Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
MINIMIZING COST IN A 100% RENEWABLE ELECTRICITY GRID:
A CASE STUDY OF WAVE ENERGY IN CALIFORNIA

Ryan G. Coe
Water Power Technologies
Sandia National Laboratories
Albuquerque, NM, 87185
Email: rcoe@sandia.gov

George Lavidas
TU Delft
Delft, Netherlands
Email: g.lavidas@tudelft.nl

Giorgio Bacelli
Water Power Technologies
Sandia National Laboratories
Albuquerque, NM, 87185
Email: gbacell@sandia.gov

Peter H. Kobos
Water Power Technologies
Sandia National Laboratories
Albuquerque, NM, 87185
Email: phkobos@sandia.gov

Vincent S. Neary
Water Power Technologies
Sandia National Laboratories
Albuquerque, NM, 87185
Email: vsneary@sandia.gov

ABSTRACT
Wave energy converters have yet to reach broad market viability. Traditionally, levelized cost of energy has been considered the ultimate stage gate through which wave energy developers must pass in order to find success (i.e., the levelized cost of wave energy must be less than that of solar and wind). However, real world energy decisions are not based solely on levelized cost of energy. In this study, we consider the energy mix in California in the year 2045, upon which the state plans to achieve zero carbon energy production. By considering temporal electricity production and consumption, we are able to perform a more informed analysis of the decision process to address this challenge. The results show that, due to high level of ocean wave energy in the winter months, wave energy provides a valuable complement to solar and wind, which have higher production in the summer. Thus, based on this complementary temporal aspect, wave energy appears cost-effective, even when the cost of installation and maintenance is twice that of solar and wind.

NOMENCLATURE
EIA Energy Information Administration
LACE levelized avoided cost of energy
LCOE levelized cost of energy
LCOS levelized cost of storage
RPS renewable portfolio standard
WEC wave energy converter
\(J_i(t) \) monthly generation for source \(i \)
\(g_i \) additional generation capacity for source \(i \)
\(c_i \) cost of \(g_i \)
\(r_i(t) \) monthly renewable resource for source \(i \)
\(\gamma_i \) average capacity factor for source \(i \)

INTRODUCTION
To-date, a large majority of the techno-economic assessments on wave energy have focused on levelized cost of energy (LCOE). A reduction in LCOE below or near that of other competing energy generation technologies, such as natural gas, solar and wind, is often held as the key barrier for the success of wave energy converters (WECs). However, LCOE is not a perfect measure of market viability for an energy generation asset.
The US Energy Information Administration (EIA) directly warns against using LCOE as the sole measure for comparing energy generation technologies (“LCOE does not capture all of the factors that contribute to actual investment decisions, making the direct comparison of LCOE across technologies problematic and misleading as a method to assess the economic competitiveness of various generation alternatives” [1]), and instead recommends that LCOE be used along with additional metrics such as levelized avoided cost of energy (LACE) and levelized cost of storage (LCOS). While LCOE looks directly at the cost of a potential generator asset by taking the ratio of costs, including capital, financing, operations, and maintenance costs, against the amount of energy produced by the asset of its lifetime, LACE helps capture the relative value of one generation option against available alternatives.

In this brief study, we build off recent efforts [2,3] to consider a LACE analysis for the state of California, with a focus towards understanding market viability of WECs. California is a particularly interesting location for such an analysis because of its renewable energy portfolio standard (RPS), which requires utilities to have 60% retail electricity delivered by renewable sources by 2030 and 100% by 2045 [1]. Thus, we consider the problem of eliminating the fossil fuel based generation sources from the grid. We quantify the amount of power generation capacity that must be displaced by 2045, and use this to perform a LACE-style analysis considering the relative cost of fulfilling the energy deficit with WECs, wind turbines, and solar photovoltaic panels.

LITERATURE REVIEW

Wave energy is an untapped renewable energy resource, that to date has been under-utilized, in part due to its high resource dependence and operational “complexity.” To achieve grid penetration, WECs must not only survive amongst the hardest resources (i.e., large loadings from waves, corrosion from salt concentration, etc.), but must also produce power at comparable levels to other more mature renewables (e.g., solar and wind). While the challenge is substantial, the wave energy resource is amongst the most dense and predictable resources [4,5]. To understand the intricacies of WECs, several studies have discussed the challenges scaling deployments [6,7,8,9].

Numerous studies have considered integration of wave energy into energy systems and found that it provides grid stability and can reduce the cost of energy storage ~40-60% [10,11,12,13,14,15]. This can also lead to huge benefits, as the current costs for energy storage systems, when located “behind the meter,” can run up as high as 485-1000 $/MWh (as standalone solutions), 223-384 $/MWh as part of storing electricity by photovoltaics for industrial applications, and 457-663 $/MWh for residential solutions [16]. Coastal regions may also see benefits in terms of reduced usage of existing transmission lines and a reduction of single point failures [14]. For wave energy, the reported LCOE values have a range of 80-600 $/MWh underlying the uncertainties which are dependent on WEC archetype, resource, installed capacity, and other assumptions [17,18,19,20].

A LACE ANALYSIS IN CALIFORNIA

A typical LACE analysis is driven by the marginal generation price along with capacity payments.

\[
LACE = (\text{marginal generation payment}) + (\text{capacity payment}) \tag{1}
\]

If one is considering a LACE analysis for present-day, it is possible to obtain a good estimate via (1). However, it is a fundamental point our 2045 analysis that the cost/value of energy will be dramatically changed by the need to remove carbon producing generation assets. Thus, we must pursue a different approach.

First, we consider the current status of electricity production in California. Next, we use this information to execute two types of analyses to predict ways in which the deficit created by removing carbon producing generation assets from the grid can be dealt with. An explicit approach is first used to consider the additional solar/wind generation that would be needed. A constrained optimization approached is then used to solve for the least expensive means of adding renewable generation capacity to meet California’s RPS.

Before proceeding further, it is necessary to state a set of assumptions on which the analyses performed within this study will be based. Firstly, we consider a finite set of renewable energy technologies that may be built. While both hydroelectric dams and nuclear power plants have many attractive qualities as dispatchable based loads, both are limited in their application due to social/political limitations. Therefore, we consider only solar, wind, and wave energy in our analyses. In this study, we consider the monthly average electricity generation and demand. While shorter times-scales are indeed important and should be considered in subsequent studies, a monthly analysis can provide useful insights. Storage has the effect of smoothing the power generation or demand profile. Most large-scale energy storage technologies are not well-suited to storing energy over the timescale of months; pumped hydro and compressed air storage are likely the most viable solutions (see, e.g., [21]). Thus, we do not consider storage in this paper. Another consideration is grid expansion, but the obvious limitation of this option is the large capital cost and socio-political challenges.

\footnote{For a listing of RPSs within the United States, see, e.g., \url{https://www.ncsl.org/research/energy/renewable-portfolio-standards.aspx}}
Current status

Figure 1 shows the electricity generation by source in California for the period of 2001-2020. In an attempt to use data from a period over which changes in the electricity grid were less dramatic, in this study we will consider data from 2014-2020, which is highlighted in gray in Figure 1. The average power production for each source during the 2014-2020 period is shown in Figure 2. We can see that natural gas is the largest generation source in California during this period, followed by hydroelectric dams and utility-scale solar.

Of particular interest in this study are the installed capacities of all fossil fuel generation assets (coal, natural gas, and oil), solar, and wind; these are shown in Table 1. Additionally, Table 1 shows the average capacity factors for each of these generation types. These capacity factor values computed directly from the data used in this study are in line with those reported elsewhere in literature [1, 22].

We see that the installed capacity of fossil fuel type generators is three times greater than that of solar and wind combined. Additionally, the capacity factor of the fossil fuel generators is much higher than that of solar and wind. Thus, for 1 GW of capacity, the yearly output of a fossil fuel plant will (on average), be 0.77 GW whereas the output of similarly rated solar array or wind turbine farm will be closer to 0.25 GW. Along with the bulk
capacity factor, one must also consider temporal variation (“intermittency”) in electricity production from various sources.

Monthly electricity balance

Electricity is a heterogeneous good \cite{23, 24, 25}, in that 1 kWh of electricity generated in November in Texas is not exchangeable for 1 kWh of electricity generated in California in May. For our present study, we will focus on the temporal aspect of this heterogeneous nature. The upper-most axes in Figure 3 show the average monthly electricity generation for fossil (coal, natural gas, and oil), solar, wind, and wave (which is zero). Solar and wind generation peak in the summer months, whereas fossil generation is an order of magnitude larger and peaks in the fall/winter.

This data may be distilled to consider what percentage of the total monthly electrical generation comes from fossil sources (second axes in Figure 3). In May, only 35% of California’s electrical generation is derived from fossil sources, but in December the level is 58%.

Taking this logic one step further, we may determine how many times more solar/wind generation would need to be added to offset that electricity produced by fossil sources. If the demand for electricity is considered to be similar in 2045 this problem can be considered in terms of offsetting the deficit created by removing the fossil based generation from the grid. If \(J_f(t), J_s(t), \) and \(J_w(t) \) are the monthly fossil, solar, and wind production, respectively, we may find

\[
\alpha(t) = \frac{J_f(t)}{J_s(t) + J_w(t)},
\]

where \(\alpha(t) \) is the monthly multiplier of new solar/wind generation capacity. The results of (2) are shown in the third set of axes in Figure 3. In May, one must only add 136% to the existing solar panels and wind turbines to offset the fossil generation. However, to maintain a positive energy balance in December would require an additional 485% of the existing solar/wind generation capacity.

As a final step in this analysis, we may infer the resource for solar and wind in California by normalizing the monthly production levels (lowest axes in Figure 3). Additionally, based on hindcast data, we can include the wave energy resource contribution \cite{26}. From the lowest axes in Figure 3 it is immediately clear that the wave energy resource in California is complementary to solar and wind (which have very similar resource curves).

\footnote{Recent trends indicate that electricity demand in California is neither growing nor decreasing.}

Constrained optimization problems

The previous analysis was able to give a solution in terms of a simple factor of the existing solar and wind generation capacity, but the best solution may involve some arbitrary mixture of additional capacity. To solve for this optimal mixture, a constrained optimization problem can be formulated.

\[
\min_g \left(\sum_i g_i \cdot c_i \right) \quad \text{(3a)}
\]

s.t. \[
\sum_i r_i(t) \cdot \gamma_i \cdot g_i \geq J_f(t) \quad \text{(3b)}
\]

Here, \(g_i \) and \(c_i \) are additional renewable generation capacity and the cost of that capacity for source \(i \in \{ \text{solar, wave, wind} \} \). Thus, objective function (3a) represents the total cost of additional renewable generation. The normalized monthly resource for each technology (solar, wind, and wave) is \(r_i(t) \) and the average capacity factor is \(\gamma_i \). The monthly energy deficit created by the removal of fossil generation assets is \(J_f(t) \). We constrain the solution of the problem with (3b) such that the monthly net energy balance is positive. In practice, (3) was solved via a sequential least squares programming algorithm.

We use (3) to conduct two case studies. First, we examine the scenario where wind and solar generation capacity can be added to satisfy \(J_f(t) \). Next, we consider (3) with wave energy generation capacity.

Case study I: solar/wind

As reported by \cite{22}, the price of onshore US wind turbine installations is on the order of 1000 $/kW of nameplate capacity. According to the EIA Annual Energy Outlook 2020 \cite{1}, the capital costs of solar and onshore wind and solar are, respectively, 1331 and 1319 $/kW of nameplate capacity. Note that these values represent the installation cost, but do not include other important costs such as operations and maintenance (“O&M”). Since the costs are similar, we will consider them as equal initially \((c_s = c_w) \).

Applying (3) gives the optimal solution illustrated in Figure 4. Here, we see the initial deficit created by removing fossil generation assets, which is effectively the initial condition for our optimization problem if \(g_s = g_w = 0 \). The optimal solution shown in Figure 4 ensures that demand for electricity is met each month while minimizing costs. We can see that in November and December the optimal solution results in a monthly electricity balance that is close to zero, but positive. This result aligns with that seen using (2) and illustrated in the third set of axes in Figure 3.

In this case, in which the cost of solar and wind are taken to be equal, the optimal solution is to use wind to meet the unmet electrical demand. This is likely due to the mean capacity factor.
of wind (0.258) being slightly greater than that of solar (0.240). If we consider a case where the cost of solar is slightly less than that of wind ($c_s = 0.9c_w$), the optimal solution uses only additional solar capacity.

It is interesting to note that the optimal solution uses a mixture of both solar and wind for only a narrow range of relative costs ($0.9061 < c_s/c_w < 0.9079$). In other words, the solution is very sensitive to the relative costs of these two generation types, likely because their resource curves (lowest axes in Figure 3) are so similar. Note again that, while this analysis looks only at monthly electricity production/demand, smaller time-scales may also be important (e.g., diurnal variation in both solar irradiance and wind).

Case study II: solar/wind/wave Finally, we may apply (3) to study the potential penetration of wave energy generation assets. We consider a range of wave energy costs and average capacity factor values as no reliable data is available for the cost or intermittency of wave energy. Thus, we consider (3) for a range of wave energy cost and average capacity factor values.

The results of this analysis are shown in Figure 5. The relative utilization of each generation type is shown for wave energy costs ranging from one tenth that of solar and wind to ten times that of solar and wind. The different sets of axes in Figure 5 show the results of this analysis for different average capacity factors for wave energy (0.25, 0.50, 0.75).

As expected, when the cost of wave energy is very low, WECs compose the entire optimal solution. Conversely, if the cost of wave energy is very high, the optimal solution relies entirely on new wind turbines as seen in Case-study I. However, if the capacity factor of wave energy is on par with solar and wind (0.25: the upper-most axes in Figure 5), WECs provide 20% of...
CONCLUSION

In this study, we analyzed the decision process for meeting California’s 2045 renewable portfolio standard to completely eliminate fossil fuel-based electricity generation. Via a constrained optimization problem, we find that even when the costs of wave energy are higher than that of wind or solar, it may be a cost effective solution. This is due to the fact that while wind and solar have their highest output in California in the summer months, wave energy has the highest output in the winter.

This study considered only monthly electricity demand/production, but future analyses should consider smaller smaller time-scales (e.g., hourly). Additionally, it may be possible to include the effects of energy storage in the optimization problem and to reflect other value/cost considerations, such as integration costs. Furthermore, it may be possible to consider the output of specific WEC devices and/or device types to provide more detailed results.

ACKNOWLEDGEMENTS

The authors would like to thank Manussawee Sukunta of the U.S. Energy Information Agency for her valuable input. This work was partially funded by the U.S. Department of Energy’s Water Power Technologies Office. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

REFERENCES

FIGURE 5. CASE-STUDY II: RELATIVE UTILIZATION OF ADDITIONAL GENERATION ASSETS FOR A RANGE OF RELATIVE COSTS OF WAVE ENERGY. RESULTS SHOWN FOR DIFFERENT MEAN WAVE ENERGY CAPACITY FACTORS (0.25, 0.50, 0.75).

