Print Email Facebook Twitter Vortical Structures and Turbulent Bursts Behind Magnetic Obstacles in Transitional Flow Regimes Title Vortical Structures and Turbulent Bursts Behind Magnetic Obstacles in Transitional Flow Regimes Author Kenjeres, S. Ten Cate, S. Voesenek, C.J. Faculty Applied Sciences Department Multi-Scale Physics Date 2011-03-21 Abstract The present paper reports on numerical investigations of vortical structures in transient flow regimes generated by the local action of the Lorentz force on an electrically conductive fluid. The locally imposed non-uniform magnetic field generates similar effects as observed for flows over submerged solid obstacles. It is demonstrated that complex flow patterns can be generated by imposing magnetic fields of different strengths. The initial validation of the electromagnetically extended Navier–Stokes solver on unstructured numerical grids is performed in the low-Reynolds number range 100 ? Re ? 400 for different values of the magnetic interaction parameter. A generally good agreement is obtained in comparison with similar numerical studies of [Votyakov et al., 2007] and [Votyakov et al., 2008] for the low-Reynolds number cases. Then, a series of simulations are performed in transitional flow regimes (Re = 900) for different values of the interaction parameter (N = 3, , 25). Simulations demonstrated the appearance of vortex-shedding phenomena similar to the flows behind solid obstacles. In contrast to the solid obstacles, the magnetic obstacles also generated the vortical flow patterns inside the magnetically affected regions. This feature can be used for the flow control of electrically conductive fluids, for efficient enhancements of the wall-heat transfer or for better mixing of passive scalars. Despite the laminar inflow conditions, turbulent bursts are observed in the magnetic wake region for the Re = 900 case. The velocity spectra and spatial distributions of the long-time averaged second-moments of the velocity field demonstrated that turbulence was locally sustained in the proximity of the magnetic wake edge. Subject magnetic obstacleLorentz forcevortex sheddingturbulent bursts To reference this document use: http://resolver.tudelft.nl/uuid:bf599d9c-661f-4736-a529-b2ae7c5f4f81 DOI https://doi.org/10.1016/j.ijheatfluidflow.2011.02.011 Publisher Elsevier ISSN 0142-727X Source http://www.sciencedirect.com/science/journal/0142727X Source International Journal of Heat and Fluid Flow, 32 (3), 2011, authors version Part of collection Institutional Repository Document type journal article Rights (c) The authorsElsevier Inc. Files PDF Int_J_Heat_Fluid_Flow_Vol ... njeres.pdf 5.06 MB Close viewer /islandora/object/uuid:bf599d9c-661f-4736-a529-b2ae7c5f4f81/datastream/OBJ/view