Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Biomass-derived porous aminated graphitic nanosheets for removal of the pharmaceutical metronidazole: Optimization of physicochemical features and exploration of process mechanisms

Ziaeddin Bonyadi,1 Farzaneh Akhound Noghani,1 Aliakbar Dehghan,1 Jan Peter van der Hoek,2 Dimitrios A. Giannakoudakis,3,5 Seid Kamal Ghadiri,4,5 Ioannis Anastopoulos,5 Maryam Sarkhosh,2 Juan Carlos Colmenares,5 Mahmoud Shams,2,*

1 Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
3 Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
4 Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
5 Department of Chemistry, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus

ABSTRACT

The presence of trace levels of pharmaceutically active compounds (PhACs) in the aquatic environment threatens human health and the environment. Metronidazole (MNZ) is a soluble PhAC with low biodegradability, a possible human mutant and carcinogen. This study aimed the synthesis, physicochemical characterizations, and employment of porous amine-modified green-graphene (AMGG) for MNZ removal from aqueous solutions. Response-surface methodology (RSM) based on Box-Benken design (BBD) was used to assess the MNZ adsorption efficiency of AMGG as a function of pH (4–12), contact time (5–60 min), AMGG dose (0.1–1 g/L) and MNZ concentration (10–100 mg/L). From the model optimization, the highest MNZ removal was predicted at a pH of 5.9, a contact time of 27 min, an AMGG dose of 0.86 g /L, and an MNZ concentration of 100 mg /L. The experimental data were in agreement with the pseudo-second order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of AMGG for MNZ was 416.7 mg/g. The MNZ concentration at equilibrium increased about 4.8 mg/L when the solution temperature increased by 20 oC (from 30 to 50 °C), indicative of an exothermic process. AMGG showed an efficiency decrement from 84 % to 57 %, after five days of contact with the solution.

* Corresponding authors.
E-mail addresses: dagchem@gmail.com (D.A. Giannakoudakis), kamalgh2005@gmail.com (S.K. Ghadiri), ShamsMH@mums.ac.ir (M. Shams).
1 These authors are co-first author with equal contribution.
1. Introduction

The substantial influence of antibiotics as essential element in public health care and agriculture as well as livestock farming is well recognized [1–4]. However, the presence of even trace levels of pharmacologically active compounds (PhACs) and other organic micropolutants in wastewater threatens the environment [5–7]. Most of PhACs are refractory to biological degradation and accumulate in water and soil, where they provoke the development of antibiotic resistance genes and induction of chronic toxicity to aquatic life [8].

A specific PhAC, Metronidazole (MNZ), that belongs to the nitroimidazole family, is widely used as antibacterial and anti-inflammatory antibiotic [9]. This antibiotic is utilized for treatment of infectious human diseases and also as efficient anti-parasitic agent for chicken and fish cultivation [10]. With a ring-like structure, MNZ is known as a potential human carcinogen and mutant with detrimental effects on white blood cells [11]. Therefore, it is necessary to remove MNZ from polluted aquatic matrixes by effective methods.

The removal of antibiotics from aquatic solutions via conventional methods is often difficult due to their low degradability and high solubility [12]. Various techniques, including advanced oxidation processes [13], adsorption [14,15], biological methods [16], and ultraviolet light degradation [17], have been used to remove antibiotics from aquatic solutions. Each of these methods has advantages and disadvantages. For instance, the environmental benign biological methods need a long treatment time and have very low antibiotic removal efficiencies ranging from 10 to 20 % [18]. The use of methods such as chlorination, nanofiltration, and oxidation have received less attention because of their high costs and low efficiency [19]. Adsorption is a promising option that is widely accepted as benign, economic and easy applicable technique [20]. Although, further studies are required in order to develop new, effective, and cost-effective adsorbent materials to make adsorption more practical for a real-life application.

Graphene is a novel two-dimensional carbon nanomaterial and a fundamental building block for bucky balls, graphite, and carbon nanotubes [21]. This material attracted scientific interest in recent years due to the potential to be utilized for a wide range of applications, with its functionalization/modification to open new routes in materials design potentialities [22]. Graphite oxide (GO) which is prepared through the oxidation of graphite [23–25] is proposed as a promising adsorbent with high adsorption capacity for rapid separation of pollutants from water [26,27]. Having epoxy, hydroxyl, and carboxyl groups [28,29], GO is a hydrophilic material and a potential candidate for purification of aqueous environments [30]. To date, GO and GO nanocomposites received tremendous attention for their adsorptive potential for ammonia [31], formaldehyde [22], mercury [32], copper [33] and aromatic compounds [27].

The use of agricultural biomass/waste as precursor for the synthesis of novel adsorbent is among the most prosperous strategies, aligned with the green chemistry and sustainability targets [34]. Although various classes of materials can be derived by the treatment of biomass, such as biochar or carbons, a special focus was given recently on graphene-based materials. It was presented previously that graphitic-based material obtained from corn stover showed an elevated remediation efficiency against antibiotics like tetracycline and ciprofloxacin [14,35,36]. Wheat straw is an abundantly available agricultural biomass/waste, hence the research attention on wheat straw biomass derived adsorbents is elevated the last years [37–39]. Additionally, surface chemistry modification/functionnalization of the graphene-based materials can have beneficial effects on the adsorptive capability.

To the best of our knowledge, there is no previous published work on MNZ removal by amine-modified green-graphene. In the current study, a biomass derived material consisting predominately from GO nanosheets was prepared through the thermal conversion of wheat straw followed by post modification to form amine-modified green-graphene (AMGG). After characterization of the material, AMGG was used as adsorbent in a series of batch mode experiments to treat in-lab prepared solutions containing MNZ in various concentrations and under a wide range of conditions. The role of independent conditions/variables i.e. pH, contact time, adsorbent dose, and initial MNZ concentration on adsorption efficiency was elucidated by performing the experiments modeling according to Box-Behnken design. Also, the model derived from the Box-Behnken design was used to determine the conditions leading to the highest MNZ removal efficiency. The study covered also the removal of MZN from real hospital wastewater, and the effect of consecutive saturation-regeneration cycles of AMGG on the adsorption capacity.

2. Materials and methods

2.1. Chemicals

All chemicals used in this study were obtained from Merck company, Germany. The properties of metronidazole (MNZ) are shown in Table 1. In all cases, de-ionized water was used.

2.2. Green-Graphene nanosheet (gGrNShts) synthesis

gGrNShts was synthesized via thermochemical process. For this purpose, raw wheat straw was first washed thoroughly with tap water and then deionized water to remove dust and other impurities. The solid phases were then dispersed in ethanol (50 %) and sonicated at 30 kHz for 1 h. Subsequently, the clean wheat straw was separated from the mixture by filtration and dried overnight. Next, the wheat straw was thermally treated at 300 °C for 30 min in an oxygen-free environment to yield derived wheat black carbon (WDBC). WDBC was finally crushed and sieved to the size of <149 μm (100 mesh). To transform WDBC into gGrNShts, 5 g WDBC and 50 g KOH was added to 200 mL de-ionized water and stirred for 24 h. After filtration of the suspension, the solids were thoroughly washed with de-ionized water, dried, crashed and sieved to the size of <149 μm. The product was further activated at 790 °C in an electric furnace with a temperature ramp of 25 °C/min under nitrogen gas flow (0.5 L/min) for 2 h.

2.3. Modification of gGrNShts by grafting amine groups method

Crosslinking of the gGrNShts with epichlorohydrin was performed based on the following synthetic protocol. 20 mL aliquot of epichlorohydrin (99.9 % purity) was added to a solution consisting of 36 mL N,N-

<p>| Table 1 |
| Details for the studied pharmaceutical, metronidazole (MNZ) [12,40–42]. |</p>
<table>
<thead>
<tr>
<th>Property</th>
<th>Molecular formula</th>
<th>Molecular weight (g/mol)</th>
<th>Molecular structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>pK_{a1}</td>
<td>C_{6}H_{5}N_{2}O_{3}</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>pK_{a2}</td>
<td></td>
<td></td>
<td>2.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14.48</td>
</tr>
</tbody>
</table>
dimethylformamide (DMF) and 36 mL triethylamine and then mixed at 80 °C for 2 h in a 500 mL Erlenmeyer. Finally, 30 g gGrNShts was suspended in 90 mL of the solution described above in a 250 mL three-neck round bottom flask. Then 20 mL pyridine (as the catalyst) was added to the mixture and stirred for 2 h at 60 °C. For purification, the resulting mixture was filtered and washed firstly with 500 mL NaOH (0.1 M) and then with 500 mL HCl (0.1 M) and, as the final step, was extensively washed with de-ionized water. Afterwards, the product was dried in a vacuum drier at a temperature of 50 °C for 24 h and sieved to the size of <149 µm. The final obtained material is referred to as AMGG (amine-modified green-graphene).

2.4. Characterisation of the adsorbent

XRD analysis was performed by X-ray diffraction (XRD; model: XD-5A) using Cu beam (λ = 1.541 Å) to identify the potential presence of minerals and to analyze WDBC and AMGG characteristics. Raman was used to identify the molecular structure of compounds using Almega Thermo Nicolet Dispersive Raman Spectrometer equipped with a 785 nm laser source. In addition, Fourier Transform Infrared Spectrometer (EQUINOX 55, Bruker, Germany) in the 399–3998 (cm⁻¹) spectral range was applied to identify the functional groups on the adsorbent surface. The Zeiss-EM10C transmission electron microscope (TEM) at 100 kV was used to determine the morphology of AMGG [43].

2.5. Experimental design for adsorption experiments and adsorption modeling

2.5.1. Adsorption experiments for removal efficiency determination

WDBC, gGrNShts, and AMGG were tested to determine how the adsorption efficiency increased by modifications carried out on virgin wheat straw. This primary evaluation was accomplished by adding 0.5 g/L adsorbent material (WDBC, gGrNShts, and AMGG) to deionized water containing 50 mg/L MNZ at natural pH (5.4), followed by mixing for 30 min. The adsorbent with the highest adsorption efficiency (AMGG) then was used for a full experimental study as described in the following.

100 mL of a MNZ solution was prepared using deionized water with MNZ concentration of 10–100 mg/L, an AMGG dose of 0.1–1 g/L, and a pH of 4–12. The contact time ranged from 5 to 60 min. The samples were mixed at a fixed speed of 250 rpm at room temperature (26 ± 2 °C). When the contact time was completed, a sample of 10 mL was picked up from each Erlenmeyer flask and centrifuged at 4000 rpm for 10 min to separate nanoparticles. Finally, the absorbance of the supernatant and the control sample (the sample without adsorbent) was read using a spectrophotometer at the maximum wavelength (320 ± 7 nm). All the experiments were performed in triplicates with the average values to be presented (the range of error deviation was less than ±6 %)

The MNZ removal efficiency was calculated using the following equation:

\[
\text{Removal efficiency (\%)} = \frac{C_0 - C}{C_0} \times 100
\] (1)

Where \(C_0\) is the MNZ concentration in the control sample (mg/L) and \(C\) is the MNZ concentration in the treated solution after a given time (mg/L).

The amount of MNZ adsorbed per unit AMGG was determined using the following equation:

\[
q_e = \frac{(C_0 - C_m)}{m} \times V
\] (2)

Where \(C_m\) is the equilibrium concentration of MNZ (mg/L), \(m\) is mass of the AMGG adsorbent (g), and \(V\) is the volume of the used solution (L).

2.5.2. Modeling of the MNZ removal efficiency

In this study, design expert software based on response surface methodology (RSM), the model of Box-Behnken (BBD), was used to evaluate the effect of independent variables on MNZ removal efficiency [35,44]. Independent variables included pH (A), contact time (B), adsorbent dose (C) and initial antibiotic concentration (D). The different values of the variables are presented in Table 2. The total of experimental runs was 29. The model used in RSM was quadratic which is presented below:

\[
Y = \beta_0 + \sum_{i=1}^{3} \beta_i x_i + \sum_{i=1}^{3} \beta_i x_i^2 + \sum_{i<j}^{3} \beta_{ij} x_i x_j
\] (3)

Where Y is the predicted response, \(\beta_0\) the constant coefficient, \(\beta_i\) the regression coefficients for linear effects, \(\beta_{ij}\) the quadratic coefficients, \(x_i\) the interaction coefficients, and \(x_j\) the coded values of the parameters. The fit of the model was evaluated by R², adjusted R², predicted R², and adequacy precision [45].

2.6. Adsorption kinetics and adsorption isotherm studies

The experiments to determine the adsorption kinetics were carried out with an AMGG dose of 0.86 g/L, a MNZ concentration of 50–200 mg/L, a pH of 5.9, and a contact time of 10–60 min. The kinetics of MNZ adsorption onto AMGG was studied using the well-known pseudo-first-order, pseudo-second-order and intra-particle diffusion models [46].

The pseudo-first-order model is displayed as Eq. 4:

\[
\ln(q_e - q_t) = \ln(q_e) - k_1 \times t
\] (4)

Where \(k_1\) (1/min) is the pseudo-first-order kinetic constant, \(q_e\) (mg/g), and \(q_t\) (mg/g) are MNZ adsorption capacity of AMGG at equilibrium state, and the MNZ adsorption capacity of AMGG at time \(t\), respectively. The pseudo-second-order model is expressed in Eq. 5:

\[
t/\frac{q_t}{q_e} = 1/\frac{k_2 q_e^2}{q_e} + 1/\frac{q_e}{t}
\] (5)

Where \(k_2\) (g/(mg.min)) is the rate constant of pseudo-second-order model and \(q_e\) and \(q_t\) are as described above. The linear form of intra-particle diffusion model is given in Eq. 6:

\[
q_t = k_D t^{1/2} + c
\] (6)

where \(k_D\) and t are intra-particle diffusion rate constant and contact time, respectively, and \(c\) is a constant value related to boundary layer [47].

The adsorption isotherms have been surveyed under the following conditions: an adsorbent dose of 0.1–1 g/L, a MNZ concentration of 100 mg/L, a pH of 5.9, and a contact time of 27 min. All the experiments were performed at room temperature (26 ± 2 °C). In this work, the adsorption isotherms were studied using Langmuir, Freundlich, Temkin, and Dubinin-Radeskovich equations. The Langmuir isotherm is described in the following equation:

\[
C_s = \frac{1}{q_m} + \frac{1}{K_L q_m}
\] (7)

where \(q_m\) (mg/g) and \(K_L\) (L/mg) are the maximum sorption capacity and
the Langmuir equilibrium constant, respectively.

The linear form of the Freundlich model is described according to Eq. 8:

\[\ln q_e = \ln K_f + \frac{1}{n} \ln C_e \]

(8)

where \(K_f \) ((mg/g)(L/mg)^1/n) and \(n \) display the Freundlich constants related to AMGG adsorption capacity and sorption intensity, respectively [48].

Dubinin-Radushkevich isotherm is an empirical adsorption model that is commonly used to describe adsorption mechanisms with Gaussian energy distribution onto heterogeneous surfaces. Dubinin-Radushkevich isotherm is given by the following equation [49]:

\[\ln q_e = \ln q_{m} - \beta \varepsilon^2 \]

(9)

where \(\varepsilon = \frac{RT}{b} \ln (1 + \frac{1}{\varepsilon}) \) is the Polanyi potential, \(\beta \) is the Dubinin-Radushkevich constant, \(R \) is the gas constant (8.31 J/mol.k) and \(T \) is the absolute temperature.

Temkin isotherm considers the impacts of indirect adsorbate/adsorbate interactions on the adsorption process. In this model, it is also presumed that the adsorption heat (\(\Delta H_{ads} \)) of all molecules in the layer reduces linearly due to the increase of surface coverage. The Temkin isotherm is suitable only for an intermediate ionic solution. The linear form of the Temkin isotherm model can be described as follows [50]:

\[q_e = \frac{RT}{b} \ln K_T + \frac{RT}{b} \ln C_e \]

(10)

where \(R \) is the universal gas constant, \(T \) is the absolute temperature, \(b \) is the Temkin constant which is related to the heat of sorption and \(K_T \) is the Temkin isotherm constant (L/g) [51,52].

2.7. Effect of temperature

The experiments to determine the effect of temperature on MNZ removal efficiency were carried out in 100 mL reaction solutions with the conditions 0.86 g/L AMGG, pH 5.9, MNZ concentration 100 mg/L, contact time 27 min, and temperature 303–323 K.

2.8. Zero point of charge (pHzpc) determination

For determining pH_{zpc} the pH of a series of 100 mL solutions containing 0.01 M NaCl was adjusted between 2–12. Then, 1 g/L AMGG was added into the reaction solutions and agitated by a magnetic mixer at a fixed speed of 250 rpm for 24 h and filtered over a Whatman paper 42. Finally, the difference between the initial and final pH values or “\(\Delta \)pH = pH_i – pH_f” was plotted versus pH [33].

2.9. Regeneration study

In order to choose the appropriate eluting solution, the saturated adsorbent was initially tested for regeneration using acidic (pH = 4) and alkaline (pH = 10) water solutions. The adsorbent then was subjected to a series of saturation/regeneration cycles by the eluting solution, which showed a better performance (the acidic solution). The efficiency of MNZ removal after regeneration was monitored to determine the reusability of the adsorbent.

2.10. Treatment of real wastewater

To determine the practical use of AMGG, adsorption experiments were also carried out using real wastewater samples containing MNZ and other co-current ions. The samples were picked up from a hospital. The experiments were conducted under the optimal conditions (AMGG dose 0.89 g/L, pH 5.9 contact time 27 min).

3. Results and discussion

3.1. Characterization

3.1.1. X-ray powder diffraction (XRD)

The XRD patterns of wheat derived black carbon (WDBC) and Green-Graphene nanosheet (gGrNShts) are presented in Fig. 1. The pattern of WDBC revealed several peaks at two theta angles of around 23, 26, 28 and 40°, which can be linked to the presence of minerals. After the thermo-chemical treatment, a broad peak was observed from 20 to 30°, with a maximum at around 2θ = 25°, which can be related to the main index of graphite (20 = 26°), with an interlayer space of around 3.34 Å [54]. The low intensity and broadness of the reflection can be associated with the nano scaled structure and a high level of exfoliation leading to an amorphous in nature graphene sheets organization in gGrNShts [55,56]. The results are consistent with similar studies of XRD patterns of other materials obtained by analogues synthetic processes using agricultural biomass as a precursor and typical for reduced graphene oxide [55,57]. Moreover, no peaks related to the presence of minerals as in the case of the precursors were observed, suggesting their removal upon the final stage of treatment.

3.1.2. Raman and FTIR

Based on the RAMAN spectrum, D band appeared at around 1333 cm^{-1}, indicating the amorphous carbon phase at the edge plane of graphene sheets or/and in between the graphitic phase [58]. The G band characteristic for the sheets of graphene appeared around 1585 cm^{-1}. According to the result of Fig. 2, the thermo-chemical treatment was significantly affected the D band of the gGrNShts spectrum. The \(I_D/I_G \) ratio increased upon modification suggesting an increase of the graphitic phase to amorphous ratio. Thus, the synthesized gGrNShts is characterized with a higher ratio of clean edges and less amorphous carbon phase.

Fig. 3 displays the FTIR spectra for WDBC, gGrNShts, and AMGG. For gGrNShts and AMGG, a broad band is observed at 3400 cm^{-1} which can be ascribed to the presence of the OH groups on the adsorbent surface. The bands observed at 1080 cm^{-1} and 1339 cm^{-1} may be attributed to vibrations of C–O and CO–H groups in the structure of gGrNShts, respectively [43]. The band in the range of 1367 cm^{-1} (that appeared in the FTIR spectrum of AMGG) is related to the stretching vibrations caused by C–N bonding. The bands of the oxygen-containing functional groups and the alkenyl and hydroxyl groups (with wavenumbers of 1635 and 3431 cm^{-1}, respectively) remained on the AMGG surface.

3.1.3. Transmission electron microscopy (TEM)

The structure and morphology of gGrNShts was investigated by TEM analysis. Based on the TEM image (Fig. 4), gGrNShts has a thin, flattened and few-layers structure.

![Fig. 1. The XRD pattern of WDBC (a) and gGrNShts (b).](image-url)
3.1.4. Scanning electron microscope (SEM)

Fig. 5 collects the SEM images of WDBC combusted at 300 °C, gGrNShts and AMGG. The AMGG nanosheets are clearly visible. The uniform structure of the graphitic nanosheets indicates that due to the proper final elution of the product and its optimum synthesis, no salt crystals and other impurities are present [59]. The SEM images show that the structure of AMGG is more uniform than gGrNShts. This is due to the existence of amino groups in the structure of AMGG [60].

3.1.5. Brunauer-Emmett-Teller (BET)

The BET specific surface area (S_{BET}) and porosity information derived from the analysis of the nitrogen physisorption tests of the products are shown in Table 3. The S_{BET} of gGrNShts was higher than other adsorbents such as nanopores of doum palm shell derived carbon prepared by NaOH activation (226 m2/g) [61], hydrothermally reduced graphene oxide (364 m2/g) [62], Fe$_2$O$_3$/RGO composite (32 m2/g) [63], nitrogen-doped RGO (146.0 m2/g) [64], hydrothermally modified RGO (~181 m2/g) [65] and is almost similar to commercial reduced graphene oxide of Sigma-Aldrich with S_{BET} of around 450 m2/g.

3.2. Preliminary adsorption study

WDBC, gGrNShts, and AMGG were synthesized and tested to determine how MNZ adsorptive properties improved by wheat straw modification. The best material among the synthesized adsorbents then was chosen for the following optimization experiments. Fig. 6 shows that AMGG had the highest removal efficiency in the preliminary study, reaching 84 % removal efficiency, a value more than 3 folds higher than
that of gGrNShts.

3.3. Analysis of the RSM model for MNZ removal

By the utilization of AMGG to a series of solutions containing MNZ according to the design, experimental data were collected. Table S1 in the supplementary information (SI) shows the observed values of MNZ removal efficiency (%). According to the findings in Table S1, the minimum and maximum observed removal efficiencies were 16% and 92%, respectively.

The experimental results were statistically analyzed for linear, 2Fl, quadratic and cubic models to select the model that best describes the data. The results of comparative model regression are collected in Table S3 (SI). In this work, the quadratic model was the best fitted model for the experimental data. Table S3 (SI) presents the analysis of variance (ANOVA) for the response surface quadratic model. Overall, a P-value less than 0.05 indicated that the model was significant. From Table S3, R², adjusted R², predicted R², and adequacy precision were 0.97, 0.95, 0.87, and 20.82, respectively.

For each model term in Table S3, a P-value lower than 0.05 shows the term has a statistically and significant effect on MNZ adsorption. Moreover, for a statistically acceptable model, the Lack of Fit (LOF) F-value should be lower than 0.2, which is the case for the model [66]. The adequacy precision term measures the signal to noise ratio. This parameter was 20.8 which is quite beyond the minimum desirable value of 4. The adequacy of the model to give a good prediction for MNZ removal is clearly illustrated in Table S1 (SI) and Fig. 7, which shows the experimental removal versus the predicted removal.

The quadratic model for MNZ removal by AMGG is presented in Eq. 11:

\[
\text{MNZ Removal} \% = 90.10 - 8.9 A + 10.13 B + 22.35 C - 13.24 D + 2.78 \text{AB} - 7.86 \text{AC} - 4.6 \text{AD} + 10.20 \text{BC} + 9.58 \text{BD} + 10.33 \text{CD} - 11.64 \text{A}^2 - 11.89 \text{B}^2 - 25.29 \text{C}^2 + 2.81 \text{D}^2
\]

Where, \(A = \text{pH}, B = \text{contact time}, C = \text{AMGG dose} \) and \(D = \text{MNZ concentration} \). In the above equation, each model term has a positive or negative sign which is indicative of its increasing / reducing effect on the response, i.e. the MNZ removal. The MNZ removal is proportionally increased by contact time (B) and AMGG dose (C) and proportionally decreased by pH (A) and MNZ concentration (D). From Eq. 11, with the highest coefficient of +22.35, AMGG dose (C) had the greatest impact on the removal of MNZ.

3.4. The effect of process variables on MNZ removal by AMGG

Based on the RSM model, the effect of process variables (pH, contact time, adsorbent dose and initial antibiotic concentration) on MNZ removal by AMGG was evaluated. The pH_{exp} of AMGG was found to be about 8.3. Thus, its surface would be positive, neutral and negative at a pH lower than 8.3, at a pH of 8.3 and at a pH above 8.3, respectively. Metronidazole is a weak base with pK_{a1} = 2.38 and pK_{a2} = 14.48 [12, 42]. At pH value below 4, MNZ is in its protonated form (MNZ-H\(^+\)), since the imidazole nitrogen is positively charged. Between pH 4 and ~12, MNZ is neutral (MNZ), since imidazole nitrogen is de-protonated. Beyond pH 12, the hydroxyl group is ionized as so the MNZ is negatively charged (MNZ\(^-\)). The correlation of the charges of MNZ and the surface of AMGG are summarized in Fig. 8. Since the electrostatic interactions are of repulsive nature at the entire tested range of pH, the observed adsorption efficiency of AMGG can be linked to different interactions such as \(\pi\pi \) interactions/stacking, Van der Waals forces, and hydrogen bonds.

Fig. 7 (a-c) displays the effect of pH, AMGG dose, MNZ concentration, and contact time on MNZ removal. In most sorption systems the pH is a critical factor that affects the adsorbent surface charge and pollutant ionic state. Fig. 5a shows that the removal efficiency was highest at a pH ranging from 5 to 8. At a pH above 8 and under strong acidic conditions, the MNZ removal was decreased. MNZ, on the other hand, is protonated at a pH below 4. Therefore, the MNZ removal decreased due to the electrostatic repulsion between the adsorbent surface and MNZ-H\(^+\). At a pH above 8, the negative charge of the adsorbent surface and MNZ\(^-\) molecules led to a decreasing removal efficiency again due to the repulsive electrostatic interactions. Therefore, the highest MNZ removal was expected at a pH around neutral or close to the point of zero charge of the adsorbent.

The impact of AMGG dose on MNZ removal is displayed in Fig. 9b.
With increasing AMGG dosage, the MNZ removal increased initially (at an AMGG dose of 0.1–0.86 g/L) and then decreased slowly (at an AMGG dose of 0.86–1 g/L). The increase in MNZ removal at an adsorbent dose up to 0.86 g/L is related to an increasing available sorption surface for MNZ. The lower mobility of the AMGG particles, on the other hand, is probably responsible for decreasing MNZ removal when the adsorbent dose was adjusted to above 0.86 g/L [69, 70].

Fig. 9b shows that the contact time directly affects the MNZ removal. Interestingly, high removal already occurred after a short contact time and highest MNZ removal was at 30 min contact time. The slope of the MNZ removal gradually decreased above 30 min contact time.

According to Fig. 9c, there is a relationship between the initial MNZ concentration and its removal efficiency. A higher initial concentration resulted in a lower removal efficiency. The saturation of the sorbent sites of AMGG at high MNZ concentrations is the reason for this behavior. At low MNZ concentrations, the ratio of the active AMGG sites for adsorption to the initial number of MNZ molecules is high, and as a result, the removal will be independent of the concentration at low initial concentrations [67].

3.5. Optimum operational conditions

The present work aimed to optimize the operational condition to reach the highest removal. The optimization was performed by using Eq. 11 to maximize the response. The range of independent variables were considered in the coded levels of ±1, as used for BBD design. From the quadratic model optimization, the highest MNZ removal (theoretically 100 %) was obtained at a pH of 5.9, a contact time of 27 min, an adsorbent dose of 0.86 g/L, and a MNZ concentration of 100 mg/L. This optimum situation was experimentally tested and the average MNZ removal in three repeated tests was found to be 97.4 %, which is close to that predicted by the model.

3.6. MNZ adsorption kinetics and isotherm studies

Kinetics are an important part of any sorption study that simulates the rate of solute uptake from the solute-solution interface [71]. Kinetic models provide valuable information about the economy of adsorption by determining the rate constants and hence the contact time and volume of an adsorption unit. The models also could reveal the rate control step in the sorption process [72]. In this study, the common kinetic models, including pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models [73, 74] were used to elucidate the reaction rate coefficients. Table 7 shows the kinetic and isotherm parameters fitted for MNZ removal by AMGG. Based on the findings, R² values for pseudo-first-order, pseudo-second order and intraparticle diffusion kinetics were 0.912, 0.990, and 0.960, respectively, suggesting that the pseudo-second-order kinetic model resulted in the best fit. Similar results have been reported by other researchers for MNZ sorption onto carbon materials [67].

The adsorption isotherm, which describes the relation of the solute equilibrium concentration and the solute mass loaded on adsorbent
The kinetic and adsorption isotherm parameters fitted for MNZ removal by AMGG.

<table>
<thead>
<tr>
<th>Kinetic Model</th>
<th>Parameter</th>
<th>50 mg/L</th>
<th>100 mg/L</th>
<th>200 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-first order</td>
<td>q<sub>e</sub,max [mg/g]</td>
<td>11.57</td>
<td>41.2</td>
<td>98.9</td>
</tr>
<tr>
<td></td>
<td>K<sub>e</sub> [1/min]</td>
<td>–0.01</td>
<td>–0.04</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>0.67</td>
<td>0.89</td>
<td>0.91</td>
</tr>
<tr>
<td>Pseudo-second order</td>
<td>q<sub>e</sub,max [mg/g]</td>
<td>55.1</td>
<td>102.3</td>
<td>168.6</td>
</tr>
<tr>
<td></td>
<td>K<sub>e</sub> [g/min]</td>
<td>0.02</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>1</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>Intra-particle diffusion</td>
<td>k<sub>n</sub> [g/min<sup>0.5</sup>]</td>
<td>1.05</td>
<td>6.28</td>
<td>8.86</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>0.94</td>
<td>0.89</td>
<td>0.96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adsorption isotherm model</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td>q<sub>max</sub> [mg/g]</td>
<td>416.7</td>
</tr>
<tr>
<td></td>
<td>k<sub>e</sub> (L/mg)</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>K<sub>r</sub> (mg/g)(L/ mg)<sup>1/n</sup></td>
<td>50.8</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>0.9</td>
</tr>
<tr>
<td>Freundlich</td>
<td>n</td>
<td>3.1</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>0.9</td>
</tr>
<tr>
<td>Temkin</td>
<td>k<sub>1</sub> (L/mg)</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>0.92</td>
</tr>
<tr>
<td>Dubinin–Radushkevich</td>
<td>q<sub>max</sub> [mg/g]</td>
<td>279.5</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td>R<sup>2</sup></td>
<td>0.79</td>
</tr>
</tbody>
</table>
In this paper, biomass derived and functionalized green-graphitic material (AMGG) was synthesized by grafting amine groups and applied towards adsorption studies against a hazardous pharmaceutical, metronidazole (MNZ). The adsorbent physicochemical features were applied towards adsorption studies against a hazardous pharmaceutical, material (AMGG) was synthesized by grafting amine groups and

Conclusions

Moreover, AMGG could be used successfully at least five times after regeneration for MNZ removal. In real hospital wastewater, the MNZ removal efficiency was found to be 74%. This work reveals that the utilization of abundantly available biomass and biowastes as feedstocks towards the synthesis of novel adsorbents to be applied for environmental remediation process is still an open field of sustainability-oriented research.

Appendix A. Supplementary data

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors would like to appreciate the financial support provided by Mashhad university of medical sciences for the MSC dissertation under grant # of 971351.

Appendix A. Supplementary data

Supplementary material related to this article can be found in the online version, at doi:https://doi.org/10.1016/j.colsurfa.2020.125791.

References

Z. Bonyadi et al.