<]
TUDelft

Delft University of Technology

Declarative specification of indentation rules
A tooling perspective on parsing and pretty-printing layout-sensitive languages
de Souza Amorim, Luis Eduardo; Erdweg, Sebastian; Steindorfer, Michael J.; Visser, Eelco

DOI
10.1145/3276604.3276607

Publication date
2018

Document Version
Accepted author manuscript

Published in
SLE 2018 - Proceedings of the 11th ACM SIGPLAN International Conference on Soft ware Language
Engineering

Citation (APA)

de Souza Amorim, L. E., Erdweg, S., Steindorfer, M. J., & Visser, E. (2018). Declarative specification of
indentation rules: A tooling perspective on parsing and pretty-printing layout-sensitive languages. In D.
Pearce , S. Friedrich, & T. Mayerhofer (Eds.), SLE 2018 - Proceedings of the 11th ACM SIGPLAN
International Conference on Soft ware Language Engineering (pp. 3-15). Association for Computing
Machinery (ACM). https://doi.org/10.1145/3276604.3276607

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3276604.3276607
https://doi.org/10.1145/3276604.3276607

Declarative Specification of Indentation Rules

A Tooling Perspective on Parsing and Pretty-Printing Layout-Sensitive Languages

Luis Eduardo de Souza Amorim
Delft University of Technology
The Netherlands
|.e.desouzaamorim-1@tudelft.nl

Sebastian Erdweg
Delft University of Technology
The Netherlands
s.t.erdweg@tudelft.nl

Abstract

In layout-sensitive languages, the indentation of an expres-
sion or statement can influence how a program is parsed.
While some of these languages (e.g., Haskell and Python)
have been widely adopted, there is little support for software
language engineers in building tools for layout-sensitive lan-
guages. As a result, parsers, pretty-printers, program anal-
yses, and refactoring tools often need to be handwritten,
which decreases the maintainability and extensibility of these
tools. Even state-of-the-art language workbenches have lit-
tle support for layout-sensitive languages, restricting the
development and prototyping of such languages.

In this paper, we introduce a novel approach to declarative
specification of layout-sensitive languages using layout dec-
larations. Layout declarations are high-level specifications of
indentation rules that abstract from low-level technicalities.
We show how to derive an efficient layout-sensitive general-
ized parser and a corresponding pretty-printer automatically
from a language specification with layout declarations. We
validate our approach in a case-study using a syntax defini-
tion for the Haskell programming language, investigating
the performance of the generated parser and the correctness
of the generated pretty-printer against 22191 Haskell files.

CCS Concepts -« Software and its engineering — Syn-
tax; Parsers;

Keywords parsing, pretty-printing, layout-sensitivity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE ’18, November 5-6, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6029-6/18/11...$15.00
https://doi.org/10.1145/3276604.3276607

Michael J. Steindorfer
Delft University of Technology
The Netherlands
michael@steindorfer.name

Eelco Visser
Delft University of Technology
The Netherlands
e.visser@tudelft.nl

ACM Reference Format:

Luis Eduardo de Souza Amorim, Michael J. Steindorfer, Sebastian
Erdweg, and Eelco Visser. 2018. Declarative Specification of Inden-
tation Rules: A Tooling Perspective on Parsing and Pretty-Printing
Layout-Sensitive Languages. In Proceedings of the 11th ACM SIG-
PLAN International Conference on Software Language Engineering
(SLE ’18), November 5-6, 2018, Boston, MA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3276604.3276607

1 Introduction

Layout-sensitive (also known as indentation-sensitive) lan-
guages were introduced by Landin [16]. The term charac-
terizes languages that must obey certain indentation rules,
i.e,, languages in which the indentation of the code influ-
ences how the program should be parsed. In layout-sensitive
languages, alignment and indentation are essential to cor-
rectly identify the structures of a program. Many modern
programming languages including Haskell [10], Python [21],
Markdown [13] and YAML [4] are layout-sensitive. To illus-
trate how layout can influence parsing programs in such
languages, consider the Haskell program in Figure 1, which
contains multiple do-expressions:

guessValue x = do
putStrLn "Enter your guess:"
guess <- getlLine
case compare (read guess) x of
EQ -> putStrLn "You won!"
-> do |putStrLn "Keep guessing."
guessValue x

N o U A W N P

Figure 1. Do-expressions in Haskell.

In Haskell, all statements inside a do-block should be aligned
(i.e., should start at the same column). In Figure 1, we know
that the statement on line 7 (guessValue x) belongs to the
inner do-block solely because of its indentation. If we mod-
ify the indentation of this statement, aligning it with the
statements in the outer do-block, the program would have a
different interpretation, looping indefinitely.

https://doi.org/10.1145/3276604.3276607
https://doi.org/10.1145/3276604.3276607

SLE ’18, November 5-6, 2018, Boston, MA, USA

While layout-sensitive languages are widely used in prac-
tice, their tools are often handwritten, which prevent their
adoption by language workbenches or declarative language
frameworks. State-of-the-art solutions for declarative spec-
ification of layout-sensitive languages extend context-free
grammars to automatically generate layout-sensitive parsers
from a language specification, but are limited by their usabil-
ity, performance and tooling support. For example, Adams
[1] proposes a new grammar formalism called indentation-
sensitive context-free grammarsto declaratively specify layout-
sensitive languages. However, this technique requires modi-
fying the original symbols of the context-free grammar and,
as result, may produce a larger grammar in order to specify
certain indentation rules. Erdweg et al. [11] propose a less in-
vasive solution using a generalized parser, requiring only that
productions of a context-free grammar are annotated with
layout constraints. In these constraints, language engineers
are required to encode indentation rules, such as alignment
or Landin’s offside rule,' at a low-level of abstraction, that is,
by comparing lines and columns. In both solutions, parsing
may introduce a large performance overhead.

Both approaches ignore an essential tool in a language
workbench: pretty-printers. Pretty-printers play an important
role since they transform trees back into text. This transfor-
mation is crucial to developing many of the features pro-
vided by a language workbench, such as refactoring tools,
code completion, and source-to-source compilers. Deriving
a layout-sensitive pretty-printer from a declarative language
specification is challenging as the pretty-printer must be
correct, i.e., the layout used to pretty-print the program must
not change the program’s meaning.

In this paper, we propose a novel approach to declara-
tively specifying layout-sensitive languages. We take a holis-
tic approach by considering a domain-specific language to
specify common indentation rules of layout-sensitive lan-
guages that is (a) general enough to support both parsing
and pretty-printing, and (b) lets the user express indentation
rules without resorting to low-level constraints in terms of
lines and columns.

We make the following contributions.

e We define a domain-specific notation that concisely
captures common patterns for indentation rules that
occur in layout-sensitive languages (Section 3).

e We discuss our implementation of a layout-sensitive
generalized parser with efficient support for parse-
time disambiguation of layout constraints (Section 4).

e We present an algorithm for deriving correct layout-
sensitive pretty-printers from grammars with layout
declarations (Section 5).

Landin introduced the offside rule, enforcing that in a program of a layout-
sensitive language, all the subsequent lines of certain structures of the
language should be “further to the right” than the first line of the corre-
sponding structure. If the tokens of the subsequent lines occur further to
the left than the first line, they are offside, and the structure is invalid.

Eduardo Souza, Michael Steindorfer, Sebastian Erdweg, and Eelco Visser

e We evaluate the performance and correctness of our
solution on a benchmark introduced by Erdweg et al.
[11], exercising 22191 Haskell files (Section 6).

We cover related work in Section 7, discussing future work
in Section 8, and concluding in Section 9.

2 Background

In this section, we motivate our work on declarative specifica-
tion of layout-sensitive languages by providing an overview
of layout constraints [11], enumerating their shortcomings
when used in a language workbench.

2.1 Layout Constraints

In layout-sensitive languages, indentation and alignment

define the shape of certain structures of the language and
the relationship between these shapes, such that for the

structures to be valid, their shape must adhere to certain

rules. A shape can be constructed as a box, with boundaries

around the non-layout tokens that constitute the structure.

For example, consider the code from Figures 2a and 2b. In

Figure 2a, because the list of statements inside a do-expression
should be aligned, each shape indicating a single statement

of the list must start at the same column. Similarly, if we

consider that each statement in the do-expressions from Fig-
ure 2b should obey the offside rule, if the statement spans

multiple lines, it must have a shape similar to 1] (but not [J
or], for example).

1Comp = do x = do
X <- xRange
return $ do first.

y <- yRange main = do
return (x, y) ot

left

last

() (b)

Figure 2. Boxes used to highlight the shape of subtrees in
do-expressions.

Layout constraints can be used as annotations in produc-
tions of context-free grammars to enforce specific shapes
into the source code of abstract syntax trees. Each tree ex-
poses its shape given the location of four tokens in its orig-
inal source code: first, last, left, and right—called token
selectors—as shown in Figure 2b. The token selectors first
and last access the position of the first and last tokens in
a tree, respectively. The selector left selects the leftmost
non-whitespace token that is not on the same line as the
first token, whereas the selector right selects the rightmost
non-whitespace token that is not on the same line as last.

Together with token selectors, a layout constraint may
also refer to a specific indentation element of the source

Declarative Specification of Indentation Rules

code—called position selectors—1line and col, which yield the
token’s line and column offsets, respectively. For example,
a layout constraint layout(x.left.col > x.first.col) indi-
cates that the subtree at position x should follow Landin’s
offside rule.

Note that constraints may also mention multiple subtrees
in an annotated production, defining the relative position
of these subtrees. That is the case in the constraint used to
indicate that all statements inside a do-expression should be
aligned, i.e., layout(x.first.col == y.first.col). Finally,
note that constraints may also be combined using the boolean
operators and (&&), and or (| |), and a constraint ignore-layout
can be used deactivate layout validation locally.

2.2 Tools for Layout-Sensitive Languages

While layout constraints can be used to generate layout-
sensitive parsers, there has been little adoption of such spec-
ifications by tools such as language workbenches.

Language workbenches enable agile development and pro-
totyping of programming languages by generating an in-
tegrated development environment (IDE) from a language
specification [12]. Therefore, one of the requirements for
language specifications of layout-sensitive languages is re-
lated to the usability of the specifications, i.e., they must
be declarative, concise and easy to use. Furthermore, when
using an IDE, language users expect rapid feedback from the
editor when editing their programs. Hence, the performance
of the tools generated from a language specification is an-
other important concern when using a language workbench
to develop layout-sensitive programming languages. Finally,
language workbenches go beyond parsing and code gener-
ation, providing many different features to language users,
such as refactorings and code completion. Thus, another
concern when developing a layout-sensitive language using
a language workbench consists of specifying a pretty-printer,
which transforms the abstract syntax tree of a program back
into source code.

Below, we discuss the shortcomings of layout constraints
against these requirements.

Usability. Layout constraints require annotating context-
free productions to indicate how the source code correspond-
ing to subtrees should be indented. However, they are rather
verbose and low-level, since they involve comparing lines
and columns of tokens of different subtrees.

Parsing Performance. Generating tools from a language
specification increases maintainability and extensibility, but
usually comes with a penalty in performance. For example,
Erdweg et al. [11] reported an overhead of about 80% when
using a layout-sensitive generalized LR parser that uses lay-
out constraints to disambiguate Haskell programs.

Pretty-printing. Layout constraints can be used to generate
parsers, but it is not clear how to use them to automatically

SLE ’18, November 5-6, 2018, Boston, MA, USA

derive pretty-printers. One of the challenges when generat-
ing a pretty-printer for a layout-sensitive language is that the
pretty-printer must be correct, i.e., pretty-printing a program
should not change its meaning.

In the remainder of this paper, we show how we tackle
each of these concerns, such that language designers can
develop layout-sensitive languages using tools such as lan-
guage workbenches.

3 Layout Declarations

To improve the usability of declarative specifications for
layout-sensitive languages, we introduce layout declarations:
high-level annotations in productions of a context-free gram-
mar that enforce indentation rules on a specific node of the
abstract syntax tree. Layout declarations abstract over token
and position selectors, and provide a concise specification for
most common indentation rules: alignment and indentation
of constructs, and the offside rule. We also equip layout decla-
rations with tree selectors, allowing them to be more readable
than when using the position of the subtree involved in a
declaration.

3.1 Tree Selectors

When writing the original layout constraints, one must use
the position of the subtree in a production to enforce a con-
straint over this subtree. However, when reading and writing
layout constraints, we want to avoid counting terminals and
non-terminals in the production to identify to which tree
the constraint applies.

Layout declarations allow the specification of constraints
using tree selectors. Tree selectors may consist not only of
the number of the subtrees, but also literals and labeled
non-terminals that occur in the production. A labeled non-
terminal is a non-terminal preceded by a label and a colon.
Labels must be unique within a production, and if a literal
occurs multiple times in the same production, then they
must be referred by its position. For example, consider the
following productions, written using SDF3 [25] syntax:*

Exp.Seq = expl:Exp ";" exp2:Exp ";
Exp.Add = exp:Exp "+" exp:Exp {left}

In the first production, the first Exp subtree might be re-
ferred in a layout declaration by its position (1) or by the
label exp1. Considering the same production, the literals ";"
must be referred by their position, as they occur multiple
times in the production. In the second production, the literal
"+" can be referred using the literal itself, as it is unique
within the production. Finally, note that the underlined label

2SDF3 productions have the form: A.C = X; Xs ... X, {annos}, where
the symbol A represents a non-terminal, X; represents either a terminal or
a non-terminal, and the constructor C indicates the name of the node in the
abstract syntax tree when imploding the parse tree. The list of annotations
inside brackets annos can be used for different purposes, such as operator
precedence disambiguation or to specify layout constraints.

SLE ’18, November 5-6, 2018, Boston, MA, USA

in the second production is invalid, because the same label
is used on the first Exp non-terminal.

3.2 Alignment

A common rule in layout-sensitive languages requires that
certain structures must be aligned in the source code. For
instance, as shown previously, all statements in a do-block
of a Haskell program must be aligned, i.e., they must start
at the same column. To express this indentation rule using
layout constraints, one may use the following productions:

Exp.Do = "do" StmtList

StmtList.Stmt = Stmt

StmtList.StmtSeq = Stmt StmtList
{layout(1.first.col == 2.first.col)}

Instead of using low-level concepts such as token and
position selectors, we propose using high-level layout decla-
rations align or align-list to indicate alignment of struc-
tures in the source code. A declaration layout(align ref t)
enforces that a tree indicated by the tree selector t should
start in the same column as the tree indicated by the ref
tree selector, used as reference. Consider the example below,
which uses an align declaration to indicate that the tail of
the list StmtList should be aligned with the head of the list:

Exp.Do = "do" StmtList

StmtList.Stmt = Stmt

StmtList.StmtSeq = head:Stmt tail:StmtList
{layout(align head tail)}

In SDF, lists may be represented by specific non-terminals
(A+ or A¥), which instructs the parser to flatten the tree
structure corresponding to the list when constructing the
abstract syntax tree. However, using layout constraints re-
quires explicitly defining productions for lists, which breaks
this abstraction. The layout declaration align-1list can be
applied to list non-terminals to indicate that all elements in
a list should start at the same column. Thus, one may write:

Exp.Do = "do" stmts:Stmt+
{layout(align-list stmts)}

to indicate that the statements in the list should be aligned.

Semantics We define translation rules from layout decla-
rations that describe alignment to layout constraints using
token and position selectors. Consider the tree selectors x
and y, the function pos(t), which obtains the position of a
subtree indicated by selector t, the function rename(X, Y),
which locally renames a non-terminal X to a non-terminal Y,
and the following equations:

align x y pos(x) =x' pos(y) =y’)
x'.first.col == y'.first.col
align-list x x is a tree selector for A+ (or Ax) @)

rename(A+,A"'+)
A'+ = A'+ A layout(1.first.col == 2.first.col)

Eduardo Souza, Michael Steindorfer, Sebastian Erdweg, and Eelco Visser

Note that in Equation 2, using align-list enforces the
layout constraint on the list A+ (or Ax), which could affect all
occurrences of the list in the grammar. Therefore, we first
locally rename this non-terminal A+ to a non-terminal A"+,
restricting the alignment declaration to the particular list in
the production annotated with align-1list. In Equation 1, on
the other hand, the layout declaration can be directly trans-
lated to the layout constraint involving token and position
selectors.

3.3 Offside Rule

As mentioned before, the offside rule is a common inden-
tation rule applied in layout-sensitive languages. This rule
requires that any character in the subsequent lines of a cer-
tain structure occur in a column that is further to the right
than the column where the structure starts. For example,
consider the following productions, which contains a lay-
out constraint that requires that the source code for the
OffsideStmt tree obey the offside rule:

Exp.Do = "do" Stmt
Stmt.0ffsideExp = Exp
{layout(1.left.col > 1.first.col)}

According to this rule, the expression in the following state-
ment is invalid, since the second line starts at a column that
is to the left of the column where the statement inside the
do-expression starts:

do 21 + 7

* 3
In fact, any statement in which the multiplication sign is at
the left of the digit 1 is invalid. By contrast, a valid program
that satisfies the offside rule is:

do 21 + 7

* 3

Instead of using layout constraints, one may use the offside
layout declaration to achieve the same effect:

Stmt.O0ffsideExp = exp:Exp
{layout(offside exp)}

The offside layout declaration can also be used to specify
the relationship between the leftmost column of subsequent
lines of a tree, and the initial column of another tree. For
example, consider the following productions:

Exp.Do = "do" stmt:Stmt
{layout(offside "do" stmt)}
Stmt.ExpStmt = Exp

With this declaration, the subsequent lines of Stmt should
be in a column to the right of the column where the literal
do starts. For example, even if we do not consider the offside
rule for the inner statement, the following program is still
invalid:

do 21 + 7
* 3

Declarative Specification of Indentation Rules

as the symbol x occurs at the same column as the keyword
do, i.e., it is offside.

Semantics We define the semantics of layout declarations
layout (offside t) and layout(offside ref t) by a transla-
tion into layout constraints using tokens and position selec-
tors. Consider the following equations with x and y as tree
selectors:

offside x pos(x) = x'
x'.left.col > x'.first.col

(3)

offside x y pos(x) =x' pos(y) =y’

y'.left.col > x'.first.col

4)

In Equation 3, the declaration offside x specifies that the
left token of the tree x should be in a column further to
the right than its first token. Similarly, in Equation 4, the
offside declaration between the trees x and y specifies that
the left token of y should be in a column further to the right
than the first token of x.

3.4 Indentation

Another common pattern in layout-sensitive languages is
to enforce indentation between subtrees. That is, a subtree
should have its first token at a column to the right of the
column of the first token of another subtree. Consider for
example, the following productions:

Exp.Do = "do" stmt:Stmt
{layout(indent "do" stmt)}
Stmt.ExpStmt = Exp

The declaration in the first production indicates that the state-
ment should start further to the right than the do keyword.
Thus, this declaration invalidates the following program:

do
21 + 7 % 3

On the other hand, the following program obeys the declara-
tion, as the expression statement starts further to the right,
when compared to the do keyword:

do 21 + 7 % 3

Similar to the indent layout declaration, the declaration
newline-indent allows enforcing that a target subtree should
start at a column further to the right than another subtree.
Moreover, the latter declaration also enforces that the target
subtree starts at a line below the line where the reference
subtree ends. Thus, when considering this layout declaration,
the program presented previously would also be invalid. A
valid program would then be:

do
21 + 7 % 3

SLE ’18, November 5-6, 2018, Boston, MA, USA

Semantics The indent and newline-indent declarations
are rewritten into layout constraints involving token and
position selectors. Consider x and y tree selectors and the
following equations:

indent x y pos(x) =x' pos(y) =y’ 5)
y'.first.col > x'.first.col
newline-indent x y pos(x) =x' pos(y) =y’ ©)

y'.first.col > x'.first.col &&
y'.first.line > x'.last.line

Note that the layout declaration newline-indent requires a
conjunction between two constraints involving the columns
of the first tokens of both trees referenced by x and y, and
the line of the last token of the tree x and the line of the
first token of the tree y.

4 Layout-Sensitive Parsing

Parsing layout-sensitive languages is difficult because these
languages cannot be straightforwardly described by tradi-
tional context-free grammars. Such languages require count-
ing the number of whitespace characters in addition to keep-
ing track of nesting, which requires context-sensitivity. There-
fore, most parsers for layout-sensitive languages rely on
some ad-hoc modification to a handwritten parser. For ex-
ample, the Python language specification describes a modi-
fied scanner that preprocesses the token stream, generating
newline, indent and dedent tokens to keep track of when
the indentation changes. Meanwhile, Python’s grammar as-
sumes these tokens to enforce the indentation rules of the
language. In Haskell, an algorithm that runs between the
lexer and parser converts implicit layout into explicit semi-
colons and curly braces to determine how the structures
should be parsed by a traditional context-free grammar.

Because modifications to the parser vary from language to
language, they are hard to implement when deriving a parser
from a declarative language specification. Therefore, in this
section, we propose a solution similar to Erdweg et al.’s,
which consists of deriving a scannerless generalized layout-
sensitive LR parser (SGLR) from a language specification. Our
algorithm improves on Erdweg et al.’s implementation by
performing parse-time disambiguation of layout constraints,
in contrast to post-parse disambiguation.

4.1 Layout-Sensitive SGLR

In theory, traditional context-free grammars can be used to
generate a generalized parser for layout-sensitive languages.
Since the parser produces a parse forest containing all pos-
sible interpretations of the program, this forest can then be
traversed, such that only the trees that obey the indentation
rules of the language are produced as result.

In practice this approach does not scale, since ambiguities
caused by layout can grow exponentially [11], making it

SLE ’18, November 5-6, 2018, Boston, MA, USA

infeasible to traverse all trees in a parse forest produced
when parsing a program of a layout-sensitive language. Thus,
disambiguation of layout constraints at parse time should be
preferred over post-parse disambiguation [15, 22].

We propose an implementation of a scannerless general-
ized LR parser (SGLR), that rejects trees that violate layout
constraints at parse time. Our implementation calculates po-
sition information (line and column offsets for starting and
ending positions) for token selectors (first, last, left, and
right), propagating this information when building the trees
bottom up, and using this information to evaluate layout
constraints. The main difference between our implementa-
tion and the one proposed by Erdweg et al. [11] is that we
evaluate all layout constraints at parse time, when building
the subtrees, whereas in Erdweg et al.’s implementation, dis-
ambiguation using left and right constructs is performed
after parsing (we discuss their implementation in more detail
in Section 7).

Position Information The first modification we propose
to add layout-sensitivity to the original SGLR algorithm [23]
is to add position information to every tree node. That is, each
node of the parse tree should contain the line and column
at which it begins, and the line and column at which it ends.
This information can be obtained from the parser, since it
keeps track of the position in the source code when it starts
and finishes parsing a structure. Besides that, our algorithm
also calculates the position information for the left and
right tokens of every tree node. We present the algorithm
that constructs parse tree nodes in Figure 3.

The algorithm propagates position information about to-
ken selectors based on the subtrees of the tree node being
constructed. The method CREATE-TREE-NODE takes as ar-
guments the production being applied, the list of trees that
represent the subtrees of the node being created, and two
Position variables beginPos and curPos, indicating the line
and column where the tree starts and the line and column
where the parser is currently at, respectively. The algorithm
first constructs a tree node t given its list of subtrees, as
shown in line 2. In lines 3 and 4, the information about the
first and last tokens of t are assigned to the current node
given the arguments beginPos and endPos.

The remainder of the algorithm computes the information
about left and right. The algorithm calculates the position
information about left by processing the list of subtrees,
as its value should be the leftmost value (the one in the
lowest line, and lowest column), when considering the left
tokens of all subtrees that do not represent layout (line 14).
However, if any subtree starts in a line that is below the
line where t starts, the algorithm updates the left token
of t accordingly (line 16). A similar strategy is applied to
calculate the information about the right token.

Enforcing Layout Constraints The layout-sensitive SGLR
algorithm works by rejecting trees that violate the layout

Eduardo Souza, Michael Steindorfer, Sebastian Erdweg, and Eelco Visser

1 function CREATE-TREE-NODE(Production A.C = X; ... Xu,
List<Tree> [ty, ..., tn], Position beginPos,
Position curPos)

2 Tree t = [A.C = ty, ..., tnl

3 t.first = beginPos

4 t.last = curPos

5 t.left = null

6 t.right = null

7

8 // calculate left and right

9 foreach(t; in t) {

10 // should not consider layout

11 if (isLayout(t;))

12 continue

13 if (t;.left != null)

14 t.left = leftMost(t.left, t;.left)
15 if (t;.first.line > t.first.line)

16 t.left = leftMost(t.left, t;.first)
17

18 if (t;.right !'= null)

19 t.right = rightMost(t.right, t;.right)
20 if (t;.last.line < t.last.line)

21 t.right = rightMost(t.right, t;.last)
22 }

23 return t

24 end function

25

26 function leftMost(p1, p2) {

27 if (p1 == null || pl.col > p2.col)
28 return p2

29 else return pl

30 end function

31

32 function rightMost(p1, p2) {

33 if (p1 == null || pl.col < p2.col)
34 return p2

35 else return pl

36 end function

Figure 3. Pseudocode for the modified CREATE-TREE-NODE
method from the original SGLR and the auxiliary functions
leftMost and rightMost, in the implementation of the layout-
sensitive SGLR.

constraints defined in a production using the information
collected in the algorithm of Figure 3. A layout constraint
is enforced at parse time when executing reduce actions in
the parser, i.e., in the function DO-REDUCTIONS [23]. In
layout-sensitive SGLR, a reduction is performed only when
a production does not define a layout constraint, or when
the layout constraint it defines is satisfied.

For example, the trees in Figure 4 indicate how the parser
constructs tree nodes and verifies layout constraints. For the
first program, the layout constraint states that the statements
must be aligned. Therefore, since the second tree for this
program does not satisfy this constraint, the tree is rejected as

Declarative Specification of Indentation Rules

SLE ’18, November 5-6, 2018, Boston, MA, USA

Source Code Layout Constraints Trees
first=(1,1)
X reject tree
first=(2,4)
do stml Exp.Do = "do" - Stmt+ (First=(1,9)) Afirstf@2,))\(First=(3,7)
do stm2 {layout(align-list)} tml D m3
stm3 first=(1,4) o ° >
first=(3,7)
first=(2,7) @
first=(1,1) first=(1,1)
left=(2,4) (2,4) e -
do el Stmt.0ffsideExp = :Exp : left=(2,4)"
e2 layout(offsid — ‘
* {layout(rae o} first=(2,4) ; first=(2,6)
left=null : left=null
first=(2,4) x reject tree
left=null

Figure 4. Example of how our algorithm for a layout-sensitive SGLR constructs trees and applies layout constraints.

the parser does not perform the reduce action to construct it.
In the second program, we can see how the information about
the left is propagated. Similarly to the first example, the
first tree constructed when parsing this program is the only
one produced by the parser, since the second tree violates
the offside rule.

4.2 Propagation of left and right at Parse Time

In the algorithm presented in Section 4.1, we propagate po-
sition information about left and right while building the
parse tree. However, this approach may not produce the cor-
rect result in all scenarios. For example, consider a parse
forest containing two different parse trees. Suppose that the
source code for each tree in the parse forest is indicated by
the programs below, where the symbols * represent actual
characters in the program, and - represents a comment:

*kkkk *kkkk
*kk%k ———
*k%k *k%k

Considering that both programs start at column 1, in the
first tree, the 1eft token is at column 2, whereas in the second
tree, left is actually at column 3, because part of its source
code is a comment. Thus, it is unclear what is the actual
value for left when considering the parse forest, i.e., both
trees simultaneously.

While this could be a problem when propagating position
information about left and right tokens, and applying lay-
out constraints at parse time, we believe that this scenario

does not occur often in practice. As an alternative solution,
we could adapt our SGLR algorithm to fall back to post-parse
disambiguation in such cases.

5 Layout-Sensitive Pretty-Printing

A pretty-printer is a tool that transforms an abstract syn-
tax tree back into text. Pretty-printers are key components
of language workbenches. For example, they can be used
by other tools such as refactoring tools and code comple-
tion, or when defining source-to-source compilers. A lack of
pretty-printing support effectively prevents the adoption of
language workbenches for layout-sensitive languages.
Pretty-printing programs in a layout-sensitive language
is not an easy task. Because the layout in the source code
identifies how the code should be parsed, the pretty-printer
needs to be designed such that the meaning of the original
program does not change after it is pretty-printed. Thus,
in general, a pretty-printer is correct if the same abstract
syntax tree is produced when parsing both the original and
the pretty-printed programs. More formally, if we consider a
program p and parsing and pretty-printing as two functions
parse and prettyPrint, the following equation must hold:

parse(p) = parse(prettyPrint(parse(p)))

In this section we propose a technique to derive a correct
pretty-printer based on a language specification containing
layout declarations. We use strategies to apply modifications

SLE ’18, November 5-6, 2018, Boston, MA, USA

to the pretty-printed program, such that each layout declara-
tion is considered while performing a top-down traversal in
an intermediate representation of the abstract syntax tree.

5.1 From Trees to Boxes

A naive implementation of a pretty-printer consists of print-
ing the program separating each token by a single white-
space. However, it is easy to see that for a layout-sensitive
language that enforces alignment, our naive pretty-printer
would produce an invalid result as the pretty-printed pro-
gram would not contain any newlines.

Manipulating this string directly to fix the layout accord-
ing to the indentation rules of the language is also not ideal,
as we lose the information about the structure of the pro-
gram and the layout declarations encoded in the abstract
syntax tree. Therefore, in order to produce an abstract repre-
sentation of a program that takes into account the program
structure and its layout, we use the Box language [197, 20]
as an intermediate representation.

Boxes provide a structured representation of the pretty-
printed text. Each node in the abstract syntax tree can be
translated into a box, with its subtrees recursively translated
into sub-boxes. The most basic boxes are string boxes, which
can be composed (nested) using composition operators. Our
approach considers three different composition operators
in the Box language: vertical composition (V), horizontal
composition (H) and z-composition (Z) [24].

The horizontal composition operator concatenates a list
of boxes into a single line, whereas the vertical composition
operator concatenates a list of boxes putting each box into
a different line, starting at the same column. Each operator
optionally takes an integer hs or vs as parameter to deter-
mine the number of spaces or empty lines separating each
box, respectively. To illustrate, consider the examples below:

[H hs=x 1= \

X spaces

[V vs=x 1=

The z-composition operator places its boxes vertically on
separate lines resetting the indentation of all boxes after
the first to 0. Thus, for those boxes, the indentation from
surrounding boxes is ignored and they start at the left margin.
For example, if we combine the horizontal operator and the
z-composition operator, we obtain the following output:

[H hs=x [z]] =>"'
}spaces

Eduardo Souza, Michael Steindorfer, Sebastian Erdweg, and Eelco Visser

Boxes can be easily converted into text by recursively ap-
plying the box operators, as shown by the examples. There-
fore, instead of manipulating the string produced by the
pretty-printer, we manipulate boxes to enforce the layout
declarations from the language specification.

5.2 Applying Layout Declarations to Boxes

Boxes provide information about the layout of the program,
retaining the structure of the abstract syntax tree. In order to
apply layout declarations to the boxes generated from pretty-
printing a tree, each box should also contain its relative line
and column positions in the pretty-printed program. For
example, consider the following Haskell program, pretty-
printed from a naive pretty-printer, as discussed previously:

x = do s1 s

One possible box representation for this program is:

[H hs=1[x][=][do] [H hs=1[s.][s.]7]

To apply layout declarations to this program, we attach the
relative line and column positions in the source code to the
box (indicated by 1 and c in the diagram below). Furthermore,
since boxes are created from the nodes in the abstract syntax
tree, we also attach to the boxes the layout declarations from
the corresponding node in the abstract syntax tree. Assuming
that s; ends at column x, our pretty-printer produces the
following boxes:

align-list
o0 st [x] Il rs-a[=][=]0
1=1 1=1 1=1 1=1 1=1
c=1 c=3 c=5 c=8 c=x+1

Transforming this box into a string and parsing that string
results in a syntax error, since the statements inside the
do-expression do not start at the same column. To ensure
correct use of layout in the pretty-printed string, we apply
a layout fixer that traverses the boxes and fixes the inden-
tation where necessary. In this case, when considering an
align-list layout declaration, the layout fixer replaces the
inner horizontal operator by a vertical operator producing
the following boxes and pretty-printed program:

align-list

[H hs=1 E' v V5=Q)H]]|Z> x = do s,

=1 11 1-1 =1 12 S;
c=l =3 =5 c=8 c=8

which satisfies the layout declaration.

We adopt a similar strategy for adapting the boxes for
the remaining layout declarations. For a layout declaration
align x y, the left-most column of a box B; corresponding
to the tree indicated by y should be equal to the left-most
column of a box B; from the reference tree x. To satisfy this
layout declaration, if By starts at a column to the left of the

Declarative Specification of Indentation Rules

SLE ’18, November 5-6, 2018, Boston, MA, USA

B, B, B, B,
1=1, 1=1, =1, 1=1,
C=Cy ,_> c=C, c=C, ,_> c=C,
B, [H hs=c,-c, | E[|B;|] B, [Z|E|[H hs=c|E |]|B,|]]
1=1y 1=1y 1=1y 1='Ly+l
c=C c=C c=C c=C
X y X
(a) cx > cy (b) cy > cx

Figure 5. Manipulating boxes to apply a layout declaration that enforces alignment between the boxes B; and B,.

starting column of By, our layout fixer wraps B, in a hori-
zontal operator, using an empty box (a box E containing the
empty string), setting hs as the number of spaces necessary
to align the two boxes. For the case where B, starts at a col-
umn further to the right than the left-most column where
B; starts, the layout fixer uses a combination of a z-operator
and a horizontal operator to skip to the next line, adding the
indentation necessary to align both boxes. Both scenarios are
illustrated in Figure 5. Note that empty boxes allow indent-
ing other boxes (using the horizontal operator) or moving
them to a new line (using the z-operator).

The same strategy can be used for the layout declarations
indent x y, and newline-indent x vy, setting the horizontal
box such that the boxes are not aligned, but that the left-most
column of B, is to the right of the left-most column of By,
enforcing a z-operator whenever it is necessary to print the
text into another line.

For offside declarations, we apply a slightly different ap-
proach. Because an offside declaration requires that the boxes
in the subsequent lines should be further to the right than the
column where the structure starts, we verify the operands
of the z-operator. That is, for all boxes that move to a new-
line due to a z-operator and violate the offside rule, we use
horizontal composition with an empty box to indent them
such that the offside rule is satisfied.

We apply these strategies in a top-down traversal of the
boxes that represent the original program. This approach
produced satisfactory results when considering the Haskell
programs in our benchmark as we will discuss in Section 6.2.

5.3 Layout Declarations for Pretty-printing

In this paper, we focus primarily on the correctness of a
generated pretty-printer, but pretty-printing the program in
a single line, adding newlines only to enforce layout declara-
tions may not produce a pretty-printer. In layout-sensitive
languages, concepts such as alignment, indentation and even
the offside rule contribute to make the pretty-printed code
prettier, i.e., more readable. However, these are not sufficient
to determine a pretty layout. For example, consider the fol-
lowing production defining an if-else construct, with layout

declarations to enforce the alignment of the then (T) and else
(E) branches:

S.IfElse = "if" E "then" T:S "else" E:S
{layout(align T E)}

A pretty-printed program using this production and the lay-
out fixing algorithm looks like:

if el then s1 else
if e2 then s2 else
s3

While this program is correct according to the layout declara-
tion, one may say it is not pretty, as its layout may not make
the program more readable, specially if we would consider
writing programs with nested if-else statements.

The declarations from Section 3 are always enforced when
parsing the program. However, for constructs that are not
layout-sensitive, we could use a more flexible approach, using
declarations only to produce better pretty-printers. Thus,
we introduce pretty-printing layout declarations, which are
similar to the previous ones, but are used only for pretty-
printing. Layout declarations for pretty-printing start with
the prefix pp-, and are ignored by the parser.

With pretty-printing layout declarations, the language
designer can generate prettier pretty-printers, but still allow
flexible layout when parsing the program. For example, con-
sider the same production as the one shown previously, with
additional pretty-printing layout declarations:

S.IfElse = "if" E "then" T:S "else" E:S
{layout (pp-newline-indent "if" T && pp-align
"if" "else" &% align T E)}

Applying the pretty-printer generated from this production
into the same program, produces:

if el then
s1
else
if e2 then
s2
else
s3

SLE ’18, November 5-6, 2018, Boston, MA, USA

Note that the pretty-printed program using only the align
declaration would also be accepted by the same parser de-
fined by the production above, since the additional layout
declarations are used only for pretty-printing.

To provide more flexibility to language designers regard-
ing indentation sizes and newlines, we also introduce the lay-
out declaration pp-newline-indent-by(x) and pp-newline(x).
The declaration pp-newline-indent-by(x) is a variation of
the declaration pp-newline-indent, such that it is possible to
specify the number of spaces (using the integer x) that pretty-
printer must consider when indenting the program. The dec-
laration pp-newline(x) t, on the other hand, enforces that
the tree t starts on a newline, indented by x spaces from the
enclosing indentation.’

For instance, if instead we use the layout declaration
layout(pp-newline(1) T &% pp-newline "else") onthe same
production, it is possible to construct a pretty-printer that
produces the following program:

if el then

s1

else if e2 then
s2

else s3

6 Evaluation

In this section we evaluate our approach for generating a
parser and a pretty-printer from a grammar containing lay-
out declarations. We are interested in answering the follow-
ing research questions.

RQ1 How parse-time disambiguation of ambiguities due to
layout affects the performance of a generalized parser?

RQ2 What is the accuracy of our layout fixer when pretty
printing files of a layout-sensitive language?

RQ3 How easy is it to specify a layout-sensitive language?

In order to answer the these research questions, we gen-
erate a parser and a pretty-printer derived from a declar-
ative specification for Haskell containing layout declara-
tions. We apply both generated parser and pretty-printer to
22191 Haskell programs from the Hackage® repository, using
the benchmark described in [11]. We used the files in the
same benchmark to provide a fair comparison between the
performance of our parser and their implementation.

In order to measure the performance overhead of the
layout-sensitive parser, we use a pretty-printer tool, part
of the haskell-src-exts package’, which has an option to
pretty-print programs using only explicit grouping (brack-
ets and semicolons). We also preprocess files using the C
preprocessor part of the Glasgow Haskell Compiler (GHC)
supporting additional extensions to increase the coverage

3Ifx = 0, the declaration pp-newline can be used instead.
4http://hackage.haskell.org
Shttp://hackage.haskell.org/package/haskell-src-exts

Eduardo Souza, Michael Steindorfer, Sebastian Erdweg, and Eelco Visser

LS-SGLR

—]

CPP preprocessor Program-Norm

Program

LI-SGLR

]
[

GHC pretty-printer Program-Expl

(a) Evaluating the performance of the parser.

CPP preprocessor

SDF3 pretty-printer

LS-SGLR

Program-PP

(b) Evaluating the correctness of the pretty-printer.

o |

—

|

Figure 6. Evaluation setup.

of files. The diagram in Figure 6a illustrates the process we
adopted.

To measure the performance of our layout-sensitive parser
(LS-SGLR) on the original program, we first apply the C pre-
processor, applying the parser to the Program-Norm file. Simi-
larly, we measure the performance of an implementation of
SGLR without support for layout-sensitive disambiguation
(LI-SGLR) on a program that contains brackets and semi-
colons to explicitly delimit structures (Program-Expl), using
the pretty-printer from the haskell-src-exts package. We
then compare the performance of both parsers to verify the
overhead of using the layout-sensitive features of our imple-
mentation.

To measure the correctness of the pretty-printer gener-
ated using our approach, we use the process described in
Figure 6b. First, we preprocess the file using the C prepro-
cessor, generating the file Program-Norm. Next, we parse this
file and pretty-print its abstract syntax tree using our pretty-
printer to generate a new program Program-PP. Finally, we
parse this file comparing its tree with the tree originated
from the file Program-Norm.

We measure how easy it is to specify a layout-sensitive
language by counting the total number of layout declarations
used in the grammar.

6.1 Experimental Setup

We executed the benchmarks on a computer with 16GB RAM,
and an Intel Core i7 CPU with a base frequency of 2.7GHz
and a 6MB Last-Level Cache. The software consisted of Ap-
ple’s macOS version 10.13.5 (17F77) and Oracle’s Java Virtual
Machine version 1.8.0_102.

We measured the execution time of batch-parsing the
corpus of Haskell programs using the Java Microbenchmark-
ing Harness (JMH), which is a framework to overcome the

http://hackage.haskell.org
http://hackage.haskell.org/package/haskell-src-exts

Declarative Specification of Indentation Rules

Table 1. Benchmark results when executing our LS-SGLR
parser on programs containing their original layout, and the
LI-SGLR parser on programs containing explicit layout.

Parser Data Set
LS-SGLR Program-Norm
LI-SGLR Program-Expl

Time (seconds) Overhead
638.05 + 1.96 1,72x
370.26 + 0.68 —

Table 2. Benchmark results when considering a subset of
14830 programs that do not have longest-match ambiguities.

Parser Data Set
LS-SGLR Program-Norm
LI-SGLR Program-Expl

Time (seconds) Overhead
239.79 £ 0.90 1.53x
156.37 £ 0.56 —

pitfalls of (micro-)benchmarking. When executing the bench-
marks, we disabled background processes as much as possi-
ble, fixing the virtual machine heap size to 8 GB. We config-
ured JMH to perform 5 warmup iterations, and 10 measure-
ments, calculating the average time of each execution. We
use the same settings to test the correctness of the pretty-
printer, however, instead of using JMH, we simply compare
Java objects corresponding to the abstract syntax tree of the
programs Program-Norm and Program-PP.

6.2 Experiment Results

Performance of the Parser Table 1 shows the results of
the parse-time of the LS-SGLR parser on programs with orig-
inal layout, and the original SGLR parser on programs with
explicit layout. Overall, we measured the overhead of our
layout-sensitive parser to be 1.72x. This compares to 1.80x
for Erdweg et al.’s implementation. Because Haskell pro-
grams may still require an additional post-parse disambigua-
tion to disambiguate longest-match constructs [10, 11], we
suspect that part of this overhead is caused by this additional
disambiguation step, since programs with explicit layout
do not present such ambiguities. For this reason, we also
ran the same experiment on programs that do not contain
longest-match ambiguities (14830 programs), measuring the
overhead of disambiguating only ambiguities due to layout.
As shown in Table 2, for such programs our parser presented
an overhead of 1.5x.

Correctness of the pretty-printer When executing our
pretty-printer, we verified that only 5 out of 22191 programs
produced incorrect results (0.02 %). Because of the low num-
ber of cases, we investigated these programs manually and
verified that because we apply our layout-fixer using a top-
down traversal, a ripple effect when fixing a declaration may
disrupt parts of the program that have been previously fixed.

Language specification The SDF3 grammar for Haskell
used in our experiments contains 473 productions. It was nec-
essary to annotate 34 productions to specify the indentation
rules for Haskell. In total, we added 43 layout declarations,
being 10 offside, 1 align, 5 align-list, 19 indent, and 8

SLE ’18, November 5-6, 2018, Boston, MA, USA

ignore-layout declarations. Note that some productions re-
quired multiple declarations.

6.3 Threats to Validity

A threat to external validity, with respect to the generality
of our results, is that we used only Haskell in our bench-
marks. Despite not being able to generalize our results be-
yond Haskell programs, we believe that Haskell has indenta-
tion rules that are similar to other layout-sensitive languages.
We have also tried our approach on a syntax definition for a
subset of Python. However, because we do not cover the en-
tire language, we could not parse many real-world programs,
and decided to not include it in our benchmarks.

Another threat to the validity of our results concerns the
correctness of our parser. To tackle this issue, we verified that
the abstract syntax trees we obtained from our parser and the
trees from the implementation done by Erdweg et al. were
equal. Erdweg et al. checked the correctness of their parser
by comparing it with to the parser from GHC. Since they
obtained positive results from that comparison, we believe
that our parser is also correct.

7 Related Work

In this section, we highlight previous work on layout-sensitive
parsers and generating pretty-printers from a declarative
specification, discussing how prior work inspired us.

7.1 Layout-Sensitive Parsing

As we mentioned previously, our approach to derive a layout-
sensitive parser from a declarative specification was inspired
by the work by Erdweg et al. [11]. Their parser performs post-
parse disambiguation to avoid splitting parse states that were
already merged when finding an ambiguity, which would
degrade the performance of the parser. Our parser prevents
such ambiguities to be constructed by filtering trees at parse
time using the propagated information about token selec-
tors. This change improves the performance of the parser by
avoiding the post-parse disambiguation step.
Indentation-sensitive context-free grammars (IS-CFGs) [1],
can be used to generate LR(k) or GLR layout-sensitive parsers.
In IS-CFGs each terminal is annotated with the column at
which it occurs in the source code, i.e., its indentation, and
each non-terminal is annotated with the minimum column
at which it can occur. To express alignment of constructs, an
IS-CFG requires additional productions, which are generated
automatically from certain non-terminals. We opted for not
modifying the original grammar, only requiring that pro-
ductions are annotated with layout declarations. While our
approach is based on a scannerless generalized parser, we
obtained similar performance results to a layout-sensitive
LR(k) parser generated from an IS-CFG when considering
Haskell programs with longest-match ambiguities. Finally, it
is not clear how to automatically derive a pretty-printer from

SLE ’18, November 5-6, 2018, Boston, MA, USA

an IS-CFGs, whereas we provided a mechanism to derive a
pretty-printer from a specification with layout declarations.

Afroozeh and Izmaylova [2] use data-dependent gram-
mars [14] to generate a layout-sensitive parser. They propose
high-level declarations such as align and offside that are
translated into equations, which are evaluated during the ex-
ecution of a generalized LL parser. In our work, we opted to
leave the grammar intact and have layout declarations as an-
notations on productions. In contrast, their declarations are
intermingled with the non-terminals in productions, which
decreases readability. Finally, their approach also requires
propagating data “upwards” and “downwards” when build-
ing tree nodes, whereas we propagate data only upwards.

Brunauer and Mithlbacher [6] propose another approach
to declaratively specify layout-sensitive languages using a
scannerless parser. They modify the non-terminals of the
grammar to include integers as parameters, which are mixed
with the grammar productions to indicate the number of
spaces that must occur within certain productions. However,
these changes have a detrimental effect on the readability and
on the size of the resulting grammar. We opted to abstract
over details such as number of spaces, columns, and lines,
by using high-level layout declarations.

7.2 Pretty-printing

Many solutions have been proposed to integrate the speci-
fication of a parser and a pretty-printer [5, 18, 24?]. How-
ever, none of these solutions is aimed at generating layout-
sensitive parsers and pretty-printers using the same specifica-
tion. For instance, the syntax definition formalism SDF3 [24]
allows the specification of a parser and a default pretty-
printer to be combined by using template productions. Tem-
plate productions are similar to regular productions, but the
indentation inside the template is considered only when
pretty-printing the program. Thus, they are similar to our
layout declarations for pretty-printing as they do not en-
force any restriction with respect to layout while parsing.
However, when using templates in combination with layout
declarations to generate layout-sensitive parsers, any incon-
sistency between the templates and the declarations might
result in an incorrect pretty-printer.

Different approaches have been proposed to derive pret-
tier [26], and correct-by-construction [7] pretty-printers.
However, these approaches are aimed at traditional program-
ming languages, and might require further adaptations to be
applied to layout-sensitive languages. Finally, none of these
approaches allow a specification of the pretty-printer that
can be derived from the context-free grammar. We use layout
declarations as annotations to context-free productions to
indicate how structures should be pretty-printed such that
the pretty-printed program obeys the indentation rules of
the language. Furthermore, our pretty-printing layout dec-
larations enable customizing the generated pretty-printer
such that it also produces prettier results.

Eduardo Souza, Michael Steindorfer, Sebastian Erdweg, and Eelco Visser

8 Future Work

As future work we plan to apply our techniques to more
layout-sensitive languages, examining their indentation rules
to observe how our generated parser and pretty-printer be-
have in other scenarios. We also would like to investigate
different strategies to apply our layout fixer, finding alterna-
tives that do not cause a ripple effect when applying (pretty-
printing) layout declarations, as it may produce incorrect
results. Furthermore, we would like to study the integra-
tion between our pretty-printing layout declarations and
other syntax definition formalisms that enable declarative
specification of both parser and pretty-printer, such as SDF3.

Another aspect to consider is preservation of comments
when pretty-printing layout-sensitive programs. Currently,
our pretty-printer discards comments altogether, but ideally,
comments should be preserved while maintaining the cor-
rectness of the pretty-printer. Preservation of comments in
transformations is challenging even for traditional languages,
and most approaches rely on heuristics [8, 17].

Finally, we propose a more in-depth analysis of SGLR
mechanisms to disambiguate longest-match constructs. As
shown by our experiment, such ambiguities are responsible
for a considerable fraction of the overhead of our parser for
Haskell. It would also be interesting to study how layout-
sensitive and longest-match disambiguation are related to
operator precedence disambiguation [3, 9].

9 Conclusion

In this paper, we presented an approach to support declara-
tive specifications of layout-sensitive languages. We tackled
the main issues that prevent the adoption of these languages
in tools such as language workbenches: usability, perfor-
mance and tool support. We introduced layout declarations,
providing language designers with a high-level specifica-
tion language to declare indentation rules of layout-sensitive
languages. Furthermore, we described a more efficient imple-
mentation of a scannerless layout-sensitive generalized LR
parser based on layout declarations. Finally, we presented
strategies to derive a correct pretty-printer, which produced
the correct result for almost all of the programs in our bench-
mark. Overall, we believe that our work can be used to facil-
itate the development and prototyping of layout-sensitive
languages using tools such as language workbenches.

Acknowledgments

The work presented in this paper was partially funded by
CAPES (Coordenacdo de Aperfeicoamento de Pessoal de
Nivel Superior - Brazil) and by the NWO VICI Language
Designer’s Workbench project (639.023.206). We would also
like to thank the anonymous reviewers for their feedback.

Declarative Specification of Indentation Rules

References
[1] Michael D. Adams. 2013. Principled parsing for indentation-sensitive

[10

(11

—

—_

=

—

—

]

—

languages: revisiting landin’s offside rule. In The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’13, Rome, Italy - January 23 - 25, 2013, Roberto Giacobazzi and
Radhia Cousot (Eds.). ACM, 511-522. https://doi.org/10.1145/2429069.
2429129

Ali Afroozeh and Anastasia Izmaylova. 2015. One parser to rule them
all. In 2015 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2015, Pittsburgh,
PA, USA, October 25-30, 2015, Gail C. Murphy and Guy L. Steele Jr. (Eds.).
ACM, 151-170. https://doi.org/10.1145/2814228.2814242

Ali Afroozeh and Anastasia Izmaylova. 2016. Operator precedence for
data-dependent grammars. In Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, Martin Erwig and Tiark
Rompf (Eds.). ACM, 13-24. https://doi.org/10.1145/2847538.2847540
Oren Ben-Kiki, Clark Evans, and Ingy dét Net. 2009. YAML Ain’t
Markup Language, Version 1.2. Available on: http://yaml.org/spec/1.2/
spec.html.

R. Boulton. 1996. Syn: A single language for specifying abstract syn-
tax trees, lexical analysis, parsing and pretty-printing. Number 390.
University of Cambridge, Computer Laboratory.

Leonhard Brunauer and Bernhard Miihlbacher. July, 2006. Indenta-
tion Sensitive Languages. (July, 2006). http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.136.2933&rep=rep 1&type=pdf Unpub-
lished Manuscript.

Nils Anders Danielsson. 2013. Correct-by-construction pretty-printing.
In Proceedings of the 2013 ACM SIGPLAN workshop on Dependently-
typed programming, DTP@ICFP 2013, Boston, Massachusetts, USA, Sep-
tember 24, 2013, Stephanie Weirich (Ed.). ACM, 1-12. https://doi.org/
10.1145/2502409.2502410

Maartje de Jonge and Eelco Visser. 2011. An Algorithm for Layout
Preservation in Refactoring Transformations. In Software Language
Engineering - 4th International Conference, SLE 2011, Braga, Portugal,
July 3-4, 2011, Revised Selected Papers (Lecture Notes in Computer Sci-
ence), Anthony M. Sloane and Uwe Afimann (Eds.), Vol. 6940. Springer,
40-59. https://doi.org/10.1007/978-3-642-28830-2_3

Luis Eduardo de Souza Amorim, Michael J. Steindorfer, and Eelco
Visser. 2018. Towards Zero-Overhead Disambiguation of Deep Priority
Conflicts. Programming Journal 2 (2018), 13.

Simon Marlow (editor). 2010. Haskell 2010 Language Report. Available
on: https://www.haskell.org/onlinereport/haskell2010.

Sebastian Erdweg, Tillmann Rendel, Christian Kastner, and Klaus
Ostermann. 2012. Layout-Sensitive Generalized Parsing. In Soft-
ware Language Engineering, 5th International Conference, SLE 2012,
Dresden, Germany, September 26-28, 2012, Revised Selected Papers
(Lecture Notes in Computer Science), Krzysztof Czarnecki and Gorel
Hedin (Eds.), Vol. 7745. Springer, 244-263. https://doi.org/10.1007/
978-3-642-36089-3_14

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

SLE ’18, November 5-6, 2018, Boston, MA, USA

Martin Fowler. 2005. Language Workbenches: The Killer-App
for Domain Specific Languages? https://doi.org/articles/
languageWorkbench.html

John Gruber. 2004. Markdown: Syntax.
daringfireball.net/projects/markdown/syntax.
Trevor Jim, Yitzhak Mandelbaum, and David Walker. 2010. Semantics
and algorithms for data-dependent grammars. In Proceedings of the
37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, Manuel V.
Hermenegildo and Jens Palsberg (Eds.). ACM, 417-430. https://doi.

org/10.1145/1706299.1706347
Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth. 2010. Pure

and declarative syntax definition: paradise lost and regained. In Pro-
ceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, William R. Cook, Siobhan Clarke, and Martin C. Rinard (Eds.).
ACM, Reno/Tahoe, Nevada, 918-932. https://doi.org/10.1145/1869459.
1869535

Peter]J. Landin. 1966. The next 700 programming languages. Commun.
ACM 9, 3 (1966), 157-166. https://doi.org/10.1145/365230.365257
Huiqing Li, Simon Thompson, and Claus Reinke. 2005. The Haskell
Refactorer, HaRe, and its APL. Electronic Notes in Theoretical Computer
Science 141, 4 (2005), 29-34. https://doi.org/10.1016/j.entcs.2005.02.053
Lisa F. Rubin. 1983. Syntax-Directed Pretty Printing - A First Step
Towards a Syntax-Directed Editor. IEEE Trans. Software Eng. 9, 2 (1983),
119-127.

M.GJ. van den Brand. July, 1993. Generation of Language Indepen-
dent Modular Prettyprinters. Technical Report P9315. University of
Amsterdam.

M.GJ. van den Brand. October, 1993. Prettyprinting Without Losing
Comments. Technical Report P9327. University of Amsterdam.
Guido van Rossum and Fred L. Drake. 2011. The Python Language
Reference Manual. Network Theory Ltd.

Eelco Visser. 1997. A Case Study in Optimizing Parsing Schemata by
Disambiguation Filters. In International Workshop on Parsing Technol-
ogy (IWPT 1997). Massachusetts Institute of Technology, Boston, USA,
210-224.

Eelco Visser. 1997. Scannerless Generalized-LR Parsing. Technical Re-
port P9707. Programming Research Group, University of Amsterdam.
Tobi Vollebregt. 2012. Declarative Specification of Template-Based
Textual Editors. Master’s thesis. Delft University of Technology, Delft,
The Netherlands. Advisor(s) Eelco Visser and Lennart C. L. Kats.
https://doi.org/uuid:8907468c-b102-4a35-aa84-d49bb2110541

Tobi Vollebregt, Lennart C. L. Kats, and Eelco Visser. 2012. Declara-
tive specification of template-based textual editors. In International
Workshop on Language Descriptions, Tools, and Applications, LDTA ’12,
Tallinn, Estonia, March 31 - April 1, 2012, Anthony Sloane and Suzana
Andova (Eds.). ACM, 1-7. https://doi.org/10.1145/2427048.2427056
Philip Wadler. 1998. A Prettier Printer. In Journal of Functional Pro-
gramming. Palgrave Macmillan, 223-244.

Available on: https://

https://doi.org/10.1145/2429069.2429129
https://doi.org/10.1145/2429069.2429129
https://doi.org/10.1145/2814228.2814242
https://doi.org/10.1145/2847538.2847540
http://yaml.org/spec/1.2/spec.html
http://yaml.org/spec/1.2/spec.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2933&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.2933&rep=rep1&type=pdf
https://doi.org/10.1145/2502409.2502410
https://doi.org/10.1145/2502409.2502410
https://doi.org/10.1007/978-3-642-28830-2_3
https://www.haskell.org/onlinereport/haskell2010
https://doi.org/10.1007/978-3-642-36089-3_14
https://doi.org/10.1007/978-3-642-36089-3_14
https://doi.org/articles/languageWorkbench.html
https://doi.org/articles/languageWorkbench.html
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://doi.org/10.1145/1706299.1706347
https://doi.org/10.1145/1706299.1706347
https://doi.org/10.1145/1869459.1869535
https://doi.org/10.1145/1869459.1869535
https://doi.org/10.1145/365230.365257
https://doi.org/10.1016/j.entcs.2005.02.053
https://doi.org/uuid:8907468c-b102-4a35-aa84-d49bb2110541
https://doi.org/10.1145/2427048.2427056

	Abstract
	1 Introduction
	2 Background
	2.1 Layout Constraints
	2.2 Tools for Layout-Sensitive Languages

	3 Layout Declarations
	3.1 Tree Selectors
	3.2 Alignment
	3.3 Offside Rule
	3.4 Indentation

	4 Layout-Sensitive Parsing
	4.1 Layout-Sensitive SGLR
	4.2 Propagation of [language=SDF2] !left! and [language=SDF2] !right! at Parse Time

	5 Layout-Sensitive Pretty-Printing
	5.1 From Trees to Boxes
	5.2 Applying Layout Declarations to Boxes
	5.3 Layout Declarations for Pretty-printing

	6 Evaluation
	6.1 Experimental Setup
	6.2 Experiment Results
	6.3 Threats to Validity

	7 Related Work
	7.1 Layout-Sensitive Parsing
	7.2 Pretty-printing

	8 Future Work
	9 Conclusion
	Acknowledgments
	References

