The properties and removal efficacies of natural organic matter fractions by South African drinking water treatment plants

Moyo, Welldone; Chaukura, Nhamo; Msagati, Titus A.M.; Mamba, Bhekie B.; Heijman, Sebastian G.J.; Nkambule, Thabo T.I.

DOI
10.1016/j.jece.2019.103101

Publication date
2019

Document Version
Final published version

Published in
Journal of Environmental Chemical Engineering

Citation (APA)
https://doi.org/10.1016/j.jece.2019.103101

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.
Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ – Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
The properties and removal efficacies of natural organic matter fractions by South African drinking water treatment plants

Welldone Moyoa, Nhamo Chaukura, Titus A.M Msagati, Bhekie B. Mamba, Sebastian G.J Heijman, Thabo T.I Nkambule

ARTICLE INFO

Keywords:
Drinking water treatment
Fluorescence excitation-emission matrices
Fluorescent natural organic matter
Parafac
Polysaccharides

ABSTRACT

This study presents an investigation on the fate of natural organic matter (NOM) and its dynamics throughout the treatment train at various drinking water treatment plants (WTP) in South Africa. The characteristics, concentration and removal efficiencies of NOM at various treatment stages on the basis of dissolved organic carbon, UV absorbance, specific ultra-violet absorbance, spectroscopic indices, maximum fluorescence intensity (F_{max}), and polysaccharides removal, were studied. The highest polysaccharide concentration was in coastal plants compared to inland plants for the raw water samples. A Parafac model fitting four components was established for the raw waters, and validated based on the split half criteria. The F_{max} values of the components was higher for terrestrial humic-like component (C1) and fulvic-like component (C2) than for humic-like components (C3), and for protein-like component (C4). Strikingly, the mean F_{max} values for C2 and C3 were higher for plants located on the south west coast of South Africa than the plants located inland. While the humification index and UV$_{254}$ removal correlated ($R^2 = 0.797$), the correlation between the freshness index ($\beta:\alpha$) and UV$_{254}$ removal was also mild ($R^2 = 0.787$). The removal efficiencies of bulk NOM were higher than for FNOM in the rapid sand filtration (RSF) stage, regardless of the location of the plants, suggesting that the RSF process is more efficient in removing non-fluorescent NOM than FNOM fractions. This study demonstrated the capability of optical methods in characterizing the fate, occurrence and removal of NOM in surface waters.

1. Introduction

Recently, natural organic matter (NOM) has attracted significant research attention because it compromises the performance of water treatment plants (WTPs). Natural organic matter affects the efficiency of water treatment stages such as the coagulation-flocculation [1], and potentially leads to the generation of disinfection by-products (DBPs) [2–4]. Optimization of treatment processes for the removal of NOM requires data on its characteristics and seasonal variation in the water source [5]. Conventional WTPs, which are commonly used in developing countries such as South Africa, are not designed to remove NOM [6,7]. Moreover, the removal of NOM is costly, hence the need to track temporal changes of its quality using online monitoring techniques. Many WTPs in South Africa depend solely on specific UV absorbance (SUVA) to assess the quality of NOM [8]. However, a similar SUVA value does not always translate to similar reactivity; these values may differ in their distribution around an average value. Therefore comprehensive and sensitive analytical approaches are required to provide more detail on the reactivity and treatability of NOM.

On the one hand, fluorescence spectroscopy is a rapid and user-friendly technique that provides detailed analytical information. This technique can discriminate between diverse types of NOM based on light scattering properties upon irradiation of the fluorophores [9]. Combining fluorescence data with routine water quality monitoring data such as dissolved organic carbon (DOC) and ultraviolet absorbance (UVA) can be effective in determining the origin of NOM and evaluating a treatment process [10]. When applied in the three-dimensional mode, fluorescence produces an emission excitation matrix (EEM), which provides a spectral signature of the fluorescent NOM [11]. EEMs contain large volumes of intricate data, whose explanation can be difficult [12–15]. Identification of fluorescence peaks and comparison of the intensities of individual peaks by visual inspection of the fluorescence maps is a commonly used technique. Recently, chemometric techniques such as parallel factor analysis (Parafac) and fluorescence regional integration (FRI) have been used to elucidate the wavelength-dependent fluorescence intensity data points embedded in EEMs [16].
On the other hand, the source, composition, and reactivity of chromophoric DOC (CDOM) has been traced in natural waters using UV–vis spectroscopy [17]. Furthermore, differences in the feed water and impact of treatment at each stage in the treatment train on the water quality, have been followed using indices derived from UVA, DOC, SUVA, and fluorescence [18]. Opportunities for rapid and practical use of these indices can be enhanced by automating and performing online analyses, which increase the safety, responsiveness, and treatment precision on plant operations. Moreover, the analysis of biogenic NOM in water research uses the high performance liquid chromatography with on-line organic carbon detection (LC-OCD) technique, which is costly and laborious. In view of this, the present work uses the sulfuric acid–UV method, which is a rapid and accurate method for determining the fluorescent fractions of NOM.

To date, only a few studies on the character of NOM found in water treatment plants in South Africa have characterized NOM occurring at individual plants (e.g., [19,20,6]). This work is the first in South Africa to report on the occurrence, behavior and removal efficiencies of fluorescent EEM components throughout the water treatment processes. It is of interest therefore, to assess the treatment efficiency of these plants for the treatment of NOM, given the variability of the water types in South Africa [21]. It is expected that the water types influence the occurrence of NOM components, and the treatment regimen at the plants in turn influences the behavior and removal efficiency of NOM components.

Nine WTPs in different regions were sampled with the objectives of: (1) characterizing NOM parameters and identifying the correlation between NOM composition and optimal NOM removal at the respective sites, (2) examining the input of individual NOM components to the overall fluorescent NOM in treated water of dynamic quality throughout the treatment train, and (3) determining the process robustness and/or selectivity in the removal of fluorescent NOM components.

2. Materials and methods

The study was composed of two distinct phases. Phase I was an assessment of the spatial changes on NOM in raw water at abstraction points of all plants, while phase II evaluated variations of NOM concentrations after treatment at various unit processes for each WTP.

2.1. Sampling

Sampling was conducted at nine water treatment plants representative of the five water quality regions found in South Africa (Fig. 1) using clean 1L glass bottles with Teflon lined caps. Triplicate samples were obtained after each major treatment step, namely: raw, flocculation/coagulation, settling, rapid sand filtration, and disinfection (Fig. A1). Turbidity, pH, temperature, and conductivity were measured onsite using potable multimeters. The samples were transported in ice boxes and then immediately filtered using a 0.45 μm GF/F filters before storage at 4 °C and analysed within 48 h. Filtered samples were analysed for DOC using a total organic carbon analyser (Teledyne Tekmar, TOC fusion).

2.2. Fluorescence and UV absorbance analysis

Triplicate water samples taken after each treatment stage were filtered through a 0.45 μm filter and equilibrated to 25 °C before analysis. Fluorescence EEMs, absorbance spectra, and simulated synchronous scans at Δλ = 60 nm, were obtained using a fluorescence spectrometer (Aqualog, HORIBA, Jobin Yvon) in the wavelength range 200–800 nm at 2 nm excitation intervals, and 248.58–830.59 nm at 3.28 nm emission intervals.

Parameters such as SUVA were derived by DOC normalization of UV254 absorbance and dimensionless indices such as the fluorescence index (FI), humification index (HIX), and freshness index (β:α) were calculated (Box 1). Higher HIX values are indicative of a greater extent of humification of the NOM. The FI index indicates the origin of the NOM, where a smaller value (< 1.3) indicates microbial source, while a greater value (around 1.8) means the NOM is of terrestrial origin. The β:α index indicates the age or extent of decomposition, and a high value indicates freshly produced NOM [22].

2.3. Fluorescence regional integration of removed fractions

The fluorescence regional integration method was applied in the identification and quantification of individual fluorescent components from the EEM spectra. Precisely, the EEM spectra were divided into five wavelength-dependent regions representative of where the maximum fluorescence occurs for each chemical standard used. The standards used had the same character as specific components of NOM (aromatic protein I, aromatic proteins II, microbial by-products, humic-like, and fulvic-like). The volume under region i, was calculated using Eq. 1 [23]:

Fig. 1. The location of selected WTPs in South Africa.
Box 1
Spectroscopic indices for NOM characterization

\[
\text{SUVA}_{254}(\text{L mg}^{-1} \text{cm}^{-1}) = \frac{(\text{OD}_{254} \text{(mg l}^{-1})}{\text{DOC}} \times 100
\]

\[
\text{HIX} = \sum I_{435-480} / (\sum I_{500-545} + \sum I_{435-480})
\]

\[
\text{FI} = \frac{\text{Em}_{490}}{\text{Em}_{220}}
\]

\[
\beta : \sigma = \frac{\text{Em}_{380}}{\text{Em}_{435}}
\]

\[
\theta_i = \sum_{j=1}^{\text{Tot},5} \sum_{m,n} \text{I} (\lambda_{ex},\lambda_{em}) \text{d} \lambda_{ex} \text{d} \lambda_{em}
\]

Where \(\theta_i \) is the volume under region \(i \), \(I(\lambda_{ex},\lambda_{em}) \) is the fluorescence intensity at the excitation-emission wavelength \((\lambda_{ex},\lambda_{em}) \) pairs, \(\Delta \lambda_{ex} \) and \(\Delta \lambda_{em} \) are the excitation and emission wavelength increments, respectively.

The study used \(\Delta \lambda = 2 \text{ nm} \) for both excitation and emission wavelengths increments. The quantity of the respective component is proportional to the volume under the curve. The percentage volume expressed for region \(i \) was calculated using Eqs. 2 and 3 [23]:

\[
\theta_{\text{Tot},5} = \sum_{i=1}^{i,n} \theta_{i,n}
\]

\[
\rho_{i,n} = \frac{\theta_{i,n}}{\theta_{\text{Tot},5}} \times 100\%
\]

Where, \(\theta_{\text{Tot},5} \) is the total volume of all the five regions. The specific region is denoted by number \(n \) and \(\rho_{i,n} \) is the percentage volume of specific region \(i \).

FRI was applied in the quantification of fractions making up the differential EEMs (AEEM) (Eq. 4):

\[
\Delta \text{EEM} = \text{EEM of removed FDOM} = \text{EEM}_{\text{before}} - \text{EEM}_{\text{after}}
\]

2.4. The sulphuric acid-UV absorbance method for polysaccharide quantification

The procedure for the proposed sulphuric acid-UV method was adopted from Albalasmeh et al. [24]. Briefly, 3 mL of concentrated sulphuric acid was added to a 1 mL aliquot of sample and cooled in ice to bring it to room temperature. Thereafter, the sample was vortexed for 30 s before UV analysis at 315 nm using a UV spectrophotometer (Lambda 650S, PerkinElmer).

3. Results and discussion

3.1. Occurrence and distribution of fluorescence NOM components at source

3.1.1. Pseudo-quantitative determination of polysaccharides in raw water

3.2. The sulphuric acid–UV absorbance method for polysaccharide quantification
Water laden with humic acid and fulvic acid is characterized by a brownish-yellow coloration, typical of the surface water on the south-west coast of South Africa [5]. The mean MHLF and PLF areas for plant H (209.78 and 127.50 RU, respectively) were the highest and more than doubled the least plant, MT (66.05 and 58.89 RU, respectively). Although MT had the least MHLF area, it had the highest DOC value (12.51 mg/L C), further confirming the heterogeneity of the NOM. These results suggest raw water at MT ($FI = 1.53$) is of less microbial origin than at H ($FI = 1.37$), and that the source of DOC at MT is largely non-fluorescent, containing mainly biopolymers, which are not easily assimilable by microorganisms [34,35]. Humic-like and fulvic-like material act as substrates for microbial growth, and thus support the survival of microorganisms [36,37]. Similar results were obtained on investigating biodegradable organic carbon (BDOC) for various WTPs in South Africa [5]. Plant H exhibited a high BDOC fraction (5 mg/L C) compared to other plants, which averaged 2 mg/L C.

3.1.3. Fluorescent dissolved organic matter components and their distribution at source

Parafac analysis was conducted using the Aqualog inbuilt SOLO software to study the quantitative removal of FDOM in detail. The Parafac model was built from the data acquired from all drinking water sources save for EB because its inclusion resulted in invalidated results when the split half analysis was used. For all water sources, modeling was carried out to maximize data collection and data points with the aim of deriving components which represented universal variance between water sources. The objective was to assess the occurrence and distribution of fluorescent components at source and draw correlations with other water quality parameters for predicting occurrence and treatability.

Fig. 3a shows the spectral signatures of the obtained components. The OpenFluor database was used to cross-reference the derived fluorescence components against those obtained globally [38]. This is however, a guideline, and the components identified in the study are not necessarily from similar origins. Similarity scores greater than 0.97 were found for each of the four identified components (Table 1).

A model fitting four components was established and validated based on the split half criteria as described by Murphy et al. [9], and Ndeweni et al. [39]. After validation, the distribution of the components at each water source was quantified using their maximum fluorescence intensities (F_{max}). The value of F_{max} was higher for terrestrial humic-like component (C1) and fulvic-like component (C2) than for humic-like components (C3), and for protein-like (C4) components (Fig. 4e), suggesting C1 and C2 have high quantum efficiencies and low responses to quenching effects compared to C3 and C4 [40]. Strikingly, F_{max} for C2 and C3 was higher for plants located on the south west coast of the country (P and H) than the other plants. The raw water feeding these plants has a brown-yellow coloration, characteristic of the presence of...
fulvic material, thus corroborating the SFS results (Section 2.1.2). It is of interest to assess the \(F_{\text{max}} \) of the tyrophane-like component (C4) because it is a surrogate for wastewater contamination [41]. The tryptophane-like component dominated the wastewater effluents unlike the components C1 and C2 which were dominant in reservoirs and rivers [42]. This is because NOM originating from surface water is predominantly terrestrial mainly from plant matter, whereas sewage-derived NOM mostly originates from autochthonous microbial matter [41]. These distinctions in spectral signatures have facilitated the tracking of wastewater impacted surface waters. Although C4 was always lower than that of any of the other components, its presence signals the impact of wastewater contamination. Plants H and P were less impacted than the other plants because their source waters are less impacted by anthropogenic activities.

3.1.4. Assessment of conventional parameters to evaluate the treatability of NOM at source

Data on physico-chemical properties of NOM is key for the comprehension of its treatability. Source waters had DOC in the range 2.60–12.51 mg/L C (Table 2), which concurs with previous research.

Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>(\lambda_{\text{ex}}) (nm)</th>
<th>(\lambda_{\text{em}}) (nm)</th>
<th>Similarity score</th>
<th>Component Identity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>316</td>
<td>< 240 (292)</td>
<td>0.97</td>
<td>Terrestrial humic like, reprocessed organic matter</td>
<td>[16]</td>
</tr>
<tr>
<td>C2</td>
<td>336</td>
<td>< 240 (348)</td>
<td>0.98</td>
<td>Humic-like, possible photo degradation product</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>364</td>
<td>< 240 (450)</td>
<td>0.98</td>
<td>Soil derived fulvic acid like</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td>270</td>
<td>270</td>
<td>0.99</td>
<td>Protein, tryptophan-like</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Plant</th>
<th>C1</th>
<th>(F_{\text{max}}) (RI)</th>
<th>C3</th>
<th>C4</th>
<th>tCDOM (nm/cm)</th>
<th>(\alpha_{315}) (/cm)</th>
<th>TotAbs /DOC (nm.mg/L.cm)</th>
<th>SUVA (L/mg.m)</th>
<th>UV254 (/cm)</th>
<th>DOC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>0.010</td>
<td>0.007</td>
<td>0.003</td>
<td>0.001</td>
<td>5.882</td>
<td>0.514</td>
<td>1.061</td>
<td>1.692</td>
<td>0.094</td>
<td>5.544</td>
</tr>
<tr>
<td>UM</td>
<td>0.009</td>
<td>0.007</td>
<td>0.003</td>
<td>0.001</td>
<td>9.360</td>
<td>0.578</td>
<td>1.242</td>
<td>1.872</td>
<td>0.141</td>
<td>7.535</td>
</tr>
<tr>
<td>OL</td>
<td>0.009</td>
<td>0.005</td>
<td>0.003</td>
<td>0.002</td>
<td>16.351</td>
<td>0.497</td>
<td>2.723</td>
<td>3.018</td>
<td>0.181</td>
<td>6.005</td>
</tr>
<tr>
<td>AM</td>
<td>0.005</td>
<td>0.008</td>
<td>0.001</td>
<td>0.001</td>
<td>16.224</td>
<td>0.638</td>
<td>3.436</td>
<td>3.896</td>
<td>0.184</td>
<td>4.721</td>
</tr>
<tr>
<td>HL</td>
<td>0.009</td>
<td>0.008</td>
<td>0.003</td>
<td>0.001</td>
<td>12.768</td>
<td>0.558</td>
<td>4.912</td>
<td>6.339</td>
<td>0.165</td>
<td>2.600</td>
</tr>
<tr>
<td>MT</td>
<td>0.007</td>
<td>0.008</td>
<td>0.003</td>
<td>0.001</td>
<td>12.012</td>
<td>0.463</td>
<td>0.960</td>
<td>1.117</td>
<td>0.140</td>
<td>12.509</td>
</tr>
<tr>
<td>H</td>
<td>0.006</td>
<td>0.010</td>
<td>0.004</td>
<td>0.000</td>
<td>35.935</td>
<td>0.674</td>
<td>5.960</td>
<td>7.988</td>
<td>0.482</td>
<td>6.030</td>
</tr>
<tr>
<td>P</td>
<td>0.004</td>
<td>0.010</td>
<td>0.004</td>
<td>0.000</td>
<td>19.572</td>
<td>0.643</td>
<td>3.328</td>
<td>4.379</td>
<td>0.258</td>
<td>5.881</td>
</tr>
</tbody>
</table>

Fig. 5. The variation of UV254 reduction as a function of (a) HIX, (b) \(\beta:\alpha \), (c) FI, and (d) SUVA for the raw water samples.
that reported that the quantity and quality of NOM have spatial and temporal variability [5]. The measured DOC is what is detected as carbon dioxide after the photo-oxidation of carbon containing organic matter. Therefore, it is not all natural sources of carbon that is measured, instead, runoff of dyes, pesticides and synthetic polymers can exaggerate the obtained values. It is necessary therefore, to further characterize NOM found in surface water. Natural organic matter found in natural waters is the main light absorbing component in the visible range [43]. As expected, the colored raw water laden with humic substances feeding plants H and P showed high UV254 absorbance (Table 2). Full UV scans also record absorbance from non-humic substances with high UV-vis absorbance such as inorganic compounds, for example peroxides, nitrates, ammonium [43]. As a result, UV absorbance data in the region <240 nm is excluded, and instead UV absorbance at 254 nm is used as an indicator for aromaticity [44]. Coastal plants (H and P) showed high UV254 absorbance, implying high aromatic content. Other studies have shown that SUVA gives an indication of NOM composition and hence treatment processes can be tailored for its removal [45]. Research has shown that SUVA < 2 L/(mgM) implies the major fraction of NOM in the water is of non-humic substances, and SUVA > 4 L/(mgM) indicates humic substances. Further, DOC > 50% is expected to be removed when SUVA > 4, and <25% should be removed when SUVA < 2 [46]. Therefore, it is expected that coagulation will remove DOC > 50% in plant H, HL and P; and <25% from plants FB, UM and MT. Data analysis using Spearman correlation on XLstat statistical software generated a correlation matrix (Fig A3). As expected, the correlations of spectroscopic parameters were higher with UVA254 than DOC. This is because the non-dispersive infra-red detector (NDIR) that quantifies the DOC measures the concentration of carbon released as carbon dioxide, while UVA254 and spectroscopic ratios measure organic matter moieties that absorb and/or fluoresce in the UV–vis range [40].

3.1.5. Relating optical indices at source to the treatability of natural organic matter
A good correlation between HIX and UV254 removal was established (\(R^2 = 0.797\)) (Fig. 5a). The index HIX for raw water gives an indication of NOM removal efficiency [23]. A high HIX value means the NOM sample contains high quantities of humic substances. These are easily removed by coagulation in conventional water treatment processes [40]. Thus higher HIX should lead to a larger NOM removal. At the same time, the freshness index (\(\beta:\alpha\)) was correlated to UV254 removal (\(R^2 = 0.787\)) (Fig. 5b). A low \(\beta:\alpha\) value indicates aged and condensed humic substances susceptible to removal by conventional unit operations such as coagulation [47,20,48]. Microbially derived NOM (\(H < 1.3\)) showed greater susceptibility to removal than the terrestrially derived NOM (\(H > 1.7\)) (Fig. 5c). Lidén et al., [22] reported similar findings. Interestingly, the correlation of \(F_l\) and \(\beta:\alpha\) followed a similar trend. This could be because they are both influenced by microbial derived NOM, either by source (\(F_l\)) or degree of degradation (\(\beta:\alpha\)). Specific UV absorbance showed a mild relationship to the UVA reduction (\(R^2 = 0.746\)) (Fig. 5d).

3.2. Selective removal of NOM fractions at different stages of the treatment train
3.2.1. Selective removal of biogenic NOM at each treatment stage
The extent of removal of polysaccharides at different stages of the treatment plant as exemplified by plant H is shown in Fig. 6a. The characteristic peak is shown for the differential absorbance scans after each treatment stage. Coagulation removed between -21% (OL) to 15.3% (H) of polysaccharides. No correlation could be established between polysaccharides and microbial by-product removal at the coagulation stage. Neither could trends relating spatial locations and polysaccharide treatability be established. This can be attributed to many factors such as coagulant type and charge, pH, and the presence of other charged species that can be entrapped within the polysaccharide matrix necessitating its agglomeration into flocs. The negative values for OL (-21%) and FB (-3.7%) indicate a build-up of polysaccharides in the treatment stage. Visual inspection of the abstraction points at these plants showed waxy material characteristic of extracellular polymeric substances (EPS) on the walls of the coagulation/loculoculation channels.

High molecular weight (HMW) substances, such as polysaccharides, are generally easily removed in conventional WTPs at the sedimentation stage than low molecular weight (LMW) substances [49]. Therefore the size and type of the polysaccharides determine its ability to be suspended or to settle at the bottom. While plants in the east coast of South Africa and inland showed similar trend in their ability to remove polysaccharides: HL (22%); AM (22%); MT (19%); UM (18%); OL (21%) and FB (5%), those in the south east coast: H (-5%) and P (-700%) showed a build-up of polysaccharides at the sedimentation stage suggesting their poor settleability.

Polysaccharide reduction at the sand filtration stage correlated well with change in \(F_l\) (\(R^2 = 0.881\)) (Fig A. 2b). Because of longer residence times in the sand filter, NOM is usually degraded in sand filters [50]. Unexpectedly, east coast plants performed poorly at this stage: HL (-27%); MT (-18%); UM (-12%) and AM (2%), while inland and south east coast plants performed better: P (48%); H (25%); FB (17%) and OL (6%). The sand filter is a habitat for many bacterial species which use DOC as a source of nutrients [50]. The assimilability of NOM depends on molecular weight, with heterotrophic bacteria preferentially degrading LMW than HMW NOM [51]. Polysaccharides are macromolecular polymers with high molecular weight (> 20 000 Da), and are not easily assimilable by heterotrophic bacteria [52]. The results suggest that plants in the east coast receive HMW polysaccharides which are not easily degraded by the bacteria.

Polysaccharide concentration increased at the disinfection stage. This can be attributed to an increase of EPS from bacteria killed during chlorination [13,51]. All plants showed a build-up of polysaccharides at this stage: P (-43%); UM (-36%); AM (-19%); H (-19%); OL (-11%); FB (-7%) and HL (-6%).

3.2.2. Selective removal of chromophoric DOC at each treatment stage
UV-Vis spectra for drinking water samples are nearly featureless except a monotonical absorbance decrease as wavelength increases. Chemometric techniques such as differential spectra (DS) can be used to gain more insights. This tool can present largely comparable features from a UV-vis spectra and can be used to calculate and evaluate the dynamics of CDOM properties after coagulation, sedimentation, rapid sand filtration and disinfection.

The removal by coagulation at shorter wavelengths (< 290 nm) was relatively constant, whereas the removal at longer wavelengths (> 290 nm) shot up by up to 20% (Figure A. 4a). The percent tCDOM removed by coagulation had a correlation coefficient of 0.67 with respect to UV254 removal. This was expected since both these parameters measure the part of NOM that is responsible for fluorescence. Intriguingly, the percent tCDOM removed by coagulation correlated well with percent DOC removed (\(R^2 = 0.962\)) (Fig A. 2d). This was unexpected because DOC measures all types of both fluorescent and non fluorescent organic matter [53].

While DOC varied considerably (5–30%) at the sedimentation stage, there was minimum variation of tCDOM (< 10%) (Table A2). This could be because of the phase transformation of particulate organic matter (POM) and NOM as it settles [51]. Sand filtration followed the same trend as sedimentation, with a narrower tCDOM variation (< 5%).

The graph of differential absorbance revealed a characteristic absorbance in the region 260–270 nm at the disinfection stage (Fig 6b). Similar results have been reported in literature [45,18]. Fig. 6c shows a characteristic peak removal from around 260–290 nm of CDOM. These results are consistent with previous findings which reported that the absorbing species in this range are especially reactive during
chlorination and chloramination [54].

Save for AM, which had accumulation of organic matter, comparison of the DOC removals for the present work and those reported in literature shows the values were generally of the same order of magnitude (Table 3). Membrane filtration and use of nanocomposites were considerably higher, perhaps because these are known to be more effective, and were carried out under optimized laboratory conditions.

3.2.3. Selective removal of fluorescent NOM at each treatment stage

Coagulation was more effective in removing the humic like fractions than the other fractions (Fig. 7a). Bulk DOM removal (in terms of UV254) was higher compared to FDOM in the rapid sand filtration stage, regardless of the location of the plant (Fig. 7b). This suggests that non-FDOM fractions are removed more efficiently than FDOM fractions at the RSF stage. Although the removal of the humic FDOM (P<5) correlated weakly with the SUVA for the raw water (R² = 0.52), the trend

![Fig. 6.](a) Differential absorbance as exemplified by H for the removal of polysaccharides throughout the treatment train. (b) Differential absorbance (ΔAbs) during disinfection, (c) %ΔABS removed at the disinfection stage.)

Table 3

Comparison of DOC removal using different methods.

<table>
<thead>
<tr>
<th>Removal Method</th>
<th>Removal Efficiency (% DOC)</th>
<th>Remarks</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion Exchange (IE)</td>
<td>33–41</td>
<td>IE targeted hydrophobic humic (-like) compounds of NOM</td>
<td>[55]</td>
</tr>
<tr>
<td>Electrocoagulation</td>
<td>65</td>
<td>HA-kaolin synthetic solutions</td>
<td>[56]</td>
</tr>
<tr>
<td>AOPs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UV/H₂O₂</td>
<td>13</td>
<td>Effluent water from a municipal WWTP</td>
<td>[57]</td>
</tr>
<tr>
<td>O₃ /H₂O₂</td>
<td>10-15</td>
<td>Natural water from the Otonabee river</td>
<td></td>
</tr>
<tr>
<td>O₃ /TiO₂</td>
<td>18</td>
<td>Groundwater from the Central Banat province</td>
<td>[58]</td>
</tr>
<tr>
<td>Fenton</td>
<td>27.6</td>
<td>Synthetic HA solutions</td>
<td>[59]</td>
</tr>
<tr>
<td>Photo-Fenton</td>
<td>15</td>
<td>Surface water from the Pance river</td>
<td>[60]</td>
</tr>
<tr>
<td>Biological degradation</td>
<td>6</td>
<td>Sea water</td>
<td>[61]</td>
</tr>
<tr>
<td>Membrane NF</td>
<td>98-99</td>
<td>Surface water samples</td>
<td>[52]</td>
</tr>
<tr>
<td>RO</td>
<td>< 99</td>
<td>Surface water samples</td>
<td>[52]</td>
</tr>
<tr>
<td>Nanocomposites</td>
<td>75</td>
<td>Raw water samples were obtained from the feed water at a WTP</td>
<td>[7]</td>
</tr>
</tbody>
</table>

Overall

<table>
<thead>
<tr>
<th>H</th>
<th>44</th>
<th>Alum (0.061 mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FB</td>
<td>1</td>
<td>Polymer U38100 (144 mg/L)</td>
</tr>
<tr>
<td>OL</td>
<td>18</td>
<td>Polymer 3546 (4 mg/L)</td>
</tr>
<tr>
<td>MT</td>
<td>64</td>
<td>Zeta-floc (4.6 mg/L)</td>
</tr>
<tr>
<td>AM</td>
<td>–3</td>
<td>Polymer U3500 (8.55 mg/L)</td>
</tr>
<tr>
<td>UM</td>
<td>35</td>
<td>Zeta-floc (4 mg/L)</td>
</tr>
<tr>
<td>HL</td>
<td>24</td>
<td>Polyamine (3.3 mg/L)</td>
</tr>
<tr>
<td>P</td>
<td>42</td>
<td>SUD-floc (0.006 mg/L)</td>
</tr>
</tbody>
</table>

* Calculated from removals at coagulation, clarification, sand filtration, and disinfection unit operations.
was nonetheless, in agreement with the findings that SUVA > 4 results in more than 50% removal of humics by coagulation. For example, plant H had a SUVA of 15.63 at source and a humics removal of 88% by coagulation. Although disinfection was efficient in removing humic-like fractions, its efficiency on removing other FDOM fractions was low (Fig. 7c). Chlorination results in the chemical modification of NOM by selectively targeting double bonds and conjugated functional groups. Depending on the number and distribution of these moieties, there are differential removal rates of bulk NOM and FNOM, and differential generation of DBPs (Chen et al., 2003). Overall, despite the total removal efficiencies of humic-like FNOM being high, removal efficiencies for other FNOM fractions were much lower. This indicates the drinking water treatment processes are less effective in removing FNOM compared to bulk NOM.

FNOM can be rapidly and sensitively detected online by fluorescence spectroscopy techniques (32,48). An understanding of the dynamics of FNOM fractions in drinking water production is necessary for monitoring and control since the overall removal of NOM is strongly correlated to its fluorescent fractions (28,51).

4. Conclusion

The study investigated the concentration and chemical profile of NOM in drinking water treatment sources in South Africa, as well as the fate of NOM and its transformations throughout the treatment train at various plants. This is the first such study conducted in South Africa to determine the occurrence, behaviors and removal efficiencies of fluorescent EEM components by the country’s water treatment plants. Water samples were analyzed for DOC, UV absorbance, SUVA, spectroscopic indices, fluorescence intensity as well as biopolymer (polysaccharides), and the following key findings were reported:

1. The character of NOM with respect to SUVA served as a prediction for its removal. As expected, coagulation removed DOC > 50% in plants: H, HL and P which had SUVA > 4; and < 25% DOC removal was observed from plants FB, UM and MT, which had a SUVA < 2.

2. A model fitting four components was crafted and validated based on the split half criteria, the distribution of the components at each water source was quantified using their maximum fluorescence intensities (Pmax). The value of Pmax was higher for the terrestrial humic-like component (C1) and the fulvic like component (C2) than for humic-like components (C3), and for protein-like (C4) components, suggesting C1 and C2 have higher quantum efficiencies and lower responses to quenching effects compared to C3 and C4.

3. Coagulation was more effective in removing the humic like fractions than the other fractions. Bulk DOM removal (with respect to UV254) was higher compared to FDOM in the rapid sand filtration stage, regardless of location of the plant. This suggests that non-FDOM fractions are removed more efficiently than FDOM fraction at the RSF stage. Although disinfection was efficient in removing humic like fractions, its efficiency on removing other FDOM was low.

Acknowledgements

The authors are grateful for funding received from the National Research Foundation (NRF), South Africa, the Water Research Commission (WRC) of South Africa, and the University of South Africa.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jece.2019.103101.

References

