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Summary t Conclusions - This paper proposes a comprehen- 
sive method for the use of expert opinion for obtaining lifetime 
distributions required for maintenance optimization. The method 
includes procedures for the elicitation of discretized lifetime 
distributions from several experts, the combination of the elicited 
expert opinion into a consensus distribution, and the updating of 
the consensus distribution with failure and maintenance data. The 
method was motivated by the practical circumstances governing 
its implementation. In particular, by the lack of statistical train- 
ing of the experts and the high demands on their time. The use 
of a discretized life distribution provides more flexibility, is more 
comprehendible by the experts in the elicitation stage, and greatly 
reduces the computation in the combination and updating stages. 
The methodology is Bayes, using the Dirichlet distribution as the 
prior distribution for the elicited discrete lifetime distribution. 
Methods are described for incorporating information concerning 
the expertise of the experts into the analysis. 

1. INTRODUCTION 

In general, downtime of a production unit due to failure 
of one of its components, can induce high cost. Time-based 
preventive maintenance, consisting of inspections and 
replacements, can reduce the number of unit failures and thus 
lower this cost considerably; however, executing preventive 
maintenance activities too frequently can be costly as well. The 
aim of maintenance optimization is therefore to determine an 
optimal maintenance interval, such that the total mean cost of 
failures and preventive maintenance activities is minimal. Re- 
quirements for proper maintenance optimization are: 

a subdivision of a system or unit into components, with a 
specification of failure modes and a description of the effect 
of preventive maintenance activities on specific components 

a specification of cost figures for execution of a preventive 

a specification of lifetime distributions of the components 
a comprehensive model with a (numerical) optimization 

maintenance activity and for component failure 

routine. 

Maintenance optimization has been of interest at Konink- 
1ijkelShell-Laboratorium, Amsterdam, and has led to (among 
other things) the development of a decision support system for 
maintenance optimization, called PROMPT. From the ex- 
perience gained with the PROMPT project, it was concluded 
that obtaining the component lifetime distributions is the bot- 
tleneck for implementation of maintenance optimization [ 11. 
This is mainly due to the scarcity of reliable data for determin- 
ing such a distribution. The reason is that, for properly main- 
tained systems, failures are rarely observed. In fact, when too 
many failures are observed, the system may undergo modifica- 
tions. In addition, available data are often incomplete, with ac- 
tual component level information in only a limited number of 
cases. Thus the initialization of a decision support system for 
maintenance optimization must rely on the use of expert opinion 
for determining component lifetime distributions. The ability 
to update the life distribution estimates as actual data become 
available is also highly desirable. Thus a theoretically sound 
systematic procedure is required to address the questions: 

How can a lifetime distribution be elicited from an expert? 
How can the opinions of several experts be combined? 
How can the consensus distribution be updated with actual 
failure and maintenance data? 

The use of expert opinion is not new; see Cooke [2], 
Mosleh, Bier, Apostolakis [3], Singpurwalla [4], Spetzler & 
Stat51 von Holstein [ 5 ] ,  and Wallsten & Budescu [6].  But the 
development of a complete systematic procedure based on 
statistical principles for the use of expert opinion in a 
maintenance environment is new and presents a different set 
of constraints governing its application. We develop this pro- 
cedure and give a brief overview of some of the considerations 
that had to be taken into account. For ease of notation we con- 
sider the procedure for a single component. 

Notation 

D index for decision maker 
E number of experts 
m number of histogram (time) intervals for the component 
ni, subjective number of failures in time-interval i 

specified by expert e for the component; i = 1,. . . ,112, 
and e=1, ..., E 

2 ni, total subjective number of failures for a n 
i = l  

component in ( 0 , ~  ) 
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Pie 

Pe 

PA 

PA 
PD 

ri 

Ci 

Si 

Vi 

nie/n, subjective probability of failure in interval i 
specified by expert e for the component; i =  1,  ... ,m, 
and e=1, ..., E 
(pie,. . . ,pm) subjective probability distribution of 
failure specified by expert e for the component; 
e =  1, ... ,E 
(PIA,. . . , P d )  probability distribution of failure for 
the component 
( P I A ,  . . . , p d )  realization of the random vector PA 
( P l D , .  . . ,pd) decision maker’s (consensus) estimate 

number of recorded failures of the component in time- 
interval i used to calibrate the experts; i = 1 ,. . . ,m 
number of recorded maintenance activities for the com- 
ponent at time ti used to calibrate the experts; 
i = l ,  ..., m-1  
number of observed failures of the component in time- 
interval i used to update pD; i = 1,. . . , m 
number of observed maintenance activities for the com- 
ponent at time ti used to update po; i = 1,. . . ,m - 1 

of PA 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 

2. ELICITATION 

The selection of an appropriate procedure for eliciting ex- 
pert subjective probabilities must take into account the nature of 
the information required, the background and training of the ex- 
perts, the number of experts, and the number of variables to be 
assessed. In our problem we must determine the failure distribu- 
tion of components which display aging (nonconstant) and revealed 
failure behavior. It is only by attempting to model this aging 
behavior that we can justify the use of a time-based preventive 
maintenance policy. Typically five or fewer experts are familiar 
with the a particular component. Most of the available experts 
have little knowledge or experience with statistical failure models, 
and have only limited time to spend with an analyst for the elicita- 
tion process. In one elicitation session several component lifetime 
distributions (in addition to other pertinent questions relating to 
the effects of preventive maintenance, the consequences of failure, 
etc.) must be assessed and so due to the time constraints and powers 
of concentration of the experts, the elicitation process must be 
kept as short as possible. 

An extensive review of elicitation techniques is in Wallsten 
& Budescu [6] and Spetzler & Stad von Holstein [5 ] .  None of 
the techniques discussed in these sources, however, was 
specifically designed for the present problem. The fact that en- 
tire life distribution is required, and not merely individual prob- 
ability assessments, negates the use of so-called “indirect elicita- 
tion techniques”, based on such methods as lotteries or paired 
comparisons. Even if a well-known failure model were assumed, 
it would have at least two parameters which could not be con- 
sidered separately. Requiring experts to fit a parametric distribu- 
tion to their subjective probabilities is a lot to ask even from 
statistically trained experts. 

Many nontechmcal people, nowever, are IilIIuliar witn 
histograms; see Ibrekk & Morgan [7]. Indeed, experience in 
the PROMPT project with a simplified version of a histogram 
technique (asking only for failure probabilities from two dif- 
ferent time intervals) proved quite acceptable to our experts [ 11. 
Kabus [8] also reports that a histogram technique used to predict 
the interest rate of certificates of deposit performed very well 
in that the information obtained showed good predictive validi- 
ty. In view of these experiences we decided to base our elicita- 
tion procedure on the histogram technique. In addition, from 
the practical point of view, it is more comprehendible for 
statistically untrained experts to use a discretised version of the 
continuous pdf (viz, a histogram) thus replacing the concept of 
probability density by the concept of the probability of failure 
in a fixed time interval. Moreover, combining and updating re- 
quire far less computing effort in the discrete case than in the 
continuous case, and a continuous distribution can always be 
fit to the discrete probability function obtained. 

3. THE HISTOGRAM TECHNIQUE 

Let the domain of lifetimes (0,m ) be divided into m dis- 
joint time intervals (ti-l,ti], i = l ,  ..., m-1, and ( t m - l y t m )  

where O =  to < tl < . . . < t,,, - < tm = 03. The experts need 
only specify their subjective probability of failure for the com- 
ponent in each interval. For convenience we denote time inter- 
val ( ti- by time interval i, i = 1 ,. . . ,m - 1.  Defining inter- 
val in, ( tm- 03 ), as an open interval is motivated by the fact 
that maintenance engineers have experiences only with the first 
part of a component life cycle since most components are 
replaced before failing. Knowing exactly the tail of a lifetime 
distribution is often not possible and not necessary for 
maintenance optimization. 

Although the histogram appears to be the best available 
technique for assessing the component lifetime distribution in 
our environment, several implementational issues must be ad- 
dressed. Specifically the selection of ti, m, and the method for 
obtaining the experts’ interval failure probabilities. In consider- 
ing each of these there is a tradeoff between limiting the ac- 
curacy obtained through elicitation and requiring an accuracy 
from the expert which cannot be achieved. Thus compromise 
solutions were sought and the emphasis was placed on making 
the elicitation process as easy for the expert as feasible. 

Fitting the elicited discrete distribution to a continuous 
parametric family with two parameters, requires that at least 
three time intervals be specified. In addition, psychological ex- 
periments suggest that bias is reduced when choosing from max- 
imally five alternatives [4]. Therefore we advise m = 5. 

The choice of t . . , tm - under the ordering restriction 
does not influence the developed mathematical model; however, 
for better visual perception of the failure behavior of the com- 
ponent, we recommend that these values be equidistant. For 
example, use t i = i * x ’ ,  i=O,  ..., m- 1 ,  where x’ represents a 
maintenance interval used in the past. This is advantageous since 
the maintenance expert’s familiarity with x’ enables the assess- 
ment of failure probabilities by a comparison of known 
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maintenance intervals. For ease in combining the elicited 
distributions, we recommend letting an analyst select x ’  before 
elicitatiofi begins. A disadvantage in the above approach is that 
the elicited distribution can have a large tail, ie, most com- 
ponents are anticipated to fail in the last time interval. This is 
only a problem when the maintenance optimization indicates 
that the optimal maintenance interval is also somewhere in the 
tail. If this is the case, and the expert does not wish to change 
any of his input then a continuous distribution may have to be 
fitted to the elicited probability function and a more detailed 
maintenance optimization can be performed. 

In eliciting subjective probabilities, Spetzler & She1 von 
Holstein [5] found that indicting a probability of say 0.001 as 
“one in one thousand” yielded better performance in elicita- 
tion. Applying this concept, we ask the expert to image that 
there are n components of the same type installed at time to and 
request the expert to provide his anticipated number, nie, of 
components which fail within time interval i. We can then 
calculate experts e’s (subjective) probability of failure within 
time interval i as pie = nie/n, i = 1, .  . . ,m. As most people are ac- 
customed to dealing with percentages, we define n = 100 to make 
the process even easier for the expert. 

In order to enhance the speed and accuracy of the elicita- 
tion, an interactive PC-based program was developed. Using 
only the cursor controls, the expert generates a histogram display 
by iteratively increasing (or decreasing) the number of time in- 
tervals and defining the (subjective) number of anticipated 
failures in each interval. The expert receives on-line visual feed- 
back on his assessment. Reduction of possible ambiguity or con- 
fusion is achieved with a trained analyst guiding the expert 
through the use of the program. 

4. COMBINING OPINIONS FROM SEVERAL EXPERTS 

Numerous methods have been developed for reaching a 
consensus using expert opinion from several sources. An ex- 
cellent guide through the literature on aggregating expert 
opinions is Genest & Zidek [9]. Other studies are French [lo], 
Cooke [2], and Winkler [ 1 11. We propose a Bayes scheme that 
arises out of two main methods of combination: the weighting 
scheme and the supra Bayes approach. Other aggregation 
methods, eg, Delphi and paired-comparisons, are not considered 
in view of their time-consuming nature. 

Both the weighting scheme and the supra Bayes approaches 
involve determining weights we, e = 1,.  . . ,E, for each expert 
and determining a combination rule. The two approaches dif- 
fer in their orientation. In weighting schemes, interest centers 
around determining an optimal fashion in which to use weights 
for combining the experts’ opinions, while in the supra Bayes 
approach the emphasis is on analyzing and incorporating the 
background information which leads to the expert opinion 
assessed. This includes evaluation of the experts’ expertise, their 
prior information sets, and the expert’s prediction ability. This 
information is captured in the specification of a prior distribu- 
tion for the quantity of interest and in the determination of an 
appropriate likelihood function for the expert opinion. The ac- 

tual combining process is not a problem in the supra Bayes ap- 
proach as all available information is conveyed in the form of 
a posterior distribution which is obtained in a straightforward 
manner using Bayes theorem. 

Supra Bayes approaches for discrete probability functions 
have been suggested by Lindley [ 121, Morris [ 131, Mendel & 
Sheridan [14], and Winkler [ll].  In a series of articles 
introduced by Winkler [ 151 and in Kempthome & Mendel [ 161, 
conceptual problems which arise by application of the supra 
Bayes approach of Morris [ 131 are discussed. The problem with 
the supra Bayes approach of Lindley [12] is mainly its 
dependence on the specification of the covariances between the 
experts. The Bayes model of Mendel & Sheridan [14] is suited 
for combining the elicited distributions of two experts and has 
a slow start, since many seed quantities (quantities for which 
the true values are known) have to be asked. Therefore, of the 
four Bayes approaches, only the approach of Winkler [ 1 11 is left. 

4.1 Development of the Supra Bayes Approach 

Winkler [ 1 13 considers the case where the prior distribu- 
tion of interest is a natural conjugate of the likelihood func- 
tion. A strong advantage of the natural conjugate approach is 
that the application of Bayes theorem involves only algebraic 
manipulations. We extend the Bemoulli example in Winkler [ 1 13 
to the multinomial situation encountered when eliciting 
histograms. We define the following likelihood for each expert 
e ,  

m m 

i=l i = l  

where the weight we 1 0, is determining from the prior beliefs 
about the individual expert, and /3 is determined from the prior 
beliefs about the experts as a group. More detailed information 
on the determination of these parameters is presented in the 
following sections. The exponent in (4-1) is the number ofvir- 
tual observations because it plays the mathematical role of the 
number of observations in the likelihood function when analyz- 
ing empirical failure data. This usage contrasts slightly with the 
notion of “equivalent observations” as used by Winkler [ll]. 

Assuming conditional s-independence, we obtain the 
likelihood for all available expert opinion as: 

E / m  \ 

(4-2) 
i =  1 

The /3 weni, corresponds to the number of virtual obser- 
vations attributed to the experts as a group and thus /3 controls 
its magnitude. 

It is well known [ 171 that the natural conjugate family for 
the multinomial likelihood is the Dirichlet distribution: 
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n r(ai) i = l  

i = l  

where ai > 0, i =  1 ,... ,m, ai=ao, p d =  1 -EY=T' piA. 
As (4-3) is defined over the simplex (piA, i = 1 , .  . . ,m:piA > 0, 
i = 1 , .  . . ,m, and E?= piA= l } ,  it is well suited as a prior 
distribution for PA. In addition, the decision maker can incor- 
porate his prior opinion about the probability function in a 
straightforward and easy fashion using- 

i = l ,  ..., m 

, i = l ,  ..., m. ai (ao- ai) 

an2(an+ 1 )  
Var{PiA} = 

experts base their opinion on identical (different) information 
sets. Under these bounds, the decision maker's distribution us- 
ing the supra Bayes approach is identical to that if the decision 
maker had used the Linear Opinion Pool in Stone [ 181 and thus 
the posterior estimate is proper probability distribution which 
possesses (for m > 2)  the Marginalization Property and the 
Zero Preservation Property (McConway [ 191). In our specific 
application we consider experts who share (approximately) the 
same information set and thus restrict E:= we = 1 but the more 
general case is easily accommodated. 

4.2 Determining Weights for the Experts 

Several methods for determining weights have been pro- 
posed in the literature such as: 

(4-4) 1 .  equal weights 
2.  weights proportional to ranking of experts in terms of 

expertise - .  - . 

3. weights proportional to experts' self-ratings [ 111 
4 .  peer weights in which the experts rate each other's ex- 

5. Bayes updated weights [21] 
6 .  calibration-information weights [22].  

Thus if apriori, the decision maker's best guess about the true 
value of PA is expressed via p; = (pTA,. . . , p h ) ,  he may in- 
corporate this into the prior distribution by setting ai =pif4ao, 
i = 1 , .  . . ,m. As the value a0 controls the variance of the PiA, 

pertise [201 

the decision maker may express his strength of belief in his prior 
estimate of PA through 010, ie, large (small) values of a. cor- 
respond to a high (low) degree of belief in the prior estimates 
and thus a low (high) prior variance. 

In our case, the decision maker is knowledgeable about 
the experts but not about the failure behavior of the component. 
To reflect this, we define the decision maker's prior distribu- 
tions for PA as given by (4-3) with all ai (and thus ao) extreme- 
ly small thus indicating the decision maker's low belief in his 
estimates. 

Given the likelihood of all expert opinion (4-2) and the prior 
distribution (4-3) with every ai of a minimal value, the 
posterior distribution for PA is again a Dirichlet distribution of 
the form of (4-3) with the new parameters ai = P Et=  wenie, 
i = 1 ,. . . ,m. The use of " = " is due to disregarding the negligi- 
ble prior parameter values. The decision maker's (consensus) 
probability distribution, pD, is obtained as the posterior 
estimate of PA (posterior to the experts' probability distribu- 
tions), which is derived from the posterior means (4-4): 

E 

P wenie 
e = l  

E{PiAIpl*.*.#E} = E 

P Wenie 
i = l  e = l  

E 

wepie 
, i = l ,  ..., m. - e = l  - 

we 
e=  1 

(4-5) 

All of these weights have drawbacks with respect to the prob- 
lem at hand. The ratings used in #2-#4 are not given any opera- 
tional meaning, hence the notion of a "fair" self-rating or 
"fair" peer rating is not defined. Winkler [23] has shown that 
#5 is highly improper in that an expert can maximize his an- 
ticipated weight by assigning probability one to the interval in 
which he thinks failure is most likely to occur. The #6 has an 
intuitive appeal and has proved useful in practice, but requires 
many observations, which are generally not available in our con- 
text. The #1 (equal weights) is the simplest and has an intuitive 
appeal, however, it might not represent an optimal use of ex- 
pert judgment. 

In determining an optimal set of weights, we look for a 
solution which yields the best distribution for the decision maker 
from a mathematical point of view. The use of the likelihood 
of existing failure and maintenance data, given the consensus 
probability distribution piD = Et= wepier i = 1 ,. . . ,m, provides 
a useful measure even with only a limited amount of existing 
data. Specifically let r = ( r l  ,..., rm) ,  c = (c1 ,..., cm) ,  and 
c, = 0; the likelihood function is: 

m / m \ *  

i = l  

The weights can then be determined using: 

E 

w = ARGMAX [S(r,cl wepe)]  
e = l  

E 
w e = l .  

(4-6) 

(4-7) 

Winkler [ l l ]  proposed the bounds 1 I Et='=, we I E for the 
expert weights where the lower (upper) bound is attained if the 

e =  1 

We can also rely on the nomuzlized likelihood weights: 



NOORTWUK ET AL.: EXPERT JUDGEMENT IN MAINTENANCE OPTIMIZATION 43 1 

(4-8) 

for good starting values for the optimization. These weights are 
easy to obtain and can be used for feedback to the experts as 
to their predictive ability in relation to one another. 

4.3 Determining the Decision Maker’s ConJidence in the 
Consensus Estimate 

The decision maker’s distribution, posterior to the expert 
opinion, is given by (4-3) with ai = P E:= wenie, i = 1,. . . ,m. 
Given the restrictions on we, the a. is given by @n where n is 
the total subjective number of failures for the component. As 
with a. in (4-3), @ controls the variability in the decision 
maker’s probability distribution estimate. It thus acts as a 
measure of the decision maker’s belief in the consensus estimate 
and controls the sensitivity of the posterior distribution to the 
sample information. It is difficult to elicit P directly from the 
decision maker though intuitively we might argue that the sum 
of virtual observations should be no more than n (since experts 
share the same information set) and thus specify the bounds of 
O < @ l l .  

We offer the following two alternatives. As controls the 
belief of the decision maker in the consensus distribution we 
can test the decision maker’s sensitivity to new information. 
The decision maker’s probability distribution for pD is given 
by (4-5) and so, for a fixed value j ,  we easily calculate pjD. 
After showing this value to the decision maker, we then ask 
how his estimate would change if n* new failures were observ- 
ed in intervalj where n* is some suitably chosen value. Sup- 
pose the decision maker specifies a new probability pjD. In the 
light of this new failure information, the new value of a. is 
On + n* and from (4-4), the new estimate of PjA is p$ = E {qA I 
p1, . . . , P E ,  n*}  = [@n/@n+n*lpjD + [n*/@n+n*] .  SetjjjD = 
p$; we solve for @ = n* ( 1 - p j ~ )  / n  ( p j D  - p j ~ ) .  TO check the 
consistency of the decision maker, this is done for several values 
of j. 

Another method for determining @ involves having the 
decision maker specify a range Rj for any PjA. This range can 
be equated with 6 standard deviations, and @ is found by set- 
ting R; =62-Var{PjA} and, using the second expression in 
(4-4), solving = 1 / n [  ( 36pj~  ( 1 - p , ~ )  /Rf) - 13. This 
heuristic is similar to that used for estimating parameters for 
activity time distributions in PERT computations. 

5.  UPDATING EXPERT OPINION WITH FAILURE 
& MAINTENANCE DATA 

In updating the decision maker’s probability distribution 
with new data (data obtained after the decision maker’s prior 
distribution has been established), we use Bayes theorem. Let 
the new data be of the form s= ( s l ,  ..., sm) failures and 
v = ( v l , .  . . , v,) maintenance actions ( vm = 0 ) .  The likelihood of 

these data is given by (4-6) with pD=pA, r = s ,  c = v .  The 
posterior distribution is then proportional to the product of this 
likelihood and the prior distribution given by (4-3) with 
ai = @E:= wenie: 

m , m , _. 

i = l  j = i + l  / 

(5-1) 

Distribution (5-1) is a Generalized Dirichlet distribution [24]. 
The Bayes estimate (posterior mean) of PLa, is: 

z , i = l ,  ..., m. (5-2) 
I 2 [ 2 ( ~ z + l + s z + l + ~ z )  

h = l  1 
i-1 m-1  

Eq (5-2) provides a point estimate for the discretized probability 
distribution which represents the decision maker’s updated prob- 
ability distribution in light of the new data. Subsequent posterior 
point estimates are made by updating s and v in (5-2). Variance 
and covariance expressions for the PiA can also be obtained. 
The variances can be used for establishing bounds for the 
distribution and the covariance provides some information on 
the smoothness of the posterior distribution. 

6. EXAMPLE 

This fictitious example illustrates our approach. Informa- 
tion on a particular component is elicited from four experts. 
Each expert provides a histogram based on a (subjective) sam- 
ple of n = 100 components over five intervals (0,2], (2,4], . . . , 
( 8 , ~ )  where the unit of time is in years. The values of n, ob- 
tained from the experts’ histograms are presented in table 1 .  
For determining the expert weights we have the following failure 
& maintenance data for the component: 2.00+, 1.92, 4.00+, 
4.00’ 6.00+, 6.00+, 7.69, 6.00+, 8.00+,  and8.00+, where 
“+”  indicates a censored observation as a result of a 
maintenance operation. Thus the existing data are r= 
(1,0,0,1,0) and c= (1,2,3,2,0). 

TABLE 1 
Elicited Values for Expert Histograms 

Expert nlc n2e n3e n4e n5e 

1 2 2 4 8 84 
2 4 4 12 16 64 
3 3 4 5 6 82 
4 1 4 6 13 16 

From (4-8) we derive the expert scores (0.224,0.426, 0.200, 
0. l50), which can be used for feedback to the experts and as 
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starting values in the optimization procedure for determining 
the experts’ weights. The weights obtained from (4-7) are 
(0.187, 0.810, 0.001, 0.002). We thus obtain the decision 
maker’s probability distribution using (4-5) as pD = (0.036, 
0.036, 0.105, 0.145, 0.678). Using the second heuristic ap- 
proach for determining 0 we obtain from the decision maker 
the range (0,0.19) for PIA,  ie, RI =O. 19 and solve for 
@=0.3361. Thus the total number of virtual observation for 
the experts as a group is approximately 34. This defines the 
decision maker’s distribution for PA prior to observing new 
data. Once new data are observed the distribution can be up- 
dated in a straightforward manner using (5-2). For example, 
if in the future we observe the failure and maintenance data, 
4.00+, 6.00+,  6.00+, 7.25, and 8.00+, or s=(O,O,O,l,O) 
and v =  (0,1,2,1,0), our revised estimate of PA is, using (5-2), 
p s  = ( 0.032,O. 032,O. 094,O. 167,O. 675). 
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