Opdrachtgever:

Rijkswaterstaat, RIZA

Definitiestudie slib in IVR

rapport

februari 1999

WL | delft hydraulics
Definitiestudie slib in IVR

Gerrit J. Klaassen
OPDRACHTGEVER: Rijkswaterstaat, RIZA

TITEL: Definitiestudie slib in IVR

SAMENVATTING:

Een van de aspecten waarmee het IVR instrumentarium nog moet worden uitgebreid is het effect van inrichtingsvarianten op de slibhuishouding in de rivier en op de aanslibbing van de uiterwaarden. Een belangrijk aspect daarbij is de vraag of door verlaging van de uiterwaarden, door het verwijderen van zomerkaden en door veranderingen in het type vegetatie de aanslibbing van het winterbed versneld zal worden.

In het onderhavige onderzoek zijn verschillende aanpakken voor het inbrengen van slib in het IVR instrumentarium met elkaar vergeleken. De nadruk daarbij lag op de toepassing van eenvoudige modellen, die geïntegreerd zijn voor toepassing in planningsstudies als IVR. Op basis van de verkregen resultaten wordt voorgesteld een aanpak te kiezen waarbij de verandering in langsrichting van de slibconcentratie wordt gecorrigeerd met een combinatie van een aantal SOBEK berekeningen, het gebruik van het Rivieren GIS en de methode Narinesingh (1996). De simulatie van de aanslibbing van de individuele uiterwaarden kan gebeuren met behulp van een eveneens door Narinesingh voorgestelde methode gebaseerd op de methodiek van Chen (1975), met aanvullende correcties waarbij wederom van het Rivieren GIS gebruik kan worden gemaakt.

In dit verslag worden tevens aanbevelingen gedaan voor o.m. een verdere ontwikkeling van enkele elementen van de aanpak van Narinesingh (1996) en de noodzakelijke toetsing van de verschillende onderdelen, en wordt tenslotte een overzicht van voorgestelde activiteiten gegeven.

REFERENTIES:

VER. AUTEUR DATUM OPMERK. REVIEW GOEDKEURING
--- --- --- --- --- ---
G.J. Klaassen februari 1999 K.V. Heynert prof. ir. E. van Beek

PROJECTNUMMER: R3211

TREFWOORDEN:

INHOUD: TEKST 35 TABELLEN 4 FIGUREN 5 APPENDICES 3

STATUS: ☑ VOORLOPIG ☑ CONCEPT ☒ DEFINITIEF
Inhoud

Samenvatting .. iii

1 Inleiding ... 1–1
 1.1 Duurzame inrichting van de Rijntakken, IVR en het IVR instrumentarium .. 1–1
 1.2 Probleemstelling ... 1–1
 1.3 Opdracht ... 1–2
 1.4 Randvoorwaarden voor het onderzoek .. 1–2
 1.5 Dankzegging .. 1–3

2 Slib in rivieren .. 2–1
 2.1 Inleiding ... 2–1
 2.2 Aanvoer van slib ... 2–2
 2.3 Transport van slib in en de slib-balans van rivieren 2–4
 2.4 Sedimentatie van slib in uiterwaarden ... 2–6
 2.5 Depositie in voorhavens en andere stagnante wateren 2–7

3 Mogelijke modelmatige aanpakken .. 3–1
 3.1 Inleiding ... 3–1
 3.2 Veranderingen in slibconcentratie in langsrichting 3–2
 3.3 Sedimentatie in uiterwaarden ... 3–4
 3.3.1 Inleiding .. 3–4
 3.3.2 “Vergelijk”-methode ... 3–4
 3.3.3 Methode Narinesingh op basis van trapping efficiency 3–5
 3.3.4 Methode Narinesingh + 1D-model .. 3–6
 3.3.5 2D-benaderingen .. 3–7
 3.4 Combinaties en gebruik van modellen voor toetsing 3–8
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4.1</td>
<td>Inleiding</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>IVR Instrumentarium</td>
<td>4-1</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>Mogelijke aanpakken</td>
<td>4-2</td>
</tr>
<tr>
<td></td>
<td>4.4</td>
<td>Korte beschrijving van de verschillende aanpakken</td>
<td>4-3</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>Voor- en nadelen van de verschillende aanpakken</td>
<td>4-5</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
<td>Voorstel voor keuze voor te implementeren optie</td>
<td>4-6</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>Inleiding</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>Modelontwikkeling</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>Toetsen van toe te passen methoden</td>
<td>5-1</td>
</tr>
<tr>
<td></td>
<td>5.4</td>
<td>Schematisatie rivier</td>
<td>5-3</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>Randvoorwaarden en invoer</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>5.6</td>
<td>Uitvoer</td>
<td>5-4</td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td>Voorgestelde activiteiten</td>
<td>5-5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Conclusies en aanbevelingen</td>
<td>6-1</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Geraadpleegde literatuur</td>
<td>7-1</td>
</tr>
</tbody>
</table>

Bijlagen

A Offerte en opdracht

B Effect van uiterwaardverlaging op sedimentatie van slib

C Effect van verlaging zomerkade op sedimentatie van slib
Samenvatting

Een van de aspecten waarmee het IVR instrumentarium nog moet worden uitgebreid is het effect van inrichtingsvarianten op de slibhuishouding in de rivier en op de aanslibbing van de uiterwaarden. Een belangrijk aspect daarbij is de vraag of door verlaging van de uiterwaarden, door het verwijderen van zomerkaden en door veranderingen in het type vegetatie de aanslibbing van het winterbed versneld zal worden.

In het onderhavige onderzoek zijn verschillende aanpakken voor het inbrengen van slib in het IVR instrumentarium met elkaar vergeleken. De nadruk daarbij lag op de toepassing van eenvoudige modellen, die geëigend zijn voor toepassing in planningsstudies als IVR. Op basis van de verkregen resultaten wordt voorgesteld een aanpak te kiezen waarbij de verandering in langsrichting van de slibconcentratie wordt gesimuleerd met een combinatie van een aantal SOBEK berekeningen, het gebruik van het Rivieren GIS en de methode Narinesingh (1996). De simulatie van de aanslibbing van de individuele uiterwaarden kan gebeuren met behulp van een eveneens door Narinesingh voorgestelde methode gebaseerd op de methodiek van Chen (1975), met aanvullende correcties waarbij wederom van het Rivieren GIS gebruik kan worden gemaakt.

In dit verslag worden tevens aanbevelingen gedaan voor o.m. een verdere ontwikkeling van enkele elementen van de aanpak van Narinesingh (1996) en de noodzakelijke toetsing van de verschillende onderdelen, en wordt tenslotte een overzicht van voorgestelde activiteiten gegeven.
1 Inleiding

1.1 Duurzame inrichting van de Rijntakken, IVR en het IVR instrumentarium

De rivieren in Nederland moeten vele functies vervullen. Vanouds uiteraard de afvoer van hoogwaters, en sinds de 2de helft van 19de eeuw ook in toenemende mate scheepvaart. Verder worden de uiterwaarden al gedurende vele eeuwen gebruikt voor landbouw en veeteelt en deels ook voor bewoning. Tenslotte is er een toenemend besef dat de rivier in het verleden de drager was van belangrijke ecosystemen, met name in de uiterwaarden die af en toe overstromen, en dat ook in de toekomst weer kan zijn. Dit past heel goed in het streven om het totale oppervlak aan natuurgebieden in Nederland uit te breiden (Ministerie van LNV, 1990). Er is een groeiend besef dat alleen met een uitgekiende inrichting en een goed beheer van de rivier (inclusief de uiterwaarden) het mogelijk zal zijn om een duurzame ontwikkeling van het rivierengebied in zijn meest ruime zin te komen.

Vanuit dit besef worden er sinds 1994 verkennende studies gedaan naar mogelijkheden voor een betere of zelfs duurzame inrichting van het rivierengebied. Met name de studies die uitgevoerd zijn in het kader van het IVR (Integrale Verkenning Rijntakken, zie Silva en Kok, 1995) zijn hier van belang. In de nabije toekomst zullen deze planstudies worden voortgezet in het kader van het project Ruimte voor de Rijn.

In het kader van het IVR is een instrumentarium ontwikkeld dat het mogelijk maakt om inrichtingsvarianten onderling te vergelijken. Dit is ingebed in het zogenaamde IVR-DSS (waar de afkorting DSS staat voor Decision Support System), een beslissingsondersteunend systeem. Dit DSS bestaat uit twee elementen, namelijk
1. een data base op PC met alle plannen en projecten voor de uiterwaarden, waaruit voor verschillende inrichtingsvarianten de effecten voor een aantal functies en de gerelateerde kosten kunnen worden afgeschat, en
2. een 1D model waarmee de rivierkundige effecten van verschillende inrichtingsvarianten kunnen worden bepaald op basis van de riviergeometrie behorend bij de specifieke inrichtingsvariant.

Het onderhavige onderzoek heeft betrekking op een van de effecten die nog niet is meegenomen bij deze aanpak, namelijk de sedimentatie van slib in de uiterwaarden en hoe die zal veranderen bij verschillende inrichtingsvarianten. Bij voorkeur zal aansluiting gezocht moeten worden bij het bestaande IVR-DSS instrumentarium.

1.2 Probleemstelling

Inrichtingsvarianten zijn verschillend in de voorgestelde inrichting van de uiterwaarden. (Veranderingen in de geometrie van de hoofdgeul zijn voor dit onderzoek niet relevant.)
Uiterwaarden kunnen op verschillende wijzen worden aangepast. Enerzijds kan dat door veranderingen in de geometrie van de uiterwaard, anderzijds door een ander beheer. Veranderingen in de geometrie van de uiterwaard zijn bijvoorbeeld verlaging van delen van de uiterwaard, het aanbrengen van (2de) geulen in de uiterwaard, het verlagen of zelfs weghalen van de zomerdijken, en het verleggen van de winterdijk. Al deze maatregelen veranderen het stroomvoerend en bergevorm van de beschouwde uiterwaard (als functie van de lokale waterstand) en hebben tot gevolg dat het overstromingspatroon (duur, diepte, stromsnellheden, maar ook sedimentatiepatronen van zand en slib) van de uiterwaard zullen veranderen. Veranderingen in beheer betreffen met name veranderingen in begrazing, die in combinatie met een andere geometrie en het bijbehorende overstromingspatroon, tot bepaalde specifieke ecotopen met bijbehorende begroeiing zullen leiden.

Elke inrichtingsvariant is een combinatie van veranderingen in de geometrie en veranderingen in beheer van alle uiterwaarden tezamen. Elk van de inrichtingsvarianten zal zijn eigen specifieke effecten hebben. Deze effecten worden met behulp van het IVR instrumentarium bepaald. Een effect dat nog niet binnen het IVR instrumentarium bepaald kan worden is veranderingen in de aanslibbingspatronen, hoewel verwacht wordt dat deze veranderingen lokaal aanzienlijk kunnen zijn. Het onderhavige onderzoek dient aan te geven hoe het IVR instrumentarium uitgebreid kan worden om ook de veranderingen in aanslibbingspatronen te kunnen bepalen. Het gaat in eerste instantie om de mogelijkheid om te kunnen komen tot onderlinge vergelijking van verschillende inrichtingsvarianten, waarbij een gedetailleerde voorspelling van sedimentatie niet beoogd wordt.

1.3 Opdracht

Opdracht tot het uitvoeren van het onderzoek is gegeven door RWS RIZA per opdrachtbon 27536 van 17 november 1997 op basis van een op 23 oktober 1997 door het WL | DELFT HYDRAULICS gedane offerte (briefnummer RBM8908/R3211/lj). Een kopie van de opdrachtbrief en van de offerte is als Bijlage A bij dit verslag gevoegd.

1.4 Randvoorwaarden voor het onderzoek

Bij het onderzoek zijn een aantal randvoorwaarden gehanteerd, die hieronder zijn gespecificeerd:

- Het onderzoek is beperkt tot het effect van eventuele inrichtingsvarianten op de sedimentatie in uiterwaarden. De invloed van het gewijzigd slibgedrag op de waterkwaliteit is niet meegenomen.
- In dit onderzoek is alleen gekeken naar de sedimentatie van fijn materiaal, waarbij als criterium is gehanteerd kleiner dan 0,063 mm. Sedimentatie van bodemmateriaal vanuit de rivier, zoals door Van Manen et al. (1994) onderzocht voor het recente hoogwater in 1995, is hier niet in beschouwing genomen. Overigens blijkt uit de gegevens van Van Manen dat de hoeveelheid bodemmateriaal die tijdens dit specifieke hoogwater op de oevers is gesedimenteerd van dezelfde orde te zijn als de sedimentatie van fijn sediment op de uiterwaard (zie Asselman, 1997, p. 131).
- Het onderzoek is beperkt tot de Rijntakken, voorzover onder beheer van DON.
1.5 Dankzegging

Tijdens het in dit verslag beschreven korte onderzoek is het begeleid door en/of werden gesprekken gevoerd over het inbrengen van slib in het IVR instrumentarium met de volgende personen:

- RWS, Directie Oost Nederland:
 Ir. C. Jol
 Ir. H. Havinga

- RWS, RIZA:
 Ir. G. Blom (Dordrecht)
 Dr. H. Middelkoop (Arnhem)
 Dhr. L. Schutte (Arnhem)
 Ir. W. Silva (Arnhem)

- WL | DELFT HYDRAULICS:
 Ir. K. Heijnert
 Ir. M. Laguzzi

De medewerking van bovenstaande personen en hun bereidheid hun ideeën met de auteur van dit verslag te delen hebben in belangrijke mate bijgedragen aan het welslagen van het onderzoek.
2 Slib in rivieren

2.1 Inleiding

Voordat voorstellen kunnen worden geformuleerd ten aanzien van hoe slib het best kan worden ingebracht in het IVR instrumentarium, is het geëigen om een korte systeembeschrijving te geven van het gedrag van slib in de Nederlandse rivieren. Dat zal in dit hoofdstuk gebeuren.

Het betreft hier dus fijn materiaal dat als spoeltransport door de rivieren wordt getransporteerd. Hier wordt de term spoeltransport voor het transport van slib gebruikt in tegenstelling tot het zogenaamde bodemtransport, dat in de Nederlandse rivieren vooral bestaat uit zand en grind. Zie voor een uitleg van deze termen Jansen (1979). Fijn materiaal kan als spoeltransport in zeer grote concentraties worden getransporteerd, maar in de praktijk komen in de Rijn concentraties hoger dan enkele honderden ppm (parts per million, zie Jansen, 1979) maar zelden voor (zie Asselman, 1997, met name hoofdstuk 3). Sedimentatie van slib in de hoofdgeul is te verwaarlozen door de hoge snelheden. Alleen in gebieden met lage stroomsnelheden (bijvoorbeeld in de uiterwaard, in vegetatie langs de hoofdgeul, in havens, bovenstrooms van stuwen en in toegangen naar sluizen) kan depositie van het fijne materiaal plaatsvinden.

Een korte samenvatting geven van het gedrag van slib in de Nederlandse rivieren wordt aanzienlijk vergemakkelijkt doordat recent gedetailleerde studies zijn uitgevoerd naar de sedimentatie van slib in de Nederlandse uiterwaarden in het kader van een tweetal promotie-onderzoeken aan de Rijksuniversiteit Utrecht. Middelkoop (1997) onderzocht met een scala aan onderzoeksmethoden de sedimentatie van slib in de Nederlandse uiterwaarden in tijd en ruimte, waarbij het mogelijk bleek om sedimentiesnelheden op verschillende tijdschalen te bepalen. Asselman (1997) onderzocht v.m. de aanvoer van fijn sediment vanuit het stroomgebied en maakte een schatting van het effect van klimaatveranderingen op de sedimentproductie en dus de aanvoer. Tenslotte wordt gewezen op een M.Sc. studie van Narinesingh (1995), die niettegenstaande het beperkte kader van de studie een goed inzicht geeft in het effect van de sedimentatie van slib in de lengterichting van de rivier op basis van een tamelijk elementaire balansbeschouwing.

In de volgende paragrafen wordt een korte samenvatting gegeven van de belangrijkste processen die van belang zijn voor de sedimentatie van slib in de uiterwaarden van de Nederlandse rivieren en voor het effect van inrichtingsvarianten. Daarbij wordt een viertal aspecten onderscheiden:

- de aanvoer van slib uit het bovenstroomse gebied;
- transport van slib in en de slib-balans van rivieren;
- de sedimentatie van slib in uiterwaarden; en
- de sedimentatie van slib in (voor)havens en andere stagnante gedeelten.
2.2 Aanvoer van slib

De aanvoer van slib uit het bovenstroomse gebied is een zeer belangrijke factor, omdat deze aanvoer de hoeveelheid slib en ander fijn materiaal bepaalt die potentieel via sedimentatie kan worden afgezet op de Nederlandse uiterwaarden. Door Asselman (1997) is uitgebreid onderzoek gedaan naar de slibbelasting van de Rijn in Duitsland en in Nederland. Dit is op verschillende manieren gebeurd. Enerzijds is een op GIS gebaseerd model ontwikkeld voor het stroomgebied van de Rijn, waarbij bodemerosie is gemodelleerd op een aan de USLE (zie Vanoni, 1975) gerelateerde methode. Anderzijds is gebruik gemaakt van gemeten sediment transporten in zowel Duitsland en Nederland. Ter illustratie en ter gedachtenbepaling is Figuur 2.1 opgenomen (overgenomen uit Asselman (1997), die voor twee recente hoogwaters in de Rijn het verloop van de afvoer en van het gehalte aan zwevend sediment weergeeft. Opvallend is dat de concentraties aan het eind van het hoogwater significant kleiner zijn dan bij het begin. Dit heeft te maken met de beschikbaarheid van fijn sediment in het stroomgebied hetgeen erg moeilijk te modelleren is. Deze hysterese veroorzaakt ook grote spreiding in het verband tussen afvoer en zwevend sediment concentratie.

Uit het uitgebreide onderzoek van Asselman (1997) bleek dat het niet mogelijk is om sedimentconcentraties te voorspellen met behulp van de stroomgebied benadering. Door Asselman wordt gesteld dat "eerste schattingen van zwevend stofconcentraties het beste worden verkregen met behulp van eenvoudige regressie vergelijkingen, zoals de zogenaamde 'rating curve' techniek". Bedacht moet worden dat zulke c(concentratie)-Q(afvoer) relaties door regressietechieken zijn bepaald, en dus een aantal nadelen hebben. Ten eerste betreft het gemiddelde relaties, waarbij echter een grote spreiding rond het gemiddelde blijkt op te treden. Ten tweede zijn dit soort relaties afgeleid uit en dus ook alleen van toepassing voor situaties uit het verleden.

Ter illustratie is hier Figuur 2.2 opgenomen die het verband aangeeft tussen het gemeten concentratie zwevend transport en het debiet voor de lokatie Andernach, ongeveer 200 km stroomopwaarts van Lobith, de plaats waar de Rijn Nederland binnenkomt. Uit de door Asselman (1997) uitgevoerde analyse blijkt is de beschikbaarheid van fijn sediment een belangrijke factor voor de relatie tussen concentratie en afvoer. Dit verklaart ook waarom er een verschil zit tussen het verband voor de eerste hoogwaters en de hoogwaters die later in het jaar optreden. Wat tevens opvalt aan Figuur 2.2 is de grote spreiding. Dit is een belangrijke reden voor de grote onnauwkeurigheid van de schattingen van het zwevend sediment transport in de Rijn. Dit blijkt ook uit Figuur 2.3, die eveneens is overgenomen uit Asselman (1997). Afhankelijk van het type verband dat tussen c en Q wordt aangenomen, kan de voorspelde concentratie c bij hoge afvoeren (die het meest belangrijk zijn voor sedimentatie in de uiterwaard) aanzienlijk variëren. De implicatie is tevens dat schattingen van de sedimentatie van slib in uiterwaarden altijd van beperkte nauwkeurigheid zullen zijn in verband met de geringe nauwkeurigheid van de hoeveelheden zwevend materiaal dat via de Rijn Nederland binnenkomt. Hetzelfde geldt overigens voor de Maas.
Figuur 2.1 Afvoer en zwevend sediment gehalte van de Rijn bij Lobith tijdens twee recente hoogwaters (Asselman, 1997)
Figuur 2.2 Minimum en maximum zwevend sediment concentraties in de rivier de Rijn bij Aandrang in de periode 1980-1990 (Asselman, 1997)

Figuur 2.3 Effect van verschillende veronderstelde verbanden tussen concentratie c en debiet Q (Asselman, 1997).

2.3 Transport van slib in en de slib-balans van rivieren

Een belangrijke doelstelling van een analyse van het transport van slib in de Nederlandse Rijntakken is om inzicht te krijgen in de slib-balans van de Nederlandse Rijntakken, en vooral hoe die zal veranderen als gevolg van veranderingen in de inrichting van de uiterwaarden. In de rivier wordt het fijne materiaal afgevoerd als spoeltransport.
Dat wil zeggen dat het niet tot sedimentatie komt in de hoofdgeul van de rivier. Voor een situatie waarbij de uiterwaarden niet worden overstromd, is het maken van een slib-balans dan ook tamelijk eenvoudig. Als de aanslibbing in voorhavens en in andere stagnante bekens wordt verwaarloosd (en er ook geen berging van slib in de kribvakken plaatsvindt), dan is een slib-balans voor een rivier die nog niet onder invloed is van getij erg simpel: al het slib dat bovenstrooms wordt aangevoerd, wordt door de rivier getransporteerd en passeert ook de benedenstroomse rand van het beschouwde riviertraject.

Tijdens hoogwater is de situatie anders omdat dan de uiterwaarden overstromd worden. In de Nederlandse Rijntakken vindt niet alleen berging van water plaats in de uiterwaarden, maar de uiterwaarden dragen ook bij tot de afstroming van het hoogwater. Het relatieve belang van de uiterwaarden voor de afstroming van hoogwater is afhankelijk van (1) de relatieve afmetingen van de hoofdgeul ten opzichte van de uiterwaarden en (2) de hoogte van het hoogwater. In de IJssel kunnen de uiterwaarden tot 50% van de hoogwaterafvoer voor hun rekening nemen. In de andere Rijntakken is de bijdrage overigens geringer.

De overstroming van de uiterwaarden brengt ook grote veranderingen in de slibhuishouding met zich mee. In de uiterwaarden is de snelheid in het algemeen veel lager (grote ruwheid als gevolg van de vegetatie, geringere waterdiepten en veel invloed van zomerdijken en andere verhogingen b.v. ten behoeve van wegen). Het fijne sediment dat tijdens hoogwater door middel van convectief transport naar de uiterwaard wordt getransporteerd zal daar grotendeels sedimenteren. Daardoor wordt fijn sediment aan de rivier onttrokken, en neemt de concentratie aan slib af in langsrichting van de rivier. Dat betekent dat niet mag worden aangenomen dat het sediment dat samen met het water de uiterwaarden binnentreedt overal dezelfde concentratie heeft. De afname van de concentratie kan vrij aanzienlijk zijn. Volgens Narinesingh (1996) neemt bij hoogwater de concentratie aan fijn sediment langs de IJssel af met circa 55 à 60%. Volgens Asselman (1997) is een afname van 35% in de IJssel meer waarschijnlijk. Zij geeft ook getallen voor de Waal (afname van 0 tot 15%) en voor de Nederrijn-Lek (60%). In een eerder onderzoek kwam Middelkoop (1997) tot de conclusie dat tijdens “belangrijke” hoogwaters circa 20% van het slibtransport in de uiterwaarden van de Waal achterblijft. Dit is circa 9% van de jaarlast aan fijn sediment. Met name voor de Waal vindt dus relatief weinig sedimentatie plaats en is voor de huidige omstandigheden de afname van de concentratie waarschijnlijk niet zo belangrijk. Het ligt echter in de bedoeling om, als een van de maatregelen die in het kader van RvR moeten worden beoordeeld, uiterwaarden te verlagen. Hierdoor zal de sedimentatiesnelheid aanzienlijk toenemen, en daardoor ook het verschijnsel dat bij hoogwater de concentratie afneemt in langsrichting. Bijlage B, die later in meer detail zal worden besproken, geeft een methode om de toename van de sedimentatie als gevolg van de verlaging van een uiterwaard af te schatten. Uit deze Bijlage kan worden afgeleid dat een toename van de diepte van overstroming met een factor 2 tot een toename van de sedimentatie leidt met een factor die zelfs groter is dan 2. Daarbij is het effect van het vaker overstromen nog niet eens meegenomen.

Narinesingh (1996) geeft een methode om de afname van de concentratie van het fijne materiaal in de lengterichting van een rivier tijdens hoogwater te simuleren. Deze methode, die gebaseerd is op een regelmatige uitwisseling van water tussen hoofdgeul en uiterwaarden, wordt in Paragraaf 3.2 besproken. Benadrukt wordt dat deze methode ervan uitgaat dat het fijne materiaal naar de uiterwaard wordt afgevoerd via convectie.
In Narinesingh (1996) wordt aangetoond dat diffusie in dwarsrichting (een verschijnsel dat door eerdere onderzoekers als het mechanisme dat verantwoordelijk is voor sedimentatie van uiterwaarden is gehouden) voor de Nederlandse Rijntakken een te verwaarlozen bijdrage levert in vergelijking met de convectieve transport.

2.4 Sedimentatie van slab in uiterwaarden

Het fijne sediment dat door de stroming meegevoerd wordt naar de uiterwaard zal daar geheel of gedeeltelijk tot bezinking komen. In het recente verleden is uitgebreid onderzoek gedaan naar de sedimentatie van slab in de Nederlandse uiterwaarden, met name door Middelkoop (1997) en Asselman (1997) in gezamenlijkheid. In door hun beiden uitgevoerd onderzoek is de sedimentatie van slab tijdens recente hoogwaters gemeten. Dit heeft goed materiaal opgeleverd dat kan worden gebruikt voor het toetsen van methoden om de sedimentatie in uiterwaarden te voorspellen. Verder heeft Middelkoop (1997) door middel van een combinatie van onderzoeks middelen (oude rivierkaarten, 210Pb, pollenanalyse en zware metalen) de sedimentatiesnelheden in het verleden bepaald. Het blijkt dat de sedimentatiesnelheden in uiterwaarden langs de Waal in de loop van de afgelopen drie eeuwen is afgenomen van circa 10 mm/jaar tot circa 1 mm/jaar. Deze afname is waarschijnlijk te verklaren uit de steeds toenemende hoogteligging van de uiterwaarden (de rivier is vastgelegd en kan de uiterwaard niet meer eroderen), waardoor de frequentie van overstromen van de uiterwaarden steeds geringer wordt. Dit komt overeen met waarnemingen van Wolman & Leopold (1957) aan een riviertje in de Verenigde Staten.

Voor wat betreft de voorspelling van de sedimentatie van slab in uiterwaarden zijn er in het verleden verschillende aanpakken gebruikt. James (1986) en Pizzuto (1985) zijn er van uitgegaan dat sedimentatie in uiterwaarden vooral via laterale diffusie plaats vindt. Daarvoor hebben zij rekenmethodes ontwikkeld, die echter minder relevant lijken, omdat volgens o.m. de recente onderzoeken slab vooral via convectie naar de uiterwaarden wordt afgevoerd. Meer recent heeft het RIZA (van den Brink, 1994) het 2D wiskundig model DELWAQ toegepast om de sedimentatie van slab te simuleren. Dit model simuleert zowel de depositie als de erosie van slab, en wordt toegepast op basis van de resultaten van een berekening van de 2D waterbeweging (afkomstig van het model WAQUA). Een soortgelijke aanpak is gevolgd bij de toepassing van een GIS georiënteerd model SEDIFLUX door Middelkoop (1997) op basis van eveneens WAQUA resultaten. Een simpelere aanpak is gevolgd door Narinesingh (1996), die de uiterwaard als sedimentatiebekkens beschouwde en een methode van Chen (1975) gebruikte om de sedimentatie in de uiterwaard af te schatten.

valsnelheid). In de gebruikte methode van Chen (1975) (zie ook Paragraaf 3.3) kan namelijk een onderscheid naar het type sediment en dus naar de valsnelheid gemaakt worden.

2.5 Depositie in voorhavens en andere stagnante wateren

Slib wordt ook afgezet in voorhavens van sluiscomplexen en andere stagnante bekken als gewone havens. In principe dient bij het maken van een balans in langsrichting deze sedimentatie als term te worden meegenomen. De afvoer van slib naar voorhavens e.d. gebeurt met name door diffusie via de grenslaag tussen het stromende rivierwater en het stagnante bekken. Ter plaatse van dit grensvlak worden neren gevormd die voor transport van fijn materiaal in dwarsrichting zorgen.

De mate van uitwisseling van "debiet" in dwarsrichting kan worden afgeschat met de volgende vergelijking (zie Graaf & Reinalda, 1977):

\[
Q_l = f_l h b u
\]

waar \(Q_l\) = laterale debiet-uitwisseling (m\(^3\)/s), \(h = \) waterdiepte (m), \(b = \) breedte van de opening (m), \(u = \) watersnelheid (m/s) en \(f_l\) is een dimensieloze coëfficiënt, die o.m. afhangt van de geometrie van de voorhaven. De waarde van \(f_l\) varieert tussen 0,01 en 0,03. De sediment transport \(S_l\) dat netto naar de voorhaven wordt afgevoerd komt overeen met:

\[
S_l = (c_i - c_u) Q_l
\]

waarbij \(c_i = \) concentratie slib in de rivier en \(c_u = \) concentratie slib in de voorhaven na sedimentatie van het slib.

Zoals gezegd zou in principe dit verlies aan slib in een balans in lengterichting moeten worden opgenomen. Doordat verwacht mag worden dat maatregelen in het kader van IVR/RvR geen invloed op de aanslibbing in voorhavens zullen hebben, is deze bijdrage verder buiten beschouwing gelaten.
3 Mogelijke modelmatige aanpakken

3.1 Inleiding

Bij de beoordeling van inrichtingsplannen speelt ook de wijzigingen in de aanslibbingspatronen in uiterwaarden een rol. Er bestaat enige vrees dat de uiterwaarden die in het kader van natuurontwikkeling en hoogwaterbestrijding zouden worden verlaagd weer snel zouden aanslibben. Er is dus behoefte aan een methode om de aanslibbing en met name de veranderingen daarin te kunnen bepalen.

In dit hoofdstuk worden mogelijke modelmatige aanpakken voor de bepaling van de sedimentatie in uiterwaarden besproken. Met name de te gebruiken "modellen" komen aan de orde. Daarbij is het goed om van tevoren aan te geven dat in principe twee typen modellen met elkaar gecombineerd dienen te worden, namelijk:
1. een model voor de afname van het slibgehalte in de rivier (als gevolg van de sedimentatie in de achtervolgende uiterwaarden), en
2. een model voor de sedimentatie in uiterwaarden.

Wat betreft het laatste is het in het kader van IVR/RvR het niet van belang is om gedetailleerde 2D sedimentatie patronen van zand en slib in uiterwaarden te voorspellen. In het IVR/RvR kader is het waarschijnlijk voldoende als veranderingen in sedimentatiesnelheid gemiddeld over een hele uiterwaard worden voorspeld.

Verder wordt benadrukt dat de sedimentatie in uiterwaarden plaats vindt tijdens alle hoogwaters waarbij het winterbed wordt overstroomd. Het is noodzakelijk om een schatting te maken van de sedimentatie tijdens al deze hoogwaters en hun bijdrage (na rekening te hebben gehouden met de frequentie van voorkomen) te sommeren. Er is dus geen "maatgevend" hoogwater voor sedimentatie in uiterwaarden, te meer niet omdat als onderdeel van de te beoordelen plannen uiterwaarden mogelijk zullen worden verlaagd en zomerdijken zullen worden wegehaald of ook verlaagd. De modelmatige aanpak zal dus voorspellingen moeten doen voor een aantal afvoerniveaus en voor alle uiterwaarden langs de Nederlandse Rijntakken. Dit impliceert dat de te gebruiken methode niet te ingewikkeld mag zijn.

De identificatie van de uiterwaarden is een punt apart. Narinesingh (1996) ging uit van goed gedefinieerde uiterwaarden aan beide zijden van de rivier, waarbij onderlinge uitwisseling tussen deze uiterwaarden en de hoofdgeul plaatsvindt. Deze schematisering is tamelijk idealistisch en is in de praktijk niet gemakkelijk mogelijk. Dit punt wordt nader besproken in Paragraaf 5.4.

In de volgende twee paragrafen worden de twee typen modellen die hierboven zijn onderscheiden besproken. Verschillende mogelijkheden om de afname in concentratie in langsrichting en de sedimentatie in uiterwaarden zullen de revue passeren.
Mogelijke combinaties worden in Paragraaf 3.4 besproken. In hoofdstuk 4 wordt vervolgens op basis van een analyse van de voor- en nadelen een keuze gemaakt voor een modelmatige aanpak.

3.2 Veranderingen in slibconcentratie in langsrichting

In grote lijnen kunnen de volgende mogelijkheden om de afname van de sedimentconcentratie in langsrichting te "modelleren" worden onderscheiden:

1. aannemen dat de afname in concentratie in langsrichting niet zo belangrijk is (methode "constant");
2. simpele analytische methode (relaxatie methode);

Elk van deze drie verschillende methoden wordt hierna kort besproken.

Methode constant

Zoals al gesteld in Paragraaf 2.3, is de afname in sediment concentratie in langsrichting in sommige riviertakken niet erg groot. Met name voor de Waal in de huidige situatie is dit het geval. Overwogen kan worden om voor enkele of voor alle riviertakken het effect geheel te verwaarlozen. Aangenoemt zou kunnen worden dat de concentratie niet verandert in langsrichting zodat (bij gelijke afvoer) bij alle uiterwaarden de concentratie aan fijn sediment gelijk wordt verondersteld aan de concentratie bij Lobith (zie ook Paragraaf 5.5). Dit zal leiden tot een zekere overschatting van de sedimentatie in meer benedenstroomse uiterwaarden. Als alternatief kan een lagere (constante) concentratie worden aangehouden dan bij Lobith, waardoor gemiddeld genomen de afname wordt meegenomen. De aan te houden vermindering zou dan geschat moeten worden aan de hand van de voorgestelde inrichtingsvarianten.

Relaxatie methode

Zoals in Narinesingh (1995) is aangegeven, komt de afname van de concentratie aan fijn sediment bij benadering overeen met een soort e-macht. Schematisch kan dat worden weergegeven met de volgende vergelijking:

\[c(x) = c_0 \cdot e^{-kx} \]

waarbij \(c(x)\) = concentratie (mg/l) op een afstand \(x\) (langs de rivier gemeten) benedenstrooms van Lobith, \(c_0\) = concentratie (mg/l) in Lobith voor de beschouwde afvoer \(Q\), en \(k\) = relaxatie coëfficiënt. In lijn met Narinesingh (1995) kan gesteld worden dat:

\[k = f \left(\frac{\Delta Q}{Q}, L_c, L, E \right) \]

met \(\Delta Q\) = instroming in de uiterwaard (in feite de uitwisseling), \(L_c\) = onderlinge afstand tussen twee opeenvolgende uiterwaarden (m), \(L\) = menglengte, en \(E\) = trapping efficiency. De factor \(E\) verschilt in principe per uiterwaard en per inrichtingsvariant en kan schematisch worden weergegeven via:
\[E = f(D, \frac{A}{\Delta Q}) \]

(3.3)

Hierbij is \(D \) = karakteristieke diameter van het slab, en \(A \) = oppervlak uiterwaard.

Het is denkbaar dat een methode wordt bedacht waarbij een soort gemiddelde waarde voor \(k \) wordt bepaald aan de hand van de bovenstaande parameters en vooral op basis van de eigenschappen van de beschouwde riviertak en de inrichtingsvariant. De waarde van \(k \) zal overigens ook een functie van \(Q \) zijn. De aldus bepaalde waarde van \(k \) kan vervolgens gebruikt worden om voor de verschillende riviertakken het geschat verloop van \(c(x) \) te vinden, waarbij tevens \(c(x) = f(Q_{labih}) \) is. Benadrukt wordt dat per riviertak en mogelijk ook per inrichtingsvariant verschillende waarden voor \(k \) gebruikt kunnen worden. De aldus geschatte afname van de sedimentconcentratie zal een redelijke, maar niet al te goede schatting van de sediment concentratie ter plaatse van de verschillende uiterwaarden opleveren. Qua nauwkeurigheid ligt de methode 2 tussen methode 1 (onnauwkeurig) en Methode 3 (onnauwkeurig) in.

Methode Narinesingh

Deze methode komt overeen met de methode voorgesteld in Narinesingh (1995), en is gebaseerd op het schematiseren van de rivier als een geul met aan beide kanten uiterwaarden die in principe als sedimentatiebasins werken en waarop Narinesingh de methode van Chen (1975) toepast om de trapping efficiency \(E \) te bepalen. Toepassing van de methode houdt in dat een gedetailleerde schematisering van het rivierstelsel en met name van de uiterwaarden moet worden gemaakt. Van de verschillende uiterwaarden dient dan voor alle beschouwde afvoerniveaus en inrichtingsvarianten te worden bepaald:

- in- en uitstroompunt als functie van \(x \)
- het instroomdebiet \(\Delta Q \) per uiterwaard
- het oppervlak \(A \) van de uiterwaard
- de efficiency \(E \) van elke uiterwaard (inclusief correctiefactoren als besproken in Narinesingh) als functie van \(D \)

en eventueel:

- menging benedenstrooms van elke uiterwaard in relatie tot het instroompunt van de volgende uiterwaard.

Een dergelijke schematisatie maken zal niet eenvoudig zijn, omdat in werkelijkheid de riviergeometrie veel ingewikkelder is dan een aaneenschakeling van uiterwaarden aan beide zijden van de rivier, zoals door Narinesingh (1996) is verondersteld.

In Hoofdstuk 4 zullen de drie hierboven aangeduide methoden nader worden bekeken in relatie tot een keuze welke het best kan worden gebruikt.
3.3 Sedimentatie in uiterwaarden

3.3.1 Inleiding

Voor de bepaling van veranderingen in de sedimentatie in uiterwaarden door wijzigingen in de inrichting dient een methode ter beschikking te staan waarmee de sedimentatie in een uiterwaard kan worden bepaald. Daarbij gaat het niet om het gedetailleerde sedimentatiepatroon maar eerder om de gemiddelde sedimentatiesnelheid en hoe die zal veranderen door wijzigingen in de inrichting. Hierna zullen een aantal methoden worden besproken in volgorde van moeilijkheidsgraad en van benodigde inspanning.

Zoals al eerder aangegeven dienen deze methoden toegepast te worden voor een aantal afvoerniveau's, dus een belangrijke eis zal zijn dat ze niet te ingewikkeld of tijdroend zijn. Dit houdt in dat de simpele methoden, die hierna het eerst worden behandeld, het meest aantrekkelijk zijn vanuit dat oogpunt. Aan de andere kant geldt dat naarmate de methode simpeler is, de voorspelling minder nauwkeurig zal zijn.

De volgende methoden worden hier besproken:
• een methode gebaseerd op een vergelijking van de huidige inrichting en de toekomstige inrichting, gebruik makend van simpele relaties zonder dat het 1D model gebruikt wordt ("vergelijk"-methode);
• de methode Narinesingh, die de uiterwaard beschouwt als een sedimentatiebasin;
• een methode die gebruik maakt van de resultaten van het (IVR) 1D model (en de GIS data base) ("1D model")
• een methode die gebruik maakt van 2D modellen als DELWAQ en SEDIFLUX ("2D model").

3.3.2 "Vergelijk"-methode

Een nog niet bestaande maar in principe mogelijke manier van modelleren is door de verandering van de sedimentatiesnelheid te baseren op een vergelijking van de huidige situatie met het te beschouwen inrichtingsplan. Allereerst wordt voor de huidige situatie een gedegen analyse uitgevoerd van de huidige sedimentatie snelheden. Dit kan op verschillende manieren, bijvoorbeeld met behulp van de methode Narinesingh (1996) en/of via een 1D model. Vervolgens worden de veranderingen in inrichting vertaald naar (1) veranderingen in efficiency van het sediment vangen, (2) veranderingen in het debiet dat tijdens een hoogwater de betreffende uiterwaard doorstromt, en (3) veranderingen in de overstromingsfrequentie van alle afvoeren waarbij de uiterwaard nu of in de toekomst zal overstromen.

In twee bijlagen is de methode gedetailleerder nader uitgewerkt voor het geval van een verlaging van een uiterwaard (Bijlage B) en het verlagen van een zomerkade (Bijlage C). Hier zal Bijlage B kort worden besproken. De verandering in efficiency van vangen van sediment is weergegeven in Figuur B1.1, terwijl de gezamenlijke invloed van de toename in debiet en de afname in efficiency is weergegeven in Figuur B1.2.
In combinatie met de veranderde frequentie van overstromen kan dit herleid worden tot de veranderingen in sedimentatie snelheden van de beschouwde uiterwaard. Potentieel is het dus mogelijk om met deze methode een afschatting van het effect van andere inrichtingen te maken. De methode kan uitgebreid worden om ook het effect van andere wijzigingen in een uiterwaard (als tweede geulen, veranderingen in vegetatie) te kunnen simuleren.

De beide bijlagen betreffen uiteraard simpele geschematiseerde gevallen. In werkelijkheid zal de geometrie van de uiterwaard en de herinrichting van de uiterwaard ingewikkelder zijn. Dat betekent dat de afgeschatte veranderingen niet al te nauwkeurig zullen zijn. Dit hoeft niet erg te zijn, daar de nauwkeurigheid van de afschatting van de huidige sedimentatie snelheden ook niet al te groot is.

3.3.3 Methode Narinesingh op basis van trapping efficiency

Om de sedimentatie in uiterwaarden te berekenen kan ook de methode Chen, die door Narinesingh (1996) is toegepast, worden gebruikt. Het betreft hier een methode die eerder is gebruikt voor de het ontwerp van sedimentatiebasins en die vervolgens ook is toegepast bij het bepalen van de sedimentatie in reservoirs. Essentieel in de methode van Chen (1975) is de efficiency van het vangen van sediment. Deze is afhankelijk van (1) het doorspoeldebiet Q, (2) het oppervlak A van het beschouwde basin of reservoir, en (3) de korrel diameter. Figuur 3.1 geeft de efficiency, zoals voorgesteld door Chen, als functie van de parameter A/Q voor verschillende korrel diameters. Zoals al gesteld, is de methode van Chen afgeleid voor sedimentatiebasins, en deze kan niet zonder meer voor uiterwaarden worden toegepast. Toe pasbaarheid voor uiterwaard sedimentatie dient nog aangetoond te worden.

![Figuur 3.1 Bepaling trapping efficiency volgens methode Chen (1975)](image)

De methode Chen is in principe afgeleid en dus geschikt voor een prismatisch sedimentatiebasin. Door Narinesingh (1996) worden een aantal suggesties gedaan om de berekening van de trapping efficiency met behulp van de methode van Chen op een veelal niet-prismatische uiterwaard toepasbaar te maken. O.m. door correcties te introduceren voor het effect van begroeiing (waardoor de breedte van het stroomvoerende geul variabel is in lengterichting), het effect van diepe geulen, enzovoorts.
Hoewel de methode Narinesingh in principe voor de berekening van de aanslibbing in een uiterwaard gebruikt kan worden, dient beseft te worden dat de methode slechts globaal en op een overall wijze (namelijk voor de gehele IJssel) is getoetst. Voorafgaand aan een eventuele toepassing dient daarom eerst een nadere toetsing te worden uitgevoerd. Dit kan waarschijnlijk gebeuren op basis van de door Middelkoop (1997) en Asselman (1997) verzamelde gegevens over de aanslibbing op de Waal en Maas uiterwaarden in 1993 en 1995. Verder dient nagegaan te worden op welke wijze bij de schematisatie van de uiterwaarden gebruik kan worden gemaakt van het GIS ontwikkeld in het kader van het IVR.

3.3.4 Methode Narinesingh + 1D-model

Een grote moeilijkheid bij toepassing van de methode Narinesingh is de schematisatie van de uiterwaard en vooral de bepaling van de uitwisseling van water tussen de uiterwaard en de hoofdgeul. In principe zouden de resultaten van de berekeningen met het 1D model SOBEK, dat onderdeel is van het IVR instrumentarium, hierbij behulpzaam kunnen zijn. In dit model zijn namelijk de hoofdgeul en de uiterwaarden apart geschematiseerd. Een van de uitkomsten van de berekening is de verdeling van het water over hoofdgeul en de uiterwaarden. In principe levert dit dus additionele informatie die gebruikt zou kunnen worden om de methode Narinesingh te verbeteren en de schematisatie te vergemakkelijken.

Een moeilijkheid hierbij is echter dat in de schematisatie voor het 1D model de uiterwaarden die aan beide kanten van de rivier zijn gelegen in de berekening zijn samengevoegd tot een uiterwaard. Het 1D model rekent met een samengesteld profiel en niet met drie aparte takken. De stroming over de uiterwaard dient dus nog verdeeld te worden over de rechter en linker uiterwaard voordat bijvoorbeeld informatie kan worden onttrokken uit de resultaten over bijvoorbeeld de uitwisseling tussen linker uiterwaard en hoofdgeul. Als het niet mogelijk is om tussen linker- en rechter uiterwaard te differentiëren, dan is het niet mogelijk om de methode Narinesingh te verbeteren.

Het verdelen van de afvoer door het winterbed over linker- en rechter uiterwaard is waarschijnlijk mogelijk met het Rivieren GIS. Uit het Rivieren GIS kan voor de huidige situatie per riviertraject de mate van overstroming van linker en rechter deel van de uiterwaard worden afgeleid. Op basis hiervan kan de totale afvoer door de uiterwaard, zoals berekend met behulp van SOBEK, worden verdeeld over de linker- en rechter uiterwaard. Eventueel kan rekening worden gehouden met de "conveyance" door de verdeling te laten plaatsvinden op basis van $h^{1/2}$. Dit levert dus voor verschillende afvoerniveau's het verloop van de afvoer door beide uiterwaarden in lengterichting op. Dit kan dan gebruikt worden om de uiterwaard te schematiseren tot een aantal sedimentatiebasins met bijbehorende waarden voor ΔQ. Verder kan met behulp van het Rivieren GIS voor elk van de onderscheiden bassins de waarde van het oppervlak A van elke uiterwaard worden bepaald als functie van de afvoer bij Lobith (of van de lokale waterstand). Vervolgens kan de methode Narinesingh worden toegepast als een soort nabewerking op de 1D berekeningen.

Een alternatief voor de geschetste methode (waarbij resultaten van SOBEK en het Rivieren GIS worden gebruikt om de methode Narinesingh te verbeteren), is dat de schematisatie van SOBEK IVR wordt aangepast. In principe zou een schematisatie met drie takken aantrekkelijker zijn voor de slibmodellering.
Met een 3 (parallele) takken model met een aparte takken voor de linker uiterwaard, hoofdgeul en rechter uiterwaard zou een veel beter beeld van de uitwisseling kunnen worden verkregen. Dit levert dan betere en meer gedetailleerde informatie op over de verdeling van de afvoer over beide delen van het winterbed. Gezien het vele werk dat een nieuwe schematisatie met zich mee zou brengen, is dit alternatief zeer waarschijnlijk niet acceptabel.

3.3.5 2D-benaderingen

Uiteraard is het ook mogelijk om 2D berekeningen te doen en aldus de sedimentatie in uiterwaarden te bepalen. Zoals al is aangegeven in Paragraaf 2.4 kan dit gebeuren met behulp van verschillende modellen. Zowel het model DELWAQ als het model SEDIFLUX zou kunnen worden toegepast. De toepassing van deze modellen is een flinke stap voorwaarts ten opzichte van de hiervoor genoemde methoden omdat de modellen beter fysisch onderbouwd zijn, en verder een meer gedetailleerde voorspelling van de sedimentatiedragers geven.

Een ander nadeel is dat beide modellen werken op basis van een berekende 2D waterbeweging. De resultaten van een dergelijke berekening zijn slechts bij uitzondering voorhanden. Voor de huidige situatie zijn dergelijke WAQUA-berekeningen en resultaten ter beschikking voor de Waal tussen km 886 en 926 (Bolt & Regeling, 1994). De berekeningen, waarbij de uiterwaarden zijn overstroomd, zijn echter slechts uitgevoerd voor drie afvoeren. Voor de andere riviertakken zijn alleen resultaten van 2D berekeningen ter beschikking voor extreem hoogwater. De situatie bij extreem hoogwater is echter niet maatgevend voor de sedimentatie van slib, die vooral plaatsvindt bij lagere hoogwaters (zie bijvoorbeeld Middelkoop, 1997, pp. 262-263). Verder zijn geen 2D waterbewegingsberekeningen voorhanden voor inrichtingsvarianten die in het kader van IVR/RvR bekeken dienen te worden. Het niet ter beschikking zijn van deze modelresultaten is een beperkende factor voor de toepassing van 2D modelleringen met DELWAQ en/of SEDIFLUX, hoewel in principe aanvullende WAQUA-berekeningen gemaakt kunnen worden.
(a) Gemeten sedimentatie op de Stiftse Uiterwaard in December 1993

(b) Berekende sedimentatie op de Stiftse Uiterwaard (en op de Varikse plaat)

Figuur 3.2 Vergelijking gemeten en berekende sedimentatie op een uiterwaard
(Bron: Middelkoop, 1997)
3.4 Combinaties en gebruik van modellen voor toetsing

Voorspellingen van de toekomstige sedimentatie snelheden bij een bepaalde inrichting van uiterwaarden kunnen gemaakt worden met behulp van de hierboven beschreven modellen. Daarbij zal in het algemeen een combinatie worden gebruikt van op zijn minst een model voor de afname van de slibconcentratie in langsrichting en een model voor de voorspelling van de sedimentatie van slib in specifieke uiterwaarden. Hier zal in Paragraaf 4.3, waar de verschillende mogelijke aanpakken worden besproken, nog nader op worden ingegaan.

4 Inbouwen slib in IVR instrumentarium

4.1 Inleiding

Er zijn verschillende aanpakken denkbaar voor het inbouwen van slib in het IVR instrumentarium. In dit hoofdstuk worden die verschillende aanpakken geïdentificeerd en wordt op basis van een beoordeling van de voor- en nadelen van elk van de aanpakken een aanbeveling gedaan voor een keuze van een van de aanpakken. In verband met het belang van een goede aansluiting aan het IVR instrumentarium wordt eerst (in paragraaf 4.2) een korte beschrijving van dit instrumentarium gegeven. Vervolgens worden de verschillende aanpakken die in principe mogelijk zijn geïdentificeerd. Een aanpak is in alle gevallen een "model" dan wel een veronderstelling voor de afname van de slibconcentratie in lengterichting van de rivier in combinatie met een voorspellingsmethode voor de sedimentatie van slib in de onderscheiden uiterwaarden. In paragraaf 4.3 wordt het aantal te bekijken aanpakken teruggebracht tot zes op basis van de filosofie dat beide onderdelen van de combinatie in een specifieke aanpak in redelijke mate op elkaar afgestemd moeten zijn.

Vervolgens wordt in paragraaf 4.4 een summierie beschrijving van een van de meest aangewezen aanpakken gegeven, en verder wordt voor de andere vijf aanpakken aangegeven waarin ze van de als basis gekozen aanpak verschillen. Dit maakt het mogelijk om in paragraaf 4.5 de voor- en nadelen van de verschillende aanpakken te bepalen. Op basis hiervan wordt in paragraaf 4.6 voorgesteld om in het IVR instrumentarium een aanpak te implementeren bestaande uit SOBEK berekeningen met een interpretatie via GIS samen met de methode Narinesingh voor de afname in langsrichting, in combinatie met de methode Narinesingh voor de bepaling van de sedimentatie in de verschillende uiterwaarden.

4.2 IVR Instrumentarium

Zoals al kort weergegeven in paragraaf 1.1 bestaat het IVR instrumentarium, dat ontwikkeld is om het mogelijk te maken inrichtingsvarianten onderling te vergelijken, uit de volgende basis:

1. een data base op PC met alle plannen en projecten voor de uiterwaarden, waaruit voor verschillende inrichtingsvarianten de effecten voor een aantal functies en de gerelateerde kosten kunnen worden afgeschat, en
2. een 1D model waarmee de rivierkundige effecten van verschillende inrichtingsvarianten kunnen worden bepaald op basis van de riviergeometrie behorend bij de specifieke inrichtingsvariant.

Dit is ingebed in het zogenaamde IVR-DSS (waar de afkorting DSS staat voor Decision Support System), een beslissingsondersteunend systeem.
In de data base op basis van een GIS (ARC/INFO) is vooral veel informatie opgeslagen over de uiterwaarden langs de verschillende Rijntakken. Het betreft hier o.m. de voor de onderhavige definitiestudie belangrijke parameters als:

- hoogteligging van de uiterwaarden via een digitaal terrein model als basis
- overstromingsduur (Schutte, 1997a), afgeleid uit o.m. betrekkingsslijnen;
- ecotopenverdeling (Schutte, 1997b), aangevend welk type begroeiing aanwezig is dan wel aanwezig zal zijn, belangrijk voor o.m. de ruwheid van de uiterwaard;
- overhechten (Schutte, 1997c) waaruit de hoogte van de zomerdijken kan worden afgeleid.

Het 1-D model is een SOBEK model van de Nederlandse Rijntakken, waarbij het dwarsprofiel zodanig is geschematiseerd dat de linker en rechter uiterwaarden zijn samengevoegd. Zoals al benadrukt in paragraaf 3.3.4 is het niet mogelijk om uit de SOBEK berekeningen af te leiden hoe het water over de linker en de rechter uiterwaard verdeeld is. De schematisatie van het dwarsprofiel van de rivier is inmiddels geautomatiseerd en wordt rechtstreeks uit het ARC/INFO bestand afgeleid. Voor meer informatie over het SOBEK model wordt verwezen naar Barneveld et al (1994) en Van der Veen et al (1997).

Het IVR-DSS is nog in ontwikkeling. Recent is een uitbreiding voorgesteld waarbij de effectentabel (de "beoordeling" van een inrichtingsvariant) automatisch kan worden aangemaakt (Laguzzi et al, 1997). Idealiter zou de invloed van een variant op de slibhuishouding eveneens automatisch bepaald moeten kunnen worden.

4.3 Mogelijke aanpakken

In principe kan een groot aantal aanpakken worden geïdentificeerd, omdat de drie methoden voor de bepaling van de afname van de concentratie kunnen worden gecombineerd met de vier methoden om de aanslibbing in individuele uiterwaarden te bepalen. Dus is een totaal van $3 \times 4 = 12$ mogelijkheden voorhanden. In alle redelijkheid is het aantal realistische mogelijkheden veel geringer, omdat het niet logisch is om een zeer gedetailleerde methode voor de bepaling van de aanslibbing in een uiterwaard voor diverse inrichtingsvarianten te combineren met een zeer globale manier van afschatten van de afname van de concentratie in langsrichting. In onderstaande tabel zijn de meest voor de hand liggende combinaties weergegeven.

<table>
<thead>
<tr>
<th>Aanslibbing uiterwaard</th>
<th>Methode constant</th>
<th>Relaxatie methode</th>
<th>Methode Narinesingh</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Vergelijk"-methode</td>
<td>+ (1)</td>
<td>+ (2)</td>
<td>-</td>
</tr>
<tr>
<td>Methode Narinesingh</td>
<td>-</td>
<td>+ (3)</td>
<td>-</td>
</tr>
<tr>
<td>Methode Narinesingh + 1D model</td>
<td>-</td>
<td>+ (4)</td>
<td>+ (5)</td>
</tr>
<tr>
<td>2D model</td>
<td>-</td>
<td>-</td>
<td>+ (6)</td>
</tr>
</tbody>
</table>

Tabel 4.1 Mogelijke aanpakken voor de bepaling van de sedimentatie van slib (+ = mogelijk, - = onlogische combinatie)
Dit leidt tot een totaal van zes verschillende mogelijkheden. De methode die gebruik maakt van een 1D model kan in principe nog onderverdeeld worden in een 1D model met 2 takken zoals nu in het huidige IVR instrumentarium voorligt en een 3-takken model dat speciaal ontwikkeld zou moeten worden. Omdat dit niet realistisch lijkt is de mogelijkheid van een 3-takken model hier niet verder beschouwd.

De zes mogelijke aanpakken zijn in het volgende genummerd van 1 tot en met 6, en ze worden beschreven door de combinatie van de modellen zoals weergegeven via de naamgeving in de tweede rij en de eerste kolom van Tabel 4.1. Dus:

1 = Methode constant/"Vergelijk"-methode
2 = Relaxatie methode/"Vergelijk" methode
3 = Relaxatie methode/Methode Narinesingh
4 = Relaxatie methode/Methode Narinesingh + 1D model
5 = Methode Narinesingh/Methode Narinesingh + 1D model
6 = Methode Narinesingh/2D model.

Deze zes verschillende aanpakken worden in de volgende paragrafen nader omschreven en beschouwd.

4.4 Korte beschrijving van de verschillende aanpakken

Begonnen wordt met een beschrijving van aanpak 5 met de methode Narinesingh voor de afname van de slibconcentratie in langsrichting in combinatie met de methode Narinesingh voor de bepaling van de sedimentatie in de uiterwaarden, in combinatie met een 1D model en GIS. De reden dat met deze aanpak wordt begonnen is dat bij het verdere onderzoek zal blijken dat deze methode waarschijnlijk het meest aantrekkelijk is. Vervolgens worden de andere methoden met aanpak 5 vergeleken.

Aanpak 5 Methode Narinesingh/Methode Narinesingh + 1D model

Deze methode bestaat uit de volgende stappen die voor elke inrichtingsvariant moeten worden uitgevoerd:

1. Bepaling van stroming door uiterwaarden: uitvoeren van SOBEK berekeningen voor een aantal (4?) representatieve afvoerniveaus tussen de laagste afvoer dat de uiterwaard worden overstromd en maatgevend hoogwater, elk representatief voor een klasse afvoeren met een zekere waarschijnlijkheid van voorkomen.

2. Verdeling van de stroming over de uiterwaard over de linker en rechter uiterwaard: gebruik makend van het GIS Rivieren en op basis van een schatting van het afvoerend vermogen (op basis van hoogte uiterwaard en hoogte zomerdijken - methodiek nog te ontwikkelen).

3. Verdeling van totale oppervlak aan uiterwaarden in n uiterwaarden met in- en uitstroompunten op basis van de uitwisseling tussen laagwaterbed en uiterwaarden (methodiek nog te ontwikkelen) en in- en uitstroomdibieten ΔQ per individuele uiterwaard en voor de onderscheiden afvoerniveaus (methodiek nog te ontwikkelen).
4. Bepaling met behulp van het GIS Rivieren van de oppervlakte A van elk van de n onderscheiden uiterwaarden als functie van het afvoerniveau of de lokale waterstand en het maken van vloeien krommen.

5. Keuze van k representatieve afvoerklassen (hoeft niet hetzelfde aantal te zijn als onder stap 1), en bepaling van de bijbehorende waarschijnlijkheid van voorkomen p (nu en/of in de toekomst).

7. Bepaling van de korrelverdeling van het zwevend materiaal (als functie van de afvoer?) en verdeling ervan in bijvoorbeeld 3 fracties met bijbehorende representatieve korreddiameter (valsnelheid) en waarschijnlijkheid van voorkomen f (als functie van de afvoer).

8. Bepaling van E voor alle drie de fracties voor alle n uiterwaarden, en voor alle k afvoerklassen.

9. Berekening van de afname van de concentratie c = c (c_{Lobith}, x) voor de 3 fracties voor alle k afvoerniveaus volgens de methode Narinesingh.

10. Bepaling van de aanslibbing per uiterwaard uit:
 $$V = \sum p \cdot 365 \cdot 24 \cdot 60 \cdot 60 \cdot f \cdot c \cdot \Delta Q \cdot E$$
 \hspace{1cm} (4.1)
 gebruik makend van de methode Narinesingh, waarbij c volgt uit stap 9 en waarbij gesommeerd wordt over alle afvoeren boven de afvoer waarbij de laagste uiterwaarden volstromen en over de drie fracties.

11. Bepaling van de gemiddelde aanslibbingssnelheid voor elk van de n uiterwaarden via:
 $$\text{gemiddelde aanslibbingssnelheid} = \frac{V}{A}$$
 \hspace{1cm} (4.2)

12. Berekening van een of meer typische parameters die de gemiddelde aanslibbing karakteriseren (bijvoorbeeld de relatieve aanslibbing, door de gemiddelde aanslibbing te vergelijken met de huidige situatie) en presenteert resultaat in effectentabel (precieze methode en presentatie nog te ontwikkelen).

Vervolgens wordt een korte karakteristiek van de andere vijf aanpakken gegeven, met name door aan te geven waarin ze verschillen van de hierboven beschreven aanpak 5:

Aanpak 1 Methode constant/Methode Narinesingh
Wezenlijk verschillend van methode 5, omdat geen gebruik wordt gemaakt van resultaten van het 1D model en de veranderingen in aanslibbing worden berekend met behulp van simpele rekenregels op basis van gegevens rechtstreeks te ontrouen uit de inrichtingsplannen. Verder wordt stap 9 overgeslagen en er wordt aangenomen dat de slabconcentratie gelijk is aan de concentratie te Lobith of aan een (nader te bepalen) lagere waarde. Stappen 1 t/m 4 vervangen door bepaling van n uiterwaarden m.b.v. GIS en/of visuele inspectie van uiterwaarden op rivierkaarten, bepaling van A, van hoogte zomerkaden en van hoogste uiterwaarden uit GIS en op basis van inrichtingsvariant. Stappen 5 en 6 gelijk. Stap 7 niet nodig. Stap 8 vervangen door vergelijk methode (nog te ontwikkelen op basis van o.m. Bijlagen B en C). Stap 9 deels vervangen door aanname over (constante) slabconcentratie. Stappen 10 t/m 12 gelijk.
Aanpak 2 Relaxatie methode/"Vergelijk" methode
Deze aanpak is in grote lijnen gelijk aan aanpak 1. Verschil zit met name in stap 9, waarbij in plaats van een constante slibconcentratie een e-macht wordt aangenomen. Waarde van k (in vergelijking (3.1) te bepalen uit karakteristieken inrichtingsvariant (methode nog te ontwikkelen).

Aanpak 3 Relaxatie methode/Methode Narinessingh
Is een kruising tussen aanpak 2 en aanpak 5 zonder dat gebruik wordt gemaakt van de resultaten van een 1D model: de variatie van de slibconcentratie wordt in stap 9 berekend met een e-macht op basis van een relaxatie-coefficient k (zie aanpak 2). Omdat geen gebruik wordt gemaakt van een 1D model, kan de uitwisseling tussen de uiterwaarden slechts summier worden geschat m.b.v. het GIS. De stappen 1 t/m 3 worden dus vervangen door een analyse met GIS (methode nog te ontwikkelen).

Aanpak 4 Relaxatie methode/Methode Narinessingh + 1D model
Methode komt sterk overeen met de aanpak 5 die hierboven in 12 stappen is omschreven. Verschil zit met name in stap 9, doordat een e-macht wordt aangenomen en de waarde van k wordt bepaald als beschreven onder aanpak 2. Verschil met aanpak 3 met name doordat een 1D model wordt gebruikt en dus de stappen 1 t/m 3 van aanpak 5 wordt gevolgd.

Aanpak 6 Methode Narinessingh/2D model
Is een verdere uitwerking en verfijning van aanpak 5 doordat per uiterwaard (en in principe per afvoerklasse en per fractie) de aanslibbing wordt berekend met een 2D model. Dat gebeurt in stap 10. Verder wordt gebruik gemaakt van een 1D model en GIS als omschreven in aanpak 5.

In de volgende paragraaf worden voor- en nadelen van de verschillende aanpakken onderzocht.

4.5 Voor- en nadelen van de verschillende aanpakken

Voor een verantwoorde keuze tussen de verschillende methoden dienen de verschillende aanpakken (gekarakteriseerd door een combinatie van twee "modellen", zie Paragraaf 4.3) onderling te worden vergeleken en dienen de voor- en nadelen van elk op een rijtje te worden gezet. Bij deze onderlinge vergelijking zijn zowel technisch-inhoudelijke als operationele aspecten van belang.

De volgende technisch-inhoudelijke aspecten zijn van belang
1. noodzakelijke additionele modelontwikkeling
2. gedetailleerdheid van de voorspellingen in relatie tot de gewenste nauwkeurigheid
3. mogelijkheid om de methode te toetsen
4. aansluiting en gebruik van het IVR instrumentarium
5. nauwkeurigheid van de aanpak in relatie tot de nauwkeurigheid van de invoergegevens en de nauwkeurigheid waarmee de verschillende inrichtingsvarianten kunnen worden gespecificeerd;
6. risico dat bij nadere uitwerking de methode toch niet voldoende blijkt te zijn
In Tabel 4.2 worden de verschillende aanpakken onderling vergeleken ten aanzien van deze technisch-inhoudelijke aspecten.

Verder zijn de volgende operationele aspecten van belang:
1. benodigde inspanning voor het ontwikkelen van de methode;
2. benodigde inspanning voor schematisatie van de rivier en zijn uiterwaarden per inrichtingsvariant
3. handmatige dan wel automatische analyse mogelijk bij onderzoeken van inrichtingsvarianten
4. beschikbaarheid gegevens die als randvoorwaarden moeten dienen of noodzaak om additieel gegevens te verzamelen
5. noodzaak voor additionele berekeningen met SOBEK IVR
6. noodzaak voor additionele berekeningen met andere modellen
7. totaal benodigde tijd voor ontwikkelen van instrumentarium

In Tabel 4.2 worden de verschillende aanpakken onderling vergeleken ten aanzien van deze operationele aspecten.

4.6 Voorstel voor keuze voor te implementeren optie

Komen tot een formele beoordelingsprocedure op basis van een formele weging van voor- en nadelen zou veel tijd en veel overleg kosten omdat met name het bepalen van weegfactoren moeilijk is. Deze weegfactoren zijn namelijk niet (gemakkelijk) onder een gemeenschappelijke noemer te brengen. Daarom is besloten om redelijk intuitief te werk te gaan bij het bepalen van de meest aanbevelenswaardige alternatief.

De volgende redenering is gevolgd. Aanpak 6 valt af vanwege de zeer omvangrijke hoeveelheid werk dat er mee gemoeid is. Deze staat in geen verhouding tot het belang van slib bij de uiteindelijke beslissing ten aanzien van de herinrichting van uiterwaarden. Uiteraard kan de geschetste procedure, gebruik makend van het met slib uitgebreide IVR instrumentarium, wel gebruikt worden om de toekomstige veranderingen in het afzetten van slib in een specifieke uiterwaard te voorspellen. Dit zal eerder gebeuren in het kader van specifieke inrichtingsplannen voor uiterwaard of bij een nadere beoordeling van de specifieke omstandigheden in een bepaalde uiterwaard na inrichting. Deze aanpak is echter te gedetailleerd voor planningstudies als IVR en RvR.

Aanpak 1 is een zeer globale methode, waarbij niet of nauwelijks wordt aangesloten op het bestaande IVR instrumentarium. Tevens dient voor deze aanpak een methode (de "vergelijking" methode) te worden ontwikkeld, waarvan niet zeker is dat die met redelijk succes en zonder risico's (op falen) kan worden ontwikkeld. Aanpak 1 is daarom minder aantrekkelijk.

De aanpakken 2 tot en met 4 zijn alle drie gebaseerd op de relaxatie-methode. Deze methode is relatief onnauwkeurig en wordt onnauwkeuriger naarmate de aansluiting op de uiterwaarden in lengterichting toeneemt. Van aanpak 2 naar aanpak 4 gaand, neemt de nauwkeurigheid van de voorspelling van de aansluiting in de uiterwaarden toe. Tevens neemt in die richting de aansluiting op het IVR instrumentarium toe. Met name aanpak 4 maakt uitgebreid gebruik van zowel het GIS-instrumentarium en SOBEK, en verdient daarom waarschijnlijk de voorkeur.
Blijft over een keuze tussen aanpak 4 en aanpak 5. Aanpak 4 heeft als nadeel dat voor de relaxatie-methode een apart "model" moet worden ontwikkeld, terwijl dat voor de methode Narinesingh al bestaat. Daar staat tegenover dat de methode Narinesingh ook nog verder ontwikkeld moet worden. Wordt echter rekening gehouden met het feit dat aanpak 5 optimaal gebruik maakt van het bestaande IVR instrumentarium, dan bestaat er toch lichte voorkeur voor aanpak 5.

Dezerijds wordt daarom voorgesteld om aanpak 5 te kiezen voor implementatie in het IVR instrumentarium. Aanpak 5 is uitgebreid beschreven in de voorgaande paragraaf.
<table>
<thead>
<tr>
<th>Aanpak</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspecten</td>
<td>Methode constant/ Vergelijk-methode</td>
<td>Relaxatie methode/ Vergelijk-methode</td>
<td>Relaxatie methode/ Methode Narinessing</td>
<td>Relaxatie methode/ Methode Narinessing + 1D model</td>
<td>Methode Narinessing/ Methode Narinessing + 1D model</td>
<td>Methode Narinessing/ 2D model</td>
</tr>
<tr>
<td>Noodzakelijke</td>
<td>Methoden om de invloed van diverse maatregelen in combinatie op de aansluiting te bepalen ("vergelijk methode")</td>
<td>Vergelijk-methode plus "relaxatie" methode</td>
<td>Relaxatie-methode plus correctie factoren voor methode Narinessing; toepassing van GIS</td>
<td>Relaxatie-methode, correctiefactoren voor methode Narinessing en toepassing GIS voor uitwisseling uiterwaarden en correctie voor methode Narinessing</td>
<td>Methode als beschreven in Narinessing (1996) met verbetering van bepaling uitwisseling tussen laagwaterbed en uiterwaarden m.b.v. gebruik GIS</td>
<td>Zie onder aanpak 5 Waarschijnlijk geen ontwikkeling voor 2D model nodig</td>
</tr>
<tr>
<td>additionele modelontwikkeling</td>
<td>Alleen voorspellingen per uiterwaard; onderlinge beïnvloeding uiterwaarden slechts globaal; in rivieren met veel aansluiting slechte voorspellingen</td>
<td>Iets beter dan methode 1 in verband met betere voorspelling afname stib in langsrichting</td>
<td>Waarschijnlijk een verbetering ten opzichte van Aanpak 2 als het lukt de correctiefactoren voor de methode Narinessing goed te onderbouwen</td>
<td>Gelijkwaardig met Aanpak 3</td>
<td>Gedetailleerde voorspellingen die door gebruik van relaxatiemethode qua gemiddeld aansluitingsniveau (niet qua verdeling) enigszins onnauwkeurig kunnen zijn</td>
<td>Gedetailleerde voorspellingen</td>
</tr>
<tr>
<td>Gedetailleerdheid van de voorspellingen</td>
<td>Geen toetsing van methode constant; toetsing aansluiting aan RUU metingen en modellen (Narinessing, 2D)</td>
<td>Toetsing relaxatie-methode deels aan metingen; toetsing aansluiting als bij aanpak 1</td>
<td>Toetsing relaxatie als bij aanpak 1; toetsing aansluiting aan RUU metingen en 2D modellen</td>
<td>Als bij aanpak 3</td>
<td>Toetsing relaxatie als bij aanpak 3; toetsing aansluiting aan de hand van RRU metingen</td>
<td>Toetsing Narinessing aan metingen; toetsing aansluiting aan de hand van RUU metingen</td>
</tr>
<tr>
<td>Mogelijkheid om de methode te toetsen</td>
<td>Aparte model ontwikkelingslijn; enige aansluiting met Rivieren GIS mogelijk</td>
<td>Relaxatie methode mogelijk gebruik makend van GIS; vergelijk-methode op basis van GIS Rivieren GIS</td>
<td>Relaxatie methode mogelijk gebruik makend van GIS; methode Narinessing zeker gebruik makend van Rivieren GIS</td>
<td>Bij relaxatie-methode mogelijk gebruik GIS; gebruik SOBEK IVR en van GIS Rivieren voor aansluiting</td>
<td>Voor methode Narinessing voor concentratie in langsrichting gebruik van 1D model en GIS; voor bepaling aansluiting gebruik van GIS</td>
<td>Zie aanpak 5. Bij bepaling aansluiting per uiterwaard gebruik van DTM uit GIS</td>
</tr>
<tr>
<td>Aansluiting en gebruik van het IVR instrumentarium</td>
<td>Matig, maar redelijk in vergelijking met beschikbare gegevens</td>
<td>Enige verbetering ten opzichte van aanpak 1</td>
<td>Redelijke nauwkeurigheid en goed afgestemd op nauwkeurigheid toegelaten</td>
<td>Zie aanpak 3</td>
<td>Goede voorspelling die meer door beschikbaarheid gegevens dan door methode wordt beperkt. Met name goed als overwogen wordt aanvullend prototype gegevens te verzamelen</td>
<td>Gebruik 2D model geeft te gedetailleerde resultaten</td>
</tr>
<tr>
<td>Nauwkeurigheid van de aanpak</td>
<td>Met name ten aanzien van de ontwikkeling van "vergelijk" methode voor combinatie van maatregelen</td>
<td>Zie aanpak 1</td>
<td>Enig risico voor bepaling uitwisseling tussen uiterwaarden m.b.v. GIS</td>
<td>Gering risico</td>
<td>Gering risico</td>
<td>Gering risico</td>
</tr>
</tbody>
</table>
Tabel 4.3 Onderlinge vergelijking van mogelijke aanpakken ten aanzien van operationele aspecten

<table>
<thead>
<tr>
<th>Aanpak</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspecten</td>
<td>Methode constant/ Vergelijk-methode</td>
<td>Relaxatie methode/ Vergelijk-methode</td>
<td>Relaxatie methode/ Methode Narinesingh</td>
<td>Relaxatie methode/ Methode Narinesingh + 1D model</td>
<td>Methode Narinesingh/ Methode Narinesingh + 1D model</td>
<td>Methode Narinesingh/ 2D model</td>
</tr>
<tr>
<td>Benodigde inspanning voor het ontwikkelen</td>
<td>Ontwikkeling vergelijk methode en methode om representatieve concentratie te bepalen</td>
<td>Additioneel op ontwikkeling vergelijk methode, methode voor bepaling k te ontwikkelen</td>
<td>In vergelijking met aanpak 1 en 2 hoeft "vergelijk"-methode niet ontwikkeld te worden. Wel verdere ontwikkeling van methode Narinesingh (correctiefactoren)</td>
<td>Zie aanpak 4</td>
<td>In vergelijking met aanpakken 2 t/m 4 hoeft geen methode voor de bepaling van k ontwikkeld te worden. Wel een verdere uitwerking van "langs"-methode van Narinesingh (menging, etc.)</td>
<td>Als aanpak 5</td>
</tr>
<tr>
<td>Beschikbaarheid gegevens</td>
<td>Voldoende</td>
<td>Voldoende</td>
<td>Voldoende</td>
<td>Betere gegevens over korrelverspreiding van zwevend materiaal nodig</td>
<td>Zie aanpak 4</td>
<td>Zie aanpak 4. Meer gegevens nodig om 2D modellen te toetsen</td>
</tr>
<tr>
<td>Handmatige dan wel automatische analyse</td>
<td>Handmatig en met behulp van GIS</td>
<td>Zie aanpak 1</td>
<td>Nog altijd veel handmatig</td>
<td>Veel handmatig met enige hulp van 1D model</td>
<td>Redelijk automatisch maar toch nog handmatig werk resterend</td>
<td>Zie aanpak 5; niet-handmatige 2D werk is aanvullend, niet vervangend</td>
</tr>
<tr>
<td>Benodigde inspanning voor schematisatie</td>
<td>Redelijk, maar gebruik kan worden gemaakt van GIS</td>
<td>Zie aanpak 1</td>
<td>Schematisatie voor methode Narinesingh voor bepaling sedimentatie minder dan voor vergelijkmethode</td>
<td>Zie aanpak 3</td>
<td>Schematisatie grotendeels met behulp van GIS</td>
<td>Zie aanpak 5. Aanvullende schematisatie voor 2D berekeningen</td>
</tr>
<tr>
<td>Additionele berekeningen met SOBEK IVR</td>
<td>Neen</td>
<td>Neen</td>
<td>Neen</td>
<td>Ja (zie paragraaf 4.4)</td>
<td>Zie aanpak 4</td>
<td>Zie aanpak 4</td>
</tr>
<tr>
<td>Additionele berekeningen met andere modellen</td>
<td>Neen</td>
<td>Neen</td>
<td>Ja, met te ontwikkelen (simpel) model voor variatie concentratie in langsrichting op basis van methode Narinesingh</td>
<td>Zie aanpak 3</td>
<td>Zie aanpak 3</td>
<td>Als aanpak 3, met aanvullend (veel) berekeningen met behulp van 2D modellen</td>
</tr>
<tr>
<td>Benodigde tijd voor ontwikkelen en toetsen van instrumentarium</td>
<td>3 maanden</td>
<td>5 maanden</td>
<td>4 maanden</td>
<td>4 maanden</td>
<td>6 maanden</td>
<td>12 maanden</td>
</tr>
</tbody>
</table>
5 Voorstellen voor implementatie

5.1 Inleiding

In het vorige hoofdstuk is voorgesteld om aanpak 5 (de methode Narinesingh voor de afname van de slibconcentratie in langsrichting in combinatie met de methode Narinesingh voor de bepaling van de sedimentatie in de uiterwaarden, in combinatie met een 1D model en GIS) te implementeren als onderdeel van het IVR instrumentarium. In dit hoofdstuk worden een aantal voorstellen gedaan voor de actuele implementatie. Daarbij komen de volgende onderwerpen aan de orde:

- verdere modelontwikkeling (paragraaf 5.2);
- toetsen van toe te passen methoden (paragraaf 5.3);
- schematisatie rivier (paragraaf 5.4);
- randvoorwaarden en invoer (paragraaf 5.5);
- uitvoer (paragraaf 5.6);
- voorgestelde activiteiten (paragraaf 5.7).

5.2 Modelontwikkeling

Voor de gekozen aanpak is nog slechts in beperkte mate modelontwikkeling nodig. Dat is in feite een van de grote voordelen van deze aanpak. Volgende aspecten verdienen nog enig onderzoek:

- dwarsmenging in laagwaterbed als onderdeel van het model voor de verandering van de concentratie in langsrichting en hoe dit te verdisconteren;
- belang van uitzakken verticaal na afloop van hoogwater in stagnante gebieden in uiterwaarden;
- zijdelings afvoeren van sediment bij stroming langs vegetatie;
- correctiefactoren voor de bepaling van de efficiency van vangen van slib voor aspecten als variaties van de dwarsdoorsnede van de uiterwaard en de aanwezigheid van begroeiing.

5.3 Toetsen van toe te passen methoden

Het is noodzakelijk om de verschillende modellen, die tezamen de voorgestelde aanpak zullen uitmaken, te toetsen. Het gaat hier met name om:

1. het model voor de voorspelling van de afname in concentratie in langsrichting,
2. de module (methode Narinesingh) die de sedimentatie in een uiterwaard voorspelt door het te beschouwen als een sedimentatiebasis waarop de methode van Chen (1975) van toepassing is.

Verder moeten nog een aantal andere onderdelen van de voorgestelde aanpak worden onderzocht. Hieronder wordt kort aangegeven hoe een dergelijke toetsing zou kunnen gebeuren.
Ad (1) Model voor de voorspelling van de afname in concentratie in langsrichting

Voor de toetsing is het nodig om een lang riviertraject met voldoende uiterwaarden (en voldoende afname aan slib) te hebben waarin slib concentraties zijn gemeten zowel aan de bovenstroomse rand als aan de benedenstroomse rand, bij voorkeur dagelijks. De gegevens dienen uitdrukkelijk ook tijdens hoogwaters te zijn ingewonnen. In het kader van deze oriënterende studie is niet apart onderzocht welke gegevens ter beschikking zijn, maar gebruik is gemaakt van het overzicht dat is gegeven in Narinesingh (1996). Zie Tabel 5.1. Narinesingh heeft zijn methode getoetst aan de IJssel, veronderstellend dat er tussen Lobith en de IJsselkop geen verlies aan slib is opgetreden. Het bleek niet mogelijk om te toetsen op dagelijkse waarden (niet beschikbaar voor Kampen).

Tabel 5.1 Beschikbare gegevens over het slibgehalte van de grote Nederlandse rivieren (Narinesingh, 1995)

<table>
<thead>
<tr>
<th>Locatie</th>
<th>Periode en frequentie van waarnemingen van slibgehalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivier</td>
<td>Station</td>
</tr>
<tr>
<td></td>
<td>Kampen (IJssel)</td>
</tr>
<tr>
<td></td>
<td>Hagestein (Nederrijn)</td>
</tr>
<tr>
<td>Maas</td>
<td>Eijsden</td>
</tr>
<tr>
<td></td>
<td>Lith</td>
</tr>
</tbody>
</table>

1) Ook gegevens over korrelsmatenstelling zwevend materiaal

Daarom is voor de toetsing een methode gebruikt die is gebaseerd op cumulatieve frequentieverdelingen (opgemerkt wordt dat Asselman (1997) een opmerking plaats bij de door Narinesingh gebruikte methode, hetgeen nader moet worden onderzocht).

Voor de huidige toetsing zijn drie riviertakken bruikbaar:
1. Rijn-Pannerdensch Kanaal-IJssel (Lobith-Kampen)
2. Rijn-Pannerdensch Kanaal-Nederrijn (Lobith-Hagestein)
3. Maas (Eijsden-Lobith)

Voor geen van de trajecten zijn dagelijkse waarden ter beschikking. Voorhands zal de ontwikkeling van een additionele module voor slib alleen voor de Rijntakken worden gedaan, dus waarschijnlijk valt de Maas af voor toetsing. Daarom zal de toetsing wederom op het eerste traject (Lobith-Kampen) en mogelijk op het traject Lobith-Hagestein dienen te gebeuren. Tenslotte wordt opgemerkt dat de ter beschikking staande gegevens niet ideaal zijn voor een toetsing. Een additionele meetcampagne is echter geen reële optie, daar het niet zeker is dat er binnenkort weer een groot hoogwater zal komen dat voor toetsing kan worden gebruikt.
Ad (2) Methode Narinesingh die de sedimentatie in een uiterwaard voorspelt

Deze methode is gebaseerd op het beschouwen van een uiterwaard als een sedimentatiebasin waarop de methode van Chen (1975) van toepassing is. Voor de toetsing van deze methode kunnen de gedetailleerde onderzoeken van Asselman (1997), de hoofdstukken 6 en 7, en Middelkoop (1997), met name hoofdstuk 9, gebruikt worden. Behalve op de totale depositie in de uiterwaard, kan ook getoetst worden aan de korrelsamenstelling van de depositie. Voor het uitvoeren van de toetsing dient de concentratie en korrelsamenstelling van het slib in het rivierwater te worden voorspelt, dus er is een zekere interactie met het model voor de langsrichting. De toetsing onder ad (1) dient daarom eerst te gebeuren.

Voorts moeten nog enkele andere onderdelen van de methode te worden getoetst. Het betreft hier met name:

- het gebruik van ARC/INFO voor het splitsen van de stroming over de uiterwaard tussen linker- en rechteruiterwaard;
- het identificeren van onderscheiden uiterwaarden en de bepaling van de in- en uitstroming eveneens met behulp van ARC/INFO;
- correctiefactoren voor de methode Narinesingh voor de aanslibbing in een uiterwaard.

Mogelijk kan hierbij gebruik gemaakt worden van 2D berekeningen die voor de Waal (4 afvoerniveaus) en voor de andere Rijntakken zijn uitgevoerd. Ook is het mogelijk om nog een aantal aanvullende berekeningen te maken met een 2D model, met eventueel in aansluiting de toepassing van DELWAQ.

5.4 Schematisatie rivier

Voor het nagaan wat het effect op de slibhuishouding is, dient wel een aanvullende schematisering te worden uitgevoerd. Daarbij is het nodig de rivier (bij hoogwater) te schematiseren als een rivier met uiterwaarden aan beide kanten. Zie paragraaf 4.4 voor de voorgestelde procedure. De uiterwaarden worden teruggebracht tot een aantal bassins met als karakteristieken:

- bodemligging en waterdiepte in rivier waarbij overstroming begint op te treden;
- het oppervlak van de uiterwaard als functie van de waterstand;
- de in- en uitstroming als functie van het debiet in de rivier;
- efficiency eveneens als functie van het debiet in de rivieren en op basis van de eerdere parameters en rekening houdend met correctiefactoren voor het niet prismaatisch zijn en voor de begroeiing van de uiterwaard;
- instroom- en uitstroompunt (eventueel tot een punt teruggebracht).
Deze schematisatie dient te gebeuren door gebruik te maken van de SOBEK berekeningen en het GIS Rivieren.

5.5 Randvoorwaarden en invoer

Onderscheid kan worden gemaakt tussen de randvoorwaarden voor de SOBEK berekeningen en die voor de analyse van het slibgedrag. De randvoorwaarden voor de SOBEK berekeningen zijn evident en worden hier niet verder besproken. Daarbij dient echter een opmerking gemaakt te worden. In het kader van IVR/RvR zullen ook de morfologische veranderingen worden onderzocht. Veranderingen in de bodemligging van de rivier zal ook repercussies hebben voor de overstromingsfrequentie van de uiterwaarden. Voorgesteld wordt, mochten zich aanzienlijke morfologische veranderingen voordoen in de tijds Spanne die in het kader van RvR zal worden beschouwd, een analyse van de veranderingen in de slibhuishouding te doen voor zowel de beginsituatie als aan het eind van de simulatieperiode.

De belangrijkste randvoorwaarden voor de analyse van de verandering in de slibhuishouding zijn:

- bovenstroomse afvoeren en hun frequentie van voorkomen;
- slibconcentratie tijdens die afvoeren.

5.6 Uitvoer

De uitkomst van de hier voorgestelde procedure is enerzijds de afname van de slibconcentratie in langsrichting van de rivier en de totale slibbelasting zoals die wordt "toegeleverd" aan het benedenrivieren gebied. Anderzijds is de uitkomst een schatting van de gemiddelde sedimentatiesnelheden van slib in de verschillende uiterwaarden. Omdat dit onderdeel uitmaakt van de totale effecten van een voorgestelde inrichting wordt voorgesteld om tijdens de implementatie na te gaan hoe de resultaten van de analyse van de effecten op de slibhuishouding het beste kunnen worden gepresenteerd.
5.7 Voorgestelde activiteiten

Op basis van dit onderzoek, en er van uitgaande dat Rijkswaterstaat de aanbevelingen gedaan in dit rapport overneemt, worden de volgende activiteiten voorgesteld:
1. schatting benodigde kosten en tijd voor implementatie van de hier voorgestelde aanpak;
2. ontwerp en bouw model voor afname sliblast op basis van methode Narinesingh (Fortran-programma met als minder aantrekkelijk alternatief een spreadsheet)
3. ontwerp en bouw van een module die de sedimentatie in een uiterwaard berekent op basis van de "efficiency" methode van Chen (1975), inclusief correctiefactoren voor niet-prismatisch zijn en begroeiing;
4. toetsing van "modellen"
 - methode Narinesingh in langsrichting rivier (zie paragraaf 5.3)
 - methode voor sedimentatie van slib in uiterwaard (zie paragraaf 5.3)
5. ontwikkeling en toetsing van combinatie van SOBEK berekeningen en ARC/INFO voor identificatie uiterwaarden en uitwisseling;
6. ontwikkeling van methode om met behulp van ARC/INFO rest van schematisatie uit te voeren;
7. bepalen welke uitvoer ter beschikking moet worden gesteld aan het IVR/DSS en in welke vorm;
8. aanpassing van "effectentabel" om de invloed op slibhuishouding er in te verdisconteren.
6 Conclusies en aanbevelingen

Op basis van het oriënterende onderzoek dat in dit rapport is beschreven kan het volgende worden geconcludeerd en kunnen de volgende aanbevelingen gedaan:

1. Het is mogelijk om het bestaande IVR instrumentarium uit te breiden om ook de invloed van inrichtingsvarianten op de slibhuishouding te bepalen.
2. Na een vergelijking van de verschillende mogelijkheden daartoe wordt hier voorgesteld om de uitbreiding te doen op basis van de door Narinesingh (1996) voorgestelde methode, maar met gebruikmaking van SOBEK berekeningen en aanvullende analyses met het GIS Rivieren.
3. Voor de inpassing van de methode van Narinesingh zijn nog een aantal aanvullende onderzoeken nodig en is een toetsing van onderdelen gewenst. Daartoe zijn in hoofdstuk 5 aanbevelingen gedaan.
4. Verder dient nog nagegaan te worden hoe de resultaten van de analyse het best ingebracht kunnen worden in het DSS/IVR.
7 Geraadpleegde literatuur

Douben, N. (1995), Integrale verkenning Rijntakken, Rivierkundige aspecten: achtergrondanalyses, RIZA, IVR-rapport no. 10

Graaf, J. van der en Reinalda, R. (1977), Horizontale uitwisseling in vertrokken schaalmodelen, WL | DELFT HYDRAULICS, Speurwerkrapport S 61

James, C.S. (1985), Sediment transfer to overbank sections, Journ. of Hydraulic research, Vol. 23, no. 5, pp. 435-452

Laguzzi, M., Kok, M. en Heynert, K. (1997), Onderhoud en uitbreiding van het IVR instrumentarium, Automatisch genereren van effectentabel, WL | DELFT HYDRAULICS/HKV Lijn in water, Verslag R3052.10

Meyer, K.L. (1997), Aanslibbing rivierhavens, WL | DELFT HYDRAULICS, Conceptverslag Q 2253/Q 2372

Ministerie van LNV (1990), Natuurbeleidsplan. Regeringsbeslissing. Staatsuitgeverij, Den Haag

Schutte, L. (1997a), IVR (Arc/info) Applicatie: Overstromingsduur, RIZA, Werkdocument 97.097x
Schutte, L. (1997b), IVR (Arc/info) Applicatie: Ecotopenverdeling, RIZA, Werkdocument 97.098x

Schutte, L. (1997c), IVR (Arc/info) Applicatie: Overhoogten, RIZA, Werkdocument 97.115x

Vanoni, V.A. (Ed., 1975), Sedimentation engineering, ASCE Manuals and Reports on Engrg. Practice, No.54

Van der Veen, R., Pakes, U., Essen, J. van, Schutte, L. (1997), Calibratie SOBEK-Rijntakken, RIZA Rapport 97.034

BIJLAGEN
A Offerte en opdracht
OPDRACHTBON

WATERLOOPKUNDIG LAB.
POSTBUS 177
2600 MH DELFT

Opdrachtbonnummer: 27536 / WSR
IN BEHANDELING BIJ: HR. J. HOOGMA

Datum: 17/11/97

Opdracht voor het verrichten van de volgende werkzaamheden en/of leveringen:

<table>
<thead>
<tr>
<th>Artikel nr.</th>
<th>Gedeeltenomschrijvingen, merken, types</th>
<th>Bestel-</th>
<th>Aantal</th>
<th>Prijs per eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEFINITIESTUDIE SLIB IN IVR</td>
<td></td>
<td>1</td>
<td>15100.00</td>
</tr>
<tr>
<td></td>
<td>ZIE BIJGEVOEGDE OFFERTE R3211.95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OKTOBER 1997</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T.A.V. DHR W. SILVA / WSR

Faktuursadres:
RIJKSWATERSTAAT
RIJKSINSTITUUT VOOR INTEGRAAL ZOETWATERBEHEER
EN AFVALWATERBEHANDELING RIZA
T.A.V. FINANCIÉLE ADMINISTRATIE
POSTBUS 17
8200 AA LELYSTAD
TEL. 0320 - 298411
FAX 0320 - 249218

Afleveringsadres:
RIZA VESTIGING ARNHEM
GILDEMEESTERPLEIN 1
PB 9072
6800 ED ARNHEM
026-3688911

Ondertekening namens de Rijkswaterstaat:

Handtekening:

ORIGINEEL LEVERANCIER

Op deze opdracht zijn van toepassing de „Algemene Voorwaarden RIZA“ zoals vermeld op de achterzijde van deze opdrachtbon.
Rijkswaterstaat, RIZA
T.a.v. ir. W. Silva
Postbus 9072
6800 ED ARNHEM

in behandeling bij
J-P.R.A. Sweerts
onderwerp
Definitiestudie silb in IVR

doorkeensnummer
‘015 2858769
ons kenmerk
RBM8908/R3211/Ij
datum
23 oktober 1997

Geachte heer Silva

Hierbij heb ik het genoegen u de uitvoering van de navolgende werkzaamheden aan te bieden: “Definitiestudie Silb in IVR”.

Een beschrijving van de door ons te verrichten werkzaamheden en andere gegevens zijn als bijlage hierbij gevoegd.

Uw opdracht tot uitvoering van de in deze aanbieding vermelde werkzaamheden waarop de Algemene Bepalingen van Onderzoeken (ABO-1993) van RWS van toepassing zijn, zie ik met belangstelling tegemoet.

Hoogachtend,

(prof.ir. E. van Beek)
Hoofd
Integraal Rivierbeheer

bijlage(n)
offerte

Gespecialiseerd advies: van beleidsondersteuning tot ontwerp en technische assistentie.

De Algemene Voorwaarden voor opdrachten aan de Stichting Waterloopkundig Laboratorium, zoals gedeponeerd bij de Griffie van de Arrondissementsrechterbank te 's-Gravenhage en de Kamer van Koophandel en Fabrieken te Delft, zijn van toepassing op alle opdrachten aan de Stichting Waterloopkundig Laboratorium.
Offerte

Definitiestudie slib in IVR

Waterloopkundig Laboratorium
R3211
Inhoud

1 Inleiding ... 1
2 Uitvoering van de studie ... 1
3 Planning, organisatie en financiën 2
Samenvatting

Aan : Rijkswaterstaat RIZA WSR
 ir. W. Silva

Projecttitel : Definitiestudie Slib in IVR

Contactpersoon : ir. W. Silva

Projectteam WL : ir. G. J. Klaassen

Aanvang : oktober 1997

Doorlooptijd : tot uiterlijk 30 november 1997

Kosten : f 15.100,= exclusief BTW (f 17.742,50 inclusief BTW)
1 Inleiding

Het Waterloopkundig Laboratorium is schriftelijk, d.d. 12-9-97, gevraagd door dr.G.Blom van RIZA WST om een voorstel uit te brengen voor een Definitiestudie Slib in IVR. Het hierbij opgestelde voorstel is gebaseerd op het Projectplan Slib in IVR (WST97) en het Projectvoorstel Definitiestudie slib in IVR (RWS RIZA MEMO RIJN*97-37(I)), een brief met een eerste inschatting van de aanpak voor de studie van ir.G. Klaassen van WL aan dr. G. Blom van RIZA WST (d.d. 7-7-97) en mondeling contact tussen ir.W. Silva van RIZA WSR en dr. J-P.R.A. Sweerts van WL.

Het onderzoek moet een antwoord geven op de vraag in hoeverre, op welke wijze en met welke nauwkeurigheid schattingen kunnen worden gemaakt van de aanslibbingsnelheid van uiterwaarden vóór en na de uitvoering van herinrichtingsmaatregelen zoals uiterwaardedeverlaging, op basis van eenvoudige relaties met de overstromingsfrequentie. In de studie wordt onder meer gebruik gemaakt van het werk van Van Middelkoop (1997) en Asselman (in prep.). Voorts zullen gesprekken met deskundigen, waaronder die binnen Rijkswaterstaat en de Rijksuniversiteit Utrecht, worden gehouden. De resultaten zullen schriftelijk worden gerapporteerd.

2 Uitvoering van de studie

Het onderzoek zal worden uitgevoerd door ir. G. Klaassen. Het onderzoek houdt fase I in van het Projectplan Slib in IVR.

Gegeven de in de inleiding aangegeven activiteiten wordt voorgesteld een inzet van 8 dagen te geven voor:

- literatuuronderzoek
- studie van het huidige IVR instrumentarium
- overleg met instanties en personen
- analyse van technische mogelijkheden voor modellering
- schrijven van een nota met aanbevelingen voor fase 2 inclusief tijds- en kostenschatting, en inclusief het verwerken van commentaar
3 Planning, organisatie en financiën

Vanuit het Waterloopkundig Laboratorium zal ir.G. Klaassen de werkzaamheden uitvoeren in de maanden oktober en november.

8 mandagen à f 1825,-
materiële kosten f 500,-
 Totaal excl. BTW f 15.100,-
 Totaal incl. BTW f 17.742,50

Uitvoering van de voorgestelde werkzaamheden vindt plaats conform de Algemene Bepalingen van Onderzoeken (ABO-1993) van RWS.
B Effect van uiterwaardverlaging op sedimentatie van slib
B Effect van uiterwaardverlaging op sedimentatie van slib

Het doel van de onderstaande analyse is om een eenvoudige relatie af te leiden waarbij het effect van de verlaging van een uiterwaard op de sedimentatie van slib in de uiterwaard kan worden bepaald.

Uitgangspunt van de onderstaande beschouwing is de methode van Chen (1975) voor de bepaling van de hoeveelheid slib die sedimenteert in een detentie basin. Conform de suggestie van Narinesingh (1996) wordt deze methode ook toegepast op een uiterwaard. Volgens deze methode is de efficiency van vangen E een functie van de verhouding tussen het oppervlak van de zandvang (hier het oppervlak van de uiterwaard A) en het debiet door de zandvang (hier het debiet Q dat door de uiterwaard stroomt). De vergelijking luidt (Chen, 1975):

\[E = 1 - \exp\left(-w_s \cdot \frac{A}{Q}\right) \] \hspace{1cm} (B.1)

\[w_s = \text{valsnelheid van het getransporteerde materiaal.} \]

Door een eenvoudige schematisatie te hanteren van een prismatische uiterwaard met een breedte B, een diepte h en een lengte L, kan dit worden herschreven tot:

\[E = 1 - \exp\left(-w_s \cdot \frac{L}{C \cdot h^{3/2} \cdot i^{1/2}}\right) \] \hspace{1cm} (B.2)

C is de ruwhedsfactor en i het verhang van de uiterwaard. Verondersteld wordt dat de uiterwaard wordt verlaagd en dat de diepte toeneemt van \(h_0 \) tot \(h \). Op basis van de veronderstelling dat het verhang en de C-waarde van de uiterwaard niet veranderen (de invloed van de verandering van de diepte is veel groter dan de invloed van de verandering van C-waarde), kan de verandering in efficiency van invangen van sediment worden bepaald door de volgende vergelijking:

\[\frac{E}{E_0} = -\exp\left(\frac{h_0}{h}^{3/2} \cdot \ln\left(-E_0 + 1\right)\right) - 1 \] \hspace{1cm} (B.3)

Uit vergelijking (B.5) blijkt dat de verandering in efficiency een functie is van de verhouding tussen de diepte \(h \) na verlaging en de oorspronkelijke diepte \(h_0 \), de lengte van de uiterwaard \(L \) en van de valsnelheid van het getransporteerde materiaal \(w_s \). Deze laatste twee factoren zitten verwerkt in de oorspronkelijke efficiency \(E_0 \). In figuur B.1 is dit verband grafisch weergegeven.
Figuur B.1 Verandering efficiency als functie van uiterwaardverlaging \((h/h_o)\) en de lengte van de uiterwaard \((L)\)

Niet zozeer de verandering van de efficiency op zich is belangrijk, maar veeleer de toename van de sedimentatie in de uiterwaard door verlaging van de uiterwaard. Deze sedimentatie kan worden uitgedrukt in de hoeveelheid slib die per tijdseenheid op 1 m\(^2\) wordt afgezet. De dimensie van deze sedimentatie is dus kg/m\(^3\)/s. De gemiddelde sedimentatie in de uiterwaard wordt gegeven door de volgende vergelijking:

\[
\frac{c_s}{c_{so}} = \frac{E \cdot c \cdot Q}{A} \tag{B.4}
\]

waarin \(c_s\) = sedimentatiesnelheid (kg/m\(^3\)/s), \(c\) = concentratie aan "slib", \(Q\) = debiet door de uiterwaard (m\(^3\)/s) en \(A\) = oppervlakte van de uiterwaard (m\(^2\)). Omdat

\[
Q = C \cdot h^{1/2} \cdot i^{1/2} \cdot B \tag{B.5}
\]

kan met behulp van vergelijking (B.3) worden afgeleid dat bij verlaging van een uiterwaard de relatieve toename van de sedimentatie, bij een gegeven waterstand in de rivier wordt gegeven door:

\[
\frac{c_s}{c_{so}} = \frac{E}{E_0} \left(\frac{h}{h_0}\right)^{3/2} \tag{B.6}
\]

Dit verband is grafisch weergegeven in Figuur B.2. Het blijkt dat de verandering in sedimentatiesnelheid slechts gedeeltelijk wordt bepaald door de verandering in efficiency. De toename van de diepte en de hiermee samenhangende toename in debiet door de uiterwaard leiden tot een toename in sediment transport, welke groter is dan de afname in efficiency. Het netto effect is een toename in sedimentatie.
Figuur B.2 Verandering in sedimentatiesnelheid als functie van h/h₀ en de lengte van de uiterwaard (in km)

Om veranderingen in sedimentatie op jaarbasis te berekenen dienen meerdere afvoerniveaus te worden door gerekend. Tenslotte zal nog rekening moeten worden gehouden met de toegenomen frequentie van overstroom van uiterwaarden als ze zijn verlaagd. Hierdoor zal de sedimentatie van slib nog verder toenemen.
C Effect van verlaging zomkade op sedimentatie van slib
Effect van verlaging zomerkade op sedimentatie van slib

Het doel van de onderstaande analyse is om een eenvoudige relatie af te leiden waarbij het effect van de verlaging van een zomerdijk op de sedimentatie van slib in de uiterwaard kan worden bepaald.

Uitgangspunt van de onderstaande beschouwing is de methode van Chen (1975) voor de bepaling van de hoeveelheid slib die sedimenteert in een detentie basin. Conform de suggestie van Narinesingh kan deze methode ook toegepast worden op een uiterwaard. Volgens deze methode is de efficiency van vangen E een functie van de verhouding tussen het oppervlak van de zandvang (hier het oppervlak van de uiterwaard A) en het debiet door de zandvang (hier het debiet Q dat door de uiterwaard stroomt):

\[E = 1 - \exp \left(-w_s \frac{A}{Q} \right) \]

(C.1)

![Diagram](image)

Figuur C.1 Gebruikte symbolen

Voor de analyse van het effect van zomerdijkverlaging dient een relatie afgeleid te worden tussen de hoogte van de zomerdijk en het debiet dat de uiterwaard instroomt. Het debiet dat de uiterwaard instroomt is (uitgaande van een onvolkomen overlaat) o.m. een functie van het waterstandsverschil bovenstrooms en benedenstrooms van de zomerdijk, volgens onderstaande vergelijking (zie ook Figuur C.1 voor de gebruikte symbolen):

\[Q = B * h_z * \sqrt{2g \Delta h} \]

(C.2)

waarbij aangenomen is dat de snelheidshoogte stroomopwaarts van de zomerdijk te verwaarlozen is ten opzichte van het verval over de zomerdijk. Dit kan ook geschreven worden als:
\[\Delta h = \frac{Q^2}{2g B^2 h_z^2} \quad \text{(C.3)} \]

De benedenstroomse waterstand is een functie van het debiet in de uiterwaard, omdat het verhang in de uiterwaard daardoor bepaald wordt via:

\[i_u = \frac{u^2}{C^2 h} = \frac{Q^2}{B^2 C^2 h^3} \quad \text{(C.4)} \]

Hierbij is aangenomen dat het waterstandsverschil over de zomerkade klein is t.o.v. de waterdiepte in de uiterwaard.

Het waterstandsverschil benedenstrooms van de zomerdijk is dan gelijk aan:

\[\Delta h = (i - i_u) L = \left(i - \frac{Q^2}{B^2 C^2 h^3} \right) L \quad \text{(C.5)} \]

Door gelijkstelling van de waarden van het waterstandsverschil over de zomerdijk (de vergelijkingen (C.3) en (C.5)), kan de grootte van het debiet worden bepaald als functie van onder meer de waterdiepte boven de zomerdijk. De volgende uitdrukking kan worden afgeleid:

\[Q = \frac{B h \sqrt{2g i L}}{\sqrt{(\frac{h}{h_z})^2 + \frac{2g L}{C^2 h}}} \quad \text{(C.6)} \]

Conform de methode die in Annex B is gebruikt kan nu ook de verandering in efficiency worden bepaald bij verandering van de zomerdijkhoogte. Door \(h_{z0} \) te introduceren als de huidige zomerdijkhoogte kan de verandering in efficiency worden afgeleid met behulp van de volgende uitdrukking:

\[\frac{E}{E_0} = - \left[\exp \left(\frac{\left(\frac{h}{h_z} \right)^2 + \frac{2g L}{C^2 h}}{0.5} \right)^{0.5} \ast \ln \left(-E_0 + 1 \right) \right] * \frac{1}{E_0} \quad \text{(C.7)} \]
De verandering in efficiency is dus een functie van h/h_z en de verhouding van de twee bijdragen aan het energieverlies over de uiterwaard, namelijk het energieverlies over de zomerdiijk en het verval bij stroming over de uiterwaard. Voor een specifieke uiterwaard kan de waarde van de term

$$\frac{2g \cdot L}{C^2 \cdot h}$$ \hspace{1cm} (C.8)

bepaald worden en dan kan een grafiek die het verband tussen de verandering in efficiency als functie van de verandering van h_z en de verhouding h/h_z worden afgeleid.

Een volgende stap is de bepaling van de verandering in sedimentatiesnelheid, eveneens conform de methode die in Annex B is gebruikt. Wegens tijdgebrek is dat hier niet nader uitgewerkt.

Opgemerkt wordt dat in de bovenstaande analyse er van is uitgegaan dat er slechts één zomerkade aanwezig is. Normaal gesproken zal die aan de bovenstroomse zijde van de uiterwaard gelegen zijn. Het is ook mogelijk om de methode aan te passen aan een situatie waarbij een zomerkade zowel aan de bovenstroomse zijde als aan de benedenstroomse zijde van de uiterwaard aanwezig is.