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Dynamic structure factor of a dilute Lennard-Jones gas
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IRI, Delft University of Technology, 2629 JB Delft, The Netherlands

~Received 31 January 2001; published 11 May 2001!

We calculate the leading correction term in the density expansion of the dynamic structure factor for a
Lennard-Jones fluid using the Boltzmann equation. The qualitative behavior is found to be very similar to the
hard-sphere result reported by Kamgar-Parsiet al. @Phys. Rev. A35, 4781~1987!#. A comparison was made
with the results from the neutron scattering experiment by Verkerket al. @Phys. Rev. Lett.67, 1262~1991!# for
dilute argon gases. Several possibilities to explain the discrepancies of the present results from the experiment
are proposed.
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I. INTRODUCTION

The density-expansion approach is an exact and there
a very useful way to study intermolecular potentials of dilu
gases. Virial expansions of the equation of state are c
monly used for this purpose@1#. Recent developments o
experimental techniques paved the way to investigate
approach in a more microscopic and direct way. T
neutron-diffraction method, for example, was used to m
sure the static structure factorS(k) for rare gases@2–4#. The
Fourier transformation of the leading order of the dens
expansion ofS(k) yields the potential directly. The dynami
structure factorS(k,v) is another quantity which would pro
vide the useful information of the intermolecular potentia
because dynamical properties of dilute gases would be
sensitive to the shape of the potential as the static proper
A decade ago, Verkerket al. conducted inelastic neutro
scattering experiments and observed the linear term in
density expansion ofS(k,v) for dilute argon for the first
time @5#. They compared their results with the theoretic
calculation for the hard-sphere fluid obtained using
Boltzmann equation@6#. It was found that, for the smal
wave vector (k50.3 nm21), the experimental result agree
qualitatively with the hard-sphere theory but for larger wa
vectors (k>0.7 nm21), the discrepancies are pronounce
especially at small frequencies. The theoretical calcula
predicts that the dynamic structure factor is scaled by a
duced frequency and, if plotted against this reduced
quency, it should be independent of the wave vector. Th
experimental results, however, showed very sensitive de
dence on the wave vector. In order to explain the discrep
cies, they drew two conjectures from their observations:~i!
Sensitivity ofS(k,v) to the shape of the intermolecular p
tential is the origin of the discrepancies between the ha
sphere theory and experiment. Since only the binary collis
of a pair of atoms contributes to the linear term ofS(k,v)
and the observations were made for shorter length scale
the mean free path, the result would reflect the detail o
single collision process and, therefore, might be very se
tive to the shape of the potential.~ii ! The thermodynamic
parameters used in their experiments might not have satis
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the criteria of the density expansion. In order for the dens
expansion of the dynamic structure factor to be valid, eit
wave vector or frequency, which are scaled by mean f
path and mean free time, respectively, must be large.
size of both of them was critical at the region where t
discrepancies from the theoretical prediction were large.

In this Rapid Communication, we concentrate on the fi
conjecture and calculate the leading term of the density
pansion ofS(k,v) for a simple atomic dilute gas with a
realistic potential using the Boltzmann equation in order
check if it is really sensitive to the potential shape. We sh
consider the ~12-6! Lennard-Jones potential defined b
f(r )54e$(s/r )122(s/r )6%, wheree is the depth of poten-
tial ands is the distance at whichf(r )50. We focus only
on the Lennard-Jones potential because this potential h
the main features of other realistic potentials, such as
steep repulsive short range interaction part with the long
tractive tail. Instead of inspecting various potentials, we c
culate S(k,v) for the Lennard-Jones potential for variou
temperatures.

II. THEORY

The dynamic structure factor is defined as

S~k,v!5
1

2pE2`

`

dt eivt (
iÞ j 51

N

^eik•$Ri (0)2Rj (t)%&, ~1!

wherek5uku, N is the total number of the atoms,Ri(t) is the
position of thei th atom at a timet, and^•••& is the average
over an equilibrium ensemble. In the low density limit, th
can be expressed using the Boltzmann operator as@6#

S~k,v!5
1

p
ReK 1

iv1 ik•p/m1nLB
L

1

, ~2!

wheren is the number density of atoms andLB is the Boltz-
mann operator.̂ •••&1[*dpf (p)•••, where f (p) is the
Maxwellian distribution function, is the average over o
particle ensemble. If eitherv or k•p/m is much larger than
nLB , we can expand the right-hand side of Eq.~2! in terms
of the density. This condition is translated asvt@1 or
kl@1, where l 51/A2pns2 and t5 lApm/8kBT are the
mean free path and the mean free time for the atom of a m
©2001 The American Physical Society01-1
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m, respectively. HerekB is the Boltzmann constant andT is
the absolute temperature. Up to the linear order in 1/kl, Eq.
~2! can be expanded as

S~k,v!

S~k!
5S(0)~k,v!1nS(1)~k,v!1O~n2!

5
2

p

t

kl H e24v* 2/p1
s11~k,v!

kl
1O„~kl !22

…J ,

~3!

wherev* 5vt/kl is a reduced frequency. The first term o
the right-hand side represents the ideal gas term, which
scribes the free motion of atoms without collisions with ea
other. The second term,s11(k,v), is the first correction term
in the expansion and is given by

s11~k,v!5A kBT

p3m
S k

s D 2

3ReK 1

iv1 ik•p/m
LB

1

iv1 ik•p/mL
1

5
1

8s2
A m

pkBT

3ReK 1

iv* 1 ia k̂•p
LB

1

iv* 1 ia k̂•p
L

1

[s11~v* !, ~4!

wherek̂5k/uku anda5Ap/8mkBT. Note that, for arbitrary
potentials, the linear term in the expansion is scaled b
single parameter,v* , and, therefore, independent of th
wave vector. The Boltzmann operator is defined, for an
bitrary function of the momentum,A(p), as@7#

LBA5
4pn

m E dp2E
0

`

bdb p12f ~p2!$A~p1`!1A~p2`!

2A~p1!2A~p2!%, ~5!

whereb is the impact parameter of the collision of a pair
particles ‘‘1’’ and ‘‘2,’’ p125p12p2 is a relative momentum
of the pair.p1` and p2` are the momenta of the particle
after the collision and are expressed as

H p1`5
p11p2

2
1p12̀

p2`5
p11p2

2
2p12̀ .

~6!

The first term on the right-hand side of these equations
resents the momentum of the center of mass. The sec
term is the relative momentum after the collision given
p12̀ 5p12$ê1 cosx(p12,b)1ê2 sinx(p12,b)%, where ê1 and
06020
e-
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ê2 are the unit vectors parallel and perpendicular top12,
respectively, andx(p,b) is the deflection angle given, for
continuous potential, by@1,7#

x~p,b!5p22bE
r 0

`

dr
1

r 2A12mf~r !/p22b2/r 2
, ~7!

wherer 0 is the zero of 12mf(r )/p22b2/r 250.
s11(v* ) can be evaluated from Eqs.~4! and ~5!. After

some straightforward mathematical manipulations, we ob

s11~v* !5E
0

`

dt F11~ t !cosv* t, ~8!

with

F11~ t !52
128

p3s2
te2pt2/32E

0

`

dpE
0

p

sinudu

3E
0

p

dfE
0

`

db bp3e28p2/p$c~ k̂•pt,k̂•pt !

1c~ k̂•pt,2 k̂•pt !2c~ k̂•pt,k̂•p`t !

2c~ k̂•pt,2 k̂•p`t !%, ~9!

where k̂•p5p cosu, k̂•p`5p$cosu cosx(p,b)
1 sinu cosf sinx(p,b)%, and c(x,y)[(sinx2 siny)/(x2y).
u andf are the polar angles betweenk̂ andp. Note that in
Eq. ~9!, p stands forap. We have evaluated the four
dimensional integration of Eq.~9! numerically using the
Gaussian quadrature routine. After evaluatingF11(t), the
fast Fourier transform~FFT! routine was used to transfer t
s11(v* ). We remark that this expression reduces to the ha
sphere result@6# by inserting the expression for the deflectio
angle of the hard sphere@7#

cosx~p,b!5122S 12
b2

s2D u~s2b!,

whereu(x)51 for x>0 andu(x)50 for x,0, is the Heavi-
side function.

III. RESULTS

In Fig. 1, we shows11(v* ) for the Lennard-Jones fluid
with the argon parameter,e/kB5132 K, at the temperature
T/Tc52.0, whereTc5151 K is the critical temperature o
argon. The experimental result by Verkerket al. @5# for k
51.2 nm21 at the same temperature and the hard-sph
result by Kamgar-Parsiet al. @6# are also shown. It appeare
that the amplitude of the oscillatory curve for the Lenna
Jones fluid is slightly larger but the qualitative behavior
the same as the hard-sphere result. The agreement with
experimental result is again rather poor, even qualitative
In order to check how sensitive the result is to the depth
the potential, we have calculateds11(v* ) for several tem-
peratures. In Fig. 2, we have plotted the results for the te
1-2
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peraturesT* 51.0, 2.0, and 4.0, whereT* 5kBT/e is the
reduced temperature. The hard-sphere result which
temperature-independent is also shown. Note thatT* 51.0 is
below the corresponding critical temperature of argonTc
5151 K!. As one expects, the results get closer to the ha
sphere result as temperature increases, where the attra

FIG. 1. s11(v* ) calculated for the Lennard-Jones potent
~solid line!, and the hard-sphere~dotted line! @6#. The experimental
data by Verkerket al. @5# for k51.2 nm21 at T/Tc52.0 is shown
by closed circles.

FIG. 2. s11(v* ) for the Lennard-Jones fluid for various tem
peratures:T* 51.0 ~solid line!, T* 52.0 ~dashed line!, T* 54.0
~dotted line!. The hard-sphere result is also shown~solid line with
open circles!.
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part of the potential is expected to influence the dynam
less. Even for low temperatures, we see that the qualita
behavior remains the same as that of the hard-sph
Though the real potential for the dilute argon is slightly d
ferent from the Lennard-Jones potential, it is difficult
imagine that the minor difference of the potential shape
depth causes major qualitative differences in the results.

Another rationale which Verkerket al. claimed to explain
the strong wave vector dependence ofs11(v* ) is that either
kl or vt, both of which are proportional to the density, we
not big enough to make the density expansion valid. R
cently, however, their group conducted similar experime
@8# but for samples with lower densities, down to less th
1.0 nm23, whereas their experiments shown in Fig. 1 w
for n<2.0 nm23. In spite of the lower densities~largerkl),
their results remained qualitatively the same. This impl
that the infringement of the criteria of the density expans
was not the major reason for the discrepancies.

From these considerations, we may conclude that the
tential shapedoes notaffect the qualitative behavior o
s11(v* ) as long as one uses the Boltzmann equation. Th
fore, the discrepancies should be attributed to the validity
the Boltzmann equation itself on the length and time sca
involved in the experiments. This conclusion is consist
with the results of molecular dynamics simulations by Bafi
et al. @9#. They simulated the Lennard-Jones fluids with t
parameters normally used for argon and calculated the le
ing term of the dynamic structure factor. Though their sim
lation results are preliminary and did not reproduce the
perimental results perfectly, they still have a strong wa
vector dependence and qualitatively the same behavior a
experimental results.

IV. DISCUSSION

Here we propose several possibilities to explain discr
ancies between theories and experiments. In order to use
Boltzmann equation for the system concerned here, there
several prerequisite conditions. First, the length scale
served should be larger than that of the intermolecular in
action. For the Lennard-Jones or hard-sphere potential,
length of the interaction is the order ofs. Therefore, in order
to apply the Boltzmann equation approach,ks must be suf-
ficiently smaller than 1. Second, the time scale should
large enough compared with the collision time. The collisi
time is the order oftc5sAm/kBT and vtc!1 should be
satisfied. Combining both criteria for the density expans
in the dynamic structure factor to hold, we conclude th
1/l !k!1/s and 1/t!v!1/tc should be satisfied. Using th
Lennard-Jones diameter for argons50.34 nm, we see tha
the wave vector range in Verkerk’s experiment was 0
<ks<0.51. This might not be small enough to employ t
Boltzmann equation. On the other hand, the latter condit
is translated, in the dimensionless form, to 1/kl!v*
!1/ks. Since the window of the frequency in the expe
ment is 0<v* <1.5, the upper limit of the condition seem
to be barely satisfied.

If v is not small enough, one needs to generalize
Boltzmann operatorLB to the time-dependent memory ke

l
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nel, *0
`dt8LB(t2t8), to include the detailed scattering pro

cess. Ifk is not small enough, one needs to extendLB to the
wave-vector-dependent oneLBk . The Boltzmann operato
has been generalized to the finite wave vector region un
the scheme of the Enskog theory@6,10#, but the Enskog
theory can be applied only for the hard-sphere system
similar scheme for arbitrary potentials seems necessary.
cently, Miyazakiet al. have developed the ‘‘Enskog theory
for the continuous potential in order to study several prop
ties of the self-diffusion of a tagged particle in the Lenna
Jones potential@11#. Their theory made it possible to calcu
late the time-dependent memory kernel for fluids w
arbitrary potentials, which provides the information of t
dynamical processes of the binary collisions directly. Th
found that the memory kernel for the friction coefficient d
cays with a finite time and is sensitive to the potential sha
contrary to the instantd-function-like decay for the hard
sphere fluid. Their theory, however, is restricted to the sm
wave vector region. Generalization of the theory to the fin
wave vector region seems possible and may provide the
.
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to understand the current problem. It is well-known that t
static properties of dilute gases are very sensitive to
shape of the intermolecular potential. For example, the st
structure factorS(k) for the Lennard-Jones potential is qui
different from that for the hard-sphere at finite wave vecto
One would expect that this is also the case for the dyna
functions such asS(k,v). Developing the wave-vector
dependent ‘‘Enskog theory’’ for arbitrary potentials is indi
pensable to resolve the puzzling discrepancies betw
theory and experiments. A study in this direction is und
way.
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