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Abstract	

Advanced data acquisition and process modelling technology provide ‘real-time’ data and 

decision support capacity for different aspects of the resource extraction process. Closed-loop 

approaches have recently been applied to utilize information extracted from these data in 

combination with advanced computing technology for improved production control in mineral 

resource extraction. Similar techniques have been developed in the petroleum industry 

combining computer-assisted model updating with model-based production optimization. This 

contribution reviews recent developments and methods applied, highlights differences and 

assesses the potential value added for both application domains. The focus here is on the two 

main constituents of closed-loop concepts, data assimilation and optimization. Technological 

readiness of the constituents is assessed, and gaps for further technology development are 

identified. The value added is illustrated by means of selected cases. 
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1. Introduction		

The extraction of geo-resources, whether gas, liquids or solids, is a challenging venture 

characterized by large investments and long pay-back periods involving different types of 

risks. Contrary to other industries, one specific type of risk is due to the limited amount of 

information about the primary production factor, the mineral deposit or the hydrocarbon 

reservoir. Based on this limited amount of information, decisions about the design, long-term- 

and short-term planning and production control have to be made, ideally in a way that 

maximizes recovery of the primary natural resources while maintaining the highest standard 

of safety and process efficiency. While data about the mineral deposit or the reservoir 

gathered prior to the actual operation are limited, scarce and comparably expensive, modern 

production monitoring technology allows for obtaining highly dense and comparably 

inexpensive data during production. Although production data can be of lower precision and 

only indirectly connected to the properties of the deposit or reservoir, they deliver valuable 

information. 

Leveraging on available production data, closed-loop approaches for geo-resource extraction 

aim at increased resource efficiency, in terms of recovery or financial measures, using a 

measurement and control approach. In hydrocarbon production ‘closed-loop’ or ‘real-time’ 

approaches have received growing attention as part of various industry initiatives with names 

as ‘smart fields’, ‘i-fields’, ‘e-fields’, ‘integrated operations’, ‘closed-loop reservoir 

management’ (CLRM), or ‘closed-loop field development’; see Jansen et al. (2005, 2008, 

2009) and Hou et al. (2015) for further references. Independent from these developments, 

more recently similar concepts were proposed in solid mineral resource extraction (e.g. for 

example Benndorf et al., 2015a; Zogovic et al. 2015). These concepts utilize the classical 

concept of plan-do-check-act iterative management (Shewhart, 1931). By continuously 

comparing model based predictions with observations measured during production 

monitoring, the use of inverse modelling or data assimilation approaches can improve the 

model forecast for subsequent time intervals, leading to potentially new and better decisions 

for production control and medium-term planning. The underlying hypothesis in these 

approaches can be summarized as follows (after Jansen et al. 2009): 

“It will be possible to significantly increase life-cycle value by changing reservoir and ore 

extraction management from a batch-type to a near-continuous model-based controlled 

activity.” 

Although the general closed-loop concept can be applied to both solid raw material extraction 

and oil and gas production, these applications differ in methods, implementation details and 

time scales. The reason is due to the different nature and scale of extraction, the requirements 

deriving from subsequent beneficiation, and the level of information available.  

 Mineral resource extraction can be seen as a discrete sequential physical extraction of 

small-scale blocks or smallest mineable units, which, depending on selectivity, can be 

on a meter by meter to tens-of-meters by tens-of-meter scale. The deposit and its 

properties remain static over time. Properties of the run-off-mine ore (ROM ore) 
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stream are controlled by navigating the different extraction points or mining faces 

through the deposit. The aim is to extract blocks in a sequence and utilize production 

logistics such as blending piles or transport schedules in a way that production targets 

in terms of ore tonnage produced and related grades of value and deleterious elements 

are met, which at the end impacts cash-flows and net present value (NPV).  A main 

focus of planning and production control is the reduction of in-situ variability of ore in 

the deposit to a homogeneous product by means of blending at different stages and 

scales (e.g. Jupp et al. 2013). 

 The recovery of gas or liquids from permeable rock is based on the understanding of 

global properties and connectivity of the reservoir, the reservoir fluid properties and 

the surface chemistry of the fluid-fluid and fluid-rock interfaces, and the interaction 

with control parameters such as well configurations, drilling schedules, water or gas 

injection rates, well pressures or control valve settings. While the relevant rock 

properties in a reservoir do not change over time, the fluid distributions may change 

completely as the degree of exploitation progresses. (An exception is formed by near-

wellbore rock properties which may be changed through well interventions like 

hydraulic fracturing or acid stimulation). Moreover, the displacement of oil by water 

and the release of gas from oil at decreasing reservoir pressures may drastically 

change the local resistance to flow. The main focus of well and reservoir management 

is on maximizing ultimate recovery or NPV. 

The different nature of both cases of application requires different system models as a basis 

for decision making. This contribution aims to review recent developments and compare 

documented approaches in closed-loop real-time mining and reservoir management 

highlighting differences and similarities. It is hoped that synergetic effects in research and 

technical development can be raised, and both disciplines can learn from each other. As any 

project begins with strategic design decisions and long-term planning, this contribution starts 

with concepts of long-range planning and the value of robust life-cycle optimization. The 

underlying methods for generating the input for the latter, namely ensembles or realizations of 

the spatial distribution of properties within the deposit are discussed. Next, the closed–loop 

concept is reviewed, and developments within the two main constituents (data assimilation 

and optimization) are highlighted. Different examples illustrate the concept. A discussion on 

the potential value added of closed-loop approaches and technology readiness concludes this 

contribution. To assess technological maturity of methods discussed, the concept of 

Technology Readiness Levels (TRLs) will be employed using definitions of the European 

Commission (2014) which are based on earlier definitions developed by NASA for the US 

space program (Mankins, 1995):TRL 3 – experimental proof of concept, TRL 4 – technology 

validated in laboratory, TRL 5 – technology validated in relevant environment, TRL 6 

system/subsystem model or prototype demonstration in relevant environment, TRL 7 – 

system prototype demonstration in operational environment, TRL 8 – system complete and 

qualified, TRL 9 – actual system proven in operational environment. Note that we will 
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interpret ‘experimental proof’ to include results from large-scale numerical simulation 

(computer experiments).   

2. Robust	Decision	Making	under	Geological	Uncertainty	

2.1	Modelling	geological	uncertainty	

One of the major challenges in reservoir and mining engineering is taking expensive decisions 

related to design, planning and operations control in the presence of very large uncertainties 

about the subsurface structure and the parameters that influence fluid flow and raw material 

production. To cope with this uncertainty, different possible scenarios for the subsurface 

models can be considered. In reservoir engineering the term “ensemble of geological 

realizations” is established (e.g. Caers 2011), whereas in mineral resource extraction the terms 

“realizations” or “scenarios” are commonly used (e.g. Journel, 1974; Dimitrakopoulos et al. 

2002; Vann et al. 2012). Common to both fields of application is that modern geostatistical 

simulation techniques are used to generate these realizations or ensemble members. The 

requirements resulting from the two fields of applications related to the particular simulation 

methods used are summarized in Table 1. 

Table 1: Requirements for simulation methods to generate realizations and ensemble 

members 

Criteria Reservoir Engineering Mineral Resource Extraction 

Requirements 

on models 

 Models need to capture 

reservoir boundaries and 

in-situ variability of 

porosity and permeability, 

connectivity between 

wells, transmissibilities of 

faults, and directional/ 

anisotropic features 

influencing flow 

throughout the whole 

deposits. 

 Reservoir flow simulation 

models primarily require 

capturing flow-relevant 

geological features 

(barriers, high-

permeability channels) at 

reservoir scale.  

 Models need to capture 

mineral deposit boundaries 

and in-situ variability of 

geological zonation and 

grade distribution within 

zones. In general, multiple 

correlated grade attributes 

are of importance. The 

reproduction of connectivity 

is of lesser interest. 

 Local focus: geological 

zonation and the local grade 

distribution in the different 

zones at SMU scale. 

Data availability 

prior extraction 

 Very limited amount of 

hard data (e.g. direct bore 

 Reasonable amount of 

information available 
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hole data intersecting the 

reservoir) prior extraction 

 Indirect data from 

geophysics and remote 

sensing are available prior 

and during extraction 

enabling to prove continuity 

in geology and grade prior 

extraction 

 Data represent mostly direct 

samples (hard data) 

supported by geophysical 

interpretations 

 

Given the aim of the model and data availability indicated in Table 1, solid mineral resource 

extraction uses data driven approaches for local block prediction such as conditional 

simulation via turning bands or sequential Gaussian simulation (Journel, 1974; Goovaerts, 

1997). The large extension of some mineral deposits requires efficient computational 

methods, such as direct block simulation methods (e.g. Marcotte, 1994; Boucher and 

Dimitrakopoulos, 2007; Desaisme et al. 2012) or generalized sequential Gaussian simulation 

(Benndorf and Dimitrakopoulos, 2005). The spatial correlation between grades is captured by 

methods using models of co-regionalization (e.g. Verly 1993; Soares, 2001) or decorrelation 

(e.g. Rondon, 2012; John, 2014). The requirement for capturing in-situ variability is in 

general sufficiently met using two-point statistics, such as variograms or spatial covariance 

function based methods.   

In the petroleum industry, a variety of numerical simulation methods is available to generate 

numerical ’static‘ reservoir models depending on the depositional environment and the 

subsequent diagenesis and structural deformation history (faulting, fracturing). Sequential 

Gaussian simulation, based on two-point geostatistics and conditioned on hard data in the 

wells, is also a standard technique. However, the importance of well-to-well connectivities, 

e.g. in the form of fossilized meandering channels in a fluviatile depositional environment, 

has led to the development of higher-order (multi-point) geostatistical approaches. In 

particular, training-image-based multi-point approaches have become very popular during the 

past decade; for overviews see, e.g., Caers (2011) or Mariethoz and Caers (2014). Examples 

are the SneSim (Strebelle and Journel, 2001) and SGems (Remy et al. 2009) algorithms, 

which are based on scanning a training image for multi-point configurations and reproducing 

similar images capturing the main geometrical features. Another popular technique is object-

based simulation, based on the random generation of ‘geobodies’ in the form of, e.g., elliptical 

‘sand bars’, sinusoidal ‘channels’, or intersecting fault planes (Caers, 2011, Pyrcz and 

Deutsch, 2014). Finally, it is possible to generate computer representations of multiple hand-

drawn maps drawn up by one or more experts.  Commercial geological modeling software 

packages typically use a combination of object-based, training-image-based and stochastic 

simulation approaches. Figure 1 shows typical realizations for both fields of application.   
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Figure 1: Typical examples for realizations of a deposit - upper part (Benndorf and 

Dimitrakopoulos, 2005) and an ensemble of geological realizations of an oil field - lower part 

(van Essen et al. 2009) 

2.2	Optimization	under	geological	uncertainty	

Based on the understanding of uncertainty, different decisions or control options have to be 

taken, ideally in an optimal way. These decisions and control options are different for 

different project stages and are thus based on a different amount of information available at 

the time. Some of the decisions involve large investments and can be hardly revised; some 

can be more flexible changed throughout the project. Table 2 provides examples for both 

fields of application. 

Table 2: Examples for control decisions to be optimized at different project stages 

Time Range Reservoir Engineering Mineral Resource Extraction 

Design (prior extraction)  Recovery mechanism 

(e.g. depletion drive, 

water flooding, gas 

flooding) 

 Processing capacities 

 Well locations 

 Well trajectories 

(deviated wells) 

 Drilling sequence 

 Artificial lift (e.g. 

beam pumps, gas lift) 

 Ultimate pit limits 

(surface mining) or 

stope layout 

(underground mining) 

 Main infrastructure 

(e.g. shaft location 

and capacity) 

 Mining and 

processing capacity 

Life of project to medium- 

term 

 Target well rates or 

pressures for flooding 

optimization 

 Work-over sequence 

 Long-term extraction 

sequencing (e.g. push 

back design) 

 Equipment selection 
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(e.g. side-tracks, 

recompletions) 

Short-range to production 

control 

 Production parameter 

settings (well head 

pressures, injection 

rates, valve settings) 

 Artificial lift 

operating parameters 

(pump speeds, lift gas 

rates)  

 Block classification 

 Short-term extraction 

sequence definition 

 Machine task 

scheduling 

 Dispatching, logistic 

and stockpile 

management 

 

For decision making under geological uncertainty it is possible to use a robust ensemble- or 

realization-based optimization strategy to maximize a robust objective function J, which 

approximates the expected value of the objective function over all realizations (Yeten et al. 

2003; Bailey et al. 2005; Van Essen et al. 2009.) Robust life-cycle optimization can be 

applied to a fixed configuration of wells, in which case the optimization variables are ‘well 

controls’, i.e. pressures at the top of the production wells, flow rates in the injection wells, or 

valve setting in surface or downhole flow control valves (a detailed overview and references 

will be given in Section 5  below). Robust life-cycle optimization may also involve the 

optimization of the well locations or well trajectories, or a combination of well locations and 

well controls as will also be discussed in more detail in Section 5. Moreover, the concept of 

robust optimization can be extended to minimizing the variance of the objective function or, 

alternatively, minimizing the ‘downside’, i.e. the risk on low values of the objective function. 

This leads to trade-offs between improving the mean and reducing the variance or other risk 

measures; see, e.g., Bailey et al. (2005), Yasari et al. (2013), Siraj et al. (2015), and Capolei et 

al. (2015). 

Figure 2 illustrates the robust optimization concept graphically for mining applications. The 

mine planning problem can generally be seen as a scheduling problem for discrete tasks 

applied to periods of extracting mining blocks or tasks. To solve this combinatorial 

optimization problem taking into account geological uncertainty, during the past decade 

various different applications were published, including managing risk in large gold deposits 

(Godoy and Dimitrakopoulos 2004), meeting long-term production targets under joint-

element uncertainty in iron ore (e.g. Menabde et al. 2007, Benndorf and Dimitrakopoulos 

2013) or defining more robust ultimate pit limits (e.g. Vielma et al. 2009). Optimization 

problem sizes in mine planning are typically very large. For long-term scheduling problems, 

binary decision variables have to be defined per mining block and extraction period leading, 

for average sized problems, to a number in the order of 106 to 107. Here, theoretical exact 

optimal approaches, such as integer or stochastic integer programming solutions, approach 

their computational limits. Recent work focuses on the development of optimization engines 

to solve extremely large combinatorial problems involving the complete value chain in 
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mining complexes (e.g. Goodfellow and Dimitrakopoulos 2013). Combinatorial optimization 

techniques, such as simulated annealing (e.g. Kumral and Dowd, 2005), tabu search (e.g. 

Lamghari and Dimitrakopoulos 2012) or evolutionary approaches (e.g. Gilani and Sattervand 

2015, Bijmolt 2016) provide computationally efficient alternatives with a reasonable close-to-

optimum result. 

 

Figure 2: Robust optimization in mining applications (reproduced after Dimitrakopoulos, 

2011) 

While mineral resource extraction represents a physically discrete extraction of blocks at 

discrete periods in time, the continuously and dynamically changing nature of states and 

control parameters in petroleum extraction requires time-continuous optimization methods.  

In both fields of application, robust optimization techniques have proven to potentially lead to 

decisions that generate an increased expected monetary value in the order of up to 10% for 

petroleum engineering application and up to 25% for mining applications while decreasing 

risk in project failure (e.g. van Essen et al. 2009; Dimitrapoulos, 2011).  

3. Making	use	of	Production	Data	–	Closing	the	Loop	

While the previous discussions focus in general on robust optimized decision making under 

geological uncertainty, this section will explore the use of additional data, available during 

production. Examples of data resources for both fields of applications are provided in Table 3.  
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Table 3: Production monitoring data in hydro-carbon and mineral resource extraction 

Petroleum Engineering Mineral Resource Extraction 

 Oil production rates 

 Water production rates or fractions 

 Gas production rates or fractions 

 Wellhead pressures 

 Downhole well pressures 

 Distributed temperature data 

 Production logs (zonal inflow 

information) 

 Time-lapse seismic data 

 Time-lapse gravity data 

 Passive seismic data 

 Electromagnetic data 

 Equipment location and material 

tracking data 

 Online material characterization 

(texture, mineralogy, geochemistry, 

particle size distribution)  

 Surveying and face mapping data 

 Equipment performance (cutting 

energy, mill working index, metal 

recovery) 

 

These data are often soft, meaning of lower accuracy than directly sampled data, and only 

indirectly related to the underlying system models. However, due to their density in time they 

provide valuable information for comparing model based expectations with reality.  

More often than not, significant discrepancies between expectations and reality are observed. 

In more traditional approaches, batch type exercises are undertaken to improve the fit of 

reservoir or mineral resource models to production monitoring observations and improve 

model assumptions. In reservoir engineering these exercises are known as computer-assisted 

history matching (e.g. Oliver et al. 2008; Oliver and Chen 2011), while in mineral resource 

extraction the term reconciliation is used (e.g. Parker et al. 2012). Instead of a batch-type 

discontinuous approach, modern Information and Communication Technology (ICT) allows 

to perform this updating loop in a near-continuous fashion. This leads to closed-loop and real-

time mining concepts. Here ‘real-time’ should be interpreted in the light of the relatively slow 

extraction processes. E.g., in petroleum engineering the fronts between reservoir fluids (oil, 

gas and water) typically move with velocities of up to a meter per day, while pressure 

transients may take days or weeks to travel the distance between wells. Performing ‘reservoir 

surveillance’ on a weekly or even a monthly basis can therefore form the basis for a near 

‘real-time’ closed-loop reservoir management (CLRM) process. It should be noted that the 

phrase “closed-loop” in CLRM does not imply removal of human judgment from the loop. 

The use of model-based optimization and data assimilation techniques should result in a 

reduction of time spent on repetitive and tedious human activities and thus in more time to be 

spent on judging results and taking decisions (Jansen et al. 2009).  In addition, more short-

term (daily to weekly) production-focused closed-loop optimization of oil production can be 

performed with more room for automation. An example is the real-time optimization of 

‘artificial lift’, i.e. the maximization of oil production through pumping or through reducing 
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the hydrostatic head by injecting gas in the well bore. Even shorter real-time ‘coning control’ 

involves feed-back on a time scale of minutes to hours to counteract local near-well influx of 

water or gas. For overviews of the various levels of control and the associated time scales in 

the oil industry, see Saputelli et al. (2006) and Foss et al. (2010). For an overview of short-

term real-time production optimization, see Bieker et al (2003).   

Also in the mining industry ‘real-time’ refers to different time scales dependent on the control 

option to be taken. In the case of dispatch decisions this may in the order of minutes, for block 

classification tasks and production control tasks, decisions can be influenced by new data on a 

minute to hour scale. In general, production control options may be supported during a 

working shift, which is less than 8 hours, and for short-term planning applications,  a shift-to-

shift basis therefore seems a sensible time interval.  

Figure 3 illustrates this concept for the Real-Time Mining approach, which is based on the  

plan-do-check-act (PDCA) iterative management cycle (Shewhart, 1931). It is general and 

applicable to surface mining and underground operations and can be interpreted as follows: 

 P—Plan and predict: Based on the mineral resource model, strategic long-term mine 

planning, short-term scheduling and production control decisions are made. 

Performance indicators such as expected ore tonnage extracted per day, expected ore 

quality attributes and process efficiency are predicted.  

 D—Do: The mine plan is executed. 

 C—Check: Production monitoring systems continuously deliver data about process 

indicators using modern sensor technology. For example, the grade attributes of the 

ore extracted are monitored on a belt conveyor. Differences between model based 

predictions from the planning stage and actual measured sensor data are detected. 

 A—Act: Differences between prediction and production monitoring are analyzed and 

root causes investigated. One root cause may be the uncertainty associated with the 

resource model to predict the expected performance. Another root cause may be the 

precision of sensor measurements. Using innovative data assimilation methods, 

differences are then used to update the resource model and mine planning 

assumptions, such as losses and dilution. With the updated resource and planning 

model, decisions made in the planning stage may have to be reviewed and adjusted in 

order to maximize the process performance and meet production targets.  
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Figure 3: The Real-Time Mining concept (after Benndorf et al. 2015b) 

 

At this moment, the maturity of this concept in mineral resource extraction is judged to be on 

a TRL 3 to 5.  Currently ongoing multi-national European Union funded projects RTRO-Coal 

(Benndorf et al. 2015a) and Real-Time Mining (Benndorf et al. 2015b) investigate closed-

loop concepts for bulk mining and also highly selective mining scenarios. The main aim in 

these industry driven projects is to progress the technological development to a TRL of 6 to 7, 

where an integrated system is available validated under industrial environment conditions in 

full scale. 

Figure 4 displays the key elements in the closed-loop reservoir management (CLRM) process 

(Jansen et al. 2005, 2008, 2009). The top of the figure represents the physical system 

consisting of reservoirs, wells and facilities. The center of the figure displays the system 

models which may include static (geological), dynamic (reservoir flow) and well bore flow 

models. As discussed before, multiple models can be involved to quantify the large 

uncertainty in our knowledge of the subsurface. At the right of the figure, the sensors that 

keep track of the processes that occur in the system are displayed. These may be thought of as 

real sensors measuring production variables such as wellhead pressures or phase rates, either 

through production tests or on-line multi-phase flow meters or ‘soft-sensors’ that measure 

production data indirectly. However, sensors may also be interpreted more abstractly as 

sources of information about the system variables, e.g., interpreted well tests, time-lapse 

seismic or other surveillance data. Optimization algorithms, indicated by a blue box and 

arrows, are shown on the left side. Again, these may be interpreted as actual algorithms for 

production optimization influencing e.g., wellhead choke settings or injection rates, but also 

more abstractly as decisions in a field development plan, e.g., the choice of well positions. 

The state variables of the system, i.e. the pressures and saturations in the reservoirs, the 
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pressures and phase rates in the wells, etc., are only known to a limited extent from the 

measured, usually noisy, output. Even more uncertain are the parameters of the system, i.e. 

the permeabilities and porosities, fault transmissibilities, fluid properties, etc., while also the 

system boundaries and initial conditions are uncertain. Finally, even the input to the system is 

only known to a limited extent; e.g. water injection rates or gas lift rates may be roughly 

known, but aquifer support may be a major unknown. The unknown inputs can also be 

interpreted as noise. Data assimilation (i.e. computer-assisted history matching) can be used to 

reconcile the measured output with the uncertain models to a certain extent. This is done 

through adapting the model parameters and model structure until the difference between 

measured and simulated data is minimized in some pre-defined sense, as indicated by the red 

box and arrows at the bottom. The two essential elements in the CLRM concept are therefore 

model-based optimization and decision making (blue loop), and model updating through data 

assimilation (red loop). Various publications describe theoretical studies involving CLRM 

(recently also referred to as closed-loop field development) using a variety of optimization 

and data assimilation techniques; see, e.g. Brouwer et al. (2004), Naevdal et al. (2006), Sarma 

et al. (2006, 2008a), Chen et al. (2009, 2010, 2012), Chen and Oliver (2010), Wang et al. 

(2009), Peters et al. (2010), Foss and Jensen (2010),  Capolei et al. (2013), Shirangi and 

Durlofsky (2015) and Bukshtynov et al. (2015). For further references, see Jansen et al. (2005, 

2008, 2009) and Hou et al. (2015). The potential benefits from the use of CLRM are related to 

the degree of heterogeneity in the subsurface. In particular the presence of high-permeability 

zones connected to wells may strongly influence the controllability of the fluid fronts (Jansen, 

2011). For the underlying system-theoretical concepts, such as observability and 

controllability of state variables (pressures and saturations) and the identifiability of system 

parameters, see Zandvliet et al. (2008b) and van Doren et al. (2013).  An attempt to formally 

quantify the value of information resulting from measurements in a CLRM framework has 

recently been presented by Barros et al. (2016). 

Actual field implementations of the entire CLRM process have not yet been reported and can 

be classified with TRL 3-4 at best. However, the two key building blocks, data assimilation 

and recovery optimization are certainly being applied in practice. Especially large-scale data 

assimilation (‘computer-assisted history matching’) is rapidly being employed throughout the 

industry and can be classified with TRL 8-9. At the optimization side, merely well location 

optimization or field development optimization studies increasingly prove to be of value 

(TRL 6-7). The optimization of well controls is still primarily driven by short-term objectives 

(TRL 8-9), while formal (mathematical) long-term recovery optimization is only occasionally 

performed during the field development phase and not yet applied in a more operational 

setting (TRL 3-4). Theoretical ‘multi-level’ optimization attempts have been published to 

reconcile long-term reservoir management and short-term production optimization (see, e.g., 

Saputelli et al. 2006 and van Essen et al. 2013) but practical implementations of such formal 

multi-level approaches have not yet been reported (TRL 3-4).  
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A completely different form of closed-loop reservoir management operates at much shorter 

time scales (minutes to hours) and uses direct feedback from measurements, with relatively 

simple control rules and without the use of system models. Examples of such an approach, 

which is not yet frequently applied, are automatic gas coning control in horizontal wells 

(Jansen et al. 2003, Sagatun, 2010; Dilib et al. 2015), and the control of steam breakthrough in 

parallel pairs of horizontal wells for steam-assisted production of heavy oil (Patel et al. 2014). 

Most of these concern theoretical studies (TRL 3-4) although the gas coning control described 

by Sagatun (2010) is used in practice (TRL 9)       

 

 

Figure 4: Key elements of the closed-loop reservoir management process (after Jansen et al. 

2005, 2008, 2009). 

Key to both fields of application, mining and reservoir engineering, are the two main 

constituents: 1) rapid sequential model updating using data assimilation and 2) fast 

optimization of control decisions using robust optimization methods. These will be discussed 

in the subsequent sections. The main differences occur due to the nature of the problem. 

While mineral resource extraction can be represented in discrete time steps in a static 

environment formed by the mineral deposit, petroleum production is described in a more 

complex fashion with the aid of static (geologic), dynamic (reservoir flow) and well bore flow 

models using systems of partial differential equations. On the other hand, reservoir 

applications are mainly focused on quantities in terms of water injected or oil/gas recovered, 

while mineral resource applications address, in addition, a qualitative description of the 

extracted ore in terms of multiple inter-correlated grades of value- and deleterious elements.  

4. Data	Assimilation	for	Rapid	Model	Updating	

This section reviews one of the two main constituents for closed-loop management, data 

assimilation, which is the adaptation of the parameters of a system model to measured data. 

Parts of the text of this review have been taken from Jansen et al. (2009). 
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4.1	Application	case	reservoir	engineering	

Data assimilation, or computer-assisted history matching in the case of reservoir engineering, 

implies updating model parameters θ using measured output data d. (We use bold face lower 

case letters to indicate vector quantities, and bold face capitals to indicate matrices). Often 

this inverse problem is formulated as an optimization (minimization) problem with an 

objective function defined as the root-mean squared mismatch between measured output d 

and the simulated output y, with an additional regularization term to minimize the (squared 

and summed) deviation of the estimated parameters  from their prior estimated values prior; 

see e.g., Tarantola (2005), Evensen (2007), Oliver et al. (2008) or Oliver and Chen (2011): 

          1 1,
TT

prior priorJ       y θy θ d y P d y θ θ P θ θ . (1) 

Here 1
yP  and 1

θP  are weight matrices, which are usually chosen as the inverse of the error 

covariance matrices of the measurements d and the prior parameters prior. The parameters are 

often taken as grid block permeabilities and porosities, but may also include fault 

transmissibilities, fluid properties, system boundaries or initial conditions. Usually an 

ensemble of reservoir models (based on geological ‘realizations’) is defined each with its own 

prior prior. 

Assimilation approaches used in reservoir engineering include optimization-based methods, 

ensemble Kalman filters (EnKF), and other techniques. Optimization-based methods aim to 

minimize the objective function (1), usually by considering all data over the preceding 

measurement period. The most efficient ones use gradient information which can be 

efficiently computed using the ‘adjoint’ method, which is a form of implicit differentiation 

hard-coded in the reservoir simulator (Chavent et al. 1975; Gavallas et al. 1976;  Li et al. 

2003. For an in-depth treatment, see Oliver et al. 2008.) As opposed, EnKF methods typically 

use the data as they become available. Moreover, they usually require significantly less 

programming efforts than the optimization-based methods, and they naturally fit in with the 

ensemble-based approach to describe geological uncertainty. This is the major reason for the 

recent rapid increase in popularity of the EnKF which can be implemented relatively easy 

‘around’ an existing reservoir simulator (Evensen 2009; Aanonsen et al. 2009). Kalman 

filtering was originally developed to estimate uncertain states, and not parameters, in linear 

dynamic systems from noisy measured data (Kalman, 1960). Assuming Gaussian distributions 

for the uncertainty in the prior states and the measurements, posterior estimates for the states 

and the corresponding uncertainties can then be computed with the aid of closed-form matrix 

expressions. For nonlinear problems, of which parameter estimation problems form a subset, 

the ordinary Kalman filter breaks down because the nonlinearity results in non-Gaussian noise 

when propagated through the system. In the EnKF the analytical error propagation is replaced 

by a Monte Carlo approach, in which the model error covariance is computed from an 

ensemble of models which are all propagated in time (Evensen, 2003, 2009). Reservoir-

focused implementations of the EnKF also treat parameters as unknowns, which leads to the 

use of an extended state vector. Over the past decade a very large number of publications have 
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appeared that apply the EnKF to reservoir engineering problems and treat specific 

implementation problems; here we just refer to the textbook of Evensen (2009) and the review 

paper of Aanonsen et al. (2009) for in-depth treatments and references. More recent 

developments include an increased use of Ensemble Kalman Smoothers (EnKS), which also 

update states and parameters in the past, especially in combination with iterative techniques to 

ensure consistency between the parameter and state updates (Emerick and Reynolds, 2013; Le 

et al. 2016).  

In addition to these ‘classic’ data assimilation methods there are ‘non-classic’ techniques from 

the machine learning or artificial intelligent community such as genetic algorithms, particle 

swarms, or simulated annealing; see, e.g., Schultze-Riegert et al. (2002), Mohamed et al. 

(2010) and Jin et al. (2012). Because these methods typically require a very large number of 

function evaluations (i.e. reservoir simulation runs), they are restricted to the assimilation of a 

limited number of parameters. Often, the computational burden is reduced with the aid of 

‘surrogate’ or ‘proxy’ models, in the form of response surfaces that require a large number of 

upfront ‘training’ simulations but can subsequently be evaluated very many times and very 

quickly during the history matching procedure (Omre and Lødøen, 2004; Cullick et al. 2006; 

Yang et al. 2007; Alpak et al. 2009). We note that machine learning techniques are sometimes 

also used to predict production performance more directly from past well performance, i.e., in 

a black-box or gray-box fashion without  the use of reservoir flow models (Cao et al. 2016). 

Other assimilation methods employ ‘streamline simulation’, a computationally efficient 

reduced-physics simulation method that also allows for rapid assimilation of oil-water fluid 

fronts; see Datta-Gupta and King (2007) and Batycky et al. (2008). Yet another category 

avoids the explicit modeling of geological parameters and uses a capacitance-resistance 

representation of well connectivities (Sayarpour et al. 2009; Zhao et al. 2016), but has not 

(yet) found widespread application. The same holds for several other data assimilation 

techniques which we will not list here; for further references see, e.g., Aanonsen et al. (2009) 

or Jansen et al. (2009).     

Whether one uses ‘classic’ optimization-based or filtering approaches or ‘non-classic’ 

methods, the data assimilation problem in reservoir engineering is nearly always very ill-

posed, especially if uncertain parameters (permeabilities, porosities) are associated which 

each grid block in the reservoir model. Even although these parameters are spatially 

correlated  there are typically many more unknowns in the vector  than can be resolved from 

the data d. Regularization in the form of prior geological knowledge is therefore essential 

(Gavalas et al. 1976). Alternatively, various techniques to reduce the size of the parameter 

estimation problem have been proposed using, e.g., zonation (Gavalas et al. 1976), pilot 

points (Bissell et al. 1997), wavelets (Sahni and Horne, 2005), eigenvalue decomposition of 

the parameter covariance matrix (Gavalas et al. 1976) and its nonlinear version, kernel 

principal component analysis (Sarma et al. 2007), the discrete cosine transform (Jafarpour and 

McLaughlin, 2009), compressed sensing (Jafarpour et al. 2010) or sensitivity matrix 

decomposition (Tavakoli and Reynolds, 2010). 
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Traditional computer-assisted history matching is performed on the reservoir flow model, 

which usually only contains a strongly up-scaled version of the underlying detailed geological 

model. As a result, ‘updates’ to the model are sometimes geologically completely unrealistic. 

The predictive value of a properly history-matched model is never guaranteed (and, in fact, 

usually rather limited), but it is generally accepted that a geologically realistic model will 

have a higher chance of properly predicting the future reservoir behavior than an unrealistic 

one. A major trend in reservoir data assimilation is therefore to perform the data assimilation 

directly on the fine scale geological model, a technique sometimes referred to as ‘big loop’ 

history matching, and to extend the range of unknown parameters to include structural 

features; see, e.g., Seiler et al. (2010) and Hanea et al. (2015). 

Another development in reservoir data assimilation is the increasing use of ‘time lapse’ 

seismic data. By repeating seismic surveys after a period of production it is often possible to 

identify the fronts between water or gas displacing oil, and this information can help to 

drastically increase the quality of the update; see e.g., Skjervheim (2007), Trani et al. (2012),  

Jin et al. (2012), Emerick and Reynolds (2013) and Hadavand and Deutsch (2016). Also, the 

increasing use of different geophysical measurements such as gravity or electromagnetic 

surveys can be of help to obtain a better picture of the subsurface fluid distribution, and, 

through inversion, of the reservoir model parameters; see e.g., Glegola et al. (2012) and 

Katterbauer et al. (2016).  

Finally, an increasing research effort is aimed at the development of techniques for formal 

uncertainty quantification beyond the use of an ensemble of reservoir models. All rigorous 

methods for uncertainty quantification use some variety of the Monte Carlo method, which is, 

however, in its full form computationally completely infeasible for realistically sized reservoir 

models. Short-cuts, either in the form of ‘surrogate’ reservoir models or through drastically 

simplified uncertainty handling (of which the EnKF method is an example) lead to results 

with varying trustworthiness; see, e.g.,  Mohamed et al. (2010). Practical approaches for 

quantifying the uncertainty in future reservoir performance therefore still rely on a mixture of 

human judgement and the use of ensembles of geological realizations. For the latter, it is 

essential to create an as-large-as-possible diversity in the geological concepts and models and 

frequently assess alternative interpretations with a wide range of geoscience experts (Caers, 

2011). 

From the various elements in the CLRM workflow, computer-assisted history matching is by 

far the furthest developed and is nowadays being used in operational practice by pioneers and 

fast followers in the oil industry. The corresponding TRL level of the mature techniques (i.e.  

adjoint-based optimization, proxy-supported ‘non-classical methods, streamline-based 

methods, and especially the EnKF and the EnKS) varies between 8 and 9.   

4.2	Application	case	mining	engineering	

Vargas-Guzman and Dimitrakopoulos (2002) presented an approach that can facilitate fast-

updating of generated realizations of a mineral resource model based on new data, without 
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repeating the full simulation process. The approach is termed conditional simulation of 

successive residuals CSSR and was designed to overcome the size- limitations of the LU 

decomposition Davis (1987). The novel column partitioning requires the speciation of a 

sequence of (future) data locations. A stored L matrix can then facilitate the conditional 

updating of existing realizations if and only if the sequence of visited subsets and used 

production data are the same as the one used for generating the initial realizations (Jewbali 

and Dimitrakopoulos, 2011). A major limitation of these techniques results from the necessity 

to store and propagate the conditional nonstationary covariances. 

To circumvent this limitation, the previously discussed sequential linear estimator can be 

integrated into a Monte Carlo framework similar to the above discussed EnKF, which has 

been shown to work successful in different fields in geosciences (Evensen and van Leeuwen, 

1996; Xu and Gómez-Hernández 2015; Chevalier et al. 2015). Benndorf (2015) recognized 

the potential of sequential updating in the field of solid resource extraction and proposed an 

adapted version of the EnKF for mineral resource model updating in a static linear system 

environment deposit. Note that contrary to typical Kalman Filter descriptions a state transition 

matrix is not applicable to mineral resource model updating, as the actual deposit, which is 

represented by the block model, does not evolve over time. Wambeke and Benndorf (2015) 

further developed this approach and integrated features necessary to handle typical mining 

applications. The approach allows reconciling the resource model easily and fast against data 

from different process steps along the mining value chain from extraction to mineral 

processing. Features include a set of Gaussian Anamorphosis steps to handle typically 

asymmetric and non-Gaussian distribution of ore grades, empirical calculation of covariances 

for different data support to relate point data direct to SMU scale and also a localization or 

neighborhood strategy to attain acceptable computation times and derive a local updating. 

Similar to the application case reservoir engineering, production data can be integrated by 

comparing model based prediction and measurement data. The flexibility of the realization-

based empirical updating approach originates from the fact that it can also be easily 

implemented ‘around’ an existing mining simulator or material tracking system (Fig. 5). 

These can be implemented as Discrete Event Simulators (e.g. Hall, 2000; Shishvan and 

Benndorf, 2015) of the mining process or state-of-the-art material tracking systems based on 

RFID tag technology (e.g. La Rosa, 2007).  

An example in a fully known and controllable environment illustrates the concept. It mimics 

the reconciliation of a blend of 16 measured truck loads originating from two mining blocks 

of different size at different benches. Figure 6 shows a cross-section through one of the two 

benches considered. For all selected grid nodes, the mean and 95% confidence intervals are 

plotted prior and post updating. It can be seen that in addition to the improvement in 

predicting the grade for the excavated block, in a 40 m long area east of the sampled region 

the best estimate is considerably improved and matches the true state reasonably well. This is 

a significant improvement and allows making better decisions in subsequent short-term 
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planning steps and production control. For further details, the reader is referred to Wambeke 

and Benndorf (2015) 

At this moment, the maturity of the methods is judged by the authors on a TRL 5 scale, which 

is that concepts are proven in an artificial and laboratory environment. Current work focusses 

to prove the applicability of these techniques in full-scale industrial test cases leading to 

TRL7. A recent application related to updating local coal quality attributes of mining blocks 

based on radiometric online sensors in large continuous mining operations including multiple 

split seams demonstrates improvement in local prediction of 40% (Yueksel et al. 2016).  

 

Figure 5: Closed-loop reconciliation framework to integrate on-line sensor measurements 

from the material streams along the whole mining process into the resource model (after 

Wambeke and Benndorf 2015). 

 

Figure 6: Example for mineral resource model updating – a cross section through a bench 

prior and post updating (after Wambeke and Benndorf 2015). 
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5. Fast	and	Robust	Optimization	Techniques	

Given updated system models, fast (relative to the time scale involved) and computationally 

efficient optimization techniques form the second main constituent in closed-loop approaches. 

This section summarizes recent developments. 

5.1	Application	case	reservoir	engineering	–	long‐term	reservoir	management	and	
short‐term	production	optimization	

A major task in reservoir management is to define an optimal long-term production strategy, 

variably referred to as a ‘recovery optimization’, ‘flooding optimization’ or ‘life-cycle 

optimization’. For a given configuration of wells, and in particular for a flooding scenario 

involving multiple injectors and producers, the long-term well control optimization variables 

are typically pressures at the top of the production wells, flow rates in the injection wells, or 

valve setting in surface or downhole flow control valves. More elaborate optimization studies 

also involve the optimization of well locations or well trajectories (references will be given 

below).   

As discussed in Section 2, robust well control optimization can be used to maximize the 

expected value of an objective function over all geological realizations (Yeten et al. 2003; van 

Essen et al. 2009.)  Many different optimization techniques can be applied to perform 

suchrobust well control optimization. Just like in data assimilation, the most efficient ones use 

gradient information obtained with the ‘adjoint’ method. For the use in robust optimization, 

see van Essen et al. (2009); for a general overview, see Jansen (2011). Alternative, less code-

intrusive, robust methods use approximate gradient and/or stochastic methods (Chen et al. 

2009; Chen and Oliver, 2010; Li et al. 2013; Fonseca et al. 2015, 2016) or ‘non-classical’ 

methods such as, e.g., streamline methods (Alhutali et al. 2008), evolutionary strategies 

(Pajonk et al. 2011), or polynomial chaos expansions in combination with response surfaces 

(Babaei et al. 2015), with further references given in Echeverrıa Ciaurri et al. (2011). 

In addition to robust optimization studies there is a large number of papers describing 

deterministic well control optimization  over the life cycle of the reservoir both with and 

without the use of gradients; see, e.g., Sudaryanto and Yortsos (2000), Brouwer and Jansen 

(2004), Sarma et al. (2008b), van Essen et al. (2010), Forouzanfar et al. (2013a), Kourounis et 

al. (2014) or, for overviews, Jansen (2011) and Echeverrıa Ciaurri et al. (2011). Moreover, all 

of the CLRM studies referred to in Section 3 involve robust or deterministic well control 

and/or well location optimization.  

Recently, there has been an increasing interest in methods that extend long-term model-based 

well control optimization to include aspects of  short-term production optimization. Here use 

is made of the fact that typically the long-term control problem is over-parameterized, i.e. 

after optimizing the long-term objectives there are remaining degrees of freedom to 

hierarchically optimize a secondary objective (Van Essen et al. 2011). Alternatively trade-offs 

between long-term and short term optimization may be presented in the form of a Pareto 

front. Robust versions of such hierarchical and/or multi-objective optimization studies have 
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been published by, e.g., Chen et al. (2012), Fonseca et al. (2015), Chang et al. (2015) and Liu 

and Reynolds (2016).  

Many studies have been published on the optimization of well locations or trajectories. 

Although some of them are adjoint-based (Wang et al. 2007; Zandvliet et al. 2008a; Sarma 

and Chen 2008; Vlemmix et al. 2009), the most effective techniques use ‘non-classical’ 

methods such as genetic algorithms, particle swarm optimization or evolutionary strategies 

(e.g. Güyagüler et al. 2002; Yeten et al. 2003; Bangerth, 2006; Owunalu and Durlofsky, 2010, 

2011, Bouzarkouna et al. 2012; Forouzanfar et al. 2013b, Jesmani et al. 2016). There is also 

an increasing number of studies involving the joint optimization of well controls and locations 

(e.g. Bailey et al. 2005, Isebor et al. 2014b; Forouzanfar and Reynolds, 2014; Humphries and 

Haynes, 2015; Forouzanfar et al. 2016). Finally there are some studies that address 

comprehensive field development planning optimization including, e.g., surface facilities, 

artificial lift options and drilling schedules (e.g. Litvak and Angert, 2009; Couët et al. 2010). 

Although there is a considerable number of publications covering long-term well control 

optimization, the actual use of these optimization strategies during the field development 

planning phase is still very limited (TRL3-4). As opposed to the slow uptake of long-term 

well-control optimization, the use of well location optimization is currently rapidly increasing 

and has reached TRL 6-7, although it took more than a decade before the first serious attempts 

were made to use these methods on real field development plans.  

The optimization methods described above are all primarily aimed at long-term (life-cycle) 

reservoir management at typical time scales of months to years or even decades. However, the 

upstream oil industry increasingly applies formal optimization methods for short-term 

production optimization at a time scale of days to weeks. These are usually open-loop, to 

compute set points for regulatory controllers but gradually start to be applied in a closed-loop 

fashion, especially for application that require a fast response. Some applications of direct 

feedback control, i.e. without optimization,  have been reported in Section 3. We will not 

discuss these emerging ‘real-time’ applications in detail (TRL levels range from 3 to 9) but 

refer to Bieker (2007), Awasthi (2008) and Bakshi et al. (2015) for further information.   

5.2	 Application	 case	 mineral	 resource	 extraction	 –	 short‐term	 planning	 and	
material	stream	management	

Process control decisions regarded in mining applications include production sequencing, 

digging capacity control or stock-pile management. A particular example is to optimize the 

equipment schedule and effective production rates to control the quantity and quality of 

different material streams of extracted material (ROM ore). In this scenario, on a given bench, 

an excavator has access to different types of ore and waste. The demand for different ore 

products with different specifications and waste differs due to blending constraints and 

available dump space on the spreader site of the open pit.  

To investigate suitable techniques for optimization, following aspects of the mineral resource 

extraction problem have to be taken into account 
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 The optimization problem consists of discrete decision variables (extraction sequence) 

and continuous decision variables (effective digging capacities) within certain 

boundaries. 

 To provide a detailed enough resolution for scheduling, the amount of decision 

variables can become rather large resulting in a large-scale optimization problem. 

 The objective function is a complex expression involving multiple performance 

indicators as a function of continuous and discrete decisions variables  

 In general several stochastic components can be considered, including the resource 

model, unscheduled breakdown of equipment and uncertainty in demand of product. 

 Due to the continual gain of additional information during the extraction process, that 

can be used to update the planning model, the short-term mine planning problem will 

be re-optimized frequently. Consequently, one optimization run should not take too 

long. 

Methods of mathematical programming, such as Dynamic Programming or Mixed Integer 

Programming, are well acknowledged in the field of mine planning optimization (e.g., 

Newman et al., 2010). Most of the mathematical programming approaches are limited by the 

amount of decision variables, as applications become large and suffer from reduced 

computational efficiency. An alternative offer simulation-based optimization techniques; the 

concept is shown in Fig. 7 (e.g., Gosavi, 2014). Using general system simulation techniques, 

the objective value J of a complex objective function can be evaluated for a given set of 

decision variables. The potential suite of optimization approaches is versatile and may classify 

using the algorithms’ properties like convergence, separate them by the applied techniques 

(e.g.,  heuristics or gradient methods) or use the solution space (e.g., discrete or continuous) 

and the objective function (e.g. single or multiple objectives) to set methods apart from one 

another (e.g. Hachicha, et al. 2010). For problems similar to short-term mine planning in 

mining, several documented studies have demonstrated the effectiveness and value added; 

these refer in particular to job allocation and scheduling problems involving multiple factories 

in different manufacturing industry (Chung, et al. 2009; Gansterer, et al. 2014; Lin and Chen 

2015),   
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Figure 7: The concept of simulation based optimization (reproduced after Gosavi, 2014) 
 

An application of this concept applied to short-term production scheduling in continuous open 

pit mining has recently be documented by Shishvan and Benndorf (2016) and Mollema 

(2015). The simulator was developed using DES for a complex continuous coal mining 

operation involving six excavators, two spreaders and a stock-and-blending yard interlinked 

by a conveyor network of 30km. Main features involve geological uncertainty captured by a 

set of simulated realizations of the coal deposit model, multiple-correlated coal quality 

parameters, planned and unscheduled maintenance and uncertainty in demand. The objective 

function J is evaluated as a weighted combination of several sub-objectives including meeting 

coal tonnage and quality targets on a daily basis using a penalty function (Fig. 8). 

 

 

Figure 8: Evaluation of multiple objectives using penalty functions for coal production 

(reproduced after Mollema, 2015). 

 

A first investigative study focused on optimizing the task schedule for a short-term scheduling 

and showed that a combination of a genetic algorithm for global optimization and simulated 

annealing for local optimization works reasonably well. Exploring only a small sub-set of 

about 500 combinations from all possible combinations in the order of 1035 improved an 

initial manually derived schedule substantially by approximately 55% (Fig. 9). 
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Figure 9: Performance of a simulation-based optimizer applied to task scheduling in a 

continuous open pit operation (after Mollema 2015). 

6. Conclusion	and	Discussion	

Closed-loop approaches have the potential to generate substantial benefit during extraction of 

geo-resources. Studies in reservoir engineering predict scope for improvement in NPV in the 

order of 5% to 10% (e.g. Jansen et al. 2009). This potential derives from improved reservoir 

recovery and cash-flow by combining data assimilation, to keep reservoir models ‘evergreen’, 

with near-continuous production optimization. A preliminary investigation of the techno-

economic benefit of including online-production data for improved mine planning and 

extraction process control indicates a benefit in the order Mio.$ 5-10 for an average sized 

mining operation of 10Mio tons of ore production per year (Buxton and Benndorf 2013). This 

number represents a first order estimate and has to be evaluated for different operations and 

commodities separately. This potential for improvement is mainly raised due to less 

misclassified blocks, elimination of zero-value material from the logistic chain and improved 

grade streaming for enhanced metal recovery during the subsequent beneficiation and 

processing steps. 

Techniques for closed-loop management are established at different technological maturity 

levels in both fields of application. While elements of the closed-loop approach in reservoir 

engineering are already investigated for more than a decade, and in particular the use of data 

assimilation and well location optimization rapidly matures, the complete use of a closed-loop 

approach has not yet been implemented in practice. Although the necessary computational 

methods and algorithms have been developed over the past decade to a significant level of 

maturity, actual application in operational practice is hampered by the inherent uncertainty in 

oil field development and production operations, the tension between short-term operational 

requirements and more long-term optimal development decisions, the inertia of traditional 
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ways of working and the difficulty to quantify financial gains up-front in projects that take 

typically decades to complete. Developments in solid mineral resource extraction started 

during the last decade. Table 4 provides a judgement from the authors on TRL for closed-loop 

concepts in both fields of application.  

 

Table 4: Judgement on technology readiness for closed-loop concepts in both fields of 

applications  

Criteria Reservoir Engineering Mineral Resource Extraction 

Modelling geological 

uncertainty 
TRL 8-9 TRL 8-9 

Robust long-term 

optimization  

TRL 3-4 (well controls) 

TRL 6-7 (locations) 
TRL 5-6 

Data assimilation for model 

updating 
TRL 8-9 TRL4 

Fast optimization for real-

time decision support 

TRL 4-5 

(niche applications: 8-9) 
TRL4 

Integrated closed-loop 

concept 
TRL 3-4 TRL 4-5 

 

Table 4 indicates that approaches discussed in the text are theoretically well developed and 

tested in a controlled environment. Currently, the concepts in mining applications sit between 

TRL 3 – 5. The intention of current research initiatives is to evolve this to TRL 6-7 by 

focusing on investigating performances on large industry-scale problems and solve related 

implementation issues. For both fields of application integrated demonstration cases in full-

scale environments are necessary prove economic benefits. This should also include training 

of reservoir and mining engineers in these fields on a professional and as well an academic 

level.    
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