Efficient Angle Estimation for MIMO Systems via Redundancy Reduction Representation

Zhang, Yu; Wang, Yue; Tian, Zhi; Leus, Geert; Zhang, Gong

DOI
10.1109/LSP.2022.3164850

Publication date
2022

Document Version
Final published version

Published in
IEEE Signal Processing Letters

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Efficient Angle Estimation for MIMO Systems via Redundancy Reduction Representation

Yu Zhang, Member, IEEE, Yue Wang, Senior Member, IEEE, Zhi Tian, Fellow, IEEE, Geert Leus, Fellow, IEEE, and Gong Zhang, Member, IEEE

Abstract—This paper proposes an efficient direction of departure (DOD) and direction of arrival (DOA) estimation method for multi-input multi-output (MIMO) systems. For uncorrelated scenarios, the redundancy of the covariance matrix is first exploited by establishing its concise representation through redundancy reduction, which transforms the original large-size covariance matrix into a smaller-size matrix without loss of useful angle information. Then, the resulting transformed matrix, which retains a salient structure, permits efficient two-dimensional (2D) angle estimators working on a reduced-size problem for DOD and DOA estimation. Compared with conventional subspace-based methods, the proposed method incorporating an appropriate 2D angle estimator is more computationally efficient and can achieve higher estimation accuracy for small numbers of snapshots and low signal-to-noise ratios, which are verified by simulation results.

Index Terms—DOD and DOA estimation, MIMO systems, redundancy reduction representation, transformation matrix construction.

I. INTRODUCTION

DIRECTION of departure (DOD) and direction of arrival (DOA) estimation plays an important role in parameter estimation for multi-input multi-output (MIMO) systems, where two-dimensional (2D) subspace-based angle estimation algorithms are applied [1]–[10]. For example, ESPRIT [3] and 2D-MUSIC [4], as two representative algorithms, have been widely employed. However, to implement 2D-MUSIC, a 2D spectral peak searching is required, at a cost of an expensively high computation load. To overcome this disadvantage, an efficient reduced-dimension MUSIC (RD-MUSIC) [5] has been developed by dividing the simultaneous 2D spectral peak search into separate one dimensional (1D) angle estimators. The RD-MUSIC, as an efficient modification of 2D-MUSIC, still belongs to the class of subspace-based algorithms. For RD-MUSIC, an eigenvalue decomposition (EVD) on the covariance matrix of the observations is still required similar to ESPRIT and 2D-MUSIC. The EVD operation results in a computational complexity that is cubic in the product of the numbers of transmitters and receivers in the MIMO system denoted by N and M, respectively, which can be computationally expensive as N and/or M go large [11].

In this paper, an efficient angle estimation method is proposed for MIMO systems, by exploring a potential redundancy structure hidden in the 2D covariance and exploiting it to derive a transformation from the covariance to its core matrix which enables a new design of 2D estimators for angle estimation. In doing so, the main contributions of this letter are summarized as follows: 1) a redundancy reduction representation of the 2D covariance matrix is first proposed by exploiting its redundancy structure; 2) based on such a redundancy reduction representation, an efficient linear construction from the original large covariance to its concise core matrix is then derived in a closed-form expression, which is parameterized by its dimensions N and M only; 3) 2D angle estimators are developed over the core matrix for DOD and DOA estimation. Different from standard subspace-based methods where EVD operations are always required, the proposed method relies on a simple linear transformation only. Further, thanks to the sparsity nature of the transformation matrix, such a linear transformation can be applied in a computation-efficient manner. As a result, the proposed method is more efficient than its subspace-based counterparts. Simulation results demonstrate the efficiency and effectiveness of the proposed method.

Notations: a, A and α denote a scalar, a vector and a matrix, respectively. $(\cdot)^T$, $(\cdot)^*$, and $(\cdot)^H$ are the transpose, conjugate, and conjugate transpose of a vector or matrix. $\text{diag}(\alpha)$ generates a diagonal matrix with the diagonal elements constructed from α. vec(\cdot) stacks all the columns of a matrix into a vector and vec$^{-1}(\cdot)$ is the inverse operation of vec(\cdot). e_a and q_a are the vectors with only the a-th element being one and zeros elsewhere. I_n is an n-size identity matrix and K_n is an n-size anti-diagonal identity matrix. A^\dagger is the pseudoinverse of A. \circ is the Khatri-Rao product. \odot is the Kronecker product. \odot denotes expectation.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 17,2022 at 13:00:02 UTC from IEEE Xplore. Restrictions apply.
II. PROBLEM FORMULATION

Consider a MIMO system equipped with uniform linear arrays (ULA) at both its transmit and receive base stations, where N and M antennas are spaced with half-wavelength, respectively. This MIMO system can be either a MIMO communications system [8], [9] or a bistatic MIMO radar system [10]. Assume that there are K uncorrelated targets or channel paths for the bistatic MIMO radar system or the MIMO communications system, respectively. Assuming orthogonal transmit waveforms, the output of the matched filters at the receiver contaminated by noise can be expressed as [5]

$$y(t) = x(t) + n(t)$$

$$= \sum_{k=1}^{K} s_k(t) a_r(\theta_k) \otimes a_i(\phi_k) + n(t)$$

$$= A_r(\theta) \otimes A_i(\phi)s(t) + n(t), \quad t = 1, \ldots, L, \quad (1)$$

where $s_k(t)$ is the radar cross section complex coefficient of the k-th target for bistatic MIMO radar systems or the path gain of the k-th channel path for MIMO communications systems. L is the number of collected snapshots. The receive and transmit steering vector $a_r(\theta_k)$ and $a_i(\phi_k)$ of size M and N are of the form

$$a_r(\theta_k) = [1, e^{-j\pi \sin(\theta_k)}], \ldots, e^{-j\pi(M-1) \sin(\theta_k)}]^T$$

$$a_i(\phi_k) = [1, e^{-j\pi \sin(\phi_k)}], \ldots, e^{-j\pi(N-1) \sin(\phi_k)}]^T, \quad (2)$$

where θ_k and ϕ_k are the corresponding DOA and DOD of the k-th target/path with respect to the receive array normal and transmit array normal, respectively. $n(t)$ is the additive Gaussian white noise vector satisfying $N(0, \sigma^2 I_{MN})$. And, $s(t) = [s_1(t), \ldots, s_K(t)]^T$, $\Theta = [\theta_1, \ldots, \theta_K]^T$, $\Phi = [\phi_1, \ldots, \phi_K]^T$, $A_r(\theta) = [a_r(\theta_1), \ldots, a_r(\theta_K)]$ and $A_i(\phi) = [a_i(\phi_1), \ldots, a_i(\phi_K)]$. Given $y(t)$ collected from (1), the covariance matrix of the observation is

$$R_y = \mathbb{E}\{y(t)y^H(t)\} = R_x + \sigma^2 I_{MN}$$

$$= \sum_{k=1}^{K} r_k(a_r(\theta_k) \otimes a_i(\phi_k)) (a_r(\theta_k) \otimes a_i(\phi_k))^H + \sigma^2 I_{MN}$$

$$= (A_r(\theta) \otimes A_i(\phi)) R_s (A_r(\theta) \otimes A_i(\phi))^H + \sigma^2 I_{MN}, \quad (3)$$

where

$$R_s = (A_r(\theta) \otimes A_i(\phi)) R_s (A_r(\theta) \otimes A_i(\phi))^H$$

is the noise-free covariance matrix with $R_s = \text{diag}(r_1, \ldots, r_K) \succeq 0$ being a diagonal positive semidefinite matrix. In practical applications, R_s is estimated over L collected snapshots through $R_y = \frac{1}{L} \sum_{t=1}^{L} y(t)y^H(t)$.

The goal of 2D angle estimation in this letter is to recover the unknown DOD and DOA pairs $\{\phi_k, \theta_k\}_k$ from R_y.

III. METHOD

This section proposes an efficient 2D angle estimation method for MIMO systems. In doing so, we first develop a redundancy-reduction representation of the covariance matrix by exploiting the redundancy of the covariance matrix. Then, a transformation matrix is constructed as a linear mapping which transforms the original large-size covariance matrix into a smaller-size core matrix without losing any useful information. Finally, 2D angle estimation is developed over such a smaller-size core matrix.

A. Redundancy Reduction Representation

By vectorizing (3), we have

$$\text{vec}(R_y) = \text{vec}(R_x) + \sigma^2 \text{vec}(I_{MN}). \quad (5)$$

Based on (4) and the diagonal feature of R_x, the first term on the right hand side of (5) can be expressed as

$$\text{vec}(R_x) = \sum_{k=1}^{K} r_k(a_r^*(\theta_k) \otimes a_i^*(\phi_k))(a_r(\theta_k) \otimes a_i(\phi_k)). \quad (6)$$

The key innovation is now to rewrite the basic term in (6) as

$$(a_r^*(\theta_k) \otimes a_i^*(\phi_k))(a_r(\theta_k) \otimes a_i(\phi_k)) = \Psi(a_r^*(\theta_k) \otimes a_i^*(\phi_k)),$$

where $a_r^*(\theta_k) \in \mathbb{C}^{2M-1}$ and $a_i^*(\phi_k) \in \mathbb{C}^{2N-1}$ are given by

$$a_r^*(\theta_k) = [e^{-j\pi(M-1) \sin(\theta_k)}], \ldots, e^{-j\pi(M-1) \sin(\theta_k)}]^T,$$

$$a_i^*(\phi_k) = [e^{-j\pi(N-1) \sin(\phi_k)}], \ldots, e^{-j\pi(N-1) \sin(\phi_k)}]^T. \quad (8)$$

The tall matrix

$$\Psi = (I_M \otimes E \otimes I_N)(G_M \otimes G_N) \in \mathbb{C}^{M^2 \times N^2 \times (2M-1)(2N-1)} \quad (9)$$

is defined as a redundancy-reduction representation matrix that is determined by N and M only, where $E = \sum_{j=1}^{N} (e_j^T \otimes I_M \otimes e_j) \in \mathbb{C}^{N \times N \times M}$ with $e_j \in \mathbb{C}^N$ is the commutation matrix, G_M is defined as

$$G_M = [G_{M,1}, \ldots, G_{M,M}]^T \in \mathbb{C}^{M^2 \times (2M-1)}, \quad (10)$$

with the i-th block matrix $G_{M,i} = [0M_i \times M_{-i}, K_{M,i}M_{-i}]$, $i = 1, \ldots, M$, and $G_N \in \mathbb{C}^{N \times (2N-1)}$ is defined similarly as (10). Substituting (7) into (6), we have

$$\text{vec}(R_x) = \Psi \sum_{k=1}^{K} r_k a_r^*(\theta_k) \otimes a_i^*(\phi_k)$$

$$= \Psi \text{vec}(A_r^*(\phi) R_s A_r^T(\theta)) = \Psi \text{vec}(Z), \quad (11)$$

where Z is called the core matrix of the original covariance R_s in this letter. We have $Z = A_r^*(\phi) R_s A_r^T(\theta) \in \mathbb{C}^{(2N-1) \times (2M-1)}$ with

$A_r^*(\phi) = [a_r^*(\phi_1), \ldots, a_r^*(\phi_K)]$ and $A_r^T(\theta) = [a_r^*(\theta_1), \ldots, a_r^*(\theta_K)]$. Moreover, the second term on the right hand side of (5) can be written as

$$\sigma^2 \text{vec}(I_{MN}) = \sigma^2 \Psi \text{vec}(Q), \quad (12)$$

where $Q = q_N q_M^T$ with $q_N \in \mathbb{C}^{2N-1}$ and $q_M \in \mathbb{C}^{2M-1}$. Hence, substituting (11) and (12) into (5), we have

$$\text{vec}(R_y) = \Psi \text{vec}(Z + \sigma^2 Q). \quad (13)$$

According to (11), note that Z not only has a smaller size than R_s, but also contains all the 2D angle information which is decoupled along its rows and columns. Therefore, we can...
efficiently retrieve the unknown angles from Z once Z is obtained. Now, the task boils down to obtaining an estimate of Z from R_y.

B. Transformation Matrix Construction

In fact, the linear projection from $\text{vec}(Z + \sigma^2 Q)$ to $\text{vec}(R_y)$ in (13) is an injective mapping. Hence, the representation matrix Ψ is a full column rank matrix, which allows to rewrite (13) through the pseudoinverse of Ψ as

$$\text{vec}(Z + \sigma^2 Q) = \Psi^\dagger \text{vec}(R_y) = T \text{vec}(R_y),$$

(14)

where $T = \Psi^\dagger \in \mathbb{C}^{(2M-1)(2N-1) \times M^2 N^2}$ is the transformation matrix satisfying

$$T \Psi = I_{(2M-1)(2N-1)}.$$

(15)

Next, we point out that besides making a detour to obtain T from Ψ, T can be directly constructed based on several small-size sparse matrices with known M and N, which is more computation-efficient.

One of the properties of the commutation matrix [12] is

$$E^T E = I_{MN}.$$

(16)

Further, the definitions of G_M and G_N in (10) lead to [11]

$$G_M^T G_M = W_M = \text{diag}([1, \ldots, M-1, M, M-1, \ldots, 1]);$$

$$G_N^T G_N = W_N = \text{diag}([1, \ldots, N-1, N, N-1, \ldots, 1]).$$

(17)

Hence, we have

$$(I_M \otimes E^T \otimes I_N)(I_M \otimes E \otimes I_N) = I_{M^2 N^2}$$

$$(W_M^{-1} G_M^T \otimes (W_N^{-1} G_N^T))(G_M \otimes G_N) = I_{(2M-1)(2N-1)}.$$

(18)

Combining (9), (15) and (18), we have

$$T = ((W_M^{-1} G_M^T) \otimes (W_N^{-1} G_N^T))(I_M \otimes E^T \otimes I_N).$$

(19)

Hence, with T in (19), Z can be obtained from (14) as

$$Z = \text{vec}^{-1}(T \text{vec}(R_y)) - \sigma^2 Q.$$

(20)

Moreover, considering the covariance matrix at hand is the sample covariance R_y and the effect of the unknown noise term can be ignored, the estimate of Z can be approximately obtained from (20) as

$$Z = \text{vec}^{-1}(T \text{vec}(R_y)).$$

(21)

C. Angle Estimation

Note that the transformed smaller-size Z has a salient structure. Specifically,

$$Z = A'_r(\phi) R_y A'^T_r(\theta)$$

(22)

can be regarded as a cross-correlation matrix collected from a virtual cross array with $A'_r(\phi)$, $A'^T_r(\theta)$ and R_y being the two manifold matrices and signal correlation matrix. By now, we transform the original problem of DOD and DOA estimation from the covariance matrix R_y for MIMO systems to a smaller-size problem of 2D DOA estimation from the core matrix Z also known as a cross-correlation matrix for an equivalent cross array [13], [14]. While the literature about angle estimation algorithms for cross arrays is limited, in this letter, we adopt the cross-correlation based algorithms for an L-shaped array [15]–[21] for 2D angle estimation since their cross-correlation matrices have similar structures. Hence, we develop a two-step method. In the first step, we obtain the estimate of Z from the sample covariance R_y via (21). Then, in the second step, 2D angle estimators for L-shaped arrays can be employed with the obtained Z for DOD and DOA estimation. Moreover, to guarantee the proposed method has the unique solution, we have $K \leq \min\{M, N\} - 2$. In other words, the largest detectable number is $2 \min\{M, N\} - 2$.

IV. COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of the proposed RR-ESPRIT compared with the traditional 2D-MUSIC, RD-MUSIC and ESPRIT algorithms. Note that the transformation matrix T is only determined by M and N and can be constructed offline via (19). Moreover, according to (19), there is only one non-zero element in every column of T. In other words, T is a sparse matrix with only $M^2 N^2$ nonzero elements. Hence, the transformation in (21) produces a computation load of only $O(M^2 N^2)$. Other main computational costs of the RR-ESPRIT come from the sample covariance construction and the ESPRIT-like algorithm. The total computational complexity of the RR-ESPRIT compared with that of the 2D-MUSIC, RD-MUSIC and ESPRIT is listed in Table I, where n is the number of searching steps for the spectral peak search. From Table I, note that the first summands of all the methods are the same, which represent the complexity of the sample covariance construction. The second summands of the three subspace-based methods describe the complexity of the EVD, while that of the proposed method is the complexity of the sparse matrix multiplication, followed by the complexity of the specific angle retrieval algorithms. Fig. 1 presents the computational complexity of the different algorithms versus the number of antennas at each base station with $L = 10$, $K = 3$ and $n =$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Computational Complexity</th>
<th>Highest Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D-MUSIC</td>
<td>$O(L^2 M^2 N^2 + M^2 N^4 + n^4 [M N (M N - K) + M^2 N^4])$</td>
<td>$M^2 N^4$</td>
</tr>
<tr>
<td>RD-MUSIC</td>
<td>$O(L^2 M^2 N^2 + M^2 N^4 + n[(M^2 N + M^2 N^3)](N M - K) + M^2 N^3)$</td>
<td>$M^2 N^3$</td>
</tr>
<tr>
<td>ESPRIT</td>
<td>$O(L^2 M^2 N^2 + M^2 N^4 + 2K^2 (M - 1) N + 2K^2 (N - 1) M + 6K^4)$</td>
<td>$M^2 N^3$</td>
</tr>
<tr>
<td>Proposed</td>
<td>$O((L^2 M^2 N^2 + M^2 N^4 + 80(2M - 2)^3 + 2K^3)$</td>
<td>$M^2 N^2$</td>
</tr>
</tbody>
</table>
18000. As shown in Fig. 1, the curves of the subspace-based methods have similar slopes with different scaling. In contrast, the proposed method has a more gradual slope. That is because, with the growth of M and N, the second summands of the computational complexity order as in Table I are $O(M^2N^3)$ and $O(M^3N^2)$ for the subspace-based methods and the proposed method respectively, which contribute the main computation. Moreover, compared with the subspace-based methods, the proposed RR-ESPRIT becomes the most efficient one when the numbers of antennas ($N = M$) go large, e.g., $M \geq 8$. Hence, given the recovered \hat{Z} from (21), it is important to choose a proper 2D angle estimator, e.g., the ESPRIT-like. The resulting algorithm yields an efficient angle estimation method especially with large M and/or N.

V. SIMULATION RESULTS

This section presents the numerical results to evaluate the DOD and DOA estimation performance of the proposed method for MIMO systems. The root mean squared error (RMSE) is used to measure the estimation accuracy as $\text{RMSE} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{M} \sum_{n=1}^{M} (\tilde{\theta}_{k,n} - \theta_k)^2 + (\tilde{\phi}_{k,n} - \phi_k)^2 \right)^{\frac{1}{2}}$, where M, $\tilde{\theta}_{k,n}$ and $\tilde{\phi}_{k,n}$ respectively denote the number of Monte-Carlo trials, and the estimates of θ_k and ϕ_k in the n-th experiment. The RR-ESPRIT algorithm is employed as the proposed method, while the conventional subspace-based algorithms such as ESPRIT [3] and RD-MUSIC [5] as well as the CRB [6] are depicted as benchmarks. We omit the 2D-MUSIC in simulations since it has a similar performance as RD-MUSIC but at a higher computational complexity [5]. As the same settings applied in Fig. 1, the angle search step size for the RD-MUSIC is $\scriptsize 0.1^\circ$, i.e., $n = 18000$. In simulations, a bistatic MIMO radar system with $M = N = 14$ is adopted. We also consider there are three equal power uncorrelated targets ($K = 3$) located at $(\theta_1, \phi_1) = (10^\circ, 15^\circ)$, $(\theta_2, \phi_2) = (20^\circ, 25^\circ)$ and $(\theta_3, \phi_3) = (30^\circ, 35^\circ)$.

First, Fig. 2 shows the RMSE of the aforementioned algorithms versus the SNR with $L = 10$. The figure shows that the proposed RR-ESPRIT outperforms ESPRIT and RD-MUSIC at low SNRs, e.g., $\text{SNR} \leq 2$. This is because, with the transformation in (21), the estimation error between \hat{R}_y and R_y is averaged, which leads to error elimination to a certain extent. Although the RD-MUSIC has the best estimation performance at high SNRs, it consumes the highest computational cost from (28) and (29).

VI. CONCLUSION

In this paper, an efficient DOD and DOA estimation method is proposed for MIMO systems. Given the sample covariance matrix, we first establish a redundancy reduction representation to represent the large-size covariance matrix by its smaller-size core matrix. Next, a transformation matrix that depicts the linear mapping from the covariance to its core matrix is constructed via several simple and sparse composition matrices. Finally, an efficient 2D angle estimator is developed by exploiting the salient structure of the transformed smaller-size core matrix, which benefits from a lower computational complexity and can achieve a better accuracy at low SNRs and small numbers of snapshots, compared with traditional subspace-based methods.
REFERENCES

