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Dynamic structure factor of a dilute Lennard-Jones gas
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We calculate the leading correction term in the density expansion of the dynamic structure factor for a
Lennard-Jones fluid using the Boltzmann equation. The qualitative behavior is found to be very similar to the
hard-sphere result reported by Kamgar-Patsil. [Phys. Rev. A35, 4781(1987]. A comparison was made
with the results from the neutron scattering experiment by Verkee. [Phys. Rev. Lett67, 1262(1991)] for
dilute argon gases. Several possibilities to explain the discrepancies of the present results from the experiment
are proposed.
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[. INTRODUCTION the criteria of the density expansion. In order for the density
expansion of the dynamic structure factor to be valid, either
The density-expansion approach is an exact and therefomgave vector or frequency, which are scaled by mean free
a very useful way to study intermolecular potentials of dilutepath and mean free time, respectively, must be large. The
gases. Virial expansions of the equation of state are consize of both of them was critical at the region where the
monly used for this purposgl]. Recent developments of discrepancies from the theoretical prediction were large.
experimental techniques paved the way to investigate this In this Rapid Communication, we concentrate on the first
approach in a more microscopic and direct way. Theconjecture and calculate the leading term of the density ex-
neutron-diffraction method, for example, was used to meapansion ofS(k,w) for a simple atomic dilute gas with a
sure the static structure fact§(k) for rare gasef2—4]. The realistic potential using the Boltzmann equation in order to
Fourier transformation of the leading order of the densitycheck if it is really sensitive to the potential shape. We shall
expansion of5(k) yields the potential directly. The dynamic consider the(12-6) Lennard-Jones potential defined by
structure factoS(k, ») is another quantity which would pro- ¢(r)=4e€{(a/r)*?—(o/r)®}, wheree is the depth of poten-
vide the useful information of the intermolecular potentials,tial and o is the distance at whick(r)=0. We focus only
because dynamical properties of dilute gases would be am the Lennard-Jones potential because this potential holds
sensitive to the shape of the potential as the static propertieie main features of other realistic potentials, such as the
A decade ago, Verkerlet al. conducted inelastic neutron steep repulsive short range interaction part with the long at-
scattering experiments and observed the linear term in th&active tail. Instead of inspecting various potentials, we cal-
density expansion o8(k,w) for dilute argon for the first culate S(k,w) for the Lennard-Jones potential for various
time [5]. They compared their results with the theoreticaltemperatures.
calculation for the hard-sphere fluid obtained using the
Boltzmann equatiori6]. It was found that, for the small Il. THEORY
wave vector k=0.3 nm ), the experimental result agrees ) , i
qualitatively with the hard-sphere theory but for larger wave 1h€ dynamic structure factor is defined as
vectors =0.7 nm' 1), the discrepancies are pronounced, 1 N
especially at small frequencies. The theoretical calculation :_fx i wt ik-{R;(0)—R;(t)}
predicts that the dynamic structure factor is scaled by a re- k@) 2w _xdte isgzl (e @
duced frequency and, if plotted against this reduced fre-
quency, it should be independent of the wave vector. Theiwherek= k|, N is the total number of the atomi&(t) is the
experimental results, however, showed very sensitive depeposition of theith atom at a time, and(- - -) is the average
dence on the wave vector. In order to explain the discreparPver an equilibrium ensemble. In the low density limit, this
cies, they drew two conjectures from their observatidijs: can be expressed using the Boltzmann operat¢6js
Sensitivity of S(k,w) to the shape of the intermolecular po-
tential is the origin of the discrepancies between the hard- S(k w)=£Re< 1
sphere theory and experiment. Since only the binary collision ' 7 \lw+ik-p/m+nAg l’
of a pair of atoms contributes to the linear termS3fk, )
and the observations were made for shorter length scale thavheren is the number density of atoms ang is the Boltz-
the mean free path, the result would reflect the detail of anann operator(---);=fdpf(p)---, where f(p) is the
single collision process and, therefore, might be very sensiMaxwellian distribution function, is the average over one
tive to the shape of the potentidli) The thermodynamic particle ensemble. If eithep or k-p/m is much larger than
parameters used in their experiments might not have satisfietA g, we can expand the right-hand side of E2j.in terms
of the density. This condition is translated as>1 or
kiI>1, wherel=1/\2rno? and 7=17m/8kzT are the
*Electronic address: k.miyazaki@iri.tudelft.nl mean free path and the mean free time for the atom of a mass
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m, respectively. Herdg is the BoItzma_nn constant andis éz are the unit vectors parallel and perpendicularpig,
the absolute temperature. Up to the linear order id,1Eq. respectively, and(p,b) is the deflection angle given, for a

(2) can be expanded as continuous potential, bj,7]
S(k,w) - !
=S5Ok, w)+nSY(k,w) +0(n?) b)= —2bf dr 7
S(k) x(p.b)=m ro r2J1—me(r)/p>—b?r?’ “
2 « s1a(k,
ZEK_TI —40* Py 11(k| ) +0O((kh)~?)t, wherer is the zero of T-me(r)/p*—b?/r?=0.

s;i(w*) can be evaluated from Eg#4) and (5). After
3 some straightforward mathematical manipulations, we obtain

wherew* = w7/kl is a reduced frequency. The first term on

the right-hand side represents the ideal gas term, which de-
scribes the free motion of atoms without collisions with each
other. The second terms;4(k, w), is the first correction term  with
in the expansion and is given by

128 = (w
2 Fu(h=—— 2te—msz dpf sinade
) 7o 0 0

Sll( w* ) = Joocdt Fll(t)COS(l)*t, (8)

(k.0) kgT
S , W)= —
11! ml o

1 1 erf/bf db bpPe 8"/ y(k-pt k- pt)
0 0
e<iw+ik~p/mABiw+ik~p/m>l

+y(k-pt,—k-pt)— (k- pt,k-p.t)

25 /W?T —(k-pt,—K-p.t)}, 9
g B

where k-p=pcosé, k- p..= p{cosécosy(p,b)
v Re< 1 A 1 > + singcosgsiny(p,b)}, and ¥(x,y)=(sinx— siny)/(x—y).
1

iw*+iak-p Ciw*+iak-p 6 and ¢ are the polar angles betwe&randp. Note that in
Eq. (9), p stands forap. We have evaluated the four-
=spy(@), (4)  dimensional integration of Eq(9) numerically using the
Gaussian quadrature routine. After evaluatiRgy(t), the
wherek=k/|k| and = \w/8mkgT. Note that, for arbitrary fast Fourier transforniFFT) routine was used to transfer to
potentials, the linear term in the expansion is scaled by &;:(w*). We remark that this expression reduces to the hard-
single parameterw®, and, therefore, independent of the sphere result6] by inserting the expression for the deflection
wave vector. The Boltzmann operator is defined, for an arangle of the hard sphefé&]
bitrary function of the momenturmi(p), as[7] ,
4N o cosX(p,b)zl—Z(l—b—2> 0(oc—Db),
AeA="22 dp, | “bdb pyf (02 {A(Pr) + A(P) o

wheref(x) =1 for x=0 and#(x) =0 for x<0, is the Heavi-
—A(p1) —A(p2)}, () side function.

whereb is the impact parameter of the collision of a pair of
particles “1” and “2,” p;,=p;— P, IS a relative momentum
of the pair.p;.. and p,., are the momenta of the particles  In Fig. 1, we shows;;(w*) for the Lennard-Jones fluid

IIl. RESULTS

after the collision and are expressed as with the argon parametee/kg=132 K, at the temperature
T/T,=2.0, whereT,=151 K is the critical temperature of
_ P1tp2 argon. The experimental result by Verkegkal. [5] for k
P1="5 P12 =1.2 nm! at the same temperature and the hard-sphere

(6) result by Kamgar-Parst al.[6] are also shown. It appeared
that the amplitude of the oscillatory curve for the Lennard-
Jones fluid is slightly larger but the qualitative behavior is
the same as the hard-sphere result. The agreement with the

The first term on the right-hand side of these equations repexperimental result is again rather poor, even qualitatively.

resents the momentum of the center of mass. The second order to check how sensitive the result is to the depth of

term is the relative momentum after the collision given byihe potential, we have calculateg,(»*) for several tem-

P12.= P12 € COSx(Pr2,b) + & Sinx(pi2,b)}, Wheree, and  peratures. In Fig. 2, we have plotted the results for the tem-

P1tP2
P2 =5 " P12
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0.20 part of the potential is expected to influence the dynamics
less. Even for low temperatures, we see that the qualitative
0.15 behavior remains the same as that of the hard-sphere.
Though the real potential for the dilute argon is slightly dif-
0.10 ferent from the Lennard-Jones potential, it is difficult to
3 imagine that the minor difference of the potential shape or
0.05 depth causes major qualitative differences in the results.
£ 1 Another rationale which Verker&t al. claimed to explain
\_9; 0.00+ the strong wave vector dependencespf w*) is that either
m: 1 kl or o, both of which are proportional to the density, were
-0.05 1 not big enough to make the density expansion valid. Re-
1 cently, however, their group conducted similar experiments
-0.10 1 [8] but for samples with lower densities, down to less than
1 1.0 nmi 3, whereas their experiments shown in Fig. 1 was
0159 for n=<2.0 nm 3. In spite of the lower densitiggargerkl),
their results remained qualitatively the same. This implies
-0.20 that the infringement of the criteria of the density expansion
1 was not the major reason for the discrepancies.
-0.25+——F——F———F————1—— From these considerations, we may conclude that the po-
0.00 0.25 0.50 0.75 1.00 1.25 1.50 tential shapedoes notaffect the qualitative behavior of
)] s;1(w*) as long as one uses the Boltzmann equation. There-

fore, the discrepancies should be attributed to the validity of
the Boltzmann equation itself on the length and time scales
involved in the experiments. This conclusion is consistent
with the results of molecular dynamics simulations by Bafile
et al. [9]. They simulated the Lennard-Jones fluids with the
. . . parameters normally used for argon and calculated the lead-
peraturesT* =1.0, 2.0, and 4.0, wher@* =kgT/e is the  inq term of the dynamic structure factor. Though their simu-
reduced temperature. The hard-sphere result which igyion results are preliminary and did not reproduce the ex-
temperature-independent is also shown. NoteTat 1.0is  perimental results perfectly, they still have a strong wave

below the corresponding critical temperature of argdR ( yector dependence and qualitatively the same behavior as the
=151 K). As one expects, the results get closer to the hafdexperimental results.

sphere result as temperature increases, where the attractive

FIG. 1. s;3(w*) calculated for the Lennard-Jones potential
(solid line), and the hard-sphefeotted ling [6]. The experimental
data by Verkerlket al.[5] for k=1.2 nm'! at T/T,=2.0 is shown
by closed circles.

IV. DISCUSSION

0.25
0‘20_' Here we propose several possibilities to explain discrep-
: ancies between theories and experiments. In order to use the
0.151 Boltzmann equation for the system concerned here, there are
0.10- several prerequisite conditions. First, the length scale ob-
. served should be larger than that of the intermolecular inter-
£ 0.057 action. For the Lennard-Jones or hard-sphere potential, the
3 00 length of the interaction is the order of Therefore, in order
m: 1 to apply the Boltzmann equation approakh, must be suf-
=005 ficiently smaller than 1. Second, the time scale should be
~0.10- large enough compared with the collision time. The collision
1 time is the order ofr,=oVm/kgT and w7.<1 should be
‘0‘15'( g’ satisfied. Combining both criteria for the density expansion
—0.204" in the dynamic structure factor to hold, we conclude that
1 11 <k<1/o and 1F<w<1l7; should be satisfied. Using the
_0‘25'_ Lennard-Jones diameter for argor+ 0.34 nm, we see that
-0.301 the wave vector range in Verkerk’s experiment was 0.1
1 <ko=0.51. This might not be small enough to employ the
_0‘3%'00 095 050 0.75 1.00 1.5 150 _Boltzmann equgtion. On .the other hand, the latter condition
* is translated, in the dimensionless form, tokl¥ w*

(’) <1lko. Since the window of the frequency in the experi-
FIG. 2. s;y(w*) for the Lennard-Jones fluid for various tem- Ment is O<w*<1.5, the upper limit of the condition seems
peratures:T*=1.0 (solid ling), T*=2.0 (dashed ling T*=4.0  to be barely satisfied. .
(dotted ling. The hard-sphere result is also shoolid line with If w is not small enough, one needs to generalize the
open circles Boltzmann operaton g to the time-dependent memory ker-
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nel, [odt’ Ag(t—t’), to include the detailed scattering pro- to understand the current problem. It is well-known that the
cess. Ifk is not small enough, one needs to exténglto the  static properties of dilute gases are very sensitive to the
wave-vector-dependent onkg,. The Boltzmann operator shape of the intermolecular potential. For example, the static
has been generalized to the finite wave vector region undestructure factoS(k) for the Lennard-Jones potential is quite
the scheme of the Enskog theof§,10], but the Enskog different from that for the hard-sphere at finite wave vectors.
theory can be applied only for the hard-sphere system. ADne would expect that this is also the case for the dynamic
similar scheme for arbitrary potentials seems necessary. R@unctions such asS(k,w). Developing the wave-vector-
cently, Miyazakiet al. have developed the “Enskog theory” dependent “Enskog theory” for arbitrary potentials is indis-
for the continuous potential in order to study several properpensable to resolve the puzzling discrepancies between
ties of the self-diffusion of a tagged particle in the Lennard-theory and experiments. A study in this direction is under
Jones potentidll1]. Their theory made it possible to calcu- yay.

late the time-dependent memory kernel for fluids with

arbitrary potentials, which provides the information of the
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