Print Email Facebook Twitter Understanding the effects of root structure on the mechanical behaviour of engineered plant root materials Title Understanding the effects of root structure on the mechanical behaviour of engineered plant root materials Author Carrete, I.A. (TU Delft Design for Sustainability) Ghodrat, S. (TU Delft Emerging Materials) Scherer, Diana (Interwoven, Amsterdam) Karana, E. (TU Delft Emerging Materials) Date 2023 Abstract Plant root growth can be altered by introducing obstacles in the path of growth. This principle is used in design to produce planar grid structures composed of interweaving roots. The Engineered Plant Root Materials (EPRMs) grown with this method have the potential to serve as environmentally sensitive alternatives for conventional materials, but their applications are delimited by their material properties. To bridge the gap in the wider application of these materials, the role of plant root structure and an agar-agar matrix are explored in relation to the mechanical properties of the EPRMs. Tensile tests were performed on five root configurations, ranging from single roots to grids of varying sizes. Heterogeneities in each configuration suggest poor load distribution throughout the structure. Agar-agar was introduced as a biopolymer matrix to improve load distribution and tensile properties. Digital microscopy at the intersection of grid cells suggests a correlation between cell size, root tip density, and material strength. The largest cell size (2 cm) had the highest root tip density and yield strength (0.568 ± 0.181 roots/mm2 and 0.234 ± 0.018 MPa, respectively), whereas the structure with the least root tips (1 cm) was 31 % weaker. Subject BiodesignBiofabricationCharacterizationEngineered Living Materials (ELMs)Engineered Plant Root Materials (EPRMs)Growing DesignNatural Fiber CompositesPlant Roots To reference this document use: http://resolver.tudelft.nl/uuid:c5e63cc0-e7b9-4a54-9cac-cd2ebd2d1666 DOI https://doi.org/10.1016/j.matdes.2022.111521 ISSN 0264-1275 Source Materials & Design, 225 Part of collection Institutional Repository Document type journal article Rights © 2023 I.A. Carrete, S. Ghodrat, Diana Scherer, E. Karana Files PDF 1_s2.0_S0264127522011443_main.pdf 3.53 MB Close viewer /islandora/object/uuid:c5e63cc0-e7b9-4a54-9cac-cd2ebd2d1666/datastream/OBJ/view