Light rail
Ridership and service reliability

dr. ir. N. van Oort
Assistant professor public transport

Den Danske Bane Konference 2014
Resume

• Research agenda
 • Optimizing public transport
 • Network, timetables and operations
 • Three key aspects:
 • Vehicle -> Passengers
 • Trip -> journey
 • Costs -> benefits
 • Data driven research

• Light rail
 • Planning and decision making
 • Optimization of planning and operations
 • Success and failure aspects in NL
 • Scan of projects in NL
 • Book in 2015, in cooperation with Dr. Rob vd Bijl, www.LightRail.nl
Outline

Increasing quality and ridership of public transport services

Light rail may combine strengths of several systems (train, tram, metro)

Service reliability is key quality aspect

Potential impacts?

Decision making?

Two cases:
• Light rail operations: RandstadRail The Hague
• Light rail planning: New tram line Utrecht
RandstadRail: The Hague

About 95,000 passengers per day

Two lines; 33 and 27 km | 41 and 31 stops

5 min headway per line per direction
RandstadRail (2)

The Hague, NL
Focus on service reliability

- High level of quality and reliability
- In urban area
 - Poor punctuality
 - Poor regularity
- High number of vehicles per hour per direction (>24)
- Signalling applied: limited capacity
- Shared tracks with tram and metro
- Operational targets of transit authority
Without controlling?

- Bunching -> Increase in average waiting time
- Overcrowding -> Probability of having a seat decreases
- Uncertainty -> Less satisfied travellers
Main elements

- Preventing unplanned stopping
- Punctuality
- Dwelling (vehicles and stops)
- Timetable
- Dispatching room
Actual effects

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pre-Improvement</th>
<th>Post-Improvement</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average dwell time</td>
<td>28 s</td>
<td>24 s</td>
<td>4 s</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>- 70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average delay</td>
<td>90 s</td>
<td>20 s</td>
<td>70 s</td>
</tr>
<tr>
<td>Departure punctuality</td>
<td>70%</td>
<td>93%</td>
<td>+23%</td>
</tr>
<tr>
<td>Driving ahead of schedule</td>
<td>50%</td>
<td>7%</td>
<td>-43%</td>
</tr>
<tr>
<td>Customer satisfaction</td>
<td>6.7</td>
<td>7.4</td>
<td>+0.7</td>
</tr>
<tr>
<td>Ridership growth</td>
<td>~30%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- RandstadRail: High frequent light rail in an urban area
- High reliability because of controlling operations
- Ridership growth due to substantial quality leap

- How to incorporate quality improvements in decision making and planning?
Decision making in public transport

- Most projects aim at enhanced reliability
- Service reliability is often missing in CBA and transport models
- We developed:
 - Methodology to incorporate passenger impacts of service reliability:
 - Transport models (reliable forecasts)
 - Cost benefit analyses
- Applied in Utrecht
Case: Uithoflijn (line 12)

- Centrally located in the Netherlands
- 4th largest city
- 300,000 inhabitants
Problem analysis

Scheduled headway
Avg. = 2.5 min; $\sigma = 1.3$ min

Dwell time Utrecht central station
Avg. = 2.5 min; $\sigma = 1.3$ min
Problem analysis

- Busiest bus line in the Netherlands: 27,000 passengers per day
- Frequency of 23x/hour/direction using double-articulated buses: 30x/hour/direction necessary
- 140-160 passengers per bus => no comfort
- Long peak period: 7–11 AM and 2-6 PM

- Mobility is still growing
 - +25% planned property in the Uithof: +8000 students, +10,000 employees
 - Total: 53,000 students, 30,000 employees and 3,500 visitors (hospital)
 - No additional parking space
 - Demand forecast: 46,000 passengers per day
Case Utrecht Uithoflijn

- Introduction of a light rail line: 16-20x/hour
Ministry requires CBA

- Regional parties agreed with plans and finances
- €110 million of Minister of Transport available (about 1/3 of total costs)

CBA > 1,0

YES

+ €€ + €

NO

+ €€ + €

Image of tram and bus
Our approach

• 5 project alternatives were designed
 • Bus and tram (high or medium frequency)
 • Low level of services
 • High level of services

• Calculations of:
 • Future demand, including tram bonus impacts
 • Costs (infrastructure and operations)
 • Benefits
 • Travel time gains
 • Reliability gains
 • Other
Results CBA

<table>
<thead>
<tr>
<th></th>
<th>Value compared to reference case (millions in 2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment costs</td>
<td>-€222</td>
</tr>
<tr>
<td>Operating costs</td>
<td>€66</td>
</tr>
<tr>
<td>Total costs</td>
<td>€288</td>
</tr>
<tr>
<td>Additional ticket revenues</td>
<td>€40</td>
</tr>
<tr>
<td>Increased travel time</td>
<td>€67</td>
</tr>
<tr>
<td>Service reliability effects</td>
<td></td>
</tr>
<tr>
<td>- Less waiting time</td>
<td>€123</td>
</tr>
<tr>
<td>- Reduction in distribution</td>
<td>€78</td>
</tr>
<tr>
<td>- Increased probability of finding a seat in the vehicle</td>
<td>€4</td>
</tr>
<tr>
<td>External effects (emissions, safety, etc.)</td>
<td>€8</td>
</tr>
<tr>
<td>Total benefits</td>
<td>€330</td>
</tr>
<tr>
<td>Benefits-costs</td>
<td>€648</td>
</tr>
<tr>
<td>Benefit cost ratio</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Service reliability effects are over >60% of all benefits!
Conclusions

- Service reliability is an important quality aspect of public transport
- Light rail enables higher service reliability
- Little attention to service reliability in cost-benefit analyses and transport models
- Research and case proves:
 - It is possible to quantify service reliability and calculate the monetary value
 - Service reliability benefits made the difference
- This method was approved by the Dutch Ministry and the Minister provided the €110 million
Questions / Contact

Niels van Oort

N.vanOort@TUDelft.nl

Papers:
https://nielsvanoort.weblog.tudelft.nl/

UITP Magazine

International Railway Journal