat groot genoeg is voor de af te toppen afvoergolf. Andere gebieden in het NOG blijven gespaard van de wateroverlast.
3. De capaciteit van het NOG moet flexibel aangepast kunnen worden aan de toekomstige wensen.
 Hierbij moet gedacht worden aan de mogelijkheden voor vergroting van het NOG of het verkleinen van het NOG.

Constructies

4. De hoeveelheid constructies of aan te passen constructies voor de inrichting van het NOG moet tot het minimum beperkt blijven.
 Constructies vereisen behalve investeringen, ook plaats en ruimte. Ook het feit dat de frequentie van inzet zeer gering is, dwingt tot het minimaliseren van het aantal constructies.
5. Bij de inrichting moet zo veel mogelijk gebruik worden gemaakt van bestaande constructies of de bestaande constructies moeten zoveel mogelijk worden aangepast.

Uitlaten

6. Uitlaten van het tijdelijk geborgen water moet zo veel mogelijk onder verval kunnen gebeuren en moet zo kort mogelijk duren.
7. De totale duur van het uithalen van het water moet zo kort mogelijk zijn. Hier gaat het om de totale duur van het uithalen en niet de totale duur van inundatie, omdat van de inundatie enkel de duur van het uithalen proces niet opgelegd is.

Niet-technische uitgangspunten

Economie
8. De verhouding tussen de inrichtingskosten en de gevolgen van een inundatie moet zo gunstig mogelijk zijn.

Beperken van de gevolgen bij inzet
9. De inundatiediepte is zodanig dat de schade minimaal is. Afhankelijk van onder andere de bebouwing, hoogteligging en bedrijvigheid, is er veel schade bij een lage inundatiediepte en meer schade bij een hogte inundatiediepte of juist andersom. Voor elk gebied is een karakteristieke functie tussen inundatiediepte en schade te bepalen. Afhankelijk van die functie kan de schade beperken door rekening te houden met de inundatiediepte. In paragraaf L.4 wordt hier dieper op ingegaan.
10. Evacuatie moet na de start van de inundatie nog zo lang mogelijk door kunnen gaan. Bij de inundatie staat het hele NOG niet meteen blank. Het water moet zijn weg door het NOG zoeken. Dit kan na de start van de inundatie elke uren tot wel een dag duren voor dat alles onder water staat. Daarnaast is het evacueren bij een beperkte waterhoogte toch nog mogelijk. Dit geeft allemaal extra tijd om te evacueren en om maatregelen te nemen om de gevolgen te beperken.
11. Het NOG moet na inundatie zo snel mogelijk weer in gebruik genomen kunnen worden. Hierbij moet opgemerkt worden dat dit niet betekent dat het NOG helemaal droog moet zijn. Dat er nog grote delen van het NOG blank staat, maar alle bebouwing kan weer betrokken worden, is voldoende.

Beperken van de gevolgen bij inrichting
13. De huidige infrastructuur en publieke objecten moeten zo min mogelijk aangepast worden.
15. Zo min mogelijk objecten mogen verplaatst of verwijderd worden.
16. Bestaande functies in het NOG moeten zo veel mogelijk behouden blijven. De inrichting mag de bestaande functies niet verdringen. Of de functies behouden blijven, is hier niet aan de orde en wordt besloten op maatschappelijke afweging door de politiek. Zolang de functies er nog zijn mogen deze niet verdrogen worden door de inrichting.
17. Bestaande functies in het NOG mogen niet gehinderd worden. Ook hier geldt dat de inrichting zo min mogelijk negatieve gevolgen mag hebben voor de bestaande functies. Hierbij kan gedacht worden aan uitbreidingen van woonkernen. Of uitbreidingen mogelijk zijn, is hier niet aan de orde.

L.3 Aannames

Om de NOG’s in te kunnen richten zodat ze voldoen aan de randvoorwaarden en zo veel mogelijk voldoen aan de uitgangspunten, is een aantal aannames gemaakt. Deze zijn hieronder beschreven.
1. De inlaatconstructie heeft de benodigde inlaatcapaciteit om de afvoergolf af te toppen.
Dit wordt hier aangenomen. In het ontwerp van de inlaatconstructie zal dit verwezenlijkt moeten worden.

L.4 Inrichtingsprincipes

Het inrichten van een NOG kan op heel veel verschillende manieren. Om de vele mogelijkheden en keuzes te beperken, worden hier aspecten belicht. Voor deze aspecten worden principes aangedragen die zo veel mogelijk voldoen aan de uitgangspunten. Door toepassen van deze principes wordt mogelijk een richting gegeven om tot goede alternatieven te komen.

L.4.1 Beperken van de gevolgen in het NOG

NOG's hebben een zeer kleine kans om ingezet te worden. Bij inzet van een NOG is er sprake van een calamiteit. Het is dan ook onjuist om bij de inrichting van NOG's te streven naar minimale gevolgen bij inzet. Bij calamiteiten is schade niet te voorkomen. Gezien de geringe kans van voorkomen is het treffen van inrichtingsmaatregelen om de gevolgen verder te beperken, vaak economisch niet verantwoord. Alleen inrichtingsmaatregelen die de gevolgen aanzienlijk kunnen reduceren door minimale investerende zijn wel economisch verantwoord. In andere gevallen is compenseren van de schade economisch gunstiger dan het beperken van de schade door inrichtingsmaatregelen.

Bij de inrichting gaat de voorkeur dus uit naar minimale investeringen in de constructies die de gevolgen verder moeten beperken. Bij alle inrichtingsmaatregelen om de gevolgen verder te beperken zal een afweging gemaakt moeten worden tussen de baten en de kosten.

Naast inrichtingsmaatregelen om de gevolgen te beperken, kunnen andere maatregelen eveneens de gevolgen beperken. Deze kunnen vaak doeltreffender dan niet economisch gunstiger zijn. Hierbij kan in persoonlijke sfeer gedacht worden aan het bewaren van waardevolle zaken op plaatsen waar het inundatiewater niet kan komen of deze zaken waterbestendig maken. Maatregelen nadat de beslissing om het NOG in te zetten zijn vaak economisch gunstig. De maatregel heeft direct effect. Hierbij kan gedacht worden aan het evacueren van vee of verwijderen van andere belangrijke zaken. Het tijdelijk opwerpen van een nooddijk om bebouwing is ook een mogelijkheid. Het nadeel van deze maatregelen is, dat deze tijde kosten die er niet is. Voor 5 huizen dicht bij elkaar is het opwerpen van een dijk om die huizen gezamenlijk wel mogelijk. Het opwerpen van een dijk om elk huis is al een heel stuk moeilijker.

Als laatste moet bij het beperken van de gevolgen gezegd worden, dat het misschien economisch verantwoord is om een maatregel niet te nemen, maar dat het maatschappelijk en politiek gezien de maatregel toch noodzakelijk kan zijn. Of dat zo is, kan van tevoren niet gezegd worden. Bij de inrichting van het NOG worden deze maatregelen daarom niet meegenomen. Alleen technisch vereiste en economisch verantwoorde maatregelen zullen meegenomen worden. Bij deze maatregelen zal uiteraard wel rekening gehouden worden met de maatschappelijke en politieke aanvaardbaarheid.

L.4.2 Inundatiediepte

De inundatiediepte heeft gevolgen voor de opgetreden schade. Grof gezegd zijn er twee verbanden tussen inundatiediepte en de gevolgen. In het eerste geval zal bij toenemende

Figuur L.1: Verband tussen inundatiediepte en de gevolgen. De gevolgen nemen snel toe bij lage inundatiediepte (links). De gevolgen nemen snel toe bij hoge inundatie diepte (rechts).

Beide gevallen zijn realistisch en afhankelijk van bijvoorbeeld bebouwing, hoogteligging, de genomen maatregelen, de activiteiten in het NOG. Per gebied zal bepaald moeten worden wat het verband is tussen de inundatiediepte en de gevolgen. In het eerste geval zal een hoge inundatiediepte de voorkeur hebben en in het tweede geval een lagere inundatiediepte.

L.4.3 Het toepassen van compartimentering
Compartimentering kan gebruikt worden om de in te zetten ruimte aan te passen aan de af te toppen golf. Hierdoor zullen de gevolgen in het gebied beperkt kunnen worden tot het strikt noodzakelijke. Dit kan ook gerealiseerd worden bij inzet van een combinatie van meerdere NOG’s, die afhankelijk van de af te toppen hoeveelheid water achtereenvolgens worden ingezet.

Daarnaast kan compartimentering in een gebied met een sterk bodemverhang zorgen voor meer bergingscapaciteit. In combinatie met compartimentering om de inzet af te stemmen met het te bergen water is compartimentering gunstig. Er is meer bergingscapaciteit en de gevolgen in het gebied zijn beperkt tot het noodzakelijke. Compartimentering kan de instroom ook vertragen, door het sneller stijgen van de inundatiediepte. Het verval tussen rivierwaterstand en de waterstand in het NOG wordt kleiner, met als gevolg een kleinere instroomdebiet.

Het toepassen van compartimentering heeft veel gevolgen voor de hoogte van de investeringen en de landschapswaarden. Compartimentering moet dan ook alleen worden overwogen als er veel voordelen tegenoverstaan.

L.4.4 Omdijken van gebieden
Omdijken om de gevolgen van inundatie te beperken is alleen wenselijk in geval de gevolgen sterk beperkt kunnen worden. Hier moet in het achterhoofd gehouden worden dat in geval er geen NOG’s ingezet worden, het gebied waarschijnlijk toch onder water gelopen zal zijn. Bij aanwijzen van een NOG kunnen mensen er rekening mee houden dat het gebied zou kunnen overstromen. Ook gaat de voorkeur eerder uit naar het compenseren van de materiële gevolgen, dan het investeren in beschermingsconstructies die vrijwel niet gebruikt zullen worden en het landschap ontsieren. Economische gezien is dit een betere oplossing. Of dit maatschappelijk en politiek ook haalbaar is, is onbekend (zie L.4.1).

L.4.5 Eén inlaatconstructie of meerdere inlaatconstructies
De voorkeur gaat zeker uit naar één grote inlaatconstructie in plaats van meerdere kleinere inlaatconstructies. Eén grote inlaatconstructie heeft dan wel het nadeel dat de instroom vrij geconcentreerd is, maar de realisatie is in het algemeen wel eenvoudiger en kostenefficiënter. Dit geldt eveneens voor het te plegen onderhoud. Bij meerdere
inlaatconstructies is het vaak wel mogelijk om een aantal inlaatconstructies te combineren met uitleatconstructies.

Bij toepassen van compartimentering is het om dezelfde reden gunstiger om één inlaatconstructie te hebben voor alle compartimenten dan voor alle compartimenten één. Een doorlaatconstructie moet dan de compartimenten verbinden. Doorlaatconstructies zijn eenvoudiger te ontwerpen en te realiseren dan inlaatconstructies aan rivieren.

Bij toepassen van twee NOG’s waarbij de keuze bestaat om de twee gebieden met elkaar te verbinden door aanleg van een groene rivier of het aanleggen van ieder aparte inlaatconstructie gaat de voorkeur, bij relatief kleine afstanden tussen de gebieden, uit naar één inlaatconstructie.

L.4.6 Plaats van de inlaatconstructie
Er zijn twee mogelijke lokaties om een inlaatconstructie te situeren. De eerste situatie is zo stroomopwaarts mogelijk van een NOG. De tweede situatie is zo stroomafwaarts van mogelijk van een NOG.

Bij een stroomafwaarts gelegen inlaatconstructie zullen meer dijken bovenstrooms van de inlaatconstructie verzwaard moeten worden, maar heeft alleen het laagste gedeelte van het NOG met een groot bodemverhang last van het water. De bergingscapaciteit kan niet vergroot worden. Ook zal de instroom naarmate het noodoverloopgebied vol raakt minder snel gaan. Een inlaatconstructie stroomafwaarts kan eventueel ook dienen als uitleatconstructie.

Bij gebieden met een minimaal bodemverhang gaat de voorkeur naar een inlaatconstructie die stroomopwaarts is gelegen.

L.4.7 Toepassen van uitleatconstructies
Uitleatconstructies zullen het water onder verhang uitleten en zullen stroomafwaarts van het noodoverloopgebied geplaatst moeten worden. Uitleatconstructies op meerdere plaatsen heeft geen nut doordat het water alleen onder verhang geloosd kan worden. Bij toepassen van compartimenten zullen meerdere uitleatconstructies gerealiseerd moeten worden, om de compartimenten afzonderlijk van elkaar te kunnen inzetten.

L.4.8 Methode van inlaten bij meerdere NOG’s
De methode van inlaten bij meerdere NOG’s heeft invloed op de te versterken waterkeringen tussen de NOG’s. Bij meerdere NOG’s, bergt iedere NOG een deel van de af te toppen watervolume. Er zijn grofweg 2 methodes om water in te laten. Kloos (2002) noemt het “peak-shaving” en “pac-man” (zie ook figuur L.2). Bij de methode “peak-shaving” scheert een NOG als het ware de top van de afvoergolf er vanaf. Een volgende NOG doet hetzelfde, zodat de afvoergolf nog lager wordt. Dit gaat zo door totdat de laatste NOG de afvoergolf tot gewenste hoogte afscheert. En in het geval van de methode “pac-man” hapt het NOG een stuk uit de afvoergolf. Het begin van de afvoergolf is dan weliswaar tot de gewenste hoogte verlaagd, maar de restende afvoergolf heeft geen verlaging ondergaan. Een volgende NOG hapt eveneens een stuk uit de afvoergolf, totdat de laatste NOG het laatste deel van de top van de afvoergolf weghapt.

De te versterken waterkeringen tussen de NOG’s is bij de methode “peak-shaving” minder dan bij “pac-man”. De maximale waterstand bij “peak-shaving” is immers verlaagd. Terwijl bij de methode “pac-man” altijd een golftop aanwezig is. Dit laatste is ongunstig voor de te versterken waterkeringen tussen de NOG’s.
Inlatconstructies voor noodoverloopgebieden

Figuur L.2: Principe van de methode “Peak-shaving” en “Pac-man” voor het inlaten van water bij meerdere NOG’s

Voordeel van de methode “pac-man” is dat er altijd een vaste volgorde is voor het inlaten van water. Een tweede NOG zal niet ingezet worden als de eerste nog niet vol is (in praktijk is dit moeilijk uit te voeren, door afnemende inlaatcapaciteit bij vollopen van het NOG). Afhankelijk van de onderlinge afstand tussen de NOG’s kan het zo zijn dat bij “peak-shaving” een stroomafwaarts gelegen NOG eerder ingezet wordt dan een bovenstroomse gelegen NOG. Dit kan voor de evacuatie van het gebied problemen geven.

In werkelijkheid zal het inlaten van water bij meerdere NOG’s een verloop hebben dat een combinatie is van beide (zie figuur L.3). Hierbij kan de vaste volgorde van inzet van de NOG’s worden gehandhaafd en is daarnaast de maximale waterstand verlaagd.

Figuur L.3: Waarschijnlijke verloop van het inlaten van water bij meerdere NOG’s
BIJLAGE M: INLAATDEBIET BIJ DE BASISALTERNATIEVEN

In deze bijlage worden de (vereenvoudigde) berekeningen voor de bepaling van het inlaatdebiet bij de verschillende inlaatconstructies gegeven. Bij een gegeven inlaatdebiet kan met deze zelfde berekeningen de benodigde afmetingen van de inlaatconstructies worden bepaald.

M.1 Aannames bij de berekeningen

- In geval van een inlaatconstructie voor een NOG waarbij het water vanuit de rivier naar het NOG stroomt, ligt de overlaat meestal niet in de stroomrichting van de hoofdstram. Een scheve aanstroming heeft invloed op de inlaatdebiet van de inlaatconstructies. De instroom is namelijk minder bij een kleinere hoek tussen de stroomrichting en de inlaatconstructies. In deze vereenvoudigde berekeningen voor de bepaling van het inlaatdebiet worden geen rekening gehouden met scheve aanstroming.
- Rivieren hebben meestal een bodemverhang. Over kleine lengtes is de bodemverhang te verwaarlozen. Maar bij grote lengtes langs de stroomrichting zal het bodemverhang ook meespelen bij een zijdelingse instroom van water het NOG in. Ook de bodemverhang zal niet meegenomen worden in de onderstaande berekeningen. Een bodemverhang in de dwarsrichting van de inlaatconstructie heeft in het algemeen een negatieve invloed op het instroomdebiet.
- Stroming van water wordt tegengewerkt door weerstand. De weerstand wordt voornamelijk veroorzaakt door bodemweerstand en wandweerstand van constructies en oever. Over korte lengtes kan de weerstand verwaarloosd worden. Maar ook hier geldt bij grote lengtes en oppervlaktes (vooral ruwe oppervlaktes) dit niet het geval is. Door aanwezigheid van begroeiing en bebouwing in de uiterwaarden van de rivier en binnendijks bij de uitstroomopening speelt weerstand zeker een negatieve rol in het bepalen van het inlaatdebiet. In de berekeningen zullen hier eveneens niet expliciet rekening mee gehouden worden.
- De vorm van de inlaatconstructies hebben ook invloed op het inlaatdebiet, zogenaamde vertraging in de stroom. Deze zullen in de berekeningen niet meegenomen worden.
- Om al deze onzekerheden op te vangen, zal een onzekerheidsfactor van 1,2 worden toegepast op de berekende inlaatdebiet.

M.2 Inlaatdebiet bij overlaat
(gedeeltelijk overgenomen uit Inleiding Waterbouwkunde, 1998)

Onder overlaat wordt verstaan, een lokale verhoging van het stroombed waarbij het water met een vrije wateroppervlakte over een lokale verhoging stroomt. Hieronder vallen de genoemde basisalternatieven 1. drempel, 2. verborgen drempel, 4. beweegbare drempel en 6. inlaatsluis (zonder borstwering) onder.

Voor de berekening van het inlaatdebiet van een overlaat wordt uitgegaan van een lange overlaat. Bij een lange overlaat zijn de stroomlijnen vrijwel recht te veronderstellen. Bij de verschillende basisalternatieven is dit een goede annname. De waterdruk is bij rechte stroomlijnen als hydrostatisch te beschouwen. Het debiet over de overlaat is verder afhankelijk of de stromingstoestand subkritisch (Fr<1) dan wel kritisch (Fr=1) is.
Inlaatconstructies voor noodoverloopgebieden

Bij de basisalternatieven die teruggeleid kunnen worden naar een overlaat zal gerekend worden met een kritische stromingstoestand. Het feit dat het ingestroomde water afloopt naar het laagst gelegen punt in het NOG en met het relatief hoge niveau van de kruin is het niet realistisch dat de waterstand in het NOG hoger zal zijn dan de kruin van de overlaat. (bij een lage kruin van de overlaat moet dit uiteraard geverifieerd worden)

Als de stromingstoestand kritisch is, is er sprake van een overlaat met volkomen afvoer. Het inlaatdebiet kan dan bepaald worden door toepassing van de wet van Bernoulli. Waarbij de benedenstroomse waterstand van de overlaat geen invloed heeft op de bovenstroomse waterstand ($Fr = \frac{U}{c} = 1$).

\[h_2 = h_{2g} = \frac{2}{3} H_2 \]
\[Fr = \frac{U_2}{\sqrt{g \cdot h_2}} = 1 \]
\[\frac{U_2^2}{2g} = \frac{1}{2} h_2 = \frac{1}{3} H_2 \]
\[q = \frac{m_1 \cdot h_1 \cdot U_2}{j} = \frac{m_1 \cdot h_1 \cdot \sqrt{\frac{2}{3} g \cdot H_2}}{j} \]
\[Q = \frac{m_1 \cdot B \cdot h_2 \cdot U_2}{j} = \frac{m_1 \cdot B \cdot h_2 \cdot \sqrt{\frac{2}{3} g \cdot H_2}}{j} = \frac{m_1 \cdot B \cdot \sqrt{\frac{8}{27} g \cdot H_2}}{j} \]

Fr=Getal van Froude
\(g \)=gravitatieversnelling
\(q \)= debiet over de overlaat per eenheid van breedte [m3/s/m]
\(Q \)= debiet over de overlaat [m3/s]
\(m_1 \)=afvoercoëfficiënt=0,9 (m<1, in verband met het verwaarlozen van de weerstand)
\(j \)= onzekerheidsfactor 1,2
\(B \)= breedte van de overlaat
\(U_2 \)=snelheid boven de kruin van de overlaat
\(h_2 \)= waterstand boven de kruin van de overlaat
\(h_{2g} \)= Grenswaterstand boven de kruin van de overlaat
\(H_2 \)= energiehoogte boven de kruin van de overlaat
Omdat de energiehoogte niet rechtstreeks gemeten kan worden, wordt de energiehoogte \((H_2)\) vervangen door \(h_1\). Deze kan wel gemeten worden. Hierdoor ontstaat een kleinere snelheid \((u_2)\). Deze onderschatting kan gecompenseerd worden door de afvoercoëfficiënt te verhogen \((m_2=1,0\text{ i.p.v. } 0,9)\). Het inlaatdebiet wordt nu dus als volgt berekend.

\[
Q = \frac{m_2 \cdot B \cdot \sqrt{\frac{8}{27} g \cdot h_1^2}}{j}
\]

\(m_2\)=afvoercoëfficiënt=1,0
\(h_1\)= waterstand voor de overlaat t.o.v. de kruin

Door twee van de drie variabelen \((Q, B, h_1)\) in te voeren is het mogelijk om de laatste variabele uit te rekenen.

M.3 Inlaatdebiet bij onderspuier
(gedeeltelijk overgenomen uit Inleiding Waterbouwkunde, 1998)

Bij een onderspuier stroomt het water onder een schuif of borstwering door. Bij de genoemde basisalternatieven valt alleen basisalternatief 6. inlaatsluis (met borstwering) hier onder.

De stroming door de onderspuier kan verdeeld worden in vrije uitstroming en een verdronken uitstroming.

Vrije uitstroom

\[
Q = \frac{B \cdot \mu \cdot a \cdot \sqrt{2g(H_1 - \mu \cdot a)}}{j}
\]

\(\mu\)= verticale contractiecoëfficiënt van de onderschietende straal
\(a\)= hoogte van de doorstroomopening

De vertikale contractiecoëfficiënt is in de praktijk moeilijk te bepalen en erg afhankelijk van de vorming van de instroomopening. Daarnaast is de energiehoogte \((H_1)\) moeilijk te bepalen. In plaats hiervan wordt de energiehoogte vervangen door de waterstand ten opzichte van de bodenniveau van de onderspuier, gemeten voor de onderspuier. Om de effecten van de contractiecoëfficiënt en de vervangen van de energiehoogte te verwerken wordt een afvoercoëfficiënt ingevoerd.
Inlaatconstructies voor noodoverloopgebieden

\[Q = \frac{B \cdot m_s \cdot a \cdot \sqrt{2g(h_1 - a)}}{j} \]

\(m_s = \) afvoercoëfficiënt voor onderspuier in vrije uitstoming (≈0,8)

Verdronken uitstroom

Het vloerniveau van een onderspuier is meestal veel lager dan bij een overlaat. Hierdoor kan na verloop van tijd de vrije instroom van water worden beperkt door de stijgende waterstand in het uitstromend gebied. Er is dan sprake van een verdronken uitstroom.

\[Q = \frac{B \cdot \mu \cdot a \cdot \sqrt{2g(H_1 - h_2)}}{j} \]

Ook hier zal door middel van het introduceren van een afvoercoëfficiënt de effecten van de vertikale contractiecoëfficiënt en de vervanging van de energiehoogte worden verwerkt. Daarnaast zal in plaats van het berekenen van het verval aan de hand van de waterstand ter plaatse van de uitstroomopening, het verval worden berekend met de waterstand in het uitstromend gebied. Het effect op het instroomdebiet is klein, maar praktisch gezien beter uitvoerbaar.

\[Q = \frac{B \cdot m_s \cdot a \cdot \sqrt{2g(h_1 - h_2)}}{j} \]

\(m_s = \) afvoercoëfficiënt voor onderspuier in verdronken uitstoming (≈0,8)

M.4 Inlaatdebiet bij hevel (Gedeeltelijk overgenomen uit Vloeistofmechanica)

Een hevel is een gesloten leiding waar water onder natuurlijk verval kan stromen van een gebied met een vrije wateroppervlak naar een gebied met een lagere piezometrisch niveau.
Hierbij ligt de leiding plaatselijk boven het niveau van het hooggelegen wateroppervlak. Hier is de waterdruk in de leiding lager dan de atmosferische druk. Als de som van de minimale waterdruk en de atmosferische druk lager zijn dan de dampdruk, dan kunnen waterdampbellen ontstaan in het water (zogenaamd cavitatie). Aan de hand van de onderstaand berekening kan aangetoond worden dat dit bij hevels over dijken niet van toepassing zal zijn.

\[P_{atm} \text{ (Atmosferische druk)} \approx 1000 \text{ hPa} = 100.000 \text{ Pa} \]

\[P_{atm,\text{min}} = 950 \text{ hPa} = 95.000 \text{ Pa} \] Aanname van de minimale luchtdruk in Nederland (laagste ooit gemeten 954,2 hPa, 27 november 1983 in Eelde, bron KNMI). De kans hierop is vrij klein, maar gezien het feit dat lage druk vaak gepaard gaat met regen, wel realistisch.

\[P_{damp, \text{water}} = 17,1 \text{ hPa} \text{ (bij een temperatuur van 15 graden)} \]

De maximale onderdruk in de hevel mag dan zijn.

\[P_{\text{min in hevel}} = P_{damp} - P_{atm,\text{min}} = 17,1 \text{ hPa} - 950 \text{ hPa} = -932,9 \text{ hPa} \]

De drukhoogte is dan

\[\frac{P_{\text{min}}}{\rho g} = \frac{-932,9 \text{ hPa}}{1.000 \text{ kg/m}^3 \cdot 9,81 \text{ m/s}^2} = 9,5 \text{ m} \]

De hevel mag dus maximaal 9,5 m boven het water niveau gelegen zijn. Dit is voor hevels die over de dijk liggen meer dan genoeg.

Bij een constant doorstroomprofiel van de hevel is het piezometrisch niveau in de hevel overal constant. Het inlaatdebiet van de hevel is dan te berekenen door de vergelijking van Torricelli (1643)

\[U = \sqrt{2g(h_0 - h_1)} \]

\[Q = A_{hevel} \sqrt{2g(h_0 - h_1)} \]

\[U=\text{snelheid in de hevel} \]
\[Q=\text{inlaatdebiet van de hevel} \]
\[g=\text{gravitatieversnelling} \]
\[j=\text{onzekerheidsfactor 1,2} \]
\[h_0=\text{waterstand aan de instroomzijde} \]
\[h_1=\text{waterstand aan de uitstroomzijde} \]
\[A_{hevel}=\text{oppervlakte doorsnede van de hevel} \]

Bij verschillende inlaatdoorsnede van de hevel is het inlaatdebiet bepaald. Hierbij wordt uitgegaan van een rond dwarsprofiel. Daarnaast wordt het verval zo groot mogelijk genomen. In werkelijkheid zal de waterstand in de uitstroomzijde hoger worden naar mate het water in het gebied stroomt. De berekeningen dienen alleen om te zien in welke grootte het inlaatdebiet van een hevel gedacht moet worden.

M.5 Inlaatdebiet bij duiker (Gedeeltelijk overgenomen uit Vloeistofmechanica)

Bij een duiker stroomt het water door een koker onder verval. Het inlaatdebiet kan berekend worden met de vergelijking van Torricelli.
Inlaatconstructies voor noodoverloopgebieden

\[U = \frac{m \sqrt{2g(h_1 - h_2)}}{j} \]

\[q = U \cdot d = \frac{m \sqrt{2g(h_1 - h_2)}}{j} \cdot d \]

\[Q = q \cdot B = \frac{m \cdot B \sqrt{2g(h_1 - h_2)}}{j} \cdot d \]

U = snelheid in de duiker
q = inlaatdebiet per eenheid van breedte
Q = inlaatdebiet van de duiker
g = gravitatieversnelling
j = onzekerheidsfactor 1,2
B = breedte van de duiker
d = doorstroomhoogte van de duiker
h_1 = waterstand aan de instroomzijde
h_2 = waterstand aan de uitstroomzijde
m = afvoercoëfficiënt ≈0,8 (kokerwandweerstand)
BIJLAGE N: DOORSNEDE WAALDIJK BIJ HMP 16,00 / KM-RAAI 870
Bijlage N: Doorsnede Waadhijk bij hmp 16,00 / km-raal 870
O.1 Inleiding

Met een zijdelingse overlaat wordt bedoeld dat het water zijdelings van de hoofdstroom over de overlaat stroomt. Het maakt hierbij niet uit of de overlaat een rechte aanstroming heeft of parallel aan de hoofdstroom is gelegen. In beide gevallen is sprake van een zijdelingse overlaat. Het water stromt immers zijdelings van de hoofdstroom over de overlaat. Uiteraard heeft een rechte aanstroming een gunstig effect op het inlaatdebiet. Hier wordt later nog op terug gekomen.

Voor het berekenen van het inlaatdebiet bij een zijdelingse overlaat wordt alleen gebruik gemaakt van analytische berekeningen. Analytisch berekenen van het inlaatdebiet heeft vele beperkingen. Zo kan alleen een zeer vereenvoudigde weergaven van de werkelijkheid worden berekend en is de nauwkeurigheid van de analytische berekeningen beperkt. Numerieke berekeningen kunnen het inlaatdebiet veel nauwkeuriger berekenen en de werkelijkheid kan beter benaderd worden. Grootste nadeel voor het gebruiken van numerieke berekeningen is dat veel gegevens nodig zijn om de berekeningen uit te voeren. Bij het numeriek berekenen van het inlaatdebiet zijn dit voornamelijk de geometrie van de rivier en de overlaat. Bij het ontwerpen van de inlaatconstructie zijn degelijke gedetailleerde gegevens over de geometrie niet voor handen. Ook is het precies berekenen niet nodig, het betreft hier slechts de eerste berekeningen om het ontwerpen van een inlaatconstructie mogelijk te maken. Zeker niet als de beschikbare gegevens ook een mate van onzekerheid hebben. Voor het berekenen van het inlaatdebiet bij een zijdelingse overlaat zal daarom gebruik worden gemaakt van analytische berekeningen.

O.2 Aannames bij de berekeningen

De bodemhelling van de hoofdstroom wordt langs de overlaat verwaarloosbaar klein verondersteld.

De bodemhelling van de Rijn is ongeveer 1×10^{-4}, dit is een helling van slechts 0,01 %. Bij een maximale breedte van een overlaat van 1000 m, is het hoogteverschil tussen de bodem aan het begin van de overlaat tot aan het einde van de overlaat slecht 0,1 m. Gezien deze zeer geringe waarden kan gesteld worden dat de bodemhelling verwaarloosbaar is.

De rivier de Rijn wordt beschouwd als een rechthoekige waterloop.

By de berekeningen wordt uitgegaan van een rechthoekige waterloop dat de Rijn moet voorstellen. De Rijn is in de werkelijkheid verre van rechthoekig. Maar door de enorme breedte ten opzichte van de hoogte van de rivier (1.000 m breed ten opzicht van 10 m hoog), kan dit wel als een goede benadering beschouwd worden. De aanwezigheid van zomerdijken/kades, bebouwing en begroeiing in de uiterwaarden worden hiermee ook verwaarloos. Deze "oneffenheden" zijn ten opzichte van de afmetingen van de rivier afzonderlijk van ondergeschikt belang (gezamenlijk kunnen de oneffenheden wel een grotere rol spelen). Vooral de kleine lengte die hier in beschouwing wordt genomen maakt deze veronderstelling mogelijk.

Er wordt geen rekening gehouden met bochten in de waterloop.

Ook hier verschilt de werkelijkheid bij de Rijn van de berekeningen. Deze aanname is voor de berekeningen acceptabel, omdat het hier slechts eerste ontwerpberekeningen betreft. Uiteraard heeft een overlaat in de buitenbocht door de hogere stroomsnelheden een positief effect op het inlaatdebit, en vice versa. Maar de eenvoudige berekeningen hier houden
Inlaatconstructies voor noodoverloopgebieden

genrekening met bochten. Bij de lokatieleuze voor de inlaatconstructie wordt hiermee wel
rekening gehouden.

De wrijving die bij de zijdelingse instroom over de overlaat aanwezig is, wordt verwaarloosd.
Ook hier kan de wrijving door de korte afstand van de overlaat worden verwaarloosd.

Er is sprake van een volkomen overlaat.
Bij de berekeningen is uitgegaan van een volkomen overlaat. Dit is bij een inlaatconstructie
voor een NOG in de Betuwe een geoorloofde aanname. De Betuwe is qua oppervlakte
relatief groot. De waterstandstijging in de Betuwe door de instroom zal zeer gering zijn.
Daarnaast heeft de Betuwe een bodemverhang. Hierdoor zal het water van de
inlaatconstructie afstromen naar het laagste punt. Het gebied direct achter de
inlaatconstructie kan geen berging bieden voor stilstaand water. Als laatste argument voor
een volkomen overlaat is dat het water van de overlaat in het gebied afstroomt. Om te
spreek van onvolkomen overlaat moet de waterstand in het NOG op zijn minst hoger zijn
dan de overlaat.

O.3 De effectieve breedte van de zijdelingse overlaat

De vorm van de overlaat wordt bepaald door het maximale inlaatdebiet. Als de hoogte van
de overlaat gekozen wordt, is alleen de breedte van de overlaat onbekend. De effectieve
breedte kan op 3 verschillende wijze worden berekend. Deze berekeningen berekenen in
feite het inlaatdebiet van de overlaat. Door het inlaatdebiet als gegeven te beschouwen kan
de effectieve breedte van de overlaat uit de verschillende berekeningen teruggerekend
worden.

Hieronder zal eerst worden ingegaan op het verloop van de waterspiegel vóór de zijdelingse
overlaat. Daarna zullen de 3 methodes worden voor het berekenen van de effectieve breedte
van de zijdelingse overlaat uiteen worden gezet.

Figuur O.1 Definitieschets zijdelingse overlaat

O.3.1 Verloop van de waterspiegel vóór de zijdelingse overlaat

Bovenstrooms van de zijdelingse overlaat heeft het water een bepaald debiet en een
bepaalde waterstand. Benedenstrooms van de overlaat is het debiet kleiner dan
bovenstrooms van de overlaat. De overlaat heeft immers water ingelaten. De waterstand
benedenstrooms van de overlaat is in overeenstemming met het lager debiet ook lager dan
de waterstand bovenstrooms van de overlaat. Het zou dan ook voor de hand liggen om het
verloop van de waterspiegel vóór de zijdelingse overlaat te laten afnemen van de waterstand
bovenstrooms van de overlaat naar de waterstand benedenstrooms van de overlaat. Dit is maar in een heel beperkte situaties het geval.

In Montes (1998, p.303-304) worden de mogelijke verlopen van de waterspiegel vóór de zijdelingse overlaten besproken. Gebruikmakend van de energievergelijking (Energy Equation) en impulsvvergelijking (Momentum Equation) komt men tot de volgende vergelijking bij kleine verhang in de waterloop (hierbij worden de verdelingscoëfficiënt van de Coriolis versnelling, de bodemhelling en de gradiënt van de energie verwaarloosd).

\[
\frac{dy_o}{dx} = -\frac{Q}{gA} \frac{dQ}{dx} \frac{1}{1 - Fr^2}
\]

De eerste term van de teller is altijd positief en de tweede term is door het onttrekken van water door de overlaat altijd negatief. Het verloop van de waterspiegel vóór de overlaat wordt daarom uitsluitend bepaald door het Froude-getal in de noemer. De mogelijkheden zijn in tabel O.1 weergegeven.

<table>
<thead>
<tr>
<th>Stroming in de bovenstroomse waterloop</th>
<th>Froude-getal</th>
<th>d(yo)/dx</th>
<th>opmerking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subkritisch</td>
<td>< 1</td>
<td>> 0</td>
<td>stijgend waterstandverloop</td>
</tr>
<tr>
<td>Kritisch</td>
<td>1</td>
<td></td>
<td>steil stijgend waterstandverloop, in de praktijk niet mogelijk</td>
</tr>
<tr>
<td>Superkritisch</td>
<td>> 1</td>
<td>< 0</td>
<td>dalend waterstandverloop</td>
</tr>
</tbody>
</table>

In figuur O.2 is hetzelfde visueel weergegeven. Hierin is ook te zien dat het verloop niet lineair is.

Het waterstandverloop bij subkritische stroming is als volgt te verklaren. Omdat het subkritische stroming betreft is de stroomsnelheid laag. Ter plaatse van de zijdelingse overlaat wordt water onttrokken. Hierdoor krijgt de waterloop ter plaatse van de overlaat een grotere afvoercapaciteit. Door de grotere capaciteit moet het water bovenstrooms van de overlaat sneller stromen. Dit veroorzaakt een dalende waterspiegel bovenstrooms van de overlaat (grotere afvoercapaciteit is bovenstrooms te merken). Benedenstrooms van de overlaat is de afvoercapaciteit weer beperkt. De stroomsnelheid neemt geleidelijk af (afvoercapaciteit neemt af) en het gevolg is een stijgende waterstand. Een subkritische stroming is in de praktijk het meest voorkomend geval bij een zijdelingse overlaat. Ook voor de Rijn is dit het geval. Het Froude-getal is voor de Rijn veel kleiner dan 1.

Uit de figuur is verder te zien dat een aflopende waterstandverloop alleen mogelijk is bij een superkritische stroming op een steile helling (S-type). Een aflopende waterstandverloop is te verklaren omdat de stroomsnelheid benedenstrooms van de overlaat niet afneemt. Bovenstrooms van de overlaat is ook geen waterstandsverlaging aanwezig, omdat de capaciteitsvergroting door de superkritische stroming bovenstrooms niet te merken is. Is er geen sprake van een steile helling, dan is de benedenstrooms van de overlaat sprake van een subkritische stroming. Verandering van superkritisch naar subkritisch geeft een watersprong (in plaats van geleidelijke stijging van de waterspiegel zoals bij subkritische stroming).

Zoals gezegd is het Froude-getal voor de Rijn veel kleiner dan 1. Er is dus sprake van subkritische stroming. In de verdere berekeningen en de verschillende berekeningen van het inlaatdebit zal dus gebruik worden gemaakt van het gegeven dat het waterstandverloop vóór de overlaat stijgend is van stroomopwaarts naar stroomafwaarts.
Inlaatconstructies voor noodoverloopgebieden

O.3.2 Berekening van de waterstanden
In de vorige subparagraaf is het verloop van de waterspiegel zowel vóór de zijdelingse overlaat als boven- en benedenstrooms van de overlaat bepaald. Hier zullen de berekeningen van de waterstanden worden besproken.

Waterstand ver bovenstrooms en meteen benedenstrooms van de overlaat
De waterstanden ver bovenstrooms (niet in de invloedssfeer van de overlaat) als meteen benedenstrooms van de overlaat kunnen eenvoudig berekend worden door de evenwichtsdiepte van het bovenstroomse en benedenstroomse waterloop te berekenen. De evenwichtsdiepte van een rechthoekige waterloop is als volgt te berekenen. (Diktaat rivierwaterbouwkunde, 1999)

\[h_e = \left(\frac{q^2}{C^2 i_b} \right)^{\frac{1}{3}} \]

Waterstandverloop ver bovenstrooms tot net bovenstrooms van de overlaat
De dalende waterspiegel van de evenwichtssituatie ver bovenstrooms van de overlaat tot net bovenstrooms van de overlaat kan bepaald worden met de formule van Bélanger. (Diktaat rivierwaterbouwkunde, 1999)
Formule van Bélanger

\[
\frac{dh}{dx} = i_b \frac{h^3 - h_c^3}{h^3 - h_g^3}
\]

Hierin is \(h_g \) de grensdiepte ofwel de diepte waarbij het Froude-getal één is (\(Fr = 1 \)). De grensdiepte kan als volgt berekend worden.

\[
h_g = \left(\frac{q}{g}\right)^{\frac{1}{3}}
\]

De formule van Bélanger kan bij lage Froude-getallen, de diepte (\(h \)) is dan veel groter dan de grensdiepte (\(h_g \)), benaderd worden door de volgende formule.

\[
\frac{dh}{dx} = i_b \left(1 - \frac{h_c^3}{h^3} \right)
\]

De Rijn heeft een laag getal van Froude, zodat de bovenstaande benadering gebruikt mag worden. Om betrouwbare waarden te krijgen moet de waterspiegel tegen de stroomrichting in berekend worden. Bresse heeft voor de bovenstaande benadering een oplossing gevonden, ook wel de functie van Bresse. Met de functie van Bresse kan bij een bekend punt de waterstand van een bovenstroomse punt worden berekend. De formule hiervoor is als volgt.

\[
h = h_c + (h_0 - h_c) \cdot \left(\frac{1}{2} \right)^{\frac{x-x_0}{h_{1/2}}}
\]

De waterstand (\(h_0 \)) op een bepaalde plaats (\(x_0 \)) moet bekend zijn om de waterstand bovenstrooms van \(x_0 \) te bepalen. Voor verschillende afstanden bovenstrooms van \(x_0 \) kan nu de waterstand bepaald worden. \(L_{1/2} \) kan beschouwd worden als "halveringslengte", de lengte waarbij het verschil tussen beginwaterdiepte (\(h_0 \)) en de waterdiepte (\(h \)) halveert. Deze "halveringslengte" kan met de volgende formule berekend worden.

\[
L_{1/2} = \frac{0.24h_c}{i_b} \left(\frac{h_0}{h_c} \right)^{\frac{4}{3}}
\]

Om het waterstandverloop bovenstrooms van de overlaat te kunnen berekenen moet de waterstand direct bovenstrooms van de overlaat bekend zijn. Om een betrouwbare waarde te krijgen, moet deze eveneens berekend worden vanuit een waterstand van een benedenstrooms punt. Hiervoor kan de evenwichtwaterstand benedenstrooms van de overlaat worden genomen. Door de aannemer dat de energiehoogte langs de overlaat constant is (hier wordt later nog op teruggekomen), kan de bovenstroomse waterstand worden berekend door iteratie.

De energiehoogte benedenstrooms van de overlaat is

\[
H_1 = h_b + \frac{Q_1^2}{2g \cdot A_1^2}
\]
Bij constante energiehoogte \((H = H_1 = H_0) \) is de waterstand net bovenstrooms van de overlaat

\[
h_0 = H - \frac{Q_0^2}{2gA^2} = H - \frac{Q_0^2}{2g(B_0 - h_0)^2}
\]

Waterstandverloop vóór de zijdelingse overlaat

Hiervoor is bekend dat de waterstand op het meest stroomafwaartse punt vóór de overlaat gelijk is aan de evenwichtsdiepte van het benedenstroomse waterloop. De waterstand van het meest stroomopwaartse punt vóór de overlaat is eveneens bekend door gebruik te maken van de aanname dat de energiehoogte langs de overlaat gelijk is. Het enige onbekende is het waterstandverloop tussen deze meest stroomafwaartse en -opwaartse punten vóór de overlaat. Bij verschillende methodes om het inlaatdebiet van de overlaat te berekenen, worden verschillende methodes gebruik om het waterstandverloop te benaderen. De berekening van het waterstandverloop wordt bij de verschillende methodes om het inlaatdebiet te berekenen besproken.

Figuur O.3: Definitieschets bij de verschillende methodes van de zijdelingse overlaat

O.3.3 Methode van Domínguez voor het bepalen van de effectieve breedte zijdelingse overlaat

De methode van Domínguez voor het bepalen van de effectieve breedte van de zijdelingse overlaat is in wezen een methode om het inlaatdebiet voor een zijdelingse overlaat te bepalen. Door bij het inlaatdebiet (het gewenste inlaatdebiet) als gegeven te beschouwen kan de effectieve breedte worden bepaald (Montes, 1998).

De methode van Dominguez gaat uit van een drietal aannames.

1. De energiehoogte vóór de overlaat is constant. Experimenten tonen aan dat deze aanname geoorloofd is (De Marchi in 1934, Schmidt in 1954 en Domínguez in 1958. De experimenten van Schmidt laten bij een subkritische stroming een energiehoogteverschil van minder dan 1% zien over de lengte van een overlaat).
2. De vergelijking voor het bepalen van het inlaatdebiet langs de zijdelingse overlaat heeft dezelfde vorm als de vergelijking voor het bepalen van het inlaatdebiet voor overlaat met een rechte aanstroming van de hoofdstroom.

\[
dQ_{\text{inlaat}} = m \cdot dx \sqrt{2g(y-w)^3}
\]

De inlaattoëfficiënt \((m) \) is langs de hele zijdelingse overlaat gelijk.
3. De waterspiegel vóór de overlaat kan lineair worden verondersteld, en heeft de volgende vorm:

\[
h(x) = y - w = h_0 + (h_i - h_0) \left(\frac{x}{L} \right)
\]
Waarbij L de breedte is van de zijdelingse overlaat. Zoals in figuur O.1 al te zien was, is de waterspiegel vóór de overlaat niet lineair maar licht gekromd. De waterspiegel is slecht zo licht gekromd dat deze aanname geoorloofd is.

Door nu de formule van de veronderstelde waterspiegel in te vullen in de vergelijking voor het bepalen van het inlaatdebiet wordt de volgende integraal voor het inlaatdebiet verkregen.

\[
Q_{\text{inlaat}} = m \sqrt{2gL} \int_0^L \left(h_0 + \left(h_1 - h_0 \right) \left(\frac{x}{L} \right)^2 \right) \, dx
\]

Oplossen van deze integraal geeft voor het inlaatdebiet.

\[
Q_{\text{inlaat}} = \frac{2}{5} m \sqrt{2gL} \frac{h_1^{5/2} - h_0^{5/2}}{h_1 - h_0}
\]

Wijkt deze formule voor het inlaatdebiet omgezet in dezelfde vorm als het inlaatdebiet voor een "normale" overlaat (overlaat met een recht aanstromende hoofdstroom), dan geeft dit:

\[
Q_{\text{inlaat}} = m_{\text{Dominguez}} \cdot m \sqrt{2gL} \cdot h_1^{3/2}
\]

De methode van Domínguez geeft dus dezelfde formule voor het bepalen van het inlaatdebit voor een "normale" overlaat, dat wordt vermenigvuldigd met een factor voor de stijgende waterspiegel vóór de overlaat.

\[
m_{\text{Dominguez}} = \frac{2}{5} \left(\frac{h_0}{h_1} \right)^{5/2} - \left(\frac{h_0}{h_1} \right) \leq 1
\]

De effectieve breedte van de zijdelingse overlaat kan voor een gewenste inlaatdebit bepaald worden met de volgende formule.

\[
L = \frac{Q_{\text{inlaat}}}{m_{\text{Dominguez}} \cdot m \sqrt{2gL} \cdot h_1^{3/2}}
\]

O.3.4 Globale methode voor het bepalen van de effectieve breedte zijdelingse overlaat

Deze methode is een combinatie tussen de methode van Domínguez en de vereenvoudigde berekening van het inlaatdebit voor een overlaat met recht aanstromende hoofdstroom (zie bijlage M). Van de aannames die bij de methode van Domínguez gelden, is alleen de twee aanname van toepassing (inlaatdebit is gelijk aan inlaatdebit bij "normale" overlaat). Voor de derde aanname wordt bij de globale methode niet uitgegaan van een lineaire waterstandverloop, maar van een constante waterstand vóór de overlaat. Het inlaatdebit van de zijdelingse overlaat is dan:
\[Q_{\text{inlaat}} = m\sqrt{2g LH_1^{1/2}} = \frac{2}{3} \sqrt[3]{m_2 \sqrt{2g LH_1^{1/2}}} \]

waarbij \(m = \frac{2}{3} \sqrt[4]{m_2} \)

De reden om de tweede schrijfwijze van het inlaatdebiet hier te noemen is het feit dat in de literatuur beide vormen van het inlaatdebiet voorkomen. Het is belangrijk om te weten met welke vorm men te maken heeft, omdat de afvoercoëfficiënt (\(m \) of \(m_2 \)) een andere waarde heeft bij beide vormen.

Het hier gegeven inlaatdebiet geeft dus een bovengrens van het inlaatdebiet voor de zijdelingse overlaat, hetgeen in sommige onderzoeken juist foutief als ondergrens wordt beschouwd.

W wordt deze formule voor het inlaatdebiet omgezet, dan geeft dat een ondergrens voor de effectieve breedte van de zijdelingse overlaat (vergelijk dit met de formule voor de effectieve breedte met de methode van Domínguez).

\[L = \frac{Q_{\text{inlaat}}}{m\sqrt{2g LH_1^{1/2}}} \]

De reden dat deze globale methode wordt besproken zal later aan de orde komen.

O.3.5 Methode van De Marchi voor het bepalen van de effectieve breedte zijdelingse overlaat

Met uitzondering van de derde aanname gelden de aannames bij de methode van Domínguez ook bij de methode van De Marchi. Het waterstandverloop wordt bij de methode van De Marchi berekend met de impulsvergelijking en energievergelijking (zie ook subparagraaf O.3.1). Hiervoor is de afvoer in de waterloop, als gevolg van de constante energiehoogte (aanname 1), gelijk aan:\n
\[Q = B y \sqrt{2g(H - y)} \]

Samen met de formule voor het inlaatdebiet over een overlaat (aanname 2) \(dQ_{\text{inlaat}} = m dx \sqrt{2g(y - w)^3} \) kan de formule voor het waterstandverloop worden ingevuld.

\[\frac{dy_0}{dx} = \frac{-\left(\frac{Q}{gA^2}\right) \frac{dQ}{dx}}{1 - Fr^2} = \frac{-\left(\frac{B y \sqrt{2g(H - y)}}{gA^2} m \sqrt{2g(y - w)^3}\right)}{1 - Fr^2} \]

Deze formule voor het waterstandverloop kan anders op geschreven worden.

\[\frac{dy}{dx} = \frac{2m}{B} (y-w) \frac{\sqrt{(H-y)(y-w)}}{3(y-2H)} \]

De Marchi heeft voor deze differentiaalvergelijking een analytische oplossing gevonden.

\[\frac{mx}{B} = \frac{2H-3w}{H-w} \sqrt{(H-y)(y-w)} - 3 \sin^{-1} \sqrt{(H-y)(y-w)} + \text{Constante} \]
De constante in de oplossing kan worden berekend als de waterstand net bovenstrooms van de overlaat bekend is. In dat geval is de afstand nul ($x = 0$).

\[
\text{Constante} = -\frac{2H - 3w}{H - w} \sqrt{(H - y)(y - w)} + 3 \sin^{-1} \sqrt{(H - y)(y - w)}
\]

Met de bekende constante kan door invullen van de waterstand benedenstrooms van de overlaat in de analytische oplossing de effectieve breedte worden berekend.

\[
x = L \\
L = \frac{B}{m} \frac{2H - 3w}{H - w} \sqrt{(H - y)(y - w)} - 3 \sin^{-1} \sqrt{(H - y)(y - w)} + \text{Constante}
\]

Deze methode geeft voor de effectieve breedte van de zijdelingse overlaat een grotere waarde dan de voorgaande methodes. Gezien het feit dat deze methode gebruikt maakt van de energievergelijking en impulsvergelijking zou geconcludeerd kunnen worden dat deze methode de werkelijkheid het beste benadert. Dit blijkt ook uit de experimenten van Hager aan de ETH in Zurich (1981), waarbij de differentiaalvergelijking vooral het inlaatdebiet heel nauwkeurig berekent.

Maar de Methode van De Marchi zoekt met de hierboven genoemde differentiaalvergelijking de afstand waarbij de waterstand gelijk is aan de waterstand benedenstrooms van de overlaat. Hiervoor wordt uitgegaan van de waterstand net bovenstrooms van de overlaat. Bij deze methode wordt dus niet direct uit de gewenste inlaatdebiet de effectieve breedte van de zijdelingse overlaat berekend. De nauwkeurigheid is dus erg afhankelijk van de nauwkeurigheid waarmee de waterstand net bovenstrooms van de overlaat is bepaald. Zoals hierboven is beschreven wordt deze waterstand bepaald met een constante energiehoogte en de waterstand benedenstrooms van de overlaat. Deze energiehoogte is in de werkelijkheid niet constant en heeft een verschil van minder dan 1 %. De waterstand net bovenstrooms van de overlaat is daarom iets groter dan berekend.

Daarnaast is de analytische oplossing zeer gevoelig (vooral bij kleine waterstandverloop). Bij slecht zeer geringe verandering van de gegevens (zoals de waterstand net bovenstrooms van de overlaat of van de energiehoogte), verandert de berekenende effectieve breedte van de overlaat drastisch. Dit wordt nog eens versterkt door het feit dat de berekening van de constante ook zeer gevoelig is. Kleine fouten werken dus twee keer door in het uiteindelijke resultaat.

Dit alles geeft een grotere waarde voor de effectieve breedte van de zijdelingse overlaat dat ook nog eens zeer gevoelig is. Deze methode geeft dus de bovengrens van de effectieve breedte van de zijdelingse overlaat.

O.3.6 Invloed van de inlaatcoëfficiënt

Uit de formules voor het bepalen van de effectieve breedte van de zijdelingse overlaat is te zien dat de inlaatcoëfficiënt direct een grote invloed heeft op het inlaatdebiet en de effectieve breedte. Is de inlaatcoëfficiënt 0,1 kleiner, dan is het inlaatdebiet eveneens een factor 0,1 kleiner en de effectieve breedte een factor 0,1 groter. Het is dus belangrijk om de inlaatcoëfficiënt goed te bepalen.

Voor het bepalen van deze inlaatcoëfficiënt voor zijdelingse overlaat wordt gebruik gemaakt van de experimenten van Uyumaz en Muslu uit 1985. Zij hebben uit zeer uitgebreide onderzoek grafieken voor de inlaatcoëfficiënt van een zijdelingse overlaat opgesteld (zie figuur O.4). De inlaatcoëfficiënt is volgens hun grafieken afhankelijk van het Froude-getal, de verhouding tussen de hoogte van de overlaat en breedte van de waterloop en de verhouding tussen de breedte van de overlaat en de breedte van de waterloop. Opgemerkt moet worden dat Uyumaz en Muslu, in plaats van een rechthoekige waterloop, een ronde waterloop.
Inlaatconstructies voor noodoverloopgebieden

hebben gebruikt voor hun experimenten. Omdat de inlaatcoëfficiënt wordt bepaald aan de hand van geometrische verhoudingen, kunnen de resultaten van het onderzoek ook voor andere geometrie van de waterloop worden gebruikt (Montes, 1998).

Definitieschets

Figuur O.4: Inlaatcoëfficiënt voor een zijdelingse overlaat bij een ronde waterloop volgens Uyumaz and Muslu (1985). p/D is de verhouding tussen de hoogte van de overlaat en de breedte van de waterloop en L/D is de verhouding tussen de breedte van de overlaat en de breedte van de waterloop.

O.3.7 Het bepalen van de effectieve breedte van een zijdelingse overlaat
Er zijn hiervoor 3 methodes gegeven om de effectieve breedte van een zijdelingse overlaat te bepalen bij een gewenste inlaatdebit. Er is al gezegd dat de globale methode een ondergrens voor de effectieve breedte geeft en de Methode van De Marchi een bovengrens vormt voor de effectieve breedte van een zijdelingse overlaat. De Methode van Domínguez geeft een resultaat dat ligt tussen de globale methode en de Methode van De Marchi. De verschillende methodes geven uiteindelijk allemaal een minimale effectieve breedte van een zijdelingse overlaat. Bij de aannames voor de berekeningen (zie paragraaf O.2) is uitgegaan van gunstige omstandigheden en situaties. De berekeningen zijn gemaakt voor de Rijn als waterloop. De praktijk, waar de berekeningen betrekking hebben, kan minder gunstig zijn als bij de aannames van de berekeningen is rekening mee gehouden. Deze onzekerheden kunnen door middel van een onzekerheidsfactor worden opgevangen. In dit rapport wordt de onzekerheidsfactor niet genomen over de berekende effectieve breedte, maar genomen over het gewenste inlaatdebit. In het Programma van Eisen is namelijk gesteld dat de inlaatcapaciteit van de inlaatconstructie een factor 1,2 groter moet zijn dan de gewenste inlaatdebit. Door de onzekerheidsfactor in rekening te brengen bij het gewenste inlaatdebit is duidelijk te zien hoe groot onzekerheden worden geacht (namelijk 20 %).
Daarnaast wordt gekozen om met de Methode van Domínguez de effectieve breedte van de zijdelingse overlaat te bepalen. Zoals hierboven is vermeld geeft de globale methode een ondergrens voor de effectieve breedte. Gebruik van de Methode van Domínguez geeft een veiliger benadering dan de globale methode. De Methode van De Marchi heeft dan wel een grote nauwkeurigheid, maar is zeer gevoelig. Deze methode kent hierdoor grote onzekerheden.

Verder moet nog opgemerkt worden dat het verschil tussen de Methode van De Marchi en de Methode van Domínguez kan oplopen tot 10 %. En het verschil tussen de Methode van Domínguez en de globale methode kan oplopen tot 5%.

De bovenstaande berekeningen voor het bepalen van de effectieve breedte van een zijdelingse overlaat en het waterspiegelverloop zijn verwerkt in een Excel-spreadsheet. Hiermee kan voor verschillende alternatieven voor inlaatconstructies, die technisch gezien een zijdelingse overlaat zijn, deze berekeningen snel uitgevoerd worden.

O.4 Het inlaatdebiet van de zijdelingse overlaat

O.4.1 Methode om het inlaatdebiet van de zijdelingse overlaat te berekenen

Uit de vorige paragraaf zijn drie methodes besproken om de effectieve breedte van een zijdelingse overlaat te bepalen bij een gewenste inlaatdebiet. In principe kan ook andersom gewerkt worden: bij een gegeven effectieve breedte van een zijdelingse overlaat en het waterspiegelverloop zijn verwerkt in een Excel-spreadsheet. Hiermee kan voor verschillende alternatieven voor inlaatconstructies, die technisch gezien een zijdelingse overlaat zijn, deze berekeningen snel uitgevoerd worden.

**Methode van De Marchi**

Berekening van het inlaatdebiet met de methode van De Marchi

Eerst moet het waterstandverloop iteratief berekend worden met de onderstaande formule.

\[x = \frac{B}{m} \left(\frac{2H - 3w}{H - w} \right) \sqrt{(H - y)(y - w)} - 3 \sin^{-1} \left(\frac{H - y}{y - w} \right) + \text{constante} \]

Daarna kan het inlaatdebiet berekend worden met de volgende formule.

\[Q_{\text{inlaat}} = \int_{0}^{l} m \sqrt{2g(y - w)^{3}} \, dx \]

Zo is de Methode van De Marchi niet geschikt om snel analytisch het inlaatdebiet te berekenen. De Methode van De Marchi gaat uit van de energievergelijking of impulsvergelijking. Dit geeft een differentiaalvergelijking om het waterstandverloop te kunnen uitrekenen. Met het berekende waterstandverloop kan vervolgens het inlaatdebiet van de overlaat bepaald worden.

Voor het bepalen van de breedte van de zijdelingse overlaat heeft De Marchi een analytische oplossing voor de differentiaalvergelijking gevonden. Voor het bepalen van het waterstandverloop zal per lokatie langs de overlaat via iteratie de waterstand bepaald moeten worden. Dit is zeer omslachtig en voor veel punten vrijwel niet mogelijk. Gebruik van numeriek methodes is dan vereist.

Omdat op een eenvoudige en snelle wijze bepaald moet worden, valt de Methode van De Marchi af.
Methode van Domínguez

Berekening van het inlaatdebiet met de methode van Domínguez

Het inlaatdebiet moet iteratief berekend worden, omdat de waterstand net bovenstrooms van de overlaat (h_0) niet bij voorbaat bekend is.

\[
Q_{\text{benedenstrooms}} = Q_1 = Q_{\text{bovenstrooms}} - Q_{\text{inlaat}} = Q_0 - Q_{\text{inlaat}}
\]

\[
Q_{\text{bovenstrooms}} = Q_0 = B \cdot h_0 \sqrt{2g(H-h_0)}
\]

\[
Q_{\text{inlaat}} = \frac{2}{5} \left[1 - \left(\frac{h_0}{h_1} \right)^{5/2} \right] m \sqrt{2gL\cdot h_1^{3/2}}
\]

Wanneer deze formules samengevoegd zijn in de bovenste formule, dan geeft dit:

\[
Q_{\text{benedenstrooms}} = Q_1 = B \cdot h_0 \sqrt{2g(H-h_0)} - \frac{2}{5} \left[1 - \left(\frac{h_0}{h_1} \right)^{5/2} \right] m \sqrt{2gL\cdot h_1^{3/2}}
\]

Met de bekende afvoer benedenstrooms kan via iteratie h_0 bepaald worden. Is h_0 bekend, dan kan het inlaatdebiet bepaald worden.

De Methode van Domínguez kan het inlaatdebiet direct berekenen uit de benedenstroomse waterstand en de waterstand net bovenstrooms van overlaat. Bij subkritische stroming wordt de bovenstroomse situatie bepaald door de benedenstroomse situatie. De benedenstroomse situatie, zoals de benedenstroomse waterstand, is bekend. De bovenstroomse waterstand is daarentegen niet bekend. De Methode van Domínguez kan, net als de Methode van De Marchi, het inlaatdebiet alleen via iteratie berekenen. Deze methode kan dus eveneens niet gebruikt worden om snel het inlaatdebiet te bepalen.

Globale methode

Berekening van het inlaatdebiet met de globale methode

Het inlaatdebiet kan direct berekend worden, met de volgende formule

\[
Q_{\text{inlaat}} = m \sqrt{2gL\cdot h_1^{3/2}}
\]

de globale methode berekent het inlaatdebiet uitsluitend uit de benedenstroomse waterstand. Hierdoor is deze methode geschikt om eenvoudig en snel het inlaatdebiet te berekenen. Nadeel van deze methode is dat een bovengrens van het inlaatdebiet wordt verkregen. Daar dit de enige methode is om het inlaatdebiet direct en eenvoudig te berekenen, zal deze methode gebruikt worden. Dit is ook de reden om deze methode bij de bepaling van de effectieve breedte van de zijdelingse overlaat te behandelen.
Om het nadeel van de globale methode te beperken, zal het berekende inlaatdebiet gecontroleerd worden met de Methode van Domínguez. De verschillen tussen beide methodes moeten voldoende klein zijn.

O.4.2 Berekening van het inlaatdebiet van een zijdelingse overlaat met de globale methode

Het inlaatdebiet van een zijdelingse overlaat kan met de globale methode berekend worden als de waterstand benedenstrooms van de overlaat en de breedte van de overlaat (L) bekend is. De waterstand benedenstrooms van de overlaat \(h_1 \) is afhankelijk van de benedenstroomse afvoer (\(Q_1 \)). De berekening van het inlaatdebiet is dan als volgt:

\[
q_1 = \frac{Q_1}{B}
\]

de afvoer benedenstrooms van de overlaat per eenheid van breedte

\[
h_1 = \left(\frac{q_1}{C^2 + i_b} \right)^{\frac{1}{3}}
\]

\[
Q_{\text{inlaat}} = m\sqrt{2gLh_1^{3/2}}
\]

Met deze formules is het mogelijk om voor verschillende waarden van de benedenstroomse afvoer en verschillende breedtes van de overlaat het inlaatdebit uit te rekenen. De bijbehorende bovenstroomse afvoer kan eenvoudig met de onderstaande formule worden berekend. Deze bovenstroomse afvoer is voor het bepalen van het afgetopte afvoergolf van belang.

\[
Q_0 = Q_1 + Q_{\text{inlaat}}
\]

O.4.3 Controle van het berekende inlaatdebiet van de zijdelingse overlaat

Het berekende inlaatdebiet met de globale methode geeft een bovengrens aan. Het inlaatdebit wordt dus overschat. Samen met het inlaatdebit wordt de bovenstroomse afvoer ook overschat. In deze subparagraaf zal uiteengezet worden hoe met de Methode van Domínguez het berekende inlaatdebiet gecontroleerd wordt voor een breedte van de overlaat dat bepaald is met de Methode van Domínguez. Doel is het aantonen dat de globale methode goede, representatieve inlaatdebieten berekent waarmee later verdere berekeningen uitgevoerd kunnen worden.

Nadat de bovenstroomse afvoer uit de berekeningen van het inlaatdebit bekend is, kan met de constante energiehoogte de waterstand net bovenstrooms van de overlaat iteratief worden berekend (zie ook paragraaf O.3.2 waar deze berekening ook is uitgevoerd)

\[
H = H_0 = H_1 + \frac{Q_1^2}{2gA_i^2}
\]

\[
h_0 = H - \frac{Q_0^2}{2gA_i^2} = H - \frac{Q_0^2}{2g(B_0 - h_0)^2}
\]
Inlaatconstructies voor noodoverloopgebieden

Nu de waterstand net bovenstrooms van de overlaat bekend is, kan de inlaatcoëfficiënt behorende bij de Methode van Domínguez bepaald worden.

\[m_{\text{domínguez}} = \frac{2}{5} \frac{1 - \left(\frac{h_0}{h_i} \right)^{5/2}}{1 - \left(\frac{h_0}{h_i} \right)} \]

Tussen de berekening van het inlaatdebiet met de Methode van Domínguez en de globale methode is het verschil deze inlaatcoëfficiënt van Domínguez. Deze inlaatcoëfficiënt geeft dus het verschil aan tussen de globale methode en de Methode van Domínguez.

Procentueel verschil tussen de globale methode en de Methode van Domínguez

\[1 - m_{\text{domínguez}} \cdot 100\% = \frac{2}{5} \frac{1 - \left(\frac{h_0}{h_i} \right)^{5/2}}{1 - \left(\frac{h_0}{h_i} \right)} \cdot 100\% \]

Het procentueel verschil tussen beide methoden is bij een aftopping van 18.000 m³/s naar 16.000 m³/s in geval van de Rijn minder dan 2 %. Dit zeer kleine verschil wordt veroorzaakt door de geringe stijgende waterstandverloop vóór de zijdelingse overlaat. Dit zeer kleine verschil wordt verwaarloosbaar geacht in de verder berekeningen.

Bij andere situaties zal opnieuw gecontroleerd moeten worden of het verschil tussen de gebruikte globale methode en de Methode van Domínguez acceptabel is.

O.4.4 Resultaat van de berekeningen voor het inlaatdebiet van de zijdelingse overlaat

In een Excel-sheet zijn de bovenstaande berekeningen ingevoerd. In de Excel-sheet kan voor een situatie met een zijdelingse overlaat het inlaatdebiet worden berekend bij verschillende breedtes van de overlaat en bij verschillende benedenstroomse afvoer. De stapgrootte tussen de verschillende benedenstroomse afvoer is hierbij zelf te kiezen. Deze zal bij het bepalen van de afgetopte afvoergolf van belang zijn. De in deze sheet gegenereerde data van inlaatdebiet bij een bepaalde benedenstroomse afvoeren en de daarbij behorende benedenstroomse afvoeren zijn nodig om de afgetopte afvoergolf te bepalen.

O.5 Verloop van het inlaatdebiet bij afvoergolf

O.5.1 Afvoergolf

De zijdelingse overlaat is bedoeld om een bovenmaatgevende afvoergolf af te toppen tot verwerkbare afvoer voor de benedenstroomse rivier. Er zal eerst bepaald moeten worden hoe de af te toppen afvoergolf zal verlopen. Hiervoor wordt de ontwerpafvoergolf te Lobith gebruikt met een topafvoer van 16.500 m³/s. Deze ontwerpafvoergolf wordt ook gebruikt voor het Randvoorwaardenboek 2001. Uiteraard kunnen afvoergolven met een top van 16.500 m³/s een andere vorm hebben, maar dit zal geen invloed hebben op de geometrie van de overlaat.

Andere afvoergolven kunnen gegenereerd worden door de ontwerpafvoergolf op te schalen. Bij het opschalen van de ontwerpafvoergolf worden alle afvoeren evenredig vermengd met de verhouding tussen de topafvoer van de op te schalen afvoergolf en de topafvoer van de ontwerpafvoergolf.
Factor bij het opschalen van de ontwerpafvoergolf naar de afvoergolf met de gewenste topafvoer:

gewenste topafvoer/topafvoer van de ontwerpafvoergolf = $\frac{Q_{topafvoer}}{Q_{topafvoer ontwerpafvoergolf}}$

Op deze manier kan de afvoergolf van elk gewenste topafvoer worden gegenereerd.

Dit opschalen van de ontwerpafvoergolf is in een Excel-sheet ingevoerd. Deze opgeschaalde afvoergolf zal door middel van de overlaat worden afgetopt. Ook is het mogelijk om een eigen afvoergolf in te voeren. Bij de gebruikte ontwerpafvoergolf wordt per uur een afvoerwaarde gegeven. Wat dit voor effect heeft voor de nauwkeurigheid wordt in subparagraaf D5.4 besproken.

O.5.2 Gewenste afgetopte afvoergolf

Een afvoergolf zal zodanig door de overlaat afgetopt moeten worden dat de rivier benedenstrooms van de overlaat de afgetopte afvoergolf kan verwerken. Bij deze berekeningen wordt uitgegaan dat de rivier benedenstrooms van de overlaat een bepaald afvoer kan verwerken. Dit in tegenstelling tot de werkelijkheid waar de benedenstroomse rivier die afvoer kan verwerken, waarbij de waterstand over de hele rivier niet de hoogte van de waterkering overschrijdt. Omdat de rivier over zijn lengte verschillende (veranderende) geometrie heeft zal de waterstand behorend bij een afvoer ook verschillend zijn. Er zit een onzekerheid in of een bepaalde afvoer over de hele lengte van de rivier verwerkt kan worden. Bij deze berekening wordt er dus uitgegaan dat een bepaalde afvoer door de benedenstroomse rivier verwerkt kan worden.

De gewenste afgetopte afvoergolf is een afvoergolf waarbij de afvoer niet groter is dan de verwerkbare afvoer door de rivier benedenstrooms van de overlaat. Het verloop van de gewenste inlaatdebiet is dus het verloop van de afvoergolf dat een waarde heeft groter dan de verwerkbare afvoer.
Op de Rijn wordt een maximale afvoergolf met een afvoertop van 18.000 m3/s mogelijk geacht. De Rijn kan in de toekomst maximaal 16.000 m3/s verwerken. De gewenste afgetopte afvoergolf geeft voor alle waarden die groter zijn 16.000 m3/s van de oorspronkelijke afvoergolf de waarde 16.000 m3/s aan. Het verloop van de gewenste inlaatdebiet is het verschil tussen de oorspronkelijk afvoergolf en de gewenste afgetopte afvoergolf.

De gewenste berging door het NOG is het volume dat door de overlaat wordt ingelaten. Met het bekende verloop van de gewenste inlaatdebiet is de gewenste berging te berekenen. De berekening van de gewenste berging gebeurt door het vermenigvuldigen van het inlaatdebiet met de tijdsduur tussen twee opeenvolgende afvoerwaarden. De zo verkregen gewenste berging is een benadering van de werkelijke gewenste berging. De nauwkeurigheid van deze berekening wordt in subparagraaf O.5.4 besproken.

O.5.3 Werkelijke afgetopte afvoergolf
Een afvoergolf moet minimaal afgetopt worden tot de verwerkbare afvoer van de rivier benedenstrooms van de overlaat. Een overlaat laat dus altijd meer water in dan gewenst.

De af te toppen afvoergolf geeft de bovenstroomse afvoer aan. In paragraaf O.4 is berekend wat het inlaatdebiet is behorende bij een bepaalde bovenstroomse afvoer. Omdat de bovenstroomse afvoer in paragraaf O.4 berekend is met een bepaalde stapgrootte, kan niet exact de afvoerwaarde van de afvoergolf worden gevonden in de gegenereerde data uit paragraaf O.4. Het exacte inlaatdebiet bij de afvoerwaarde van de afvoergolf is dan eveneens niet bekend. Gekozen wordt om het inlaatdebiet behorende bij de meest dichtbij gelegen kleinere afvoerwaarde in de gegenereerde data te kiezen voor de afvoerwaarde van de afvoergolf. Hierdoor wordt een lagere inlaatdebiet genomen dan behorend bij de exacte afvoerwaarde van de afvoergolf. De reden hiervoor is dat bij de gegenereerde bovenstroomse afvoer een bovengrens is. Het bijbehorende inlaatdebiet zal dan beter de werkelijkheid benaderen. Bij de keuze om de meest dichtbij gelegen grotere afvoerwaarde te kiezen, wordt het inlaatdebiet nog meer overschat dan dat al bij de eerdere berekeningen is gebeurd. De gevolgen voor de nauwkeurigheid wordt in subparagraaf O.5.4 besproken. Het verloop van de werkelijke inlaatdebiet is nu bekend met de gekozen stapgrootte (in deze berekeningen 1 uur). Hieruit kan ook de afvoergolf van de rivier benedenstrooms van de overlaat worden bepaald, door de bovenstroomse afvoergolf af te trekken van het verloop van de werkelijk inlaatdebiet.

De werkelijke berging in het NOG is door de bekende verloop van de werkelijke inlaatdebiet te bepalen op dezelfde wijze als in subparagraaf O.5.3.

Naast de werkelijke berging wordt de stroomsnelheid over de overlaat berekend. Hiervoor wordt de benedenstroomse waterstand voor gebruikt. De reden hiervoor is dat de waterstand net bovenstrooms van de overlaat alleen met iteratie te berekenen is. Dit zou voor het bepalen van de stroomsnelheid bij het verloop van het inlaatdebiet zeer veel bewerkingen met zich meebrengen. Uit paragraaf O.4 was al bekend dat het verloop van de waterspiegel vóór de overlaat gering is. De stroomsnelheid over de overlaat wordt zo onderschat.

\[
U_{\text{inlaat}} = \frac{Q_{\text{inlaat}}}{L(h_t - w)}
\]

De stroomsnelheid over de overlaat wordt berekend, omdat deze gevolgen kan hebben voor de erosiebescherming.
O.5.4 Beschouwing over de nauwkeurigheid van het verloop van het inlaatdebiet

Stapgrootte voor de benedenstroomse waterstand
De stapgrootte voor de benedenstroomse waterstand waarbij het inlaatdebiet is bepaald in paragraaf O.4 heeft een grote invloed op de nauwkeurigheid op de berekening van het verloop van het inlaatdebiet. Het inlaatdebiet is in paragraaf O.4 overschat door gebruikt te maken van de globale methode. De overschatting van het inlaatdebiet was kleiner dan 2 %. De overschatting van de bovenstroomse afvoer is nog kleiner als het inlaatdebiet kleiner is dan bovenstroomse afvoer.

Nominaal de kleinste fout treedt op bij de kleinste bovenstroomse afvoer waarbij water over de overlaat stroomt. De stapgrootte van de bovenstroomse afvoer moet kleiner zijn dan deze nominaal kleinste fout. Hierdoor zal het inlaatdebiet bij subparagraaf O.5.3 niet te klein worden genomen en zichzelf corrigeren van de overschatting in paragraaf O.4. De stapgrootte kan alleen bepaald worden voor de benedenstroomse afvoer. De stapgrootte van de benedenstroomse afvoer moet kleiner zijn dan deze kleinste fout, omdat de stapgrootte van de bovenstroomse afvoer groter kan zijn door verschil in inlaatdebiet.

Berekening van de maximale stapgrootte is dus als volgt:
Als eerste zal de kleinste bovenstroomse afvoer bepaald moeten worden waarbij water over de overlaat zal lopen. Voor de Rijn kan deze kleinste bovenstroomse afvoer gesteld worden op 5.000 m³/s. Dergelijke instroom bij deze lage bovenstroomse afvoer kan het geval zijn als er sprake is van een bres in de dijk of van falen van een afsluitmiddel. Daarna zal de nominaal kleinste fout bepaald moeten worden van de bovenstroomse afvoer. De overschatting van de bovenstroomse afvoer van de Rijn wordt gesteld op 2 %. De Rijn heeft dus een nominaal kleinste fout van 100 m³/s. De stapgrootte van de bovenstroomse afvoer moet kleiner zijn 100 m³/s.

De stapgrootte van de benedenstroomse afvoer is nog kleiner dan de stapgrootte van de bovenstroomse afvoer. Voor de Rijn kan worden gesteld dat de stapgrootte van de benedenstroomse afvoer 50 m³/s is. In de berekeningen van paragraaf O.4 wordt in de Excel-sheets gewerkt met een stapgrootte van 25 m³/s voor de benedenstroomse afvoer. Deze kleine stapgrootte is volgens de bovenstaande berekening niet nodig. Maar de Excel-sheets kan zonder problemen een dergelijke stapgrootte aan. Een kleinere stapgrootte is ook positief voor lage waarden van het inlaatdebiet. De lage waarde van het inlaatdebiet geven meestal geen kritieke situaties voor de afgetopte afvoergolf, maar wel een fout in de berekening van de berging. Dus de stapgrootte wordt bepaald uit de nominale kleinste fout van de bovenstroomse afvoer en is het liefst nog kleiner om de fout in het berekenen van de berging nog te verkleinen.

Stapgrootte voor de tijd tussen de opvolgende afvoerwaarden van de afvoergolf
De afvoergolf wordt beschreven door afvoerwaarden waar een bepaalde tijd tussen ligt. Bij de berekeningen voor de afgetopte afvoergolf is voor de stapgrootte voor de tijd van 1 uur genomen. Hierdoor is het verschil tussen de afvoerwaarden van de afvoergolf verschillend van grootte. Vooral tijdens de periode dat de helling van de afvoergolf zeer groot is, is het verschil tussen de afvoerwaarden groot. De afvoergolf of de berekende afgetopte afvoergolf wordt dan minder goed beschreven. Door de stapgrootte van de tijd te verkleinen worden de afvoergolf en afgetopte afvoergolf beter beschreven. Het belang van het goed beschrijven van de afvoergolf en de afgetopte afvoergolf is de nauwkeurigheid voor het verloop van het inlaatdebiet. Het verloop van het inlaatdebiet is meestal van korte duur. Als de stapgrootte van de tijd tussen de opvolgende afvoerwaarden groot is, wordt het verloop van het inlaatdebiet minder goed beschreven.

Het verloop van het inlaatdebiet is op zijn beurt weer van belang bij het bepalen van de werkelijk geborgen water. Het ingelaten volume water wordt namelijk bepaald door het inlaatdebiet te vermenigvuldigen met de stapgrootte voor de tijd. Dit is alleen een goede benadering van het ingelaten volume water als de stapgrootte voor de tijd klein genoeg is.
De stapgrootte voor de tijd is zoals gezegd 1 uur. Bij deze stapgrootte zijn bij de ontwerpafvoergolf verschillen tussen de opeenvolgende afvoerwaarden slechts gering. Er wordt aangenomen dat een stapgrootte voor de tijd van 1 uur klein genoeg is om de afvoergolf te beschrijven.

O.5.5 Beoordeling van de geometrie van de overlaat
Voor verschillende geometrie van de overlaat kan nu bepaald worden wat het verloop van het inlaatdebiet is en de afgetopte afvoergolf. Door deze eigenschappen van de overlaat te vergelijken met het gewenste verloop van het inlaatdebiet en de gewenste afgetopte afvoergolf kan bepaald worden of de betreffende geometrie van de overlaat geschikt is om te gebruiken als inlaatconstructie voor een NOG. De verschillende geometrie van de overlaat kunnen onderling beoordeeld worden op hun eigenschappen.

Inlaatdebit
Een klein procentueel verschil tussen het maximale gewenste inlaatdebit en het maximaal optredende inlaatdebit geeft aan dat de overlaat precies is.
Door het verloop van het gewenste inlaatdebit te vergelijken met het verloop van het werkelijke inlaatdebit kan bepaald worden of de overlaat voor het hele inlaatdebit precies is. Als het verloop van het werkelijke inlaatdebit het verloop van de gewenste inlaatdebit goed volgt dan is de overlaat effectief.
Ook het maximale verschil tussen het werkelijke inlaatdebit en het gewenste inlaatdebit geeft aan hoe precies de overlaat is met het inlaten van water.

Bergingsvolume
Bij het bergingsvolume kan het procentuele verschil tussen gewenste bergingsvolume en het werkelijke bergingsvolume aangeven of een overlaat effectief is of niet. In het Programma van Eisen is gesteld dat dit verschil niet meer mag bedragen dan 20 %. Verschillen tussen gewenste bergingsvolume en de werkelijke bergingsvolume die groter zijn dan 20 % zijn niet acceptabel. De bergingscapaciteit moet in dat geval veel groter zijn wat in theorie nodig zal zijn.

Stroomsnelheid boven overlaat
De stroomsnelheid boven de overlaat heeft invloed op de benodigde erosiebescherming. Grote stroomsnelheden vereisen zware erosiebescherming, terwijl lage stroomsnelheden veel lichtere en goedkopere erosiebescherming toestaan.

O.5.6 Controle van de berekeningen
De berekeningen van het verloop van het inlaatdebit kunnen met eenvoudige middelen gecontroleerd worden.
Zo moet het maximale gewenste inlaatdebit het verschil zijn tussen de topafvoer van de afvoergolf en de verwerkbare afvoer. Het werkelijke maximale inlaatdebit moet daarentegen gelijk of groter zijn dan het verschil tussen de topafvoer en de verwerkbare afvoer. De afgetopte afvoergolf mag namelijk nooit groter zijn dan de verwerkbare afvoer. Het verschil tussen het gewenste inlaatdebit en het werkelijke inlaatdebit kan dus nooit negatief zijn. De maximale afvoer benedenstrooms van de overlaat is dus ook kleiner of gelijk aan de verwerkbare afvoer.
Met deze eenvoudige controles kan worden bepaald dat de berekeningen en de resultaten geen grove fouten bevatten.

O.5.7 Invoegen van controle op begin of einde van het inlaten van water in de berekeningen
In de bovenstaande berekeningen zal de overlaat water inlaten als de waterstand in de rivier hoger is dan de hoogte van de overlaat. De afvoer in de rivier is dan vaak lager dan de verwerkbare afvoer. Inlaten van water is niet nodig en zelfs ongewenst omdat onnodig veel
water het NOG wordt ingelaten. Dit extra ingelaten water zorgt voor meer gevolgen die niet noodzakelijkerwijs had hoeven ontstaan.

Door controle op begin en einde van het inlaten van water kan dit voorkomen worden. Water stroomt pas over de overlaat op het moment dat men van tevoren heeft bepaald. En het water houdt op met instromen op het moment dat gewenst is. Dit kan door het plaatsen van een afsluitmiddel dat bij een bepaalde afvoer of waterstand opent en sluit. Ook kan gekozen worden om alleen het begin van het inlaten van water te bepalen of juist alleen het einde van het inlaten.

De controle op het begin of eindigen van het inlaten van water over de overlaat is ingevoegd in de berekeningen en Excel-sheet.

O.5.8 Invoegen van compartimentering van de overlaat in de berekeningen

Hiervoor wordt het inlaatdebiet bepaald bij de totale effectieve breedte van de overlaat. Deze totale effectieve breedte is benodigd bij de maximale inlaatdebiet. In alle andere gewenste inlaatdebiet is deze totale effectieve breedte niet nodig. Door de breedte aan te passen aan het gewenste inlaatdebiet hoeft minder water in het NOG ingelaten te worden. Dit is gunstig voor het werkelijke bergingsvolume. De bergingscapaciteit van het NOG kan hierdoor kleiner worden.

De breedte wordt aangepast door het toepassen van compartimentering in combinatie met controle op begin of einde van de instroom van water. Er zijn hierbij 3 mogelijkheden.

- Elk compartiment wordt gecontroleerd geopend en zal stoppen met inlaten van water als de waterstand lager is dan de hoogte van de overlaat.
- Elk compartiment laat water in als de waterstand hoger is dan de hoogte van de overlaat en zal gecontroleerd gesloten worden.
- Elk compartiment wordt zowel gecontroleerd geopend als gesloten.

In de berekeningen en de Excel-sheet zijn deze mogelijkheden om te compartimenteren meegenomen.

O.5.9 Invoegen van een veiligheidsmarge voor het inlaten van water

Zoals eerder is vermeld mag het niet voorkomen dat de afgetopte afvoergolf groter is dan de verwerkbare afvoer. Omdat onzeker is of de werkelijke afvoergolf gelijk is aan de voorspelde afvoergolf, is het wenselijk om de instroom van water al te beginnen voordat de voorspelde afvoergolf de verwerkbare afvoer overschrijdt en het inlaatdebiet groter is dan noodzakelijk.

In de berekeningen en de Excel-sheet is het invoeren van een veiligheidsmarge mogelijk. De veiligheidsmarge wordt uitgedrukt in extra inlaatdebiet dat boven op het gewenste inlaatdebiet komt.

Voor de berekeningen zal in eerste instantie een veiligheidsmarge van 200 m³/s aangehouden worden. Dit betekent dus dat de overlaat al bij een afvoer van 200 m³/s lager dan de maatgevende afvoer afgetopt kan worden om het water in te laten.

O.5.10 Verschillende afvoergolven

In subparagraaf O.5.1 is de mogelijkheid gegeven om ook andere afvoergolven af te laten toppen door een overlaat in plaats van de (opgeschaalde) ontwerpafoergolf. Het beschouwen van andere afvoergolven om te bepalen of deze ook door de overlaat afgetopt kan worden is niet nodig. De gekozen overlaat is ontworpen op een bepaalde topafvoer. Als deze topafvoer verwerkt kan worden, kunnen ook alle andere afvoeren afgetopt worden tot de verwerkbare afvoer. De waterstanden bij deze afvoeren zijn weliswaar kleiner dan bij de topafvoer, waardoor het inlaatdebiet ook kleiner is, maar het inlaatdebiet is steeds veel groter dan het gewenste inlaatdebiet.

Dus als het NOG het afgetopte deel van de afvoergolf kan bergen, dan kan de overlaat het water inlaten. Opgevorderd moet wel worden dat de hoeveelheid extra water dat ongewenst het NOG instroomt wel bij verschillende afvoergolven anders kan zijn.
BIJLAGE P: SPECIFICATIES EN HIJSTABELLEN VAN EEN 100 TONS MOBIELE KRAAN

(van www.BKF.nl)
BIJLAGE Q: AANSLUITING VAN DE INLAATSLUIS OP DE OMGEVING
Inlaatconstructies voor noodoverloopgebieden
BIJLAGE R: DOORSNEDE DIJK
BIJLAGE S: DOORSNEDE DIJK MET INPASSING VAN DE WAND VAN DE INLAATSLUIS
BIJLAGE T: OVERZICHTSTEKENINGEN INLAATSLUIS

T.1 Bovenaanzicht inlaat

T.2 Voorraanzicht inlaat

T.3 Doorsnede inlaat

T.4 Detaildoorsnede inlaat
VOORAANZICHT INLAAT

School: westzuid

Horizontaal: 1:500

0.5m

0.2m

3.5m NAP

Pleistoceen zand
DOORSNEDEN INLAAT

Schaal 1:100
Horizontaal 1:500
DETAIL DOORSNEDEN INLAAT

opgehoogd zand
plintocere zand