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1. The complex interaction between the objectives, all mining elements, and the de-
posit model does not allow for a closed form optimization problem to be formu-
lated. Hence, existing methods tend to oversimplify the dynamics and the stochas-
ticity of the real system. (Dissertation)

2. In continuous coal mining operations, geological uncertainty does not only affect
the quality/amount of coal produced, but also affects over and inter-burden man-
agement and delays dispatching. (Dissertation)

3. Simulation techniques, including geostatistical simulation and discrete-event sim-
ulation (DES), can be effectively used for decision support in any mining opera-
tion. (Dissertation)

4. The Simulation-based Optimization approach leads to significant reductions in
downtimes of equipment. (Dissertation)

5. The focus of mining scholars should be on the development of efficient algorithms
for the optimization of short-term production scheduling rather than long-term
production planning.

6. The traditional Discounted Cash Flow (DCF) valuation method must be replaced
by the Real Option Valuation (ROV) method for the calculation of Net Present
Value (NPV) of mining projects.

7. PhD Students should not be judged based on their short-term performances, but
the long-term achievements.

8. Every PhD Student must be an independent thinker and must not be bound to any
limiting constraints.

9. Programmers should first develop their communications skills and then a code.

10. If you want to be successful in mining business, you need to be pragmatic not
idealistic.
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SUMMARY 

A sustainable exploitation of mineral deposits is a complex multi-objective problem. Produc-

tion management aims to maximize utilization and effective production rates of major min-

ing equipment, minimize specific costs, and ensure compliance to the mine’s long-term plan. 

At the same time, the extracted raw material has to meet tight specifications of customers. 

For instance, in bulk mining operations, customers’ requirements are usually in terms of 

upper and lower bounds of multiple quality parameters, which have to be met on a train-by-

train basis. Furthermore, the overburden covering the deposit has to be excavated, trans-

ported, and dumped in a sequence that guarantees safety and long-term stability of the waste 

dump. In this dissertation, the focus is on opencast coal mining operations.  

Coal (hard coal and lignite) will continue to provide a significant contribution to electrical 

energy supply in Europe during the next decades, supporting the anticipated change towards 

increasing use of renewable energy sources. During these three to four decades, many steps 

have to be taken to maintain a secure and affordable power supply while reducing CO2 emis-

sions and introducing new, but currently unknown technologies. Thus, the coal sector puts 

a strong focus on research and development into the future technologies that will be needed 

to keep coal in a sustainable and competitive energy mix.  

If geological conditions are reasonably constant, coal (lignite) can be extracted from deposits 

utilizing continuous mining systems. Continuous mining systems require large investments 

and operational costs. Decisions in daily production scheduling are impacted by uncertain-

ties, such as the incomplete knowledge about the deposit and operational downtimes. These 

can have a significant influence on the actual production performance. Furthermore, the com-

plex interaction between the aforementioned objectives, all mining elements, and the deposit 

model does not allow formulating a closed form optimization problem to find optimal or good 

decisions. Optimization methods, especially those that are applied in real-world problems, 

formulate the decision problems into mathematical models. They tend to oversimplify the 

dynamics and the stochasticity of the real system. This reason motivates us to explore an 

alternative approach. 

This dissertation proposes a stochastic based mine process simulator capable of capturing 

different sources of uncertainty, including geological uncertainty and unscheduled break-

downs of equipment. Throughout this study, two types of simulations, namely Monte-Carlo 

simulation and Discrete-Event Simulation (DES), are integrated. Results show that such an 

approach provides the mine-planning engineer a valuable tool to foresee critical situations 

affecting the continuous supply of raw material to the customers and the system performance. 
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This dissertation further proposes a new simulation-based optimization algorithm applicable 

to short-term production planning of opencast mines. The deterministic optimization and the 

stochastic simulation are combined in a closed loop. The proposed approach is capable of op-

timizing dispatch decisions for the given extraction sequences. The following gives an over-

view of different chapters of the dissertation.  

Chapter 1 gives a brief background on opencast coal mining. The chapter further presents 

the research objectives to guide the development of the method. The chapter finally concludes 

with a dissertation outline.  

Chapter 2 provides a detailed problem specification of the case studies. In this dissertation, 

the performance of the developed concepts will be demonstrated in two different real-size case 

studies. Complete descriptions of the case studies together with the challenges and problems 

are presented. 

Chapter 3 reviews the state-of-the-art on stochastic simulation and simulation-based opti-

mization. Furthermore, it provides the theoretical background of the developed algorithmic 

approach for simulation-based optimization of continuous mining system processes.  

Chapter 4 presents a synthetic experiment in a fully controllable environment. It demon-

strates that the developed concept is capable of quantifying the effects of geological uncer-

tainty, unscheduled downtimes, and their impacts on the ability of delivering contractually 

defined coal quantities and qualities.  

Chapter 5 extends the developed simulation model in the previous chapter to a new level by 

implementing it in an industrially relevant environment. Results of both case studies are 

used to describe the details of the simulation modeling framework, and to illustrate the 

strength and limitations of its application. 

Chapter 6 proposes a new multi-stage simulation-based optimization approach to optimize 

the dispatch system in terms of minimum idle time due to unavailability of dumping space. 

This approach consists of running alternatingly a deterministic optimization model and a 

stochastic simulation model. It combines simulation, a transportation problem, and a job-

shop scheduling problem. A control module is used to suggest refinements to parameters of 

the optimization model after each loop iteration. The iterative process ends after a stopping 

criterion is met.  

Chapter 7 gives an overview of the main conclusions from this study. The chapter further 

provides a list of recommendations and future research possibilities.  
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SAMENVATTING 

Duurzame winning van minerale voorkomens is een complex probleem met verschillende 

doelstellingen. Productiemanagement heeft als doel om inzet van kapitaalgoederen te maxi-

maliseren met effectieve inzet van produktiemiddelen tegen minimale kosten terwijl de doel-

stellingen op lange termijn worden behaald. Tegelijkertijd moet het gewonnen erts voldoen 

aan strenge kwaliteitseisen van de klant. In bulkmijnbouwoperaties eist de klant meestal kwa-

liteiten van diverse bestanddelen binnen grenzen, die per treinlading worden voorgeschre-

ven. Bovendien moet de deklaag worden afgegraven, getransporteerd en gestort in een volg-

orde die veiligheid en stabiliteit van het stort garandeert op lange termijn. 

Kolen zullen de komende decennia een aanzienlijk aandeel blijven leveren aan de energievoor-

ziening in Europa ter ondersteuning van de verwachte transitie naar duurzame energiebron-

nen. Gedurende deze drie tot vier decennia moeten er veel stappen worden gezet om te voor-

zien in zekere en betaalbare leveranties van energie bij gereduceerde CO2-emissies terwijl er 

alternatieve, nog onbekende technologieën worden geïntroduceerd. Vandaar dat de kolensec-

tor een sterke nadruk legt op onderzoek en ontwikkeling van nieuwe technologieën, die nodig 

zijn om kolen te kunnen blijven handhaven in de energie-mix. 

Als geologische omstandigheden redelijk constant zijn, kan bruinkool worden gewonnen met 

gebruik van continue mijnbouwsystemen. Deze systemen vereisen hoge kapitaalkosten en 

operationele kosten. Beslissingen in de dagelijkse planning worden beïnvloed door onzeker-

heden als onvolledige kennis van de ondergrond en operationele factoren. Deze kunnen een 

significante invloed hebben op de actuele prestaties. Bovendien laat de complexe interactie 

tussen bovengenoemde doelstellingen, alle mijnbouwgerelateerde factoren en het model van 

het ertslichaam het niet toe om een afgesloten vorm te formuleren voor het optimalisatiepro-

bleem om optimale en goede besluiten te vinden. Optimalisatie methodes, in het bijzonder 

diegene die toepasbaar zijn op echte, bestaande problemen, formuleren beslissingsproblemen 

in wiskundige modellen. Deze hebben de neiging om de dynamiek en stochastiek van het echte 

systeem te oversimplificeren. Deze reden motiveert ons om een alternatieve benadering te 

onderzoeken. 

Dit proefschrift stelt een proces-simulator van een stochastisch mijnproces voor met de capa-

citeit om verschillende bronnen van onzekerheid in te kapselen, zoals geologische onzekerheid 

en ongeplande materieelstoringen. Gedurende deze studie zijn twee soorten simulaties geïn-

tegreerd, te weten Monte-Carlo en Discrete-Event simulaties. Uit de resultaten blijkt dat 

deze aanpak een waardevol instrument is voor de mijn-planningsingenieur om situaties te 

voorspellen die kritiek zijn voor de continuïteit van de levering van grondstoffen aan de klant 
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en voor de prestaties van het systeem. Voorts stelt dit proefschrift een nieuw algoritme voor 

gebaseerd op simulaties, dat toegepast kan worden bij de productieplanning op korte termijn. 

De deterministische optimalisatie en stochastische simulatie worden gecombineerd in een ge-

sloten kring. De voorgestelde aanpak is in staat om logistieke beslissingen voor gegeven om-

standigheden te optimaliseren. 

Hieronder volgt een overzicht van de verschillende hoofdstukken van dit proefschrift. 

Hoofdstuk 1 geeft een kort overzicht van dagbouwwinning van bruinkool. Vervolgens wor-

den de onderzoeksdoelstellingen gepresenteerd om de ontwikkeling van de methode te duiden. 

Het hoofdstuk sluit af met een opzet van het proefschrift. 

Hoofdstuk 2 verschaft een gedetailleerde specificatie van het probleem in de onderzochte 

voorbeeldgevallen. In dit proefschrift worden de prestaties van de ontwikkelde concepten ge-

demonstreerd in twee verschillende praktijkgevallen. Complexe beschrijvingen van deze 

praktijkgevallen worden hier gepresenteerd samen met uitdagingen en problemen. 

Hoofdstuk 3 behandelt de huidige stand van zaken op het gebied van stochastische simulatie 

en optimalisatie gebaseerd op simulatie. Bovendien wordt de theoretische achtergrond ver-

schaft van de ontwikkelde, stochastische aanpak van de optimalisatie van het continue mijn-

process gebaseerd op simulaties. 

Hoofdstuk 4 geeft een synthetisch experiment in een volledige gecontroleerde omgeving. 

Het laat zien dat het ontwikkelde concept in staat is om de effecten van geologische onzeker-

heid, ongeplande onderbrekingen te kwantificeren alsmede hun impact op het vermogen om 

contractueel vastgelegde hoeveelheden en kwaliteiten steenkool te leveren. 

Hoofdstuk 5 bouwt verder op het ontwikkelde simulatiemodel in het vorige hoofdstuk tot 

een nieuw niveau door het te implementeren in een industriële omgeving. Resultaten van 

beide praktijkgevallen worden gebruikt om de details van het raamwerk van het simulatie-

model en de sterktes en zwaktes van de toepassing te beschrijven. 

Hoofdstuk 6 stelt een nieuwe aanpak van optimalisatie voor gebaseerd op simulaties met 

verschillende stadia om het logistieke systeem te optimaliseren in termen van minimale inac-

tieve tijd door gebrek aan beschikbaarheid van ruimte om te storten. Deze aanpak bestaat uit 

het afwisselend draaien van een deterministisch optimalisatiemodel en een stochastisch si-

mulatiemodel. Dit combineert simulatie, een transportprobleem en een planningsprobleem. 

Een controle module is gebruikt om verfijningen voor te stellen aan parameters van het opti-

malisatiemodel na elke iteratie. Dit iteratieve proces eindigt zodra een stop-criterium is be-

reikt. 

Hoofdstuk 7 geeft een overzicht van de voornaamste conclusies van deze studie. Verder geeft 

dit hoofdstuk een lijst aanbevelingen en mogelijkheden voor vervolgonderzoek in de toekomst. 



 

1 

1  

INTRODUCTION 
 

 

 

  



2 Background Information 

1 
1.1. BACKGROUND INFORMATION 

Of the Earth’s fossil fuels, coal is the least expensive for its energy content and 

is the most abundant and widely dispersed energy source. Supplies are readily avail-

able and not subject to disruption. At the time of writing, a third of Denmark’s elec-

tricity and around half of electricity in Germany, Bulgaria, Greece, and the Czech 

Republic is generated from hard coal and lignite. In Poland, over 80% of electricity 

generation depends on hard coal and lignite (Eurocoal, 2017). However, burning 

coal in power plants is a major source of carbon dioxide (CO2) emissions (World 

Energy, 2016). In the light of the Paris Agreement and the EU’s tough climate targets, 

coal, oil and natural gas are viewed as transition fossil fuels, because they are ulti-

mately incompatible with a low-carbon, climate-friendly economy. The transition 

process, in the view of experts, is a long-term task up to year 2050. Thus, coal (hard 

coal and lignite) will continue to provide a significant contribution to electrical en-

ergy supply in Europe during the next decades, supporting the anticipated change 

towards increasing use of renewable energy sources (Eurocoal, 2017).  

During these three to four decades, many steps have to be taken to maintain a 

secure and affordable power supply while reducing CO2 emissions and introducing 

new, but currently unknown technologies. A challenging problem, now, is that due 

to lower gas prices, generous renewable energy feed-in tariffs, EU-wide CO2 pricing, 

national carbon taxes and coal taxes, as well as other measures to reduce greenhouse 

gas emissions have all weakened coal’s market position. Although oil and gas prices 

recovered to the same levels as in 2015, after dropping at the beginning of 2016, they 

remained relatively low and therefore competitive against coal. In order to survive 

as a strong component in Europe’s future energy mix, the coal sector puts a strong 

focus on research and development into the future technologies that will be needed 

to keep coal in a sustainable and competitive energy mix (Eurocoal, 2017). 

A sustainable exploitation of coal deposits is a complex multi-objective prob-

lem. Production management aims to maximize utilization and effective production 

rates of major mining equipment, minimize specific costs, and ensure compliance to 

the mine’s long-term plan. At the same time, the extracted coal has to meet tight 

specifications of customers; mainly modern coal fired power plants. Customers’ re-

quirements are usually in terms of upper and lower bounds of multiple coal quality 

parameters, such as calorific value, ash, sulfur, which have to be met on a  

train-by-train basis. Furthermore, the overburden covering the coal has to be exca-

vated, transported, and dumped in a sequence that guarantees safety and long-term 

stability of the waste dump. 

If geological conditions are reasonably constant, coal (lignite) can be extracted 

from deposits utilizing continuous opencast mining systems. These typically consist 

of multiple excavators and waste-spreaders, connected by multiple ten-kilometers 
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1 of belt conveyors. Compared to discontinuous shovel-truck systems, continuous 

mining is characterized by higher capital expenditures and lower operating ex-

penses leading to a significant proportion of fixed costs. Also, there are strong inter-

dependencies between system constituents, which lead to increased planning re-

quirements.  

Material management in such systems is concerned with planning, organizing, 

and control of the flow of materials from their extraction points to destinations. Its 

aim is to get the right quality and quantity of materials at the right time and the right 

place for the lowest cost. Decisions related to material management made in short-

term planning include: (i) the extraction sequences of blocks, (ii) the destination of 

extracted material and (iii) the extraction rate of excavators. 

Optimal decision making and production control is impacted by uncertainty 

associated with the incomplete knowledge of the deposit. This originates from the 

nature of exploration and grade control stage, were the deposit and its attributes of 

interest are spatially sampled at some locations. A residual uncertainty remains  

in-between the exploration data location. The uncertainty in such deposits can be 

quantified by geostatistical simulation methods. Geostatistical simulation often is 

preferable to traditional interpolation approaches such as Kriging, in part because it 

captures the heterogeneous character observed in many deposits. Geostatistical sim-

ulation methods preserve the variance observed in the data, instead of just the mean 

value, as in interpolation. Their stochastic approach allows calculation of many 

equally probable solutions (realizations), which can be post-processed to quantify 

and assess uncertainty.  

Another source of uncertainty originates from unscheduled breakdowns of 

equipment. Maintenance efforts are rather sophisticated and lead to technical avail-

abilities of single system components up to 95% to 98%. However, the intercon-

nected nature of the system results in deviations from the expected system perfor-

mance. The combined availability of two components in series is always lower than 

the availability of its individual components. The system reliability decreases very 

rapidly as the number of series components increases (Billinton and Allan, 1992). In 

fact, the ability to reach short-term targets in terms of coal quantity and quality is 

influenced by unexpected failure of equipment, which are planned to contribute to 

a coal product mix. Statistical techniques can be used to fit a theoretical distribution 

to historical failure data. This would enable us to predict the probability or forecast 

the frequency of occurrence of the failure in a certain interval.  

The complex interaction between the aforementioned objectives, all mining el-

ements, and the deposit model does not allow formulating a closed form optimiza-

tion problem to find optimum or good decisions. Optimization methods, especially 

those that are applied in real-world problems, formulate the decision problems into  
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1 mathematical models. They tend to oversimplify the dynamics and the stochasticity 

of the real system. Hence, an alternative approach needs to be explored.   

Supply chain management, manufacturing environments, etc. deal with the 

very same problem (Jung et al., 2004, Truong and Azadivar, 2003). The differences 

might be the size and the type of decisions that have to be made. Stochastic process 

simulation alone and in some cases combined with optimization has been promi-

nently used in these fields to assist the decision making process (April et al., 2003, 

Fu et al., 2005, Subramaniam and Gosavi, 2007). In most cases, simulation models 

only function as system analysis tools. In the context where decisions have to be 

made to obtain pre-defined objectives, simulation studies help to perform the com-

putational experimentation. Prior to the decision making, assessments can be per-

formed on pre-defined decision alternatives considering these objectives. In other 

words, feasible solutions can be explored using what-if analyses and among these 

solutions the best decision can be found (Zeigler et al., 2000). These analyses are nor-

mally performed in an iterative routine. Results of previous experiments are used to 

perform following experimentations. In summary, the assessments against forth-

coming uncertainties are used to make representative decisions. The only drawback 

here is that it requires additional effort from the decision maker to come to the best 

decisions (Halim and Seck, 2011).  

Considering the drawback in simulation studies, optimization techniques can 

clearly help by providing the structure required to achieve the best decisions. The 

search process of finding the best decisions can be automated, if the optimization 

method is implemented in a computer program. In fact, the reported successful ef-

forts in combining simulation and optimization methods encourage the develop-

ment of research into this so-called simulation-based optimization field. In the sim-

ulation-based optimization method, optimization performs as the search method 

that discovers the alternative space of a simulation model in such a way that solu-

tions contributing to the desired system performance(s) can be found (Halim and 

Seck, 2011). Figure 1.1 depicts the concept of this method. 

 

Figure 1.1. Simulation-based optimization method (adapted from (Gosavi, 2003)). 
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1 Using this method, optimal solutions can be obtained from the modeled mining 

system without tiresome effort (manually going through the whole set of feasible 

alternatives for the input of the simulation model) while the dynamics and stochas-

ticity of the system are taken into account.  

At the time of writing, the simulation-based optimization method in its entirety 

has not been applied in the coal mining industry. Little research to date has focused 

on the application of simulation modeling as a powerful operational decision sup-

port in material management. In addition, most of the studies have simplified their 

case studies to solve one particular question. Practical experiences from implement-

ing the simulation-based optimization method for the decision making at an indus-

trial scale application are not known to the author.  

1.2. RESEARCH OBJECTIVES  

This research aims to 

 

“Develop a stochastic mine process simulator capturing different sources of uncer-

tainty, including geological uncertainty, unscheduled breakdowns of equipment, and their 

interdependencies” and “propose a new simulation-based optimization algorithm applicable 

to short-term production scheduling of opencast mines”. 

 

To achieve these goals, the following objectives were formulated: 

 Investigate available process simulation and simulation-based optimization 

techniques and find the appropriate approach based on characteristics of the 

problem under study.  

 

 After the selection of the suitable method, develop an algorithmic approach to 

simulate the process of continuous mining systems. The approach includes a 

formal description of stochastic simulation in such systems.  

 

 Once the algorithmic approach is developed, investigate the usability of simu-

lation techniques for decision support under geological uncertainty and sto-

chastic breakdown behavior of major equipment. Explore a suitable computa-

tional approach for integrating two types of simulations. In particular, consider 

Monte-Carlo simulation techniques in geostatistics for modeling uncertainty 

associated with deposit models and Discrete Event Simulation (DES) methods 

allowing for stochastic process modeling under uncertainty.  
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 Conduct an extensive experiment in a synthetic, completely known, and fully 

controllable environment to validate the simulation model and to evaluate its 

performance. This allows benchmarking against the ‘ground-truth’. In this 

stage, TRL 4 (more details can be found in appendix A) will be achieved. 

 

 After the implementation in the lab environment, set up the simulation process 

for a field test in an actual mining operation and validate results at an industrial 

scale; TRL 6 will be achieved.  

 

 Once the simulation model is successfully validated, develop a new multi-stage 

simulation-based optimization approach for the short-term scheduling prob-

lem of continuous mining systems. Investigate a solution strategy that is capa-

ble of optimizing dispatch decisions for given extraction sequences while en-

suring the construction of a stable dump.  

 

 Apply the simulation-based optimization approach in an actual mining opera-

tion. Design a heuristic control module that analyses the output of the simula-

tion model and suggests new input parameters for the optimization block. The 

module should be specifically tailored to the problem under study.   

1.3. THESIS OUTLINE 

The outline of this dissertation is organized in a way that covers the previously 

formulated research objectives. It is divided into seven chapters as follows: 

Chapter 2 provides a detailed problem specification of the case studies. In this 

dissertation, the performance of the developed concepts will be demonstrated in two 

different real-size case studies. Complete descriptions of the case studies together 

with the challenges and problems are presented.  

Chapter 3 presents a literature review of stochastic simulation and simulation-

based optimization. Furthermore, it provides a brief theoretical background of the 

developed algorithmic approach for the simulation modeling of continuous mining 

systems. A formal description of the stochastic simulation of opencast mines can be 

found in this chapter. This chapter further discusses a set of steps that should be 

followed in a simulation study as well as the possibilities of coupling the simulation 

to the optimization. The last section presents a simulation-based optimization plat-

form, which will be used for the optimization of the short-term scheduling problem 

of continuous mining systems. 
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1 Chapter 4 presents the synthetic experiment in a fully controllable environ-

ment. It demonstrates that the developed concept is capable of quantifying the ef-

fects of geological uncertainty, unscheduled downtimes, and their impacts on the 

ability of delivering contractually defined coal quantities and qualities.  

Chapter 5 extends the developed simulation model in the previous chapter to 

a new level by implementing it in an industrially relevant environment. A frame-

work for modeling, simulation, and validation of the simulation model of a large 

continuous mine is presented in detail. The chapter further discusses operational 

implementation issues, experiences, and challenges in practical applications. Fur-

thermore, the strength of the application of the simulation modeling as an opera-

tional decision support for material management in continuous mining systems is 

demonstrated. Results of both case studies are used to describe the details of the 

framework, and to illustrate the strength and limitations of its application. 

Chapter 6 proposes a new multi-stage simulation-based optimization ap-

proach. This approach consists of running alternatingly a deterministic optimization 

model and a stochastic simulation model. After an introduction, the first subsection 

provides a brief background to the production planning of continuous mining sys-

tems. It continues by defining the problem. The third subsection discusses the solu-

tion strategy, which is a combination of the simulation, the transportation problem, 

and the job-shop scheduling problem. Thereafter, the computational framework and 

its implementation are presented. The Hambach mine (Case 2) is used to demon-

strate the performance of the proposed approach. Subsequently, the obtained results 

are discussed in detail. The last subsection concludes the findings of the  

chapter.  

Chapter 7 is the last section of this dissertation and gives an overview of the 

main conclusions from this study. The chapter further provides a list of recommen-

dations and future research possibilities.  
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The contents of this chapter have been adapted from: 

Shishvan, M. S., & Benndorf, J. (2017). Operational Decision Support for Material Management in Con-

tinuous Mining Systems: From Simulation Concept to Practical Full-Scale Implementations. Miner-

als, 7(7), 116. doi: 10.3390/min7070116  
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2.1. INTRODUCTION  

In this dissertation, the performance of the developed concepts will be demon-

strated in two different real case studies. Both case studies are located in Germany 

and their main product is lignite (often referred to as brown coal). Lignite is a soft 

brown combustible sedimentary rock formed from naturally compressed peat. It is 

considered the lowest rank of coal due to its relatively low heat content. It has a 

carbon content around 60–70 percent. It is mined all around the world and in Ger-

many is used almost exclusively as a fuel for steam-electric power generation (Stoll 

et al., 2009).  

Lignite production in Germany is centered in four mining areas, namely (i) the 

Rhenish mining area around Cologne, Aachen, and Mönchengladbach, (ii) the Lu-

satian mining area in southeastern Brandenburg and north-eastern Saxony, (iii) the 

Central German mining area in the south-east of Saxony-Anhalt and in north-west 

Saxony, as well as (iv) the Helmstedt mining area in Lower Saxony. In these four 

mining areas, lignite is exclusively extracted at opencast mines. In 2015, 178.1 million 

tonnes of lignite was produced. To produce this much of lignite, 887.8 million m3 of 

overburden were moved during mining – an average overburden-to-coal ratio of 5.0 

cubic meters per tonne (Eurocoal, 2017). The first case study concerns the Profen 

mine from the Central German mining area and the second one concerns the Ham-

bach mine from the Rhenish mining area.  

Figure 2.1 shows a schematic section view of a continuous mining system. The 

operation starts with the excavation of materials by excavators (supply points) at the 

extraction side. It continues by the transportation of the extracted materials from  

 

Figure 2.1. A schematic view of continuous mining systems, reproduced after 

(Gärtner et al., 2013). 
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mining benches to dumping benches or a coal-bunker. The transportation process 

includes a network of belt conveyors consisting of face conveyor belts, main con-

veyor belts, and a mass distribution center. Finally, lignite is stacked at the bunker 

or waste materials are dumped at the dumping site (demand points).  

2.2. CASE STUDY - 1: THE PROFEN MINE  

2.2.1. CASE DESCRIPTION 

The Schwerzau mining field of the Profen mine is used as an industrial case 

study for developing the stochastic mine system simulator. It is operated by Mit-

teldeutsche-Braunkohlengesellschaft mbH (MIBRAG). The Schwerzau mine field 

commenced production in 2006. The mine has coal reserves amounting to 115 mil-

lion tons of lignite. Continuous mining equipment (bucket wheel and chain excava-

tors) will ultimately mine lignite in six combined overburden and coal cuts.  

In general, continuous mining systems for the extraction of lignite contain par-

allel production lines, which start with Bucket Wheel and/or Bucket Chain Excava-

tors (BWEs/BCEs) followed by material transport by conveyor belts. Material is dis-

tributed at the mass distribution center, where several destinations can be chosen, 

including the coal-bunker and different spreaders at the waste materials dumping 

site. Waste is dumped by spreaders at the dump site and lignite is stacked by the 

stacker in the stockpile. A reclaimer at the stockpile and a system of conveyors, 

screens and crushers are used for loading lignite in the train cars. Finally, these trains 

are sent to customers, mostly power plants, based on their daily demands. A sche-

matic view of the extraction system of the Profen mine is shown in Figure 2.2. 

It consists of six excavators, two spreaders, and a coal-bunker. An overview of 

specifications of the equipment can be found in Table 2.1. The excavators have to be 

scheduled with the following operation details: 

 The excavator Bg. 1580 extracts only waste (sand, gravel, and clay) and is con-

nected to the spreader Abs. 1104. 

 The excavators Bg. 1511 and Bg. 1553 can send the extracted materials to the all 

defined destinations, (the coal-bunker, the spreaders Abs. 1112, Abs. 1104). 

 The excavators Bg. 351, Bg. 1541, and Bg. 309 extract coal and waste and have 

access to the spreader Abs. 1112 and the coal-bunker.  
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Figure 2.2. Schematic overview of the production system in the Profen mine. 

Table 2.1. An overview of the specifications of the equipment. 

Exc. Model Bench 
Access to 

Abs. 1112 

Access to 

Abs. 1104 

Access to Coal-

bunker 

Theoretical 

Capacity (m3/h) 

Bg. 1580 1 No Yes No 4900 

Bg. 1511 2 Yes Yes Yes 4900 

Bg. 1553 3 Yes Yes Yes 3770 

Bg. 351 4 Yes No Yes 1400 

Bg. 1541 5 Yes No Yes 3770 

Bg. 309 6 Yes No Yes 740 

Abs. 1112 - - - - 10,000 

Abs. 1104 - - - - 10,000 

2.2.2. CASE PROBLEM  

In this case, challenges originate from geological uncertainty associated with 

the detailed knowledge about the coal deposit as well as from unscheduled break-

downs of equipment as an internal factor. As an illustration, Figure 2.3 shows the 

difficult geology in the Profen mine that affects the deliverable coal quality and 

quantity. Yueksel et al. (2017) quantify geological uncertainty of the deposit using 

conditionally simulated realizations. They apply the Sequential Gaussian Simula-

tion method (SGS) to create the realizations. 
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Figure 2.3. Complicated geology in the Profen mine (second bench). 

This dissertation uses their output result as the reserve block model. It includes an 

average type estimated model using Ordinary Kriging and 25 realizations of the de-

posit.  

Three different coal types including power plant coal 1 (KK1), power plant coal 

2 (KK1), and dust coal (SK) can be extracted in the Profen mine. The features of the 

different coal types are given in Table 2.2. Coal quality control is performed via an 

online sensor measurement (RGI) and lab analysis. The online sensor is located on 

conveyor 61 and measures ash and water content on a minute time interval. The 

most accurate measurement is done in a laboratory on samples that are taken from 

train cars leaving the stock/blending yard toward customers. 

Table 2.2. Coal types and their properties. 

Coal Type Ash Content (%) Calorific Value (MJ/kg) 

KK1 <8.5% (wet ash) 9.5–10.5 

KK2 <12% (wet ash) 9.0–11.4 

SK <15% (dry ash) >24.5 

To emphasize the effect of geological uncertainty, Figure 2.4 shows historical 

data about the ash content of delivered trains to a power plant. As can be seen, there 

are three different values; the average value of extracted blocks based on the esti-

mated block model (magenta line), the online sensor measurement (blue line), and 

the laboratory measurement (green line). The lab measurements (which are called 

the reality in this dissertation) show a significant fluctuation compared to the esti-

mated model. In addition, systematic deviations over longer time spans can be de-

tected. These observations emphasize the necessity of accounting for geological un-

certainty when forecasting the coal quality by the mine simulator. 
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Figure 2.4. Historical data of ash content of delivered trains to the power plants 

(provided by MIBRAG). 

An understanding of the frequency and magnitude of deviations to be expected 

already at the planning stage would help the planning engineer to achieve better 

and more robust decisions. In addition, due to the complex nature of the problem 

involving multiple targets, a fast evaluation tool for the short-term planner and op-

erations personnel would facilitate evaluating alternative decision scenarios fast and 

best decision making. Thus, the defined test case focuses on controlling the contrac-

tually defined coal quantities and qualities. In this dissertation, an integrated simu-

lation as a solution approach is suggested. 

 

 

  



Problem Specification 15 

 

2 

2.3. CASE STUDY - 2: THE HAMBACH MINE  

2.3.1. CASE DESCRIPTION  

The second case study is the Hambach mine; it produces over 40 million tons 

of coal and over 250 million m3 of overburden materials per year. A schematic view 

of the Hambach mine is shown in Figure 2.5. In total eight BWEs have to be sched-

uled to serve continuously seven spreaders with waste material and two bunkers 

with coal. Table 2.3 shows the technical specifications of the BWEs. Each BWE exca-

vates either lignite or waste in terrace cuts and transfers materials to the face con-

veyor belt, which carries it along the bench to the main conveyor belt. All excavated 

materials of the eight benches are distributed to their destinations at the mass distri-

bution center. Based on a predefined daily schedule, waste is distributed to the seven 

spreaders for dumping, and lignite is forwarded to two coal-bunkers.  

The mine operates 24 hours per day and seven days per week. Regular mainte-

nance is carried out on weekly, monthly, and annually based schedules. During the 

regular maintenance or an unscheduled breakdown, the production process ceases 

on the bench. 

 

Figure 2.5. Schematic overview of the production system of the Hambach mine.  
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Table 2.3. Technical specification of BWEs. 

Bench BWE Model 
Discharge 

Per min 

Bucket Capac-

ity (m3) 

Theoretical Capacity 

(m3/h) * 

S1 259 44 2.6 5700 

B1 260 38 3.5 5700 

B2 291 48 5.0 12,500 

B3 287 43 5.1 10,400 

B4 290 48 5.0 12,500 

B5 292 48.6–72.0 5.0 12,500 

B6 293 48.6–72.0 5.0 12,500 

B7 289 48 5.0 12,500 

* 19.3 h per day 

2.3.2. CASE PROBLEM  

Waste materials at the Hambach mine are categorized in three types of mixed 

soils, dry mixed soils type1 (M1), semi-wet mixed Soils type2 (M2T) and wet mixed 

soils type2 (M2N). The extraction of M2 type materials is increasingly facing defi-

ciencies in output due to difficult mining materials. This type of soil, specifically 

M2N, exhibits a high share of cohesive components and is difficult to drain. M2N 

material cannot be used for stable dump construction and needs to be filled in be-

tween prebuilt polders constructed of dry material (see Figure 2.6). The fact that only 

a limited quantity of these unstable mixed soils can be placed in the waste dump 

causes downtimes and bottlenecks in the placement process on the dumping side. 

 

Figure 2.6. Placement of M2N materials in between a prebuilt polder, (Gärtner et 

al., 2013). 
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Furthermore, historical data show that next to scheduled maintenance, break-

downs of the equipment occur in a random manner. Due to the “in series” system 

configuration, equipment units feeding or connected to the ceased equipment are 

blocked and set out of the operation while the maintenance is being done or the fail-

ure is being repaired. Furthermore, because of the multi-layer nature of the deposit, 

changes from one material type (e.g., M1) to another material type (e.g., M2N) hap-

pen very frequently. Each time a material change takes place, the BWE stops exca-

vating while the mass distribution center changes the drop-point of the belt con-

veyor to its new destination. In reality, this operation approximately takes five to 

eight minutes. This time may increase due to the unavailability of the new destina-

tion. The combined effect of random equipment breakdowns and frequent changes 

in extracted materials makes the prediction of the exact material flow rate at any 

given future time span a major source of uncertainty. Thus, the problem is a con-

strained stochastic optimization problem.  

The objective is to optimize dispatch decisions to decrease downtimes/increase 

efficiency of excavators and spreaders by effective resource allocation while ensur-

ing stable dump construction. In this dissertation, a simulation-based optimization 

approach is suggested as a solution strategy.  
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Shishvan, M. S., & Benndorf, J. (2014). Performance optimization of complex continuous mining 

system using stochastic simulation. Paper presented at the Engineering Optimization IV, 

LISBON, PORTUGAL. 

Benndorf, J., Yueksel, C., Shishvan, M. S., Rosenberg, H., Thielemann, T., Mittmann, R., Donner, R. 

(2015). RTRO–Coal: Real-Time Resource-Reconciliation and Optimization for Exploitation of 

Coal Deposits. Minerals, 5(3), 546-569. 

Shishvan, M. S., & Benndorf, J. (2016). The effect of geological uncertainty on achieving short-term 

targets: A quantitative approach using stochastic process simulation. Journal of the Southern 
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Section 3.1, Section 3.4, and Section 3.5: 

Shishvan, M. S., & Benndorf, J. (2017). Operational Decision Support for Material Management in 

Continuous Mining Systems: From Simulation Concept to Practical Full-Scale Implementa-

tions. Minerals, 7(7), 116. doi: 10.3390/min7070116. 
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Shishvan, M. S., & Benndorf (2017). A Simulation-based Optimization Approach for Material Dis-

patching in Continuous Mining Systems. Under review at European Journal of Operational 
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3.1. INTRODUCTION  

In this dissertation the terms system, model, and simulation will be used. To 

guide the reader, upfront definitions and explanations are provided. 

A system is defined to be a collection of entities that act and interact together 

toward the achievement of some logical end. This definition was proposed by 

Schmidt and Taylor (1970). In practice, what is meant by “the system” depends on 

the objectives of a particular study. 

Modeling is the process of producing a simplified representation of a complex 

system of interest. Such a simplified version of a system is called a model. A model 

constructs a conceptual framework that describes a system and enables the analyst 

to predict the effect of changes to the system (Maria, 1997). Modeling is a construc-

tive activity and the challenge is to capture all relevant details and to avoid unnec-

essary features. This raises the natural question of whether the model is good 

enough from the point of view of the requirements implied by the project goals (Birta 

and Arbez, 2013). 

A simulation is the imitation of the system’s operation. It is used to answer 

What-if-questions. It can be used before an existing system is changed or a new sys-

tem built, to reduce the chances of failure to meet specifications, to eliminate unfore-

seen bottlenecks, to prevent under or over-utilization of resources, and to optimize 

system performance (Maria, 1997).  

A simulator can be introduced as a device that replicates the operational fea-

tures of some particular system. The fundamental requirement of any simulator is 

the replication (Birta and Arbez, 2013). 

In general, a model intended for a simulation study is a mathematical model. 

Mathematical model classifications consist of deterministic (input and output varia-

bles are fixed values) or stochastic (at least one of the input or output variables is 

probabilistic); static (time is not taken into account) or dynamic (time-varying inter-

actions among variables are taken into account), Figure 3.1. Typically, simulation 

models are stochastic and dynamic (Kelton and Law, 2000). Based on a system spec-

ification formalism, Kelton and Law (2000) categorized dynamic models into two 

types, discrete and continuous. A discrete model changes instantaneously in re-

sponse to certain discrete events. A continuous model is based on differential equa-

tions and attempt to quantify the changes in a system continuously over time in re-

sponse to controls. From now on, the term model refers to the stochastic discrete 

model (the highlighted box in Figure 3.1). The next section reviews literature on sto-

chastic simulation and its applications.  



Methodological Approach 21 

 

3 
 

Figure 3.1. System model taxonomy (reproduced after Kelton and Law (2000)). 

3.2. STATE OF THE ART IN STOCHASTIC SIMULATION 

The usability of two particular simulation methods will be investigated within 

this dissertation including geostatistical simulation and discrete-event simula-

tion (DES). This section reviews recent developments documented in literature for 

both. Concluding gaps are identified and the progress beyond state-of-the-art within 

this chapter defined. 

3.2.1. GEOSTATISTICAL SIMULATION FOR LIGNITE DEPOSITS 

Estimated models, such as generated by inverse distance weighting or Kriging, 

describe the spatial distribution of coal attributes and can be considered to be good 

locally. However, they also exhibit a smoothing effect and do not offer realistic un-

certainty measures. To account for variability and grade uncertainty, methods of 

conditional simulation have increasingly been applied in geostatistical modeling 

over the last two decades (Chiles and Delfiner, 2012, Dimitrakopoulos, 1998, 

Srivastava, 2013). Conditional simulation is a Monte-Carlo-Simulation-based tech-

nique that allows for generating multiple possible models or scenarios of the deposit 

based on the information available, usually exploration drill holes. Each model is 

called a realization; it reproduces available data and information, statistics and spa-

tial variability. In terms of geostatistics, the generated models reproduce the repre-

sentative data histogram and the variogram. A commonly used method for generat-

ing these models is Sequential Gaussian Simulation (SGS) (Goovaerts, 1997). Re-

cently, a method was introduced to update coal quality models based on online 

senor data, which allows to decrease uncertainty of prediction significantly 

(Wambeke and Benndorf, 2017, Yueksel et al., 2017). 

Figure 3.2 shows a comparison between models generated by interpolation and 

simulation for a multi-seam coal deposit (Benndorf, 2013a). A visual inspection of 

the models illustrates the differences very well. The interpolated model suggests a 
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very smooth seam geometry and distribution of calorific value; however, this 

smoothness does not represent what was found in the data. Essentially, this smooth 

behavior does not represent reality. The two simulated models exhibit features in-

ferred from data, namely the variability. Each realization captures the global struc-

ture of the deposit but exhibits a different behavior at a local scale. 

Analyzing the spread of values from different realizations at a location, say a 

mining block, allows for quantifying uncertainty in prediction and inferring proba-

bilities of exceeding certain thresholds. Various case studies about the value added 

when using conditional simulation techniques in coal mining, in particular in re-

source/reserve evaluation and long-range planning, are documented in the literature 

(e.g. (Costa et al., 2000, Jurek et al., 2013, Falivene et al., 2014, Naworyta et al., 2015));  

The focus of this dissertation is rather on discrete-event simulation and the in-

tegration with geostatistical simulation. Dowd and Dare-Bryan (2005) explored the 

general concepts of the integration of geostatistical simulation within the entire de-

sign and production cycle. The authors illustrated these concepts with particular ref-

erence to blast modeling. For the latter, the interested reader will find more detailed 

information in the mentioned literature references. 

 

Figure 3.2. Comparison between deposit models based on interpolation and simu-

lation in geostatistics (Benndorf, 2013) 
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3.2.2. THE USE OF DISCRETE-EVENT SIMULATION FOR MINING SYSTEMS 

Techniques of stochastic process simulation, whether discrete, continuous or 

combined, are stated to provide a powerful tool for measuring performance indica-

tors of complex systems associated with some sort of randomness (Kelton and Law, 

2000). In the past decades, there has been a large development in applications of 

process simulation in the mining industry. Manula and Rivell (1974) attempted to 

develop a comprehensive model of a coal mine taking into account the environmen-

tal, geological, material handling, support and other sub-systems. The result was the 

simulation program Under-ground Generalised Materials Handling System 

(UGMHS). The objective of their model was to study the behaviour of the system to 

gain insight into the problem of safety and productivity and validate experimental 

conclusions. Michalopoulos and Topuz (1985) used an event-oriented model to sim-

ulate mines that are operating with the long-wall method. The model deals with coal 

mining machines, transportation system, and roof support units. Failures of equip-

ment were taken into account. Lebedev and Staples (2002) demonstrated the appli-

cation of simulation modeling for designing the entire material handling system of 

a new underground mine using commercial simulation software. Salama et al. (2013) 

studied a combination of discrete event simulation and Mixed Integer Programming 

(MIP) as a tool to improve decision making in underground mining. The proposed 

method uses the simulation approach to evaluate the operating costs of different 

haulage system scenarios. The cash flows generated assessing different scenarios are 

the input into the MIP model. Baafi and Ataeepour (1996 ), Jaoua et al. (2012), Askari-

Nasab et al. (2012), Askari-Nasab et al. (2014) use discrete event simulation to inves-

tigate a truck-shovel system of discontinuous open pit mines. The process simula-

tion method is used to optimize the truck fleet size for the system. Only a few studies 

have been done in the field of continuous mining systems. Panagiotou (1983) de-

scribes the application of the simulation program SIMPTOL for opencast lignite 

mines that use BWEs, conveyors and stackers. The main objective is to select and 

match the equipment to fit material characteristics while meeting production re-

quirements and mine profiles. Michalakopoulos et al. (2005) present the simulation 

model of an excavation system at a multi-level terrace mine using the GPSS/H sim-

ulation language. The principal model output variables are production and arrival 

rate at the transfer point of mineral and waste. Fioroni et al. (2007) apply discrete 

tools for simulation of continuous behavior for modeling of the conveyor belt net-

work in a large steelmaking plant. The authors proposed a modeling approach of 

the flow process in which portions of materials are treated as discrete entities in sim-

ulation modeling. The results demonstrated that this technique was valid and suc-

cessful. Roumpos et al. (2014) applied process simulation to estimate the initial belt 

conveyor system exiting point on the mine perimeter. This rough estimation is used 
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together with an optimization algorithm to find the optimal location of the distribu-

tion center of the belt conveyor system in continuous mining systems. Later on 

Michalakopoulos et al. (2015) utilized a commercial simulation software to simulate 

the Kardia Field mine in Greece. Validation of the results illustrates an acceptable 

agreement with the actual data.  

3.2.3. ANALYSIS OF LITERATURE & PROGRESS WITHIN THE STATE-OF-THE-ART 

The reviewed literature demonstrated that stochastic process simulation can be 

successfully used as decision support during equipment selection, system design 

and mine planning. In the above applications, estimated deposit models were used 

as input ignoring geological uncertainty. The investigation of the impact of geologi-

cal uncertainty on the performance of continuous mining systems in combination 

with random system breakdowns has not yet been studied in detail. To account for 

this gap, Chapter 4 presents a new stochastics-based mine process simulator focus-

ing on the effects of geological uncertainty and unscheduled breakdowns of equip-

ment. Furthermore, among these studies, little research to date has focused on the 

application of simulation modeling as a powerful operational decision support tool 

in material management. To the best of our knowledge, there are no comprehensive 

works in bridging simulation concept to the practical implementation in large con-

tinuously operating mines. This gap will be investigated in Chapter 5.  

Next, a formalized description of the simulation approach is provided. Then, 

steps of a simulation study are discussed. The verification and the validation steps 

are elaborated in more detail.  

3.3. FORMAL DESCRIPTION OF STOCHASTIC SIMULATION IN 

CONTINUOUS MINING SYSTEMS  

As stated in the second research objective, an algorithmic approach should be 

developed. The following presents the developed formal description of stochastic 

simulation in continuous mining systems. After a declaration of variables, the focus 

is on describing general Key Performance Indicators (KPIs) for continuous mining 

systems, which will be used to evaluate different planning variants. Decision and 

control options for short-term mine planning and production control are explained. 

The link between KPIs and operational decisions is complex and may not be explic-

itly described by an analytical relation, in particular when the interest is in uncer-

tainty (Gosavi, 2003). This link will be provided by the discrete-event mining process 

simulation combined with geostatistical simulated deposit models. First, sets and 

indices are defined.  
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Sets 

 N : set of key performance indicators, KPIs; 

 T : set of extraction periods; 

 MT : set of types of materials; 

 Q: set of critical coal quality parameters; 

 E : set of excavators; 

 R : set of simulation replications. 

Indices 

 t T : index of mining periods, {1, 2, 3, …, Tmax }; 

 mt MT : index of types of materials, {1, 2, 3, …, MTmax }; 

 q Q : index of coal quality parameters, {1, 2, 3, …, Qmax }; 

 e E : index for excavators, {1, 2, 3, …, Emax }; 

 n N : index for KPIs,  {1, 2, …, Nmax }; 

 r  R : index of simulation replications, {1, 2, …, Rmax }. 

3.3.1. EVALUATION FUNCTION  

The simulation approach is designed to quantify a value representing the level 

of achievements towards several defined targets. This value will subsequently be 

called the evaluation function value, Equation (3.1). Since there are multiple objec-

tives, a representative value can be obtained by summing up the weighted system 

KPIs, which are defined hereafter. The weights indicate the importance of the corre-

sponding KPI; they can be adjusted by the user as required. 

𝐽 =
1

𝑅𝑚𝑎𝑥
∑∑∑𝐶𝑛𝑡 ∙ 𝐽𝑛𝑡

𝑟

𝑛∈𝑁

,

𝑡∈𝑇𝑟∈𝑅

 (3.1) 

where, 𝐽𝑛𝑡
𝑟  is the merit of the nth KPI at time t and replication r and Cnt represents the 

related weight. To incorporate the effect of stochastic components, the evaluation 

function is evaluated as a mean value over a set of replication R. Alternatively, a 

distribution of the evaluation function can be derived by calculating a histogram 

from values corresponding to different replications.  

A different approach for evaluating a certain outcome of a simulation model 

run with respect to multiple KPIs is to use the Pareto concept (e.g. Branke et al., 

2008). The outcome defines a Pareto point in an Nmax - dimensional space, which can 

be compared to other outcomes based on other decision variables by means of a Pa-

reto frontier. This way of multi-objective evaluation can be of particular interest for 

finding better decision variables using simulation-based optimization. It is not fur-

ther discussed in this dissertation.  
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3.3.2. KEY PERFORMANCE INDICATORS, KPIS  

KPIs should be defined to measure process performance with respect to previ-

ously defined objectives or targets. Generally, for production control of continuous 

mining systems, meeting the coal quality and quantity targets, compliance with the 

long-term plan, effective capacity, specific energy usage, or utilization of the equip-

ment can be of interest to the mining industry. In this contribution, the focus is on 

three of these KPIs: meeting the coal quality targets, the coal quantity targets, and 

utilization of equipment. These will be described in detail in the next sub-section.  

3.3.2.1 COAL QUALITY KPI 

Meeting quality specifications of coal is most critical in lignite extraction. To 

reach high efficiencies in the downstream processes, e.g. high efficiency in the power 

plant, multiple coal quality parameters have to be delivered within predefined tar-

get ranges. These coal quality parameters can include the calorific value, ash content, 

sulfur content, iron (Fe2O3) content in the ash, or moisture of the coal. Deviating from 

these targets may result in costs. To evaluate a short-term mine plan with respect to 

coal quality, a penalty function is introduced quantifying this KPI, which associates 

a cost to deviations from upper or lower coal quality limits.  

Equation (3.2) defines the KPI related to penalties for deviating from minimum 

and maximum values of quality targets for different types of extracted materials. It 

sums up all deviations from production targets over all defined time periods t, for 

all coal products mt for a replication r.  

𝐽1𝑡
𝑟 = ∑ ∑ [

𝑚𝑎𝑥 (0, (𝐶𝑄𝑡
𝑞,𝑚𝑡,𝑟

− 𝑇𝑄𝑚𝑎𝑥,𝑡
𝑞,𝑚𝑡

)) 𝐶𝑑𝑞,𝑢
𝑚𝑡

+𝑚𝑎𝑥 (0, (𝑇𝑄𝑚𝑖𝑛,𝑡
𝑞,𝑚𝑡

−𝐶𝑄𝑡
𝑞,𝑚𝑡,𝑟

)) 𝐶𝑑𝑞,𝑙
𝑚𝑡
] 𝐶𝑇𝑡

𝑚𝑡,𝑟

𝑞 ∈ 𝑄

,

𝑚𝑡 ∈ 𝑀𝑇

 

𝑓𝑜𝑟 𝑡 = 1,… , 𝑇𝑚𝑎𝑥, r = 1,… , 𝑅𝑚𝑎𝑥, 

(3.2) 

where, 𝐶𝑇𝑡
𝑚𝑡,𝑟 is the coal tonnage of product mt in tons, mined in period t and related 

to replication r, and 𝐶𝑄𝑡
𝑞,𝑚𝑡,𝑟 represents the coal quality parameter q of product mt in 

grade units, mined in period t and related to replication r. Both are evaluated by the 

simulator for each replication. The simulator provides the link between the set of 

chosen decision variables and the tonnage and quality produced by evaluating the 

whole extraction process mapped in the discrete-event simulation model.  

𝑇𝑄𝑚𝑎𝑥,𝑡
𝑞,𝑚𝑡  and 𝑇𝑄𝑚𝑖𝑛,𝑡

𝑞,𝑚𝑡  are maximum and minimum target values of coal quality 

parameter q of product mt, mined in period t in grade units, and 𝐶𝑑𝑞,𝑢𝑚𝑡  and 𝐶𝑑𝑞,𝑙
𝑚𝑡are 

costs related to deviations from upper and lower quality targets in €/(grade unit and 

ton) for material type mt at time t and replication r. These parameters are defining 
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the penalty function, which can be for example part of a contract between the mine 

and the customer.  

3.3.2.2 COAL QUANTITY KPI 

Contractually defined quantities of coal to be delivered have to be ensured on 

a day-by-day basis. Even when having a stockpile as a buffer, on a day-by-day basis 

production targets should be met. For a given replication r, Equation (3.3) quantifies 

deviations from coal quantity targets and is designed to evaluate if the quantity of 

different types of coal extracted in period t is within predefined ranges of targets. If 

not, penalties apply:  

𝐽2𝑡
𝑟 = ∑ [

𝑚𝑎𝑥 (0, (𝐶𝑇𝑡
𝑚𝑡,𝑟 − 𝑇𝑇𝑚𝑎𝑥,𝑡

𝑚𝑡 )) 𝐶𝑑𝑡,𝑢
𝑚𝑡

+ 𝑚𝑎𝑥 (0, (𝑇𝑇𝑚𝑖𝑛,𝑡
𝑚𝑡 −𝐶𝑇𝑡

𝑚𝑡,𝑟))𝐶𝑑𝑡,𝑙
𝑚𝑡
] 𝐶𝑇𝑡

𝑚𝑡,𝑟

𝑚𝑡 ∈ 𝑀𝑇

,  

𝑓𝑜𝑟 𝑡 = 1,… , 𝑇𝑚𝑎𝑥, 𝑟 = 1,… , 𝑅𝑚𝑎𝑥, 

(3.3) 

where, 𝐶𝑇𝑡
𝑚𝑡,𝑟 (tonnes) is coal tonnage related to replication r, (𝑇𝑇𝑚𝑖𝑛,𝑡

𝑚𝑡 , 𝑇𝑇𝑚𝑎𝑥,𝑡
𝑚𝑡  (tonnes)) 

are the minimum and maximum of target tonnage and (𝐶𝑑𝑡,𝑢
𝑚𝑡, 𝐶𝑑𝑡,𝑙

𝑚𝑡 (€/tonne)) are the 

costs of deviation from the target tonnage for upper and lower values of material 

type mt at time t and replication r.  

3.3.2.3 UTILIZATION KPI 

A representative measure of the extraction system’s utilization can be derived 

from the utilization of excavators (Equation (3.4)). This is because excavators are al-

ways located at the first point in the production chain. If any subsequent element of 

the system is broken down, they stop operating.  

𝐽3𝑡
𝑟 = ∑ [1 −

𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑒,𝑡,𝑟

𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑
𝑒,𝑡 ]

𝑒 ∈ 𝐸

,                 𝑓𝑜𝑟 𝑡 = 1,… , 𝑇𝑚𝑎𝑥, r = 1, … , 𝑅𝑚𝑎𝑥, (3.4) 

where, 𝑇𝑎𝑐𝑡𝑖𝑣𝑒
𝑒,𝑡,𝑟  (hours) is the actual producing time, 𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑

𝑒,𝑡  (hours) is the scheduled 

time. In this way, 𝐽3𝑡
𝑟  provides an average percentage deviation from scheduled op-

erating time, considering all excavators. In case of different weighting of excavators 

due to different priority, a corresponding weighting factor could be introduced. The 

difference between actual producing time and scheduled time may be caused by:  

 movements of equipment and positioning (changing slices or blocks to extract),   
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 dispatching purposes, such as changing the destination at the mass distribution 

center, or 

 unscheduled breakdowns.  

The first item is an operational requirement and may be estimated with a rea-

sonable accuracy. The second item is directly linked to geological uncertainty and 

accounts for the fact that different material has to be transported to different desti-

nations. The dispatching action induces a delay since the conveyor configuration has 

to be changed. If we would know the geology perfectly, then this type of delay could 

be quantified with 100% certainty prior to operation. The third item, unscheduled 

breakdowns, is related to uncertainty that is associated with operational behavior of 

equipment.  

3.3.3. CONSTRAINTS  

Every mining operation faces a number of technical and physical constraints. 

For the presented approach, these are directly applied in the simulation model and 

are not discussed in detail. However, with respect to the extraction sequence in con-

tinuous mining, one special constraint will be stated, which is an addition to the 

typical access constraints known from shovel-and-truck operations.   

Using long stretched belt conveyors imposes an additional constraint. The con-

veyor on a particular bench can only be moved to the next position, if all the blocks 

in one pass are mined out. The Conveyor belt shifting constraint is schematically 

shown in Figure 3.3.  

 

Figure 3.3. The conveyor belt shifting constraint: the conveyor belt can only be 

shifted from position A to B if all blocks in pass (j-1) are mined.  

3.3.4. DECISION VARIABLES  

The decision variables are a set of quantities that the decision maker controls. 

Decision variables are used as input variables in the discrete-event simulation 
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model. They represent typical decisions on short-term planning and production con-

trol in a continuous surface mining operation. Some of the decision variables in-

clude:  

 extraction sequences: sequence of extracting mining blocks for each excavator, 

 task schedules: different alternatives for short-term mine plans (daily/ weekly/ 

monthly),  

 planned extraction rate of excavators in the different time spans, or 

 stockpile management in terms of the definition of stacking and reclaiming strat-

egies or dividing the stockpile into sub-pockets. 

The next section presents a set of steps that should be followed in a simulation 

study.  

3.4. STEPS OF SIMULATION MODELING 

Figure 3.4 presents a set of steps that will be followed in this study for develop-

ing a simulation model, designing experiments, and performing simulation analysis 

(Banks, 1998).  

1. Problem formulation: The statement of the problem must provide the descrip-

tion of the purpose for building the model.  

2. Setting of objectives and overall project plan: The defined objectives indicate the 

questions that are to be answered by the simulation study. Different scenarios 

that will be investigated should be included in the project plan.  

3. Conceptual model: The system under study is abstracted by a conceptual model. 

In this dissertation, the conceptual model is a series of logical relationships con-

cerning the components (e.g., excavators, spreaders, conveyor belts, etc.) and the 

structure (system topology) of the case study.  

4. Data collection: This stage includes tasks of gathering as much data as possible 

about the system under study. The model parameters and input probabilities to 

be used in the model will be defined. Model building and data collection are 

shown as concurrent in Figure 3.4. The simulation modeler can construct the 

model while data collection is progressing.  

5. Model translation: The constructed conceptual model in Step 3 is converted to 

an operational model. This step can be carried out using simulation software 

like Arena® (Rockwell Automation Technologies, Inc. 2012). The main tasks in 

this phase are the coding, debugging, and testing the operational model. 

6. Verification of the model: This stage compares the output results of the opera-

tional model with those that would have been produced by a correct implemen-

tation of the conceptual model. 
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7. Validation of the model: This stage compares the outputs of the verified model 

with the outputs of the real system. It determines that the conceptual model is 

an accurate representation of system under study. If the system under study is 

an industrially relevant environment, in this step, TRL 6 will be achieved. 

8. Documentation: All necessary information with the results of the analysis step 

should be documented. 

 

Figure 3.4. Steps in a simulation study (reproduced after (Banks, 1998)). 
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To understand the theory behind some steps, the following section elaborates 

on the verification and the validation steps.  

3.5. VERIFICATION, VALIDATION, AND EVALUATION MEASURES 

One of the most difficult problems facing a simulation analyst is that of trying 

to determine whether a simulation model is an accurate representation of the real-

world system. This section presents definitions, techniques, and steps of verification 

and validation (Kelton and Law, 2000). 

 Verification: determination of whether the conceptual model has been correctly 

translated into a computer program. 

 Validation: determination of whether a simulation model is an accurate repre-

sentation of the system.  

The chronological relationships of the validation and the verification are shown 

in Figure 3.5. The rectangles in part (a) of the figure represent states of the system 

under study, the solid horizontal arrows correspond to the actions necessary to 

move from one state to another, and the curved arrows show where the two major 

concepts are most prominently employed. The whole calibration process is mostly a 

trial-and-error procedure.  

 

Figure 3.5. The applied approach for validation process (Reproduced after (Kelton 

and Law, 2000)).  

The most definitive test of a simulation model's validity is to establish that its 

output result closely resembles the output result of the actual system. If the two sets 
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of results compare “closely,” then the model of the existing system is considered 

“valid”. Part (b) in Figure 3.5 shows the applied approach in this study. The model 

is then modified so that it represents the proposed system. The greater the common-

ality between the conceptual model and real-world system is, the greater our confi-

dence in the proposed model (Kelton and Law, 2000). 

In this study, quantitative techniques are used to compare the output results of 

the simulation model with output results of the real system. Following evaluation 

measures are defined: bias, average deviation, and relative error.  

 Bias: refers to the tendency of a measurement process to over- or under-estimate 

the value of a population parameter. The bias can be defined by Equation (3.5) 

as the sum of differences between all predicted and actual KPI values over all 

n predicted time intervals:  

BIAS =∑(KPIsimulated − KPIactual)

n

. (3.5) 

 Average deviation: is one of several indices of the prediction error. Within this 

study, it is defined as the mean absolute deviation between all predicted and 

actual KPI-values over all n predicted time intervals: 

AVERAGE DEVIATION =
1

n
∑|KPIsimulated − KPIactual|

n

. (3.6) 

 Average relative error: the relative error is the absolute error (average devia-

tion) divided by the magnitude of the actual value. Within this study, it is de-

fined as: 

AVERAGE RELATIVE ERROR =
1

n
∑
|KPIsimulated − KPIactual|

KPIactual
n

. (3.7) 

3.6. SIMULATION MODELING SOFTWARE 

The software selected to implement the simulation model is Rockwell ARENA® 

(Rockwell Automation Technologies, Inc. 2012), which allows closely reproducing 

the behavior of the complex real systems with complicated decision logic (Kelton 

and Law, 2000). The proposed simulation model of the continuous mining system is 

intended to reproduce the operation behavior in a real opencast coal mine. The ex-

traction and conveying processes of the lignite and the waste are emulated in a com-
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bined discrete-continuous stochastic environment. This gives the possibility to rec-

reate the deterministic and/or random occurrences of events such as operating stop-

pages, which are caused by unavailability of spreaders or conveyor belts, equipment 

failures, and preventive and corrective maintenance activities.  

So far, a theoretical background to the stochastic simulation modeling process 

has been provided. The rest of the chapter will discuss the possibilities of coupling 

simulation and optimization, state of the art, and the proposed simulation-based op-

timization platform. 

3.7. COUPLING SIMULATION TO OPTIMIZATION 

Simulation–optimization is a method that stems from the rapid and successful 

development of simulation and optimization techniques. The idea is to discover sim-

ultaneously the great detail provided by simulation and the capability of optimiza-

tion techniques to find good or optimal solutions (Fu, 2002). The possibilities of cou-

pling simulation and optimization are vast and the appropriate approach highly de-

pends on the problem characteristics. Thus, before all, it is very important to have a 

good overview of the different approaches.  

In the literature, different criteria are used to classify simulation-optimization 

approaches. Fu (1994) distinguished them based on properties of the optimization 

problem. The author separately discusses the discrete and the continuous parameter 

cases including techniques for optimization, however, the focus of the paper is on 

the latter. Some discriminated simulation–optimization methods by the applied 

techniques, e.g. gradient approaches, stochastic optimization, heuristics, statistical 

methods, etc., (Carson and Maria, 1997, Andradóttir, 1998, Fu, 2001, Ammeri et al., 

2011). Banks et al. (2005) classified the approaches by their algorithms into four cat-

egories; approaches that (i) guarantee asymptotic convergence, (ii) guarantee opti-

mality, (iii) guarantee a pre-specified probability of correct selection from a set of 

alternatives, or (iv) are based on heuristics. Fu (2002) considered the purpose of the 

stochastic simulation in the overall design as a key criterion. Based on this criterion 

the approaches are categorized into two main categories namely, “optimization for 

simulation” and “simulation for optimization”. Fu (2002) stated that their relation is 

not an equal partnership, but a subservient one. The former uses the optimization 

routine as an add-on to suggest candidate solutions to the simulator. The latter, in 

contrast, uses stochastic simulation to generate scenarios for math programming for-

mulations from a set of possible realizations. However, the author has not discussed 

it further in the paper. Other classifications focus on the problem characteristics such 

as objective functions (e.g. single or multiple objectives), solution space (e.g. discrete 

or continuous), or shape of the response surface (e.g. global or local optimization) 

(Tekin and Sabuncuoglu, 2004, Barton and Meckesheimer, 2006, Ammeri et al., 
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2011). Recently, a comprehensive taxonomy for simulation–optimization methods 

was proposed by (Figueira and Almada-Lobo, 2014). The authors classified the sim-

ulation-optimization approaches based on four key dimensions: Simulation Pur-

pose, Hierarchical Structure, Search Method, and Search Scheme. The first two are 

related to different ways in which simulation and optimization interact, whilst the 

other two concerned with the design of the search algorithm. The authors claim that, 

considering these four dimensions (and their full spectrum), they were able to cover 

the complete range of simulation–optimization methods and distinguish them in at 

least one dimension. Based on the Simulation Purpose, they distinguished three ma-

jor streams as follows: 

 Solution Evaluation (SE): Here, simulation is used to evaluate solutions and 

hence assess the response surface.  

 Analytical Model Enhancement (AME): Simulation is used to enhance a given 

analytical model, either by refining its parameters or by extending it (e.g. for 

different scenarios). 

 Solution Generation (SG): Simulation generates the solution based on the opti-

mization output. 

Based on the Hierarchical Structure, Figueira and Almada-Lobo (2014) categorized 

the simulation-optimization methods into four classes namely: 

 Optimization with simulation-based iterations – in all (or part) of the iterations 

of an optimization procedure, one or multiple complete simulation runs are per-

formed, see Figure 3.6-a. 

 Alternative simulation-optimization – both components run alternatingly, see  

Figure 3.6-b. 

 Sequential simulation-optimization – both components run sequentially (either 

optimization following simulation or the opposite), see Figure 3.6-c. 

 Simulation with optimization-based iterations – in all (or part) of the iterations 

of a simulation process, a complete optimization procedure is performed, see 

Figure 3.6-d. 

 

Figure 3.6. Four classes of simulation-optimization based on Hierarchical Struc-

ture, (Figueira and Almada-Lobo, 2014). 
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The categories defined for Search Method dimension are aligned with the major 

dichotomies in optimization problems such as exact vs heuristic; and continuous vs 

discrete (or combinatorial). Finally, in the Search Scheme the sequence of solutions 

and realizations are concerned, i.e. deterministic and stochastic problems are distin-

guished.  

3.8. LITERATURE REVIEW ON THE APPLICATION OF SIMULATION-

OPTIMIZATION 

In the field of mining, little research to date has been carried out in the simula-

tion-based optimization method. Mena et al. (2013) presented simulation and opti-

mization modeling framework for allocating trucks by route based on their operat-

ing performance. In their optimization problem, equipment availability is a variable 

and the objective is to maximize the overall productivity of the fleet. Their compu-

tational cycle is such that the optimization model provides an initial set of decision 

variables. During the simulation run, when specific events (e.g. failure of a truck, 

etc.) occur, the optimization model is called to provide a new set of variables to the 

simulation model. Nageshwaraniyer et al. (2013a) proposed a two-level hierarchical 

simulation-based planning framework to maximize the revenue in each shift in one 

of the largest coal mine in the world. Trucks and trains system are used for the trans-

portation of the material. Their framework reduces the decision space by separating 

the problem into sub-problems. These sub-problems are then solved such that the 

lower-level problems (the machinery scheduling problem) are constrained by the 

solution of the preceding higher-level problem (train-loading problem). In another 

study, Nageshwaraniyer et al. (2013b) investigated a robust simulation-based opti-

mization approach for a truck-shovel system in surface coal mines. The objective is 

to maximize the expected value of revenue obtained from the delivered trains to 

customers. The Response Surface Method (RSM, (Jones, 2001)) is applied to define 

the variance expression of the objective function under different parameter settings 

of the simulation model. To obtain robust solutions, the authors added the variance 

expression as a constraint to the formulation of the optimization model.  

Since there are few applications of the simulation-optimization approach in 

mining, it seems wise to focus on related fields, such as supply chain management, 

process system engineering, and scheduling of manufacturing environments to 

build upon their findings.  

A supply chain management problem under demand uncertainty was pre-

sented by Jung et al. (2004) whereby safety stock levels were determined using a 

simulation-based optimization method in a rolling horizon manner. Their proposed 

approach consists of running alternatingly a deterministic planning model and a 
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stochastic Monte-Carlo based simulation model in a loop structure. Their algorithm 

ends when the difference between the estimation and the target values of the cus-

tomer satisfaction level is equal to very small number. Wan et al. (2005) present an 

extension to the proposed simulation-based optimization framework for analyzing 

supply chains. The extension consists of the iterative construction of a surrogate 

model based on simulation results. The model captures the relation between the de-

cision variables and the performance of the supply chain. Instead of individual sim-

ulation runs, the decision variables can then be optimized using the surrogate 

model. The authors claim that the proposed framework can generally obtain better 

solutions with a smaller number of simulation runs. The framework can also readily 

handle chance constraints and does not present serious scale-up problems. Truong 

and Azadivar (2003) developed a hybrid optimization approach to address the sup-

ply chain configuration design problem. Their approach combines simulation, 

mixed integer programming and a genetic algorithm. The genetic algorithm pro-

vides a mechanism to optimize qualitative and policy variables. The mixed integer 

programming model reduces computing efforts by manipulating quantitative vari-

ables. Finally, simulation is used to evaluate performance of each supply chain con-

figuration with non-linear, complex relationships, and under assumptions that are 

more realistic. Yoo et al. (2010) used discrete-event simulation to improve the effi-

ciency of the supply chain optimization. This is done with the application of Nested 

partitioning (NP; global random search) and optimal computing budget allocation 

(OCBA; statistical selection). A general framework using a combination of simula-

tion and optimization is presented by Almeder et al. (2009) to support operational 

decisions for supply chain networks. The authors claim that results are competitive 

and the method is faster compared to conventional methods. Othman and Mustaffa 

(2012) reviewed simulation and optimization methods applied in supply chain man-

agement. 

Inventory optimization is one of the important topics in supply chain manage-

ment. Köchel and Nieländer (2005) presented the application of the simulation opti-

mization approach in multi-echelon inventory models. The search process in the op-

timization model is done by repeated processing of four stages using a genetic algo-

rithm. The objective is to define optimal policies for the defined system. Lately, Chu 

et al. (2015) proposed a simulation-based optimization framework to optimize multi-

echelon inventory systems under uncertainty. The framework is composed by agent-

based modeling, simulation, the Monte-Carlo technique, a cutting plane algorithm, 

an experimental design technique, and statistical hypothesis tests. For the given in-

ventory parameters, the agent-based model simulates the performance measures. 

The output of the model forms the objectives and the constraints of the optimization 
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problem. The functions expectations in terms of sample averages are estimated us-

ing the Monte-Carlo method. After that, an iterative cutting plane algorithm is used 

to solve the optimization problem. When a solution passes the hypothetical tests, it 

can be considered as a local optimal solution. Subramaniam and Gosavi (2007) ex-

amined a problem related to replenishing inventories at retailers in distribution net-

works operated under the paradigm of Vendor-Managed Inventory (VMI). A simu-

lation-optimization approach is developed to minimize the average cost per unit 

time of operating the entire system. A combination simultaneous perturbation (SP) 

and simulated annealing (SA) is integrated to a discrete-event simulation. Jalali and 

Van Nieuwenhuyse (2015) reviewed and classified the applied simulation-optimi-

zation methods for the inventory management problem.  

The scheduling problem in manufacturing environments is another related 

field of interest. Hierarchical production planning creates a bridge between the long-

term plans and short-term schedules. It has been applied in different problems such 

as a multi-plant production planning, planning of semiconductor wafer fabrication, 

flexible manufacturing system, a make-to-order environment, etc. (Venkateswaran 

and Son, 2005, Bang and Kim, 2010, Albey and Bilge, 2011, Gansterer et al., 2014). 

Lim et al. (2006) studied a production-distribution plan taking into account a multi-

facility, multi-product, and multi-period problem. Their solution procedure for pro-

duction-distribution planning consists of a mathematical solution procedure and a 

simulation solution procedure. First, the mathematical procedure is solved to decide 

the capacities of facilities and then outputs from this procedure are used to set the 

values of the inputs in the simulation procedure. The simulation procedure gener-

ates outputs, such as the production-distribution plans, as well as performance 

measures. If the outputs do not satisfy the required level, the replenishment policy 

in the factory and DC stages will be changed for the procedure. This approach con-

tinues iteratively until the desired optimal solutions are obtained. For a cooperative 

transportation problem, Sprenger and Mönch (2012) suggested a heuristic method 

using ant colony optimization combined with stochastic simulation. Discrete-event 

simulation is used to assess the method in a rolling horizon setting. Aqlan et al. 

(2014) applied simulation-optimization in the consolidation of production lines in a 

configure-to-order production environment. On one hand, the method uses MIP 

model to minimize transportation cost and waiting time. On the other hand, simu-

lation provides recommendations and supports the decision-making. Lin and Chen 

(2015) studied the problem related to a real-world semiconductor back-end assem-

bly facility. Simulation combined with a genetic algorithm is used to solve a hybrid 

flow-shop scheduling problem.  

Subramanian et al. (2001) tackled a stochastic optimization problem in the con-

text of R&D Pipeline management. The problem is an optimal resource-constrained 
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project selection and task-scheduling problem in the face of significant uncertainty. 

They proposed a two-layer simulation-based optimization approach. The inner loop 

consists of a process optimizer, a process simulator, and a trigger event module. The 

simulator starts with an initial solution. When the simulation module encounters a 

need for control actions, it momentarily suspends itself and communicates the state 

of the system to the decision making module. The optimizer solves a combinatorial 

problem that is appropriately modified to account for the current system state. After 

that, the simulation is re-primed and it continues marching in time until its subse-

quent need for a control action. The outer loop (Subramanian et al., 2003) modifies 

the problem formulation, based on the knowledge obtained from the inner loop. It 

attempts to drive the controlled trajectories in the inner loop toward improving so-

lutions with respect to probability distribution of the NPV in the system. “Sim-Opt” 

architecture (Figure 3.7), which is introduced by Subramanian et al. (2003), is applied 

in Chapter 6.  

 

Figure 3.7. The “Sim-Opt” architecture (Subramanian et al., 2001). 

3.9. PROPOSED SIMULATION-BASED OPTIMIZATION PLATFORM 

To decide which methods are of particular interest, the before mentioned prob-

lem characteristics in Chapter 2 need to be considered. The first part of this disserta-

tion develops a simulation model for continuous mining systems from extraction to 

coal stockpiling and waste dumping. As discussed earlier in this chapter, the simu-

lation model captures different sources of uncertainty (e.g. equipment failures, geo-

logical uncertainty) and their interdependencies. Additionally, the simulator inte-

grates decision variables representing decisions to be made in short-term production 

scheduling and therefore can be utilized during the optimization process to suggest 

optimal dispatch decisions to the user. Choices that need to be made might be for 
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instance the equipment’s schedule (connection of BWEs to spreaders), the equip-

ment’s digging/dumping locations, the equipment’s capacities, or the schedule of 

auxiliary actions such as belt shifting. Thus, the optimization and the simulation 

modules need to be alternatingly connected. Moreover, the simulation module al-

ways requires inputs from the optimization module. Taken together, the alternating 

simulation-optimization class (Figure 3.6-b) seems to be more suitable for this prob-

lem. Furthermore, based on the size and the characteristics of the problem, the exact 

search method with stochastic search scheme is recommended.  

 

Figure 3.8. The suggested simulation-based optimization platform (reproduced af-

ter (Halim and Seck, 2011)). 

Figure 3.8 depicts the concept of the suggested platform in this dissertation for 

the simulation-optimization process. Hereafter, this platform is called “simulation-

based optimization” approach (Halim and Seck, 2011). In this approach, the simula-

tion model functions as the evaluator of the objective functions that are to be opti-

mized by the optimization module. The user interface provides the user the flexibil-

ity to set the parameters of the optimization algorithm and the run control of the 

simulation model (the details are discussed in Chapter 6). Once the entire necessary 

configuration has been set, the optimizer will start with initial solutions for which 

evaluations using the simulation are performed. In other words, the optimizer calls 

the simulator and provides a new set of decision variables in each iteration step. The 

simulator simulates the mining operation for the given set of decision variables and 
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based on the results, the system’s KPIs can be estimated. The results of the evalua-

tions are then used by the optimization algorithm to generate new solutions that are 

expected to be better than the previous solutions. This loop continues until the stop-

ping criteria of the optimization algorithm are met.  
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Shishvan, M. S., & Benndorf, J. (2014). Performance optimization of complex continuous mining 

system using stochastic simulation. Paper presented at the Engineering Optimization IV, 

LISBON, PORTUGAL. 

Shishvan, M. S., & Benndorf, J. (2016). The effect of geological uncertainty on achieving short-term 

targets: A quantitative approach using stochastic process simulation. Journal of the Southern 

African Institute of Mining and Metallurgy, 116(3), 259-264.  
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The algorithmic approach to simulate the process of continuous mining systems 

was developed in the previous chapter. This chapter conducts an extensive experi-

ment in a synthetic 2D dataset to quantify the effect of geological uncertainty on 

production performance in terms of coal tonnage produced per coal type, probabil-

ity of meeting quality specifications of coal produced, and system efficiency in terms 

of utilization of major equipment.  

4.1. METHODOLOGY  

To illustrate the effects of geological uncertainty on the performance of a com-

plex continuous mining system using the previously described approach, a case 

study is presented in a completely known and fully controllable environment, a syn-

thetic data set. This allows benchmarking against the ‘ground-truth’. Without loss 

of generality, a selection of two 2D representations of the coal quantity and coal 

quality is chosen, each representing a bench. Each digging block is a 2D rectangle 

limited by the current and upper working bench and contains an amount of waste, 

coal and its qualities. To further demonstrate the benefit of using geostatistical sim-

ulated deposit models, two models were built based on sample data derived from 

the exhaustive data set, one estimated model using Kriging and one consisting of 20 

conditionally simulated realizations using Sequential Gaussian Simulation. The lat-

ter one will allow running 20 replications, as defined in section 3.3. 

The aim is to quantify the effects of geological uncertainty, downtimes, and 

their impacts on the ability to deliver contractually defined coal quantities and qual-

ities. The solution strategy is to combine two simulation concepts: geostatistical sim-

ulation for capturing geological uncertainty and stochastic process simulation to 

predict the large continuous mining system’s performance and reliability.  

4.1.1. EXPERIMENTAL SETUP  

In this example, the mining operation uses six BWEs, which are positioned on 

six benches. The extracted materials are transported by conveyor belts to the mass 

distribution center. Here, they are distributed to their predefined destinations. Fi-

nally, waste materials are conveyed to the dump site and coal to the stockpile yard. 

At the stockpile yard, a simplified Chevron blending strategy is used for blending 

of coal. Afterward, trains deliver coal to customers with contractually defined coal 

quantities and qualities. The following details of the mining operation are assumed:  

 BWE 1 performs pre-stripping and solely extracts waste (sand, gravel, clay) and 

is connected to spreader 2, 

 BWE 2 and 3 extract partly coal and partly waste, which can be sent the both 

spreaders, and 
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 BWE 4, 5, 6 extract coal and waste and have access to spreader 1 and the coal 

bunker. 

The reserve block model contains 93,600 mining blocks. The volume of each 

mining block is about 15,400 m3. The block model is equally divided into six 

benches; each one is assigned as a resource to one excavator (Figure 4.1). As men-

tioned earlier, blocks contain quantity and quality parameters as attributes. Coal 

(green) and waste (dark blue) blocks can easily be seen in Figure 4.1. For demonstra-

tion reasons, the ash value is chosen for this study, acknowledging that the study 

can be performed for any coal quality parameter.   

 

Figure 4.1. Reserve block model and the assigned areas for the excavators. 

Based on the ash value of estimated model, coal blocks are classified in two 

categories, namely coal type 1 and coal type 2. The former is high quality coal with 

an ash content of less than 9% and the latter is low quality coal, with an ash content 

between 9% and 12.5% (see Table 4.1).  

Table 4.1. Technical parameters 

Material types Targets Penalties 

Type Density Max Min Upper Lower 

Coal Quantity  650,000 (T) 700,000(T) 1 15 

Coal Type 1 
1 

Ash content < 9% 1 

Coal Type 2 9% < Ash content < 12.5% 1 
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4.1.2. SIMULATION MODEL CONSTRUCTION 

In this case, the following steps are involved in the simulation modeling of a 

synthetic mine.  

 The first step is to define appropriate entities. Entities are defined as the block 

portions to be extracted in each period.  

 The second step is to assign block attributes. As an entity arrives into the sys-

tem, its attributes consisting of block coordinates (x, y and z), block tonnage, 

block type, quality parameters, and destination are assigned. These attributes 

are read from the geological block model.  

 Subsequently, the entity is placed in a queue to seize on the excavator as a re-

source module in the simulation model.  

 Each entity has a delay based on operating time and will then be released.  

 At the final step, variables such as total waste tonnage, ore tonnage, and corre-

sponding quality parameters such as ash content are calculated. 

A capacity constraint is implemented to prevent overflow of loose material on 

the conveyor belt that is connected to the coal-bunker. Based on the maximum ca-

pacity of the conveyor belts, a constraint of 6000 m3/hour is considered for coal. While 

the production rate exceeds these limits, the model starts to identify the excavators 

that are producing coal. It is decided that the excavator that corresponds to the min-

imum production rate is set to standby.  

Decision variables of this case consist of: 

 Task schedule: A working schedule for a time horizon of 15 days is given in  

Table 4.2. This mine operates 24 hours per day in three working shifts. For in-

stance, the number 110 in the table shows that the associated equipment is avail-

able in the first and the second shifts and is inactive in the third shift.  

Table 4.2. Working schedule of the equipment as a decision variable.  

Type Days 

of equipment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Excavator 1 111 001 111 111 111 111 111 111 111 111 100 111 111 111 111 

Excavator 2 111 111 111 001 111 111 111 111 100 111 111 111 111 111 111 

Excavator 3 111 011 111 001 111 111 111 111 100 111 111 111 111 111 111 

Excavator 4 111 111 111 111 111 111 111 111 111 111 111 111 111 001 111 

Excavator 5 111 111 001 111 111 111 111 111 111 111 100 111 111 111 111 

Excavator 6 111 110 110 111 111 111 111 111 111 111 111 011 111 111 111 

Spreader 1 111 111 111 001 111 111 111 111 001 111 111 111 111 111 111 

Spreader 2 111 001 111 111 111 111 111 111 111 111 001 111 111 111 111 

Conveyor belts 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 
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 Extraction sequence: A constant sequence, which is from one side of the bench 

to the other side is considered. (There are no extra movements for excavators 

during the excavation.)  

 Extraction rate of excavators: Table 4.3 provides the excavation rates of the 

BWEs.  

 Stockpile management: It is assumed that if the stockpile for a specific coal type 

is full, excavator(s) that produce(s) that kind of coal should be idled until open-

ing a space.  

Table 4.3 gives some general information and technical parameters that are 

used for the simulation model building. 

Table 4.3. General information of equipment 

Type 
Theoretical Capacity 

(m3/hour) 

Scheduled Time  

Tscheduled (h) 

Hourly Standby 

Cost (€) 

Excavator 1 4900 328 3000 

Excavator 2 4900 328 3000 

Excavator 3 3770 320 2500 

Excavator 4 1400 344 2000 

Excavator 5 3770 328 2500 

Excavator 6 740 336 1500 

Spreader 1 10,000 328 - 

Spreader 2 10,000 328 - 

Conveyor belts 6000 360 - 

 

4.1.3. INTEGRATED SIMULATION APPROACH 

In this dissertation, combining two simulation concepts as a solution strategy 

for quantifying the effects of geological uncertainty on achieving short-term targets 

is suggested. Figure 4.2 shows the proposed integrated simulation approach. In this 

approach, realizations of the reserve block model based on conditional simulation 

and an interpolated model using Kriging are considered as inputs for the mine pro-

cess simulator. The output of the simulator is the set of values for the measured KPIs. 

At this stage, penalties are applied if deviating from production targets were seen. 

Finally, the KPIs are summarized in an evaluation function (as discussed in Section 

3.3.1). Finally, if multiple simulation replications are evaluated, a probability distri-

bution is constructed, see Figure 4.2. The next section will elaborate on how to model 

or predict random behavior of the equipment in a simulation model.  
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Figure 4.2. The proposed integrated simulation approach. 

4.1.4. STATISTICAL ANALYSIS AND FAILURE MODELING  

To carry out a simulation using random inputs such as breakdowns of equip-

ment, it is necessary to specify their probability distributions. It must be emphasized 

that improper probability distributions can destroy the value of the results that flow 

from a simulation study (Kelton and Law, 2000). The first task is to determine if the 

collected data does indeed belong to a homogenous stochastic process or not. This 

requires two tests: first to determine if the stochastic process is identically distrib-

uted and the second to determine if the constituent random variables are independ-

ent or not. The final task is to fit a theoretical distribution to the collected data (Birta 

and Arbez, 2013). 

In this case, a database consists of six months of the operational data (in total 

over hundred thousand records) is used for modeling the behavior of the equip-

ment. The long-term production data indeed show stationary and independent be-

havior in which the average values within the collected data remain invariant over 

the time.  

Fitting a theoretical distribution that matches time series data obtained from a 

homogenous stochastic process is usually a trial-and-error procedure and begins 

with a histogram developed from the collected data. In this case, two types of un-

scheduled breakdowns of equipment, which are caused by mechanical and electrical 

failures, are considered. Depending on the failure mode, Gamma, Weibull, Uniform, 

etc. distributions were found to fit best. Table 4.4 presents the all used probability 
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distributions of the equipment in the simulation modeling process. These models 

play the role of input failure data to the simulation model. 

Table 4.4. Analyzed failure data. 

Type of equipment Time Between Failure (TBF)# Time To Repair (TTR)# 

M Failure EXC1* 905 * BETA(0.305, 0.444) LOGN(6.09, 19.8) 

M Failure EXC2 WEIB(62.5, 0.652) LOGN(1.99, 3.64) 

M Failure EXC3 TRIA(14, 94.4, 550) LOGN(1.72, 2.08) 

M Failure EXC5 127 + WEIB(118, 0.377) 0.11 + 1.39 * BETA(0.997, 1.08) 

M Failure EXC6 235 + 65 * BETA(0.268, 0.302) 1.03 + 0.35 * BETA(1.13, 0.974) 

E Failure EXC1** 10 + EXPO(213) 0.18 + 0.97 * BETA(0.496, 0.788) 

E Failure EXC2 GAMM(191, 0.454) WEIB(2.23, 0.462) 

E Failure EXC3 290 * BETA(0.453, 1.14) WEIB(1.4, 0.485) 

E Failure EXC5 GAMM(129, 0.615) LOGN(0.734, 0.544) 

E Failure EXC6 UNIF(198, 979) 0.15 + 0.37 * BETA(0.614, 0.654) 

M Failure Spreader 1 UNIF(364, 852) 0.09 + 1.23 * BETA(0.845, 1.02) 

M Failure Spreader 2 EXPO(129) LOGN(2.94, 7.19) 

E Failure Spreader 1 12 + EXPO(118) LOGN(7.19, 19.2) 

E Failure Spreader 2 91 + 706 * BETA(0.221, 0.29) 75 * BETA(0.274, 0.457) 

*M: Mechanical **E: Electrical #The unit is hours 

4.1.5. COAL-BLENDING STRATEGY  

Decisions are included in stockpile management, such as (i) sequence of stack-

ing, (ii) sequence of reclaiming and (iii) size of the stockpile. In order to reduce both 

short- and long- term fluctuations of coal quality characteristics, various blending 

techniques have been proposed. In this study, a Chevron-Type stockpile is used; 

however, it is modified according to the simulation modeling circumstances. As is 

shown in Figure 4.3, the final shape of the stockpile, which is a triangular prism, is 

converted to a block model with equal cell dimensions based on the stacking time. 

The size and the attributes of each cell such as tonnage, ash, and CV content are 

calculated based on the stockpile geometry. From the four stockpiles, two are desig-

nated coal type 1 and the rest coal type 2. For the purpose of blending, the stacker 

operates in a zigzag pattern and the reclaimer performs the same pattern but per-

pendicular to the stacking operation as can be seen in Figure 4.3.  
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Figure 4.3. A Chevron-type blending strategy, (adapted from Benndorf (2013b)).  

4.1.6. SIMULATION MODELING EXPERIMENTS  

Appropriate use of a simulation model requires decisions concerning two key 

parameters: number of replications and run-length. The limiting factors will be com-

puting time and expense. The aim is to produce multiple samples in order to obtain 

a better estimate of mean performance (Kelton and Law, 2000). The question there-

fore arises: “how many replications are needed?” Assuming that performing N rep-

lications achieves a satisfactory estimate of mean performance as required by the 

user, performing more than N replications might be an unnecessary use of computer 

time at a considerable expense. However, performing fewer than N replications 

could lead to inaccurate results and thus to incorrect decisions being made. In this 

study, a simple Graphical Method (Robinson, 2004) is used for selecting the mini-

mum appropriate number of replications. To achieve this, a list of performed exper-

iments is provided in Table 4.5. As an example, the results for a run length of 15 days 

with different numbers of replications are displayed in Figure 4.4. As can be seen, 

the scaled cumulative mean of the chosen output variables (ash, CV, and coal ton-

nage) are plotted against the number of replications. Based on the graphical method, 
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the point on the graph where the cumulative mean line becomes “flat” is visually 

selected as the appropriate number of replications. In this case, 20 replications seem 

to be the suitable number. It should be noted that the run length, in this case, directly 

depends on the length of the task schedule. However, for the purpose of comparison, 

different run lengths are examined.  

Table 4.5. Lists of performed experiments. 

 Source of Uncertainty 

Run Length 
Geological Uncertainty & Downtimes 

Number of Replications 

7 days 10 20 30 50 

15 days 10 20 30 50 

30 days 10 20 30 50 

60 days 10 20 30 50 

 

Figure 4.4. A simple graphical method for the selection of the number of replica-

tions. 

4.2. RESULTS  

This section provides some representative results from the performed experi-

ments. The results that are presented in this section consider these points:  

 The synthetic dataset represents a fully known and controllable environment, 

thus the assessment of geological uncertainty is based on 22 different reserve 

block models: real value, estimated and 20 realizations.  
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 The measured KPIs are coal quality, coal quantity, and utilization (defined in 

Section 3.3.2). 

 Results for a run length of 15 days and 20 replications are presented.  

 Penalties are calculated based on parameters specified in Table 4.1.  

4.2.1. COAL QUALITY - KPI 

Figure 4.5 presents the average ash content of extracted coal for the real value 

model (light grey), the estimated model (Black), the realizations (dark grey) and the 

average of simulation (red line). The ash contents of all realizations substantially 

exceed the value predicted by the estimated deposit model. On the other hand, the 

real model shows a very similar value to the average value of the 20 realizations 

(Red line). Taken together, relying on the estimated model would result in a biased 

and too optimistic ash content.  

The penalties that are applied due to not meeting the coal quality target are 

shown in Figure 4.6. These penalties are calculated based on Equation (3.2). Costs of 

deviation from the targets (the penalties) in this study are unity for each percentage 

of the deviation per tonne of coal (1 €/(%.tonne)). Hence, these penalties can be in-

terpreted as costs (€) that must be deducted from the total profit of the mine. Except 

for the estimated model, all realizations and real model are penalized. This illus-

trates that the chance of deviating from the target, especially in this case, is almost 

100%.  

 

Figure 4.5. Illustrative results of the ash contents of different scenarios.  
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Figure 4.6. Penalties that are calculated due to not meeting the quality targets.  

4.2.2. COAL QUANTITY - KPI 

The total extracted coal tonnages for the different scenarios are presented in 

Figure 4.7. The system simulation based on the estimated model shows significantly 

less coal (10%) than the average value of the 20 realizations (Red line). The average 

value is again similar to the real value. Clearly, the estimated model underestimates 

coal production for the defined schedule. This is mainly due to ignoring in-situ var-

iability and geological uncertainty. The capability of conditional simulation to quan-

tify geological uncertainty adds an additional dimension to the prediction of system 

performance. 

Figure 4.7, also, indicates that for example realization 3 will lead to an under-

production of 110kt of coal. To account for this uncertainty the stockpile inventory 

should be at least 110kt before the start of the week to accommodate potential devi-

ations from targets and secure a safe supply to customers. Note that the application 

of average-type estimated models does not always lead to underestimation. De-

pending on local geological conditions, these techniques may also lead to an overes-

timation. 

Figure 4.8 shows penalties that are applied due to not meeting the coal quantity 

targets. In this KPI, the costs of deviation from the targets (the penalties) are unity 

for one tonne of coal (1 €/tonne) for the overproduction and 15 units for a tonne of 
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coal for the underproduction. Similar to the coal quality KPI, these penalties are cal-

culated based on Equation (3.3). They can be interpreted as extra costs that decrease 

the total profit.  

 

Figure 4.7. Illustrative results of the coal quantity KPI for different scenarios. 

 

Figure 4.8. Penalties that are calculated due to not meeting the quantity target. 
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Geological uncertainty does not only affect the amount of coal produced, but 

also waste management and downtime due to dispatching. Waste management 

plays a key role in the optimal dump control. To analyze the uncertainty in predict-

ing the amount of waste for each spreader, box plots are used to show the variations 

in waste tonnage dumped by the spreaders (Figure 4.9. 

 

Figure 4.9. Waste extraction tonnages of excavators. 

4.2.3. UTILIZATION - KPI 

The boxplots of active digging times of BWEs during the time horizon are given 

in Figure 4.10. As can be seen, the ranges of active hours for BWEs are rather disperse 

and in almost all the box plots, the four sections (quartiles) of the box plot are uneven 

in size. The differences between the active hours and the scheduled hours are the 

results of the dispatch delays and unscheduled breakdowns. For each excavator the 

effect of existing variability and uncertainty can be assessed and used for improved 

decision making. Figure 4.11 demonstrates the average utilization of the system for 

different reserve block models. Evidently, geological uncertainty, variability, and 

unscheduled breakdowns have a significant impact on the measured KPIs.  
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Figure 4.10. Boxplots of active hours of BWEs. 

 

Figure 4.11. Values of the utilization KPI for different simulation replications (sce-

narios). 

Figure 4.12 shows penalties due to not meeting the utilization KPI. Values are 

calculated by multiplying the difference between the scheduled working hours and 

the actual working hours to the hourly standby costs (see Table 4.3). Like the other 

two KPIs, these values are costs that reduce the overall profit of the mine.  
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Figure 4.12. Penalties that are calculated due to not meeting the utilization KPI. 

4.2.4. CALCULATION OF EVALUATION FUNCTION 

The final step in the integrated simulation approach is the summation of all 

measured KPIs in an evaluation function. Penalties and quantified values of the 

evaluation function for different reserve block models (when coefficient 𝐶𝑛𝑡 in  

Equation (3.1) is equal to one (base case)) are given in Table 4.6.  

Histograms for the base case with statistical measures like mean, standard de-

viation, 10% quantile, 50% quantile, and 90% quantile are presented in Figure 4.13. 

The blue bar shows the frequency of realizations in a specific bin, the dashed-line is 

the value of the evaluation function of the estimated model, and the solid line is the 

value of the real model. It can be seen that the value for the estimated model is lower 

than the 10% quantile. This illustrates the fact that the probability of its occurrence 

is very low. On the other hand, the mean value of the calculated evaluation functions 

of realizations is close to the real value model. It can be concluded that, based on the 

histogram, the probability of occurrence of the average of realizations is relatively 

high. 
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Table 4.6. Penalties and quantified values of the evaluation function for different 

reserve block models.  

 Quality 

KPI (103 €) 

Quantity 

KPI (103 €) 

Utilization 

KPI (103 €) 

Evaluation Func-

tion (103 €) 

Real 257.35 66.18 245.13 568.66 

Estimated 0.00 120.31 160.64 280.94 

Realization 1 168.45 0.00 185.67 354.11 

Realization 2 251.39 0.00 274.85 526.24 

Realization 3 193.47 1694.62 159.00 2047.09 

Realization 4 339.69 182.46 231.55 753.69 

Realization 5 195.06 185.44 144.07 524.57 

Realization 6 338.34 186.95 200.42 725.71 

Realization 7 361.93 149.20 153.17 664.31 

Realization 8 113.74 0.00 162.07 275.81 

Realization 9 369.82 27.50 161.68 559.01 

Realization 10 273.76 8.72 132.15 414.62 

Realization 11 261.81 52.55 166.53 480.89 

Realization 12 330.60 46.99 171.61 549.20 

Realization 13 231.12 50.13 199.28 480.53 

Realization 14 338.88 7.31 164.41 510.59 

Realization 15 177.56 65.33 224.96 467.85 

Realization 16 186.10 0.00 158.19 344.29 

Realization 17 274.59 34.65 190.49 499.74 

Realization 18 284.93 0.00 189.58 474.50 

Realization 19 133.43 11.32 180.39 325.13 

Realization 20 65.60 40.01 225.42 331.04 

 

Figure 4.13. Histogram of values for the evaluation functions (𝐶𝑛𝑡 = 1).  
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The value for coefficient 𝐶𝑛𝑡 in the evaluation function is equal to either zero or 

one. Zero means that the KPI has no effect in the management strategy, which is 

taken in the mine, and one means the opposite. To investigate different management 

objectives, six other different scenarios are considered. The list of scenarios based on 

different values for coefficient 𝐶𝑛𝑡 can be found in Table 4.7. Evaluation functions for 

these scenarios are calculated; they are presented as histograms in Figure 4.14.  

Table 4.7. Different management scenarios for the evaluation of simulation 

model’s outputs. 

KPIs 
Scenarios 

1 2 3 4 5 6 

Quality KPI – C1 0 1 1 1 0 0 

Quantity KPI – C2 1 0 1 0 1 0 

Utilization KPI – C3 1 1 0 0 0 1 

As can be seen in Table 4.6, the estimated model has not gotten any penalty for 

the quality KPI. When this KPI is not important in the management strategy, i.e. C1 

is equal to zero (Scenarios 1, 5, and 6 in Table 4.7), the penalty value of the estimated 

model comes closer to the real value model and the mean value of the realizations, 

see Figure 4.14. Thus, the probability of occurrence of the average of realizations is 

relatively high. The effects of geological uncertainty are more visible enhanced in 

scenario 2 and 4 where the probability of its occurrence based on the estimated 

method is almost equal to zero. Hence, it can be concluded that depending only on 

the estimated model will result in a biased and an optimistic prediction of the ash 

content. Scenario 3 shows a similar behavior as the base case (see Figure 4.13), how-

ever, penalties due to not meeting targets are decreased.  
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Figure 4.14. Histograms of different scenarios. 



Synthetic Experiment: 2D Case Study 59 

 

4 
 

 

 

Figure 4.14. Continued (2) Histograms of different scenarios.  



60 Discussion 

 

4 

4.3. DISCUSSION  

In opencast lignite mines, decisions about the destination of the extracted coal 

have to be made prior to excavation, when the reality is not known yet. Therefore, 

classification of coal type and stacking in the different locations are based on the 

estimated model. In fact, the true quality of delivered coal is defined based on sam-

ples taken from the train cars. A laboratory analyzes the samples and their reported 

results represent the “reality”. The results, normally, take at least three days to be 

obtained.  

As noted earlier, coal type 1 is high quality coal (ash content is less than 9%) 

and coal type 2 is lower quality coal (ash content is between 9-12.5%). Figure 4.15 

and Figure 4.16 show the ash content of delivered trains to customers. The results 

reveal that the estimated model (dotted-black line) and the reality (dark grey line) 

are not well correlated. The reality clearly shows deviations from the target. On the 

other hand, the estimated model does not forecast any deviations. This illustrates 

the limits of predictions based on the estimated (interpolated) model. In the condi-

tional simulation models, there are 20 realizations (light grey cloud) and the average 

of the realizations (dashed-red line). These models can predict the probabilities of 

deviations. For example, for each train there is a distribution of the ash contents, 

which is a stochastic prediction. These stochastic predictions are mapped by the 

shadow range (realizations cloud); it illustrates the range of uncertainty (deviations).  

 

Figure 4.15. Ash contents of delivered trains of coal type 1.  
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Figure 4.16. Ash contents of delivered trains of coal type 2. 

The most striking result emerging from the above graphs is that the reality and the 

average of the realizations are surrounded by the realizations cloud. The average of 

the realizations reasonably follows the trend of the reality. However, some devia-

tions are seen but these deviations are also in the expected range of uncertainty (re-

alization cloud).  

Furthermore, the histogram of probabilities is used for illustration of the effect 

of the geological uncertainty. Probabilities of the ash content of the delivered trains 

to be more than 9% are calculated. Then frequencies of the trains versus probability 

bins are shown as a histogram in Figure 4.17. The stochastic prediction proposes that 

the ash content of 42 trains out of 90 exceeds the threshold. However, in reality 49 

trains show a deviation from the target. More than 50% of the trains contain low 

quality coal. This can cause a big financial loss for the mine if the profit is penalized 

by customers. On the other hand, for coal type 2 probabilities are calculated when 

the ash content of the delivered trains is less than 9%. Figure 4.18 shows the obtained 

histogram. Based on the probabilities, 43 trains out of 90 are expected to go beyond 

the threshold and the reality illustrates that this value is 40 trains. It can be concluded 

that high quality coal has been loaded into the trains that are sent to customers of 

the less quality coal. This will incur an opportunity cost. 
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Figure 4.17. Histogram of probabilities of the ash content of trains for the coal type 

1 to be more than 9%. 

 

Figure 4.18. Histogram of probabilities of the ash content of trains for the coal type 

2 to be less than 9%. 

Previous examples illustrated that stochastic system simulation is a valid and 

powerful tool to explore the effects of geological uncertainty and unscheduled 

breakdowns on the expected performance of complex continuous mining systems. 
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It provides the mine planning engineer a valuable tool to foresee critical situations 

affecting the continuous supply of raw material to customers and the system perfor-

mance. 

4.4. CONCLUSIONS  

Continuous mining systems require large investments and operational costs. 

Decisions in daily production scheduling are impacted by uncertainties, such as in-

complete knowledge about the deposit and operational downtimes. These can have 

a significant influence on the actual production performance. This chapter proposed 

a simulation-based framework, where the method of geostatistical simulation has 

been integrated with mine process simulation to account for the effects of geological 

uncertainty and unscheduled breakdowns. The obtained results showed that such 

an approach provides the mine-planning engineer a valuable tool to foresee critical 

situations affecting the continuous supply of raw material to the customers and the 

system performance. It has been found that: 

 Relying on the estimated model would indicate a biased and optimistic predic-

tion of the ash content. This is due to ignoring the in-situ variability and the 

geological uncertainty. Histograms of multiple replications also illustrated this 

finding.  

 The geological uncertainty does not only affect the amount of coal produced, 

but also affects waste management and downtimes due to dispatching. 

 The range of uncertainty can be mapped by stochastic predictions. These pre-

dictions are based on realizations of the reserve block model.  

 The average of the realizations showed a similar behaviour to reality. 

 For this case study, the results illustrated that the ash content of more than 50% 

of the delivered trains deviated from the specified target. This will incur oppor-

tunity costs and economic losses due to the penalties.  
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5.1. INTRODUCTION 

Chapter 4 demonstrated the implementation of the simulation approach for the 

quantification of the effects of geological uncertainty on achieving short-term pro-

duction targets in a lab environment (TRL 4 was achieved). This chapter extends the 

developed simulation model to a new technology readiness level (TRL 6) by imple-

menting it in an industrially relevant environment. A framework for modeling, sim-

ulation, and validation of the simulation model of a large continuous mine is pre-

sented in detail. Operational implementation issues, experiences, and challenges in 

practical applications are discussed. Furthermore, the strength of the application of 

simulation modeling as an operational decision support for material management 

in continuous mining systems is demonstrated. Material management in such sys-

tems is concerned with planning, organizing, and control of the flow of materials 

from their extraction points to destinations. Its aim is to get the right quality and 

quantity of materials at the right time and the right place at the lowest cost. This can 

be strongly affected by operational decisions that have to be made during the pro-

duction process.  

The framework is implemented and validated in two large coal (lignite) mines. 

The details of the case studies were already specified in Chapter 2. Results of both 

case studies are used to describe the details of the framework, and to illustrate the 

strength and limitations of its application.  

The first section defines the goal and objectives. It will then go on to practical 

implementation by laying out the steps of building a simulation model and validat-

ing it, and discussing the obtained results. The last section concludes the findings of 

this chapter. 

5.2. GOAL AND OBJECTIVES 

This chapter aims to extend the developed simulation model in the previous 

chapter to a new level (TRL 6) by implementing and validating it in two large coal 

(lignite) mines. 

Achievement of this goal involves the following objectives: 

 Define the problem to be studied, constraints, and the type of analysis to be 

performed; (already defined in Chapter 2) 

 Abstract the system into a model described by the components of the system, their 

characteristics, and their interactions; 

 Identify, specify, and gather data in support of the model; 

 Extend the existing simulation model with respect to the new problem, model, 

and data structure;  
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 Embed the simulation model in a simulation platform; 

 Design some experiments for the purpose of verification and validation of the 

simulation model;  

 Analyze the simulation outputs to draw implications and make recommenda-

tions for problem resolutions.  

Having defined the goal and the objectives, the chapter will continue by stating 

the framework, which is based on the steps of a simulation study (see Section 3.4), 

to achieve the objectives.  

5.3. PRACTICAL IMPLEMENTATION – METHODOLOGY  

This section describes the framework of modeling, simulation, and validation 

of the simulation model of large continuous mining operations in detail. The pro-

posed extended simulation model is intended to reproduce operational behavior in 

full-scale considering material management. For demonstration purposes, two case 

studies have been defined. The first case study is the Hambach mine and its main 

focus is on material management. The second case study is the Profen mine. In ad-

dition to material management, this case also focuses on coal quality management. 

The following section will discuss the conceptualization of the system under study.  

5.3.1. CONCEPTUAL MODEL OF CONTINUOUS MINING SYSTEMS  

The process of a continuous mining system can be divided into three sub-pro-

cesses, see Figure 5.1. The operation starts with the excavation of materials by BWEs. 

It continues by the transportation of the extracted materials from mining benches to 

dumping benches or coal stockpiles. The transportation process includes a network 

of conveyor belts consisting of face conveyor belts, main conveyor belts, and a mass 

distribution center. Finally, lignite is stacked at the stockpile or waste materials are 

dumped at the waste dump.  

 

Figure 5.1. The sub-process of the continuous mining system.  

The extraction and the transportation processes of materials can be emulated in 

a combined discrete-continuous stochastic environment. This provides the possibil-

ity to recreate the deterministic and/or random occurrences of events such as  

operating stoppages, which are caused by unavailability of spreaders or conveyor 

belts, equipment failures, and preventive/corrective maintenance activities.  
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As in the previous chapter, KPIs will be used to evaluate the success of the sim-

ulation model. Based on the different focus points of two case studies, the measured 

KPIs are as follow: 

 Case Hambach: The quantity and the utilization KPI will be measured.  

 Case Profen: All three KPIs will be measured.  

5.3.2. DATA COLLECTION AND MODELING OF STOCHASTIC BEHAVIOR 

This section highlights the data that are required for building the simulator. The 

data are divided into three major groups including process related, elements related, 

and geological data, see Table 5.1. In our case studies, the process related and geo-

logical related data were easy to obtain. These are provided by the both industrial 

partners. Fortunately, both mines have their own SQL-based databases. The ele-

ments related data can be extracted from their databases. They keep almost all op-

erational data including: 

 Any data that is related to the production process, e.g., amounts of waste or 

coal and quality parameters of the delivered coal to different customers;  

 Any data that is related to the breakdown of equipment, e.g., at what time the 

failure happens, what is the root cause, and the duration of the failure (i.e., the 

repair time). 

The first group of data will be used to verify/validate the simulation model. 

Among the second group, in this study, mechanical, electrical, conveyor system, and 

operational failures are encountered to be the most crucial failures. The historical 

data of these failures are processed as shown in Figure 5.2. The analysis involves the 

identification of theoretical distributions that represent the input data. Arena® soft-

ware facilitates the identification process by the Input Analyzer tool. After the theo-

retical distributions are fitted to the data, any data values from the theoretical distri-

butions may represent the failure behaviors. However, a possible weakness of this 

approach is that a theoretical distribution may periodically generate an unusual 

value that might not actually ever be present in the real system. This issue will be 

elaborated in the validation section with an example.  

 

Figure 5.2. Procedure of processing failure input data (Chung, 2003). 

Table 5.1. The required data for building a simulation model.  
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Process Related 

Data 

1) Production targets (Daily/Weekly/Monthly/Yearly) 

a. Target tonnages and volumes for coal and waste 

b. Target coal quality  

c. Daily/Weekly schedules 

2) Equipment 

a. Numbers and models 

b. Interdependencies between equipment 

c. Connected conveyor belts 

3) Production system scheme 

a. Conveyor belts network and interdependencies 

b. Configuration of the mass distribution center (distribu-

tion options) 

4) Stockpiles 

a. Locations and capacities (division in sub piles/packets) 

b. Associated conveyor belts 

c. Stacker and reclaimer capabilities 

5) Sensors 

a. Position and type of measurements  

b. Frequency, accuracy, and precision  

Elements Related 

Data (for Each 

Piece of  

Equipment) 

1) Capacities of Excavators and Spreaders 

a. Effective 

b. Theoretical  

c. Effective capacity for different material types 

d. Failure characteristics (reliability/ availability) 

e. Mean time between breakdowns and repair times  

2) Conveyor Belts 

a. Capacity (volume/hour) 

b. Belts lengths 

c. Belts profiles 

d. Speed 

e. Failure characteristics (reliability/ availability) 

f. Mean time between breakdown and repair time 

3) Cycles of equipment 

a. Long cycle: time between two displacement of conveyor 

belt 

b. Block cycle: required time for extracting/filling one block 

c. Slice cycle: required time for extracting /filling one slice 

and getting ready for starting second slice.  

4) A complete database of downtimes of the equipment.  

Geological  

Related Data 
1) A geological 3D-cell model 

5.3.3. MODEL BUILDING—PROBLEM TRANSLATION 
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The main logic is designed based on the pervious sections, the conceptual 

model of a continuous mining system and the design of the model. Its flowchart is 

shown in Figure 5.3. In summary, a simulation begins with creating entities at minor 

intervals. As an entity arrives into the system, statuses of the assigned excavator and 

spreader are checked. In case of unavailability of one of them, the entity is disposed 

at the very beginning step. If both are active, it reads the data file and assigns the 

values to the correspondence attributes. These attributes consist of excavator num-

ber, bench information, conveyor belt number, block number, material type, vol-

ume, quality parameters, and the destination of the entity. Based on the material 

type, other type of attributes such as “time now” and “extraction time” are assigned 

on the way to the excavator. An entity has an “extraction time” attribute that corre-

sponds to the delay that the entity should have in the excavator (a resource module 

in Arena®).  

The amount of the delay is equal to the time, if the excavator excavates the same 

amount of material in the reality. So, entity’s extraction time can be calculated using 

Equation (5.1) (the unit is minutes):  

Extraction Time =
(60 ×  Entity volume)

(Theoretical capacity of the BWE (m3/h))
. (5.1) 

It should be noted that a “seize, delay, and release” resource module is used to 

imitate the excavation operation in the model. With this in mind, if the excavator 

and the spreader are still active, the entity is forwarded to seize in the resource mod-

ule (the excavator). There, it has a delay as much as the extraction time attribute. 

After releasing the entity from the resource module, some statistics are recorded 

such as total waste volume, the total volume of each material type, total coal tonnage 

entering the system, and the weighted average of quality parameters (e.g., ash, cal-

orific value). Thereafter, the entity is transported using a network of conveyor belts. 

When it reaches its defined destination, either dump site or coal stockpile, it passes 

the defined resource module. Here, also, some statistics are recorded such as the 

amount of different dumped/stacked materials. At the end, the entity leaves the sim-

ulation model by a dispose module.  

As mentioned earlier, the model keeps track of some variables of interest during 

the simulation run. These variables are written in a text file at user-defined intervals.  
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Figure 5.3. Flowchart of the main logic behind the simulation model. 

5.3.4. EMBEDDING THE SIMULATION MODEL INTO A SIMULATION PLATFORM 

To achieve maximum flexibility of the simulation model and as a preparation 

for the next steps in this research, the mine simulator is embedded into a simulation 

platform. In this platform, the simulator is used to estimate the evaluation function. 

All the simulation preparation and post processing are done by several Python 

scripts, which are all controlled by the central controller script.  

5.3.4.1 SIMULATION PLATFORM OVERVIEW 

Figure 5.4 shows the simulation platform with its different processes. It also 

shows the relationship that processes have with each other. There are three relation-

ships:  
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 Control: The process controls another process, either via calling it with com-

mand line arguments or by using a programming interface. 

 Read: The process reads information from a file and uses this for its processing. 

 Write: The process writes information or results to a file, which either can be 

read by another process or is meant as an output to the user. 

 

Figure 5.4. Simulation platform diagram. 

The run of a single simulation can be described as four tasks, each containing 

their own subtasks that are often handled by different scripts, all initiated by the 

controller. The flow of a simulation run: 

 Simulation configuration 

o The controller stores the date to be simulated and the output directory in 

a configuration file. 

 Simulation preparation 

o The controller creates or clears the simulation output directory. 

o The block model parser selects the blocks to be used for the simulation 

and writes them to a database. 
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o The schedule parser creates a schedule based on the weekly/monthly 

schedule of the mine and writes the schedule to a database. 

 Simulation run 

o The controller calls the simulation model interface, which in turn instructs 

Arena to load the desired simulation model, reload the schedule data and 

then to run the simulation. 

o Arena reads the block model and schedule data from the databases, runs 

the simulation and writes the output to the simulation output files. 

o The controller copies the Arena output files to the output directory. 

 Simulation post-processing 

o The post-processing script generates the tables and figures that show the 

simulation results. 

A process worth attention is the simulation model interface, which is situated 

between the controller and the simulator. This process is required because there is 

no direct way to interact with the simulation software using for example the com-

mand line. Instead, the program relies on automation via Visual Basic for Applica-

tions (VBA), a technology for creating interconnection between applications. This 

technology is not available in Python, thus the simulation model interface is written 

in Visual Basic and compiled as an executable that can be run from the command 

line with the relevant parameters. The VB script will wait until the simulation run is 

complete and then exit, at which the controller knows that the simulation is finished. 

5.3.4.2 POST-SIMULATION PROCESSING OF RESULTS  

There are four main files created by the simulator: 

 Coal-bunker output for all excavators and replications, one line per entity; 

 Waste dump output for all excavators and replications, one line per entity; 

 Aggregated volume statistics per excavator; 

 Detailed activity log of excavators.  

The coal and waste files contain the important parameters for each entity that 

leaves the system, the disposal time, and the replication number. The processing of 

these files contains the following steps: 

 split the data per replication and resample the different entities,  

 sum them up by day (for an example), 

 determine the weighted average of quality parameters, and 

 write the values in a file with the following order: replication, date, values. 

The post-processing then creates various plots that give an overview of the per-

formance of the simulation. For coal and waste, both the mean production and the 
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uncertainty of the daily production are plotted. The uncertainty is used as a P10 

minimum and P90 maximum value. These values are obtained by sorting the values 

of the different replications ascendingly and then taking the value at index N*0.1 for 

the P10 and N*0.9 for the P90, where N is the total number of replications. 

For the quality parameter, the plotting is slightly different. Since there are 25 

different simulated ash values, the calculation will take the value of quality simula-

tion 𝑖 for replication 𝑖. The P10 and P90 values are then calculated in the same way 

as for the production volume. The estimated ash values are also plotted to be com-

pared with the simulated the values. 

5.3.5. DESIGN OF EXPERIMENTS FOR VALIDITY TEST OF THE CASE STUDIES 

To evaluate the validity of the simulation model, a set of numerical experiments 

was designed. The strategy for designing experiments follows three major objec-

tives. The first objective is to show that the simulation model reproduces observed 

data of the real system, when historic deterministic input is provided. The second 

objective is to demonstrate the strength of the simulation model when ‘breakdown 

behavior’ as a stochastic component is added, (the utilization KPI). The third objec-

tive is to quantify the effects of geological uncertainty and reconcile its results 

against measured KPIs observed in reality. The first two objectives are pursued in 

the both case studies but the last objective is sought only in the Profen case. With 

these in mind, experiments are designed as follows: 

 Experiment 1: Run the simulation model without stochastic components  

o The input reserve block model is derived from actual measured data. 

Other parameters such as working schedule, failures, and excavation rates 

are taken as historically performed, deterministic values.   

o The target of this experiment is to verify the output of the simulation 

model against what happened in the mine during the time horizon con-

sidered.  

 Experiment 2: Run the simulation model with stochastic component “break-

down behavior”  

o The reserve block model is kept as in Experiment 1 and it represents real-

ity. In this experiment, theoretical distributions for predicting unsched-

uled breakdowns of equipment are added to the model as stochastic com-

ponents.  

o The target of this experiment is to test the reliability of the model in pre-

dicting downtimes. The utilization KPI is measured.  

 Experiment 3: Run the simulation model with stochastic components “break-

down behavior” and “reserve block model”  
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o This experiment is designed for the quantification of geological uncer-

tainty in the Profen mine. After being certain that equipment failure mod-

els are good enough, the stochastic input “reserve block model” is added 

to the simulation model. In total, there are 26 different reserve block mod-

els (different possible values for ash content) as mentioned earlier. 

5.4. RESULTS AND DISCUSSION  

The following section presents results of the experiments. It should be noted 

that for both case studies, three months of production data are used to validate the 

simulation models. However, only the part of the results that emphasizes the prac-

tical implementation issues and challenges are presented.  

5.4.1. CASE PROFEN 

5.4.1.1 EXPERIMENT 1: SIMULATION MODEL WITHOUT STOCHASTIC 

COMPONENTS 

Table 5.2 provides the summary statistics of simulated and actual production 

data with the calculated evaluation measures. Closer inspection of the table shows 

that the difference for the mined coal quantity is very close to zero and no difference 

greater than 4% was observed. In addition, it is apparent that the average relative 

error per day displays higher values. These values are rather counterintuitive. A 

possible explanation for this is due to high variability, as there are significant devi-

ations on a short-term (daily) basis. However, on average, the prediction of coal 

quantity is good. 

Table 5.2. Summary statistics of simulated and actual production data of the 

Profen case, Exp. 1. 

Material Type Simulated Actual 
Difference 

(%) 

Bias 

(m3or t) 

Average 

Deviation 

(m3or t) 

Average 

Relative  

Error per 

Day (%) 

Coal (10³ t) * 533.01 533.06 −0.01 −0.05 * 5.02 * 26.30 

Waste (10³ m3) 1336.28 1378.03 −3.03 −41.75 10.66 23.62 

Total (10³ m3) 1794.81 1841.56 −2.54 −46.74 8.49 15.25 

* The unit is tons.  
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Figure 5.5. Comparison of daily production of coal, Experiment 1. 

 

Figure 5.6. Comparison of daily production of waste, Experiment 1.  

Furthermore, for the given time horizon, the graphs of the daily production of 

coal and waste are shown, respectively, in Figure 5.5 and Figure 5.6. What stands 

out in the figures is that the output of the simulation model (model production) is 

well correlated with the actual production of the mine. Taken together, these results 
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indicate the verification of the simulation model with all deterministic inputs against 

the real system.  

5.4.1.2 EXPERIMENT 2: SIMULATION MODEL WITH STOCHASTIC COMPONENT 

“BREAKDOWN BEHAVIOR” 

In this experiment, theoretical distributions of failure models related to equip-

ment breakdown behaviors are added to the simulation model. The number of sim-

ulation replications was set to 20 as recommended in Section 4.1.6. The obtained re-

sults are presented in Table 5.3. It is clear from the table that following the addition 

of the stochastic components, significant increases in the average deviations and av-

erage relative errors were recorded. However, increments in the differences (sum of 

over/under production in the given time horizon) were not statistically significant 

(less than 2%). Further investigation showed that an unusually long breakdown of 

one piece of equipment happened in situ during the study time horizon. Not sur-

prisingly, the historical failure data show that the probability of an occurrence of 

such a long lasting failure is very low. Nevertheless, such circumstances are una-

voidable due to the stochastic nature of unscheduled breakdowns.  

Table 5.3. Summary statistics of simulated and actual production data of the 

Profen case, Exp. 2.  

Material Type Simulated Actual 
Difference 

(%) 

Bias 

(m3or t) 

Average 

Deviation 

(m3or t) 

Average 

Relative  

Error per 

Day (%) 

Coal (10³ t) * 541.96 533.06 1.67 8.90 * 10.36 * 62.55 

Waste (10³ m3) 1373.68 1378.03 −0.32 −4.34 20.19 47.22 

Total (10³ m3) 1844.95 1841.56 0.18 3.39 24.08 40.76 

* The unit is tons. 

Additionally, the daily production graphs of coal and waste are presented, re-

spectively, in Figure 5.7 and Figure 5.8. The dashed line shows the actual production, 

the solid line shows the average of simulation replications, and the dark shadow 

part demonstrates the predicted range of uncertainty (area between 0.10 and 0.90 

quantile) introduced by the stochastic breakdown behavior. The single most striking 

observation to emerge from the figure is the negative correlation between the simu-

lated and the actual production in two parts of the graphs. As discussed earlier, an 

unusual long breakdown happens in the beginning of the time horizon (21.07–25.07), 

which is not predicted by the failure models. Therefore, the simulation continues the 

production process while in the reality the production is decreased.  
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Figure 5.7. Comparison of daily production of coal, Experiment 2. 

 

Figure 5.8. Comparison of daily production of waste, Experiment 2. 

In addition, a closer look at the graphs shows another negative correlation at 

the end of the time horizon. This behavior surfaced mainly in relation to the first 

issue. It is a natural behavior if at the end of the period a shortage is observed due to 

the overproduction at the beginning. The argument is valid for both coal (Figure 5.7) 
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and waste (Figure 5.8) graphs in the figure. For the middle period, the average of 

simulations and the actual production are positively correlated. There are some dif-

ferences, but differences are inside the uncertainty range. 

The second objective of this experiment is to demonstrate the reliability of the 

simulation model in terms of the utilization KPI. Table 5.4 summarizes the utiliza-

tion KPI predicted by the simulation model. Table 5.5 presents the actual utilization. 

Differences between the actual and the simulated utilization are given in Table 5.6. 

In the presented tables, the status “Busy” means the excavator is digging materials, 

“Failed” means the excavator stopped working (e.g., due to a failure), “Idle” means 

the excavator is neither digging nor failed (e.g., transportation), and “Inactive” 

means the excavator is not working (e.g., due to the periodic maintenance or 

planned downtime).  

Table 5.4. Utilization predicted by the simulation model. 

Status Bg.1580 Bg.1511 Bg.1553 Bg.351 Bg.1541 Bg.309 

Busy 14.3% 49.8% 46.1% 60.5% 57.8% 27.6% 

Failed 1.0% 4.7% 1.7% 3.7% 1.1% 0.6% 

Idle - 7.8% 37.0% 3.7% 8.5% 7.4% 

Inactive 84.7% 37.7% 15.3% 32.3% 32.5% 64.5% 

Table 5.5. Actual utilization of the system.  

Status Bg.1580 Bg.1511 Bg.1553 Bg.351 Bg.1541 Bg.309 

Busy 11.7% 54.0% 44.7% 55.8% 56.7% 28.2% 

Failed 2.9% 6.9% 40.9% 10.9% 14.8% 7.1% 

Inactive 85.4% 39.1% 14.4% 33.3% 28.5% 64.6% 

Table 5.6. Differences between the actual and model utilization.  

Status Bg.1580 Bg.1511 Bg.1553 Bg.351 Bg.1541 Bg.309 

Busy 2.6% −4.2% 1.4% 4.7% 1.1% −0.7% 

Failed −1.9% −2.2% −39.2% −7.2% −13.7% −6.6% 

Inactive −0.7% −1.4% 0.8% −1.0% 4.1% −0.2% 

The range of differences for busy status (operating time) varies between −5.7% 

and 4.7% in the time horizon of three months. Statistically, it can be an acceptable 

range. As noted earlier, the simulation of a continuous mine is a complex problem 

and there are a lot of influencing factors. These results underline the validity of prob-

ability distributions that are used for the prediction of unscheduled breakdowns. 

However, it should not be forgotten that cases such as the breakdown of Bg.1553 

could happen, though they represent outliers. They are unavoidable and sometimes 

unpredictable due to the stochastic nature of unscheduled breakdowns. 
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5.4.1.3 EXPERIMENT 3: SIMULATION MODEL WITH STOCHASTIC COMPONENT 

“BREAKDOWN BEHAVIOR” AND “RESERVE BLOCK MODEL” 

The third experiment is the most comprehensive test. The statistics are summa-

rized in Table 5.7. As it can be seen, the difference between the simulated and the 

actual production are 10.24% for coal and 1.54% for waste. In this experiment, dif-

ferences are higher compared to the pervious experiments. This is expected due to 

the uncertainty associated with the reserve block model. The sum of the produced 

coal and waste shows a difference of less than 3%, which is statistically an acceptable 

deviation.  

Table 5.7. Summary statistics of simulated and actual production data of the case 

Profen, Exp. 3.  

Material Type Simulated Actual 
Difference 

(%) 

Bias 

(m3or t) 

Average 

Deviation 

(m3or t) 

Average 

Relative  

Error per 

Day (%) 

Coal (10³ t) * 582.51 533.06 10.24 49.45 * 12.31 * 65.90 

Waste (10³ m3) 1402.73 1378.03 1.54 24.7 16.33 29.29 

Total (10³ m3) 1909.26 1841.56 3.49 67.7 18.82 24.65 

* unit is in tonne.  

To quantify the effects of geological uncertainty the average daily ash values 

are compared in Figure 5.9. The blue dashed-dot line shows the ash value of actual 

production, the red-dashedline demonstrates ash values of the estimated model, and 

the solid red line presents the average ash values of the simulations (realizations). 

The predicted range of uncertainty is illustrated by a dark shadow cloud in the 

graph. It is clear from the figure that the estimated model and the actual production 

are not well correlated. The estimated model has a tendency to underestimate ash 

values. This issue was discussed in the problem statement section. 

What is striking about the graphs in Figure 5.9 is that the actual production data 

are well covered by the predicted range of uncertainty. Only at the beginning of the 

time horizon, some parts are outside of the range. As discussed earlier, a breakdown 

that is not captured by the failure models is the reason for this phenomenon.  
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Figure 5.9. Daily ash values per day, case Profen.  

Similar to the previous experiments the total amount of daily production of coal 

and waste are shown, respectively, in Figure 5.10 and Figure 5.11. From the graphs 

a relatively good match can be seen. However, the inconsistency in the reserve block 

model causes some deviations. It can be seen that the quality of the historical data is 

the key factor to achieve good results.  

Together these results provide important insights into the verification and the 

validation process of the simulation model of the Profen mine. Some important 

points are: 

 A good prediction over long time frames. 

 Deviations were seen on short time scales due to geological uncertainty. 

 The occurrence of rare events may not be well captured in simulation experi-

ments. 

 In this case, for practical application, the model input would have to be adjusted 

according to the actual situation (e.g., equipment down for some timeframe) 

and iteratively re-run it.  

Finally, an important implication emerging from these results is that the simu-

lation model can effectively be used as a decision making tool. Impacts of the differ-

ent decisions (e.g., different task schedules) can be assessed by the simulation model. 

The next section presents the validity test results of the Hambach case as a second 

case study. 
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Figure 5.10. Comparison of daily production of coal, Experiment 3. 

 

Figure 5.11. Comparison of daily production of waste, Experiment 3. 
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5.4.2. CASE HAMBACH 

5.4.2.1 EXPERIMENT 1: SIMULATION MODEL WITHOUT STOCHASTIC FAILURE 

MODELS  

Summary statistics of a monthly production with the calculated evaluation 

measures are presented in Table 5.8. What stands out in the table is that the total 

deviation is about 100,000 m3, which is only 0.47% of the total production. To explain 

better, the total theoretical capacity of the equipment of the Hambach mine is about 

86,000 (m3/h). It denotes that the total deviation between the actual and prediction is 

slightly more than an hour of the production. Taken together, it can be seen that the 

simulation model imitates the reality with an acceptable precision.  

Table 5.8. Summary statistics of the simulated and the actual production data of the 

Hambach case, Exp. 1.  

1 M1, M2T, M2N, FOKI, and KIES are abbreviations for different types of waste materials. 

Furthermore, the total shift-based production of the Hambach mine during the 

test’s time horizon is shown in Figure 5.12. The dashed-line shows the actual pro-

duction and the solid-line presents the simulated production data. The presented 

graphs illustrate that the simulated data follow the actual production data with some 

deviations. As explained in the previous section, these deviations occur due to the 

existence of some inconsistencies in the reserve block model. . 

Additionally, for different material types (e.g., M1, M2T, etc.) shift-based pro-

duction graphs are presented in Figure 5.13. Closer inspection of the graphs shows 

that, with Coal (f), as an example, there is an analogous behavior between the simu-

lated and the actual data. Overall, statistical measures such as the average deviation 

of about 27,000 m3 and the average relative error of 0.13% per shift indicate the ver-

ification of the simulation model.  

Material Type 1 Simulated Actual 
Difference 

(%) 

Bias 

(m3or t) 

Average 

Deviation 

per Shift 

(m3or t) 

Average 

Relative 

Error Per 

Shift (%) 

M1 (m³) 10,604,266 10,655,819 −0.48 −51,553 26,178 0.25 

M2T (m³) 4,263,052 4,290,314 −0.64 −27,262 16,965 0.40 

M2N (m³) 2,765,828 2,765,928 0.00 −100 15,050 0.54 

FOKI (m³) 33,329 33,329 0.00 0 593 1.78 

KIES (m³) 16,000 16,000 0.00 0 251 1.57 

Coal (t) 4,157,393 4,183,493 −0.62 −26,100 7872 0.19 

Total volume (m³) 21,297,599 21,399,210 −0.47 −101,611 27,064 0.13 
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Figure 5.12. The total shift-based production of the Hambach mine, Experiment 1.  

 

Figure 5.13. The shift-based production of different materials of the Hambach 

mine, Experiment 1.  
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5.4.2.2 EXPERIMENT 2: SIMULATION MODEL WITH STOCHASTIC FAILURE 

MODELS 

In this experiment, failure models are added to the simulation model. This ex-

periment is specifically designed to show how reliable those models are. The sum-

mary and statistical measures of experiment 2 are presented in Table 5.9. Values in 

the simulated column of the table are the average values of 20 simulation replica-

tions. It is apparent that deviations are increased when comparing the results with 

Experiment 1. This is due to the addition of stochastic components to the simulation 

model. No significant difference between the actual and the simulated data is ob-

served. The maximum difference occurs in the production of coal, which is equal to 

2.9%. When considering the whole operation, a difference of 1.23% is recorded for a 

month of production. At a smaller scale, no difference greater than about 31,000 (m3) 

per shift was observed.  

Table 5.9. Summary statistics of the simulated and the actual production data of the 

Hambach case, Exp. 2.  

The total shift-based production for the given time horizon is presented in  

Figure 5.14. The dashed-line shows the actual production and the solid-line presents 

the average of simulation replications. Moreover, the dark cloud has been added to 

the graph as the predicted range of uncertainty (area between 0.10 and 0.90 quantile). 

From the figure, a good correlation between the simulated and the actual production 

data can be found. In addition, it is clear that the actual production is well covered 

by the shadow part.  

Material Type 1 Simulated Actual 
Difference 

(%) 

Bias 

(m3or t) 

Average 

Deviation 

per Shift 

(m3or t) 

Average 

Relative 

Error Per 

Shift (%) 

M1 (m³) 10,556,753 10,655,819 −0.93 −99,066 27,892 0.26 

M2T (m³) 4,257,161 4,290,314 −0.77 −33,153 14,912 0.35 

M2N (m³) 4,257,161 4,290,314 −0.77 −33,153 14,610 0.34 

FOKI (m³) 33,329 33,329 0.00 0 414 1.24 

KIES (m³) 16,000 16,000 0.00 0 251 1.57 

Coal (t) 4,060,603 4,183,493 −2.94 −122,890 9336 0.22 

Total volume (m³) 23,181,006 23,469,269 −1.23 −288,263 30,938 0.13 
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Figure 5.14. The total shift-based production of the Hambach mine, Experiment 2. 

 

Figure 5.15. The shift-based production of different materials of the Hambach 

mine, Experiment 2. 
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Likewise, in Figure 5.15, a good correlation can be seen for the presented pro-

duction data of different material types. However, it can be seen from this illustra-

tion that where there are a sufficient number of observations (Figure 5.15a–c,f), the 

actual and simulated values are well correlated, but where there are few data points, 

such as in Figure 5.15-d or Figure 22-e, the error between the simulation model’s 

predictions and the actual data points is increased. 

Utilization Exc.259 Utilization Exc.290 

Simulated Actual Simulated Actual 

    
Utilization Exc.260 Utilization Exc.291 

Simulated Actual Simulated Actual 

    
Utilization Exc.287 Utilization Exc.292 

Simulated Actual Simulated Actual 

    
Utilization Exc.289 Utilization Exc.293 

Simulated Actual Simulated Actual 

    

Figure 5.16. Utilization of the equipment in the form of pie charts.  
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As stated earlier, the utilization KPI is measured in Experiment 2. The results 

are presented in the form of pie charts in Figure 5.16. The “Busy”, “Failed”, “Idle”, 

and “Inactive” statuses have already been defined in the previous case. For each 

excavator, two pie charts are given. One represents the actual utilization recorded at 

the mine and the other represents the simulated utilization by the simulation model. 

At the first glance, there are a number of similarities between the simulated model 

and the actual system. The most significant parameter that is very close to reality is 

the percentage of the busy hours. In most of the cases (excavator 259, 290, 291, and 

293), these percentages are same. For the other excavators, no differences greater 

than 1% were observed. For a better clarification, 1% difference in a month (744 h) 

refers to only 7.44 h difference. From these results, it can be inferred that the failure 

models are good enough to predict breakdown behaviors of the equipment. 

To summarize this section, the results show that, first, the simulation models 

(both cases) are verified/validated against the historical data. Second, the developed 

simulation models are reliable when the failure models (for the purpose of predic-

tion of downtimes) are added to the model. An implication that can be drawn from 

the results is the possibility of using the simulation modeling approach as an opera-

tional decision support. The proposed method can also be applied in other research 

areas such as waste management or recycling of material excavated from tunnels 

(Entacher et al., 2011, Petitat et al., 2015). The next section concludes the main find-

ings of this study. 

5.5. CONCLUSIONS 

Throughout this chapter, the developed simulation model in Chapter 4 has 

been extended to a new technology readiness level (TRL 6) by implementing it in an 

industrially relevant environment. A framework for modeling, simulation, and val-

idation of the simulation model of a large continuous mine has been presented in 

detail. The framework was implemented in the two defined case studies. The case 

study approach was chosen to provide detailed illustrations of steps of a simulation 

study, implementation issues, and challenges in practical applications. A number of 

important practical implications emerge from this study:  

 The quality of the historical data that are used for the calibration of the simula-

tion model is very important.  

 Experienced problem formulators and simulation modelers are crucial for a 

successful simulation study.  

 The occurrence of rare events (e.g., long breakdowns of equipment) may not be 

well captured in simulation experiments.  
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The second aim of this chapter was to demonstrate the strength of simulation 

modeling as an operational decision support tool for material management. The rel-

evance was clearly supported by the current findings. The results indicated that a 

validated simulation model could be used to assess the impacts of different scenarios 

(e.g., different task schedules) in the mine. Based on the type of analysis and the 

measured KPIs, the best scenario among all can be executed in the reality.  
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The contents of this chapter have been adapted from: 

Shishvan, M. S., & Benndorf (2017). A Simulation-based Optimization Approach for Material Dis-

patching in Continuous Mining Systems. Under review at European Journal of Operational 

Research (EJOR).  
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6.1. INTRODUCTION  

Short-term production scheduling of a continuous mining system defines a se-

quence of extraction and dumping operations over time within a predefined pro-

duction plan. This schedule is concerned with the present operating conditions and 

constraints within the confines of the most recent long or medium-term plan. It plans 

extraction and dumping sequences in terms of weeks or days. The optimization of 

short-term production scheduling is conventionally performed in two distinct steps, 

(Hustrulid and Kuchta, 2006). The first step optimizes only the sequence of extrac-

tion of materials. The second step optimizes the dispatch decisions based on the 

dumping sequences, equipment capacity, performance, and availability. The focus 

of this study is on the second step of the optimization.  

In the real world, there are limitations to the above mentioned distinct optimi-

zation steps, which may result in non-optimal or infeasible short-term production 

schedules (Matamoros and Dimitrakopoulos, 2016). First, uncertainty in input pa-

rameters is not considered in the optimization steps. Second, operational considera-

tions and equipment availability are disregarded in the optimization of the extrac-

tion sequence of material, and thus can be unrealistic. Lastly, most of the mathemat-

ical programming approaches are limited by the amount of the decision variables. 

Indeed, simplifying assumptions should be made to develop a manageable mathe-

matical model. The performance of the production scheduling can be unfavorably 

affected by above-mentioned limitations and this may lead to: (a) increased operat-

ing costs due to the unscheduled downtimes; (b) uncertainty in the performance of 

equipment and lower utilization of equipment; and (c) inability to meet expected 

production targets. This dissertation proposes a new simulation-based optimization 

approach that can accommodate these limitations. This approach consists of running 

alternatingly a deterministic optimization model and a stochastic simulation model. 

It uses a staged top down approach by combining simulation, the transportation 

problem, and the job-shop scheduling problem. The transportation problem pro-

vides a mechanism to optimize dispatch decisions. In other words, it finds optimal 

connections between excavators and spreaders. Because of the nature of the trans-

portation problem, it is possible to have multiple connections for an excavator. 

Therefore, the job-shop scheduling problem deals with the allocation of spreaders to 

different excavators over time. Its objective is to find the processing sequences and 

starting times of each operation on each spreader, in order to minimize the total 

weighted tardiness. Finally, the system simulation uses the dispatch decisions gen-

erated by optimization and evaluates particular performance indicators under un-

certainty in system performance. The calculated values are then introduced into a 

control module. The control module suggests refinements to parameters of the opti-

mization model (e.g. transportation costs, jobs order, and jobs weight). The iterative 
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process ends after a stopping criterion is met. The proposed approach is tested on a 

large continuous mine under different given dumping sequences, and results are 

reported. The merits and limitations of the proposed approach as pinpointed and 

farsighted operations management are discussed. 

A considerable amount of literature has been published on the optimization of 

short-term production scheduling. These studies in early attempts have focused on 

evolving concepts and related formulations for finding extraction sequences based 

on mathematical programming, e.g. (Wilke and Reimer, 1977, Wilke and Woehrle, 

1980, Gershon, 1983). Their objective is to minimize production deviations from the 

long-/medium-term production targets. While allocating resources, the conventional 

optimization process considers mining direction and fleet capacity. Nevertheless, it 

does not integrate the fleet management, i.e. dispatching of mining equipment and 

uncertainty in equipment availability. More recent attentions thus focus on the pro-

vision of real-time fleet allocation for short-term production scheduling (Alarie and 

Gamache, 2002, L’Heureux et al., 2013) and stochastic optimization of short-term 

production scheduling (Topal and Ramazan, 2012, Matamoros and 

Dimitrakopoulos, 2016). They have been successfully applied for over three decades 

to find optimal solutions for real size case studies. However, a large and growing 

body of literature has mainly investigated the applications that are in the discontin-

uous block mining with the diffuse deposits.  

In the following sections, a brief background about the production planning of 

continuous mining systems will be given. It continues by defining the problem. 

Then, the solution strategy is discussed in detail. After that, the computational 

framework and its implementation are presented. The Hambach mine (Case 2) is 

used to demonstrate the performance of the proposed approach. Finally, the ob-

tained results are reported. The last section concludes the findings of this chapter. 

6.2. BACKGROUND  

In continuous mining systems, usually known as opencast mines, the excava-

tors can be seen as supply points and the spreaders together with the coal-bunker 

can be considered as demand points. 

The production planning in an opencast mine covers various periods, namely 

long-, medium-, and short-term planning horizons. The long-term planning affects 

an opencast mine across its entire life, all the way to the end of mining supervision 

after the land reclamation. The medium-term planning often covers the next five-

year period. Finally, the short-term planning is a yearly seam-focused detailed plan.  

Besides operational and economical parameters that are necessary for any pro-

duction planning process, the major input here is the geological block model. It is 

divided to two separate block models namely, the extraction block model and the 
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dumping block model. The former includes the geological strata, quality parameters, 

volumes-tonnages, and material types. The latter includes dumping profiles and 

volumes.  

As mentioned earlier, the short-term plan is guided by medium and long-term 

plans. Forasmuch as the complex deposit formations require selective mining of coal 

as well as overburden on different benches. The objective of short-term planning is 

to find the sequence of blocks, known as the extraction sequence, that meets the de-

fined targets under current operating conditions and constraints. After the creation 

of the extraction sequence, the first step of the optimization of the short-term sched-

uling is completed. The created extraction sequence can be used as a guide to create 

the dumping sequence. It is also an input for the second step of the optimization 

procedure, which is the focus of this dissertation. The next section describes the 

problem with the defined objectives.  

6.3. PROBLEM DESCRIPTION 

Figure 6.1 presents a flow diagram of the short-term production scheduling 

process in continuous mining systems. Three major processes can be seen in the di-

agram namely, short-term planning, dumping sequence creation, and material dis-

patching. These should be completed in the presented logical order to have a short-

term schedule. Here, there are two underlying assumptions; the first is that the ex-

traction block model, the dumping block model, and the extraction sequence are 

given as discussed in the previous section. Stable dump construction needs different 

material types with special sequences; while these materials are distributed une-

venly at the extraction side, the second underlying assumption becomes very im-

portant. It is defined as that the problem should be relatively a balanced problem. In 

a sense, the difference between the total amounts of different overburden materials 

at the extraction site with the amounts of available spaces at the dumping site should 

be a small number. In the presence of finite available space for a material type, when 

the extraction of that material type becomes sufficiently large, then for any given 

dumping sequence it will no longer be possible to meet the defined production tar-

gets. The optimization of dispatch decisions thus must involve the dumping capac-

ity constraints. Furthermore, uncertainty is associated with input parameters, equip-

ment availability, and their performances, and the resulting problem is therefore a 

constrained stochastic optimization problem.  
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Figure 6.1. Flow diagram of short-term production scheduling in continuous min-

ing systems.  

The different ranges of the ratios of the expected amounts of materials at the 

extraction site to the dumping capacities of the same materials give rise to three dif-

ferent scheduling scenarios. In scenario I, when the extracted to dumped capacity 

ratio is sufficiently small, the dumping site has sufficient spare capacity to cope with 

abrupt changes in the extracted materials due to the uncertainty involved. Therefore, 

in this scenario, challenges are mostly related to the optimization of the dispatch 

decisions. In scenario II, characterized by an intermediate range of the extracted to 
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dumped capacity ratio, the production capacity may be quite constrained by the 

dumping capacity when the extraction of different materials spikes at some point in 

time. In this scenario, even with an optimal dispatch decision, the production for 

some excavators may fail to reach their targets due to the downtimes. Finally in sce-

nario III, the extracted to dumped capacity ratio is sufficiently large that most of the 

extracted materials simply cannot be dumped and thus excavators will compete for 

dumping spaces. In this scenario, dispatch decisions and dumping spaces must be 

assigned strategically to meet the demands of some excavators in preference to oth-

ers. In this dissertation, the optimization problem that is under scenario I and II will 

be addressed. The optimization of short-term scheduling for the case of scenario III 

involves strategies for the prioritization of excavators. Such strategies, while of con-

siderable interest, are beyond the scope of this study.  

To formulate the problem, the following problem context is assumed: 

 An opencast mine has multiple extraction benches with only one excavator op-

erating on each bench. Different excavators may have different production ca-

pacities and each can extract any type of material. Furthermore, the mine has 

multiple dumping benches while only one spreader can operate on each bench. 

Similar to the excavators, different spreaders can have different dumping ca-

pacities.  

 The units at different benches cannot send material to a same destination at the 

same time.  

 The daily/weekly schedule known as the task schedule is an external input for 

the short-term scheduling problem. This schedule includes the planned availa-

bilities and downtimes (i.e. planned maintenance) of the equipment. 

 Each excavator can supply any spreader and the transportation network is al-

ways available. Hence, in the first part of this study, namely optimization, avail-

ability of the transportation network is not explicitly considered. Later, in the 

simulation part, it will be added to the problem as a feedback from the simula-

tor.   

The objective is to minimize downtimes of equipment by effective resource al-

locations. This will result in decrements in overall costs, including extraction costs, 

dumping costs, and penalties for deviating from the predefined targets. There are 

two types of decisions, on the excavator and on the spreader side: 

 Decision on the excavator side: 

o Production rate of each excavator (between 0% and 100%) 

o Connection to the spreader 

 Decision on the spreader side: 
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o Dumping sequence (depending on material type available) 

6.4. SOLUTION STRATEGY  

To address the above-mentioned problem this dissertation proposes a new sim-

ulation-based optimization approach (see Figure 6.2-a) that relies on the use of a 

deterministic optimization model and a stochastic simulation model. The determin-

istic model is built using a certain feasible dumping sequence and incorporates a 

transportation problem and a job-shop scheduling problem (see Figure 6.2-b).  

 

Figure 6.2. Configuration of the simulation-based optimization approach. 
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The transportation problem provides a mechanism to optimize dispatch deci-

sions. In other words, it finds optimal connections between excavators and spread-

ers. Because of the nature of the transportation problem, it is possible to have multi-

ple connections for an excavator. Therefore, the job-shop scheduling problem deals 

with the allocation of spreaders to different excavators over time. Its objective is to 

find the processing sequences and starting times of each operation on each spreader, 

in order to minimize the total weighted tardiness. A discrete event simulation of the 

system is executed implementing the dispatch decisions obtained via the determin-

istic model for a given dumping sequence. The results of multiple simulation repli-

cations serve to provide an estimate of a particular performance measure (e.g. utili-

zation). The calculated values are then introduced into a control module. The control 

module suggests refinements to parameters of the deterministic optimization model 

(e.g. transportation costs, jobs order, and jobs weight). The iterative process ends 

after a stopping criterion is met. The strategy uses two aspects of the “Sim-Opt” ar-

chitecture, which is introduced by (Subramanian et al., 2001).  

The following will discuss the three key sub-problems, the creation of a random 

dumping sequence, the transportation problem, and the job-shop scheduling prob-

lem. In the subsequent section, the various computational details that are needed to 

link these sub-problems and to drive the computations to obtain the desired short-

term schedule will be discussed. 

6.4.1. RANDOM DUMPING SEQUENCES  

Schematic representations of different dumping conditions are shown in Figure 

6.3. Based on the dumping profile, after building a polder (a 100 m section), the pos-

sible dumping options are to continue building the polder or dump type 2 material 

inside the polder, see Figure 6.3-a. If option 2 is randomly selected, the outcome is 

Figure 6.3-b. Similarly, there are two possible dumping options available in the next 

stage of dumping. If option 1 is randomly selected, after the first stage, type 2 mate-

rial can be filled inside the polder, see Figure 6.3-c. After that, there are again two 

possible dumping options available; to continue building the polder or to dump  

type 3 material on the top of type 2 material. At this stage, if option 1 is randomly 

chosen, type 3 material can be dumped inside the polder, Figure 6.3-d. Due to the 

fixed dumping sequence, here, the only possible dumping option is to continue 

building the polder with type 1 material.  

If the dumping benches with their special profiles are discretized in defined 

sections (e.g. every 100 m), then the evolution of the random dumping sequences 

over time can be represented by the tree-like structure presented in Figure 6.4. Start-

ing from each node, a large number of possible dumping options at the next dump-

ing stage are expressed as branches stemming from that node. Assuming m possible  
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Figure 6.3. Schematic representations of dumping options.  
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next-stage dumping options at each node, the total number of scenarios will amount 

to mS, where S is the total number of dumping stages. Each scenario as a feasible 

dumping sequence is an input for the transportation problem as is shown in  

Figure 6.2-b.  

6.4.2. TRANSPORTATION PROBLEM 

The transportation problem (TP) is concerned with shipping a commodity be-

tween a set of sources (e.g. excavators) and a set of destinations (e.g. spreaders). Each 

source has a capacity dictating the amount it supplies and each destination has a 

demand dictating the amount it receives, (Winston and Goldberg, 2004). The TP is a 

subset of network models and the set of resources and destinations can be illus-

trated, respectively, by a set nodes. Nodes are connected to each other via arcs; each 

arc has two major attributes namely the cost of sending unit of a material from one 

node to the others and the maximum capacity of the arc, see Figure 6.5.  

 

Figure 6.4. Schematic diagram of evolution of random dumping sequences.  

 

Figure 6.5. A transportation problem with m sources and n destinations.  
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An opencast mine extracts material at m different benches (𝑖 = 1,… ,𝑚). The 

amount of material to be extracted at bench i is ai. The demands for the extracted 

materials are distributed at n different dumping benches (𝑗 = 1,… , 𝑛). The amount 

of material to be dumped at bench j is bj. The problem is to find connections between 

excavators and spreaders at minimum cost. The linear programming (LP) formula-

tion of the problem is as follows, (Winston and Goldberg, 2004): 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑧 = ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑎𝑙𝑙 𝑎𝑟𝑐𝑠

, (6.1) 

𝑠. 𝑡.   

 

∑𝑋𝑖𝑗 ≤  𝑎𝑖                                                                  𝑓𝑜𝑟 𝑖 = 1,… ,𝑚,

𝑛

𝑗=1

 (6.2) 

 ∑𝑋𝑖𝑗 ≥  𝑏𝑗                                                                 𝑓𝑜𝑟 𝑗 = 1,… , 𝑛,

𝑚

𝑖=1

 (6.3) 

 𝑋𝑖𝑗 ≥  0                                                                       𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗, (6.4) 

where, 𝑋𝑖𝑗 is the number of units of material sent from node i to node j through arc 

(i, j); 𝐶𝑖𝑗 is the cost of transporting one unit of material from node i to node j via arc 

(i, j). The objective function, denoted by Eq. (6.1) involves a deterministic optimiza-

tion in which the total cost of sending materials from supply points to demand 

points is minimized. In constraint (6.2), the sum of all shipments from a source can-

not exceed the available supply. Constraint (6.3) specifies that the sum of all ship-

ments to a destination must be at least as large as the demand. Constraint (6.4) is a 

binding constraint.  

Consider the feasibility of the problem. The only way that the problem can be 

feasible is if total supply exceeds total demand (∑ 𝑎𝑖 ≥
𝑚
𝑖=1  ∑ 𝑏𝑗  

𝑛

𝑗=1
). Two conditions 

can be implied from this: 

 When the total supply is equal to the total demand (i.e. ∑ 𝑎𝑖  
𝑚
𝑖=1 = ∑ 𝑏𝑗  

𝑛

𝑗=1
) then 

the transportation model is said to be balanced.  
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 A transportation problem in which the total supply and total demand are une-

qual is called unbalanced. If there is excess demand, a dummy source is intro-

duced (i.e. a fictitious bench). The amount shipped from this dummy source to 

a destination represents the shortage quantity at that destination. If there is ex-

cess supply, a dummy destination is added to the network. Likewise, the 

amount received from this dummy destination from a source represents the ex-

cess quantity at that source.  

Due to the nature of the transportation problem, it is possible that an excavator 

has to send materials to multiple spreaders. The next section will discuss the job-

shop scheduling problem, which deals with the allocation of spreaders to different 

excavators over the time. 

6.4.3. JOB-SHOP SCHEDULING PROBLEM 

The job-shop scheduling problem (JSP) consists of a finite set of jobs 𝐽 =

{1, … , 𝑛} and a finite set of machines 𝑀 = {1, … ,𝑚}. In this dissertation, excavators 

are defined as jobs and spreaders are defined as machines. The aim is to find a sched-

ule of 𝐽 on 𝑀 under the conditions mentioned below: 

 For each job 𝑗 ∈ 𝐽, a list (𝑂1
𝑗
, … , 𝑂ℎ

𝑗
, … , 𝑂𝑚

𝑗 ) of the machines which represents the 

processing order of 𝑗 through the machines is given. Note that 𝑂ℎ
𝑗 is called the 

h-th operation of job 𝑗 and 𝑂𝑚
𝑗  is the last operation of job j.  

 The processing order for each job is fixed, thus, a machine-sequencing problem 

for every job should be taken into account.  

 For every job 𝑗 and machine 𝑖, a non-negative 𝑃𝑖𝑗  is given, which represents the 

processing time of 𝑗 on 𝑖.  

 Each machine must always be available and can process at most one job at a 

time, and once a job starts on a given machine, preemption is not allowed.  

 Every job 𝑗 has an assigned release time 𝑟𝑗 ≥ 0 so that the first operation cannot 

start before 𝑟𝑗. In this dissertation, 𝑟𝑗 is given in the task schedule.  

 An additional attribute of a job 𝑗 is its weight 𝑤𝑗 , which represents the relative 

importance of 𝑗 in comparison to other jobs.  

 Furthermore, every job 𝑗 has a due date 𝑟𝑗 ≥ 0 which should, but does not nec-

essarily have to, be met in a schedule.  

In this study, the objective is to minimize the obtained total weighted tardiness, 

as defined 𝑇𝑊𝑇 = ∑ 𝑤𝑗 ∙ 𝑡𝑗
𝑛

𝑗=1
, where 𝑡𝑗 = max {0, 𝑐𝑗 − 𝑑𝑗} is the resulting tardiness of 

job 𝑗 in a schedule, 𝑑𝑗 is the due date of the job, and 𝑐𝑗 is its completion time. From 

now on, this problem is referred to as JSPTWT. Ku and Beck (2016) investigated the 



Simulation-based Optimization – Full-size Case Study 103 

 

6 

size of problem that can be solved by of Mixed Integer Programming (MIP) formu-

lation. For a moderately sized problem up to 10 jobs and 10 machines, with the recent 

technology, MIP finds the optimum solution in a very reasonable amount of time. 

They also compared the performance of the four MIP models for the classical JSP. 

They concluded that the disjunctive MIP formulation with the use of the GUROBI 

v6.0.4 solver (Gurobi Optimization, 2016) gives the fastest result for a moderate sized 

problem. The list below is the disjunctive MIP formulation of JSPTWT, based on 

Manne (1960)’s formulations. The decision variables are defined as follows: 

 𝑋𝑖𝑗 is the integer start time of job 𝑗 on machine 𝑖 

 𝑍𝑖𝑗𝑘 is equal to 1 if job 𝑗 precedes job 𝑘 on machine 𝑖 
 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒∑𝑤𝑗

𝑛

𝑗=1

∙ 𝑡𝑗 (6.5) 

𝑠. 𝑡.   

 𝑋
𝜎ℎ
𝑗
,𝑗
≥ 𝑋

𝜎ℎ−1
𝑗
,𝑗
+ 𝑃

𝜎ℎ−1
𝑗
,𝑗
,                               ∀𝑗 ∈ 𝐽,  ℎ = 2,  … ,  𝑚, (6.6) 

 𝑋𝑖𝑗 ≥ 𝑋𝑖𝑘 + 𝑃𝑖𝑘  − 𝑉 ∙  𝑍𝑖𝑗𝑘 ,                         ∀𝑗, 𝑘 ∈ 𝐽,  𝑗 < 𝑘,  𝑖 ∈ 𝑀, (6.7) 

 𝑋𝑖𝑘 ≥ 𝑋𝑖𝑗 + 𝑃𝑖𝑗 − 𝑉 ∙ (1 −  𝑍𝑖𝑗𝑘),             ∀𝑗, 𝑘 ∈ 𝐽,  𝑗 < 𝑘,  𝑖 ∈ 𝑀, (6.8) 

 𝑡𝑗 ≥ 𝑋𝑚𝑗 + 𝑃𝑚𝑗 − 𝑑𝑗 ,                                   ∀𝑗 ∈ 𝐽, (6.9) 

 𝑡𝑗 ≥ 0,                                                              ∀𝑗 ∈ 𝐽, (6.10) 

 𝑋1𝑗 ≥ 𝑟𝑗 ,                                                           ∀𝑗 ∈ 𝐽. (6.11) 

Constraint (6.6) is the precedence constraint. It ensures that all operations of a 

job are executed in the given order. The disjunctive constraints (6.7) and (6.8) ensure 

that no two jobs can be scheduled on the same machine at the same time. V has to be 

assigned to a large enough value to ensure the correctness of (6.7) and (6.8). In this 
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dissertation, it is defined as 𝑉 =  ∑ ∑ 𝑃𝑖𝑗𝑖∈𝑀𝑗∈𝐽 , since the completion time of any op-

eration cannot exceed the summation of the processing times from all the operations. 

Constraint (6.9) and (6.10) measure the resulting tardiness of each job. Finally, con-

straint (6.11) ensures that a job cannot start before its release time, and thus, captures 

the non-negativity of the decision variables 𝑋𝑖𝑗.  

As an example, Figure 6.6 shows a simple JSP in which three jobs J1, J2, and J3 

are to be scheduled on three machines M1, M2, and M3. The graph on the top repre-

sents the precedence constraints. The Gantt chart on the bottom displays a feasible 

schedule that satisfies the precedence constraints (Ku and Beck, 2016). As can be 

seen, the makespan is the total length of the schedule (that is, when all the jobs have 

finished processing). The term makespan will frequently be used in the case study 

section. The next section will elaborate more on the computational framework of the 

connection of the sub-problems.  

 

Figure 6.6. A simple job-shop scheduling problem, (Ku and Beck, 2016).  

6.5. COMPUTATIONAL FRAMEWORK 

In this section, the overall computational approach is described. First, input pa-

rameters are explained. Then, the computational logic with the details of the inte-

gration of the sub-problems together and with the discrete event simulation is dis-

cussed. After that, the simulation based optimization framework is presented. 

6.5.1. INPUT PARAMETERS  

The second step of the optimization of short-term scheduling starts with the 

assignment of input parameters. The definitions and their functionalities are as fol-

lows: 
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 Start points of dumping in different benches, i.e. the start locations of spreaders 

on benches at the beginning of the working shift. This is an input for the crea-

tion of random dumping sequences. 

 The allowed range of movement for spreaders, i.e. in what range it is allowed 

to transport spreaders and start a new dumping profile. This is also an input 

for the creation of random dumping sequences. 

 Transportation costs, these costs are used to distinguish between different des-

tinations for a source in the transportation problem.  

 Machine sequencing, the Earliest Due Date (EDD) sequencing method is used 

to create processing orders of the jobs in the JSP.  

 Finally, Job weights are some other input parameters for the JSPTWT. For in-

stance, they can be used to prioritize an excavator if a bottleneck is seen after 

the simulation. 

The aim is to find the best combination of these parameters using a simulation 

based optimization approach to achieve the optimum short-term schedule.  

6.5.2. DETERMINISTIC OPTIMIZATION WITH EMBEDDED SIMULATION 

The following describes the details of the integration of the sub-problems to-

gether and to the discrete event simulation in walk-through steps.  

Step 1: start with an arbitrary set of input parameters.  

Step 2: create a sufficient number of random dumping sequences, {1, … , 𝑅𝑠}.  

Step 3: for a certain dumping sequence, 𝑑 =  1, 𝑑 ∈ 𝑅𝑠, optimal connections can be 

found using the transportation problem. 

Step 3.1: check the availability of the equipment based on the given task sched-

ule and create the nodes. 

Step 3.2: start with first blocks in the given extraction sequence and assign their 

volumes as ai to supply nodes in the TP formulation.  

Step 3.3: assign the volumes of the first sequence of blocks in the given dumping 

sequence as bi to demand nodes in the TP formulation.  

Step 3.4: check if problem is balanced, if not add dummy nodes to the network. 

Step 3.5: create arcs between supply and demand nodes. Only these nodes get 

connected that have the same type of material.  

Step 3.6: add a capacity to the arcs. In the TP, the capacity is set to be infinite for 

all the arcs.  

Step 3.7: add costs to the arcs. In an opencast mine, the potential costs can be: 

 Excavators and spreaders on the same level (altitude) get lower cost of 

transportation.  
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 Length of belt conveyors between supply nodes and demand nodes; 

the closer the equipment the lower the costs.  

 Difference between the production capacity and dumping capacity of 

the equipment; the lower the difference the lower the costs.  

Step 3.8: build the LP model with the help of Eqs. (6.1)–(6.4) and solve it by the 

GUROBI solver.  

Step 3.9: calculate the residual volumes and add them to the next iteration of 

the optimization. 

Step 3.10: go to step 3.1 and repeat steps 3.1–3.10 until all the blocks are ex-

tracted in the given extraction sequence.  

Step 3.11: check for feasibility of the schedule, if there is residual volume left on 

the extraction side, set 𝑑 =  𝑑 + 1 and go to step 3 until 𝑑 =  𝑅𝑠. 

Otherwise, continue. 

Step 4: create the input for the JSPTWT and build the MIP model using Eqs. (6.5)–

(6.11) and solve it with the GUROBI solver.  

Step 5: create the Gantt chart. The output of the JSPTWT is the optimum short-term 

schedule for the given extraction and dumping sequence (𝑑).  

Step 6: run the discrete event simulation for the given short-term schedule.  

Step 7: record the state (utilizations, amounts) at the end of the time horizon.  

Step 8: set 𝑑 = 𝑑 + 1 and go to step 3 until 𝑑 =  𝑅𝑠. 

6.5.3. SIMULATION BASED OPTIMIZATION FRAMEWORK  

A more detailed flow diagram, which summarizes the overall computational 

framework, is presented in Figure 6.7. It combines the deterministic optimization 

with the stochastic simulation in a closed loop. Most of the steps are explained in 

detail in the previous section. As can be seen, the simulation is implicitly built over 

the embedded optimization. Once the computations over the simulation loop are 

completed, a number of best schedules based on the user-defined targets such as 

shorter makespan, higher utilization of equipment are selected. These are analyzed 

in the control modules; if the stopping criteria are met, the algorithm stops; other-

wise, a new set of input parameters is introduced to the optimizer. The following 

section presents more details about the interactions between the components in a 

simulation-optimization platform. 
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Figure 6.7. Computational flow diagram.  
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6.6. IMPLEMENTATION OF THE COMPUTATIONAL FRAMEWORK  

The implementation of the proposed simulation-based optimization approach 

consists of the following major components: the computational control module, the 

databases, the three modules for the creation of random dumping sequences, the 

transportation problem and the job-shop scheduling problem, the discrete event 

simulation with its interface, the post-processing module, and finally the control 

module, Figure 6.8. The computational control module is responsible for controlling 

interactions of computational components. It has various functions including: 

 Issuing commands for retrieving information from the database.  

 Generating/updating and releasing commands for executing the steps of the al-

gorithm. 

  Re-processing and controlling the output of each computational component 

before issuing the next command. 

 Selecting a number of best schedules based on the defined criteria to proceed 

the algorithm to the simulation part.  

The database contains information about the geological block model, the given 

extraction sequences, and the task schedule. These data are stored in a spreadsheet 

file. Since the computational control module is coded in Python, a publicly available 

Pandas library (McKinney, 2010) is used to access each cell in the spreadsheets. Big 

datasets can be readily read and stored in DataFrames with the help of Pandas li-

brary.  

The three major components of the deterministic optimization procedure were 

explained in detail in the previous sections. It should be noted that to solve the LP 

or the MIP models, the GUROBI Python interface is used. After the selection of a 

number of best schedules by the computational control module, the data are rec-

orded in two separate databases, namely, the block model and the schedule. These 

two are the major inputs for the discrete event simulation of an opencast mine.  

The discrete event simulation model is built in Arena® simulation environ-

ment. The detail of the construction of the simulation model of an opencast mine can 

be found in the previous chapters. A process worth attention is the simulation model 

interface, which is situated between the computational control module and the sim-

ulator. This process is required because there is no direct way to interact with the 

simulator using, for instance, the command line. Instead, the program relies on au-

tomation via Visual Basic for Applications (VBA), a Microsoft technology for creat-

ing interconnection between applications. This technology is not available in Py-

thon, thus the simulation model interface is written in Visual Basic and compiled as 

an executable that can be controlled and run with the relevant parameters. When the 

simulation run is completed, the VB script releases a command to the controller.  
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The post-processing module processes the simulation outputs and creates plots 

and tables. Finally, the control module calculates the differences between the current 

results with the predefined targets. If another loop of simulation-optimization is re-

quired, new input parameters are suggested to the computational control module.  

 

Figure 6.8. Simulation-optimization platform. 
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6.7. EXPERIMENTAL INPUT DATA  

The following presents the input data used for this case study. Table 6.1 gives 

the extraction sequences of different material types as an input. These will be used 

as a guide in the creation of random dumping sequences. In total, over 830 thou-

sands m3 of different material types should be scheduled to be extracted. The 

amounts of different material types for each sequence are shown in the table.  

Table 6.1. Extraction sequences as an input. 

Extraction 

Sequence 

Material Types 

M2T (m3) Coal (T) M2N (m3) M1 (m3) Total (m3) 

1 9,001  3,621  1,215  5,983   19,648  

2 4,573  2,008  - 15,486   21,971  

3 4,845  3,621  1,090  17,505   26,889  

4 10,093  2,008  8,642  22,805   43,452  

5 16,989  3,621  - 28,089   48,527  

6 14,343  2,008  - 28,385   44,640  

7 13,984  6,613  12,832  26,089   59,203  

8 22,732  11,520  18,346  12,769   64,818  

9 21,368  6,613  - 28,316   55,982  

10 - 11,520  25,313  33,264   69,548  

11 15,166  6,613  10,944  25,642   58,050  

12 21,115  11,520  8,949  19,189   60,224  

13 19,732  6,583  - 37,663   63,665  

14 - 7,742  9,721  35,246   52,340  

15 7,991  6,583  13,593  15,143   42,997  

16 - 7,742  - 31,333   38,706  

17 - 6,583  9,721  11,979   27,970  

18 - 7,742  - 16,075   23,448  

19 - 12,115  - -  11,538  

Total 181,932  126,376  120,366  410,961   833,617  

As discussed earlier, the extraction sequence of material ignores operational 

considerations and equipment availability. The availably of the equipment (the task 

schedule in Figure 6.1) as another external input is given in Table 6.2. The number 

“0” denotes that the equipment is unavailable and “1” vice versa. A closer look at 

the task schedule reveals that excavators S1, B7, and spreader I7 are unavailable, and 

thus the transportation problem will have six supply nodes and seven demand 

nodes. The maximum allowed ranges of movement for different spreaders are pre-

sented in Table 6.3. They are important parameters for the creation of the random 

dumping sequences. Here, their range is defined as ± (200 – 500) meters for all 
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spreaders. During the simulation-optimization loop iterations, the optimum value 

will be determined. The plus-minus sign indicates that the spreader has the option 

to choose a dumping location from the front or back side of its standing position. 

Other important input parameters are the job weights for the job-shop scheduling 

problem. With the help of these parameters, different excavators can be prioritized 

against each other. For example, if two excavators have to send extracted materials 

to one spreader, the one whose job weight is higher will be scheduled first. In this 

case, job weights are considered to be the same for all excavators, see Table 6.4. 

Table 6.2. Task schedule of BWEs and spreaders. 

Bench First Shift Second Shift Third Shift 

S1 0 0 0 

B1 1 1 1 

B2 1 1 1 

B3 1 1 1 

B4 1 1 1 

B5 1 1 1 

B6 1 1 1 

B7 0 0 0 

I1 1 1 1 

I2 1 1 1 

I3 1 1 1 

I4 1 1 1 

I5 1 1 1 

I6 1 1 1 

I7 0 0 0 

Table 6.3. Maximum and minimum allowed range of movements for the  

spreaders. 

 Benches 
 I1 I2 I3 I4 I5 I6 I7 

Range of 

allowed 

movement 

±(200 – 

500) 

±(200 – 

500) 

±(200 – 

500) 

±(200 – 

500) 

±(200 – 

500) 

±(200 – 

500) 

±(200 – 

500) 

Table 6.4. The job weights which are used in the job-shop scheduling problem. 

 Benches 
 S1 B1 B2 B3 B4 B5 B6 B7 

Job weights 1 1 1 1 1 1 1 1 
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The defined costs for the transportation problem are as follows: 

 Distance to the destination: This cost can be calculated by Eq. (6.12). Here, C1 is 

the associated cost coefficient, distance (m) is the length of the belt conveyors 

between the source and the destination and 𝑆𝑝𝑒𝑒𝑑𝑏𝑒𝑙𝑡  (
𝑚

𝑠
) is the speed of the 

belt conveyors. It can be interpreted as the amount of time that is needed to 

transport one m3 of any material from the supply point to the demand point. 

The closer the equipment, the lower the cost.  

𝐶𝑜𝑠𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑚𝑖𝑛) = 𝐶1 (
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ∗ 60

𝑆𝑝𝑒𝑒𝑑𝑏𝑒𝑙𝑡
) (6.12) 

 Capacity difference: This cost can be calculated by Eq. (6.13). Here, C2 is the 

associated cost coefficient, inflow (m3) is the amount of material to be sent to the 

destination from the source. Capacitysource and Capacitydestination (
𝑚3

ℎ
) are the theo-

retical capacities of the supply point and demand point, respectively. It can be 

interpreted as a penalty for connecting a small excavator to a big spreader or 

vice versa. Altogether, the calculated value is the amount of extra time that is 

needed to extract or dump the material.  

𝐶𝑜𝑠𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑚𝑖𝑛) = 𝐶2 ((
𝐼𝑛𝑓𝑙𝑜𝑤(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

|𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑠𝑜𝑢𝑟𝑐𝑒 − 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛|
) ∗ 60) (6.13) 

 Altitude difference: This cost can be calculated via Eq. 6.14. Here, C3 is the as-

sociated cost coefficient. For clarification, Figure 6.9 is used to describe the pa-

rameters of this equation. In summary, it measures amount of the extra trans-

portation time that is needed if the supply point and the demand point are not 

at the same level. As can be seen in Figure 6.9, it is assumed that the maximum 

angle of inclination of the belt conveyors is 20 degrees. Here, 

𝑒𝑙𝑒𝑣. (𝐵𝑊𝐸) and 𝑒𝑙𝑒𝑣. (𝑆𝑃) are the elevations of excavators and spreaders, re-

spectively.  

𝐶𝑜𝑠𝑡𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 (𝑚𝑖𝑛) = 𝐶3

(

 
 
(
|𝑒𝑙𝑒𝑣. (𝐵𝑊𝐸) − 𝑒𝑙𝑒𝑣. (𝑆𝑃)|

𝑠𝑖𝑛 20°
) −

(
|𝑒𝑙𝑒𝑣. (𝐵𝑊𝐸) − 𝑒𝑙𝑒𝑣. (𝑆𝑃)|

𝑡𝑎𝑛 20°
)
)

 
 
(

60

𝑆𝑝𝑒𝑒𝑑𝑏𝑒𝑙𝑡
) (6.14) 
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Figure 6.9. A schematic illustration of the parameters of Eq. (6.14). 

The level of the importance of the different costs is determined by cost coeffi-

cients (i.e. C1, C2, and C3). The variation ranges of the cost coefficients are given in 

Table 6.5. In this case, their variation range is defined to be from zero to three for all 

arcs in the transportation problem. Zero means that the related cost has no influence 

on the solution of the transportation problem; on the contrary, three means the re-

lated cost has the maximum possible influence on the solution of the transportation 

problem. The following section presents and discusses the obtained results. 

Table 6.5. Different cost coefficients used in the transportation problem. 

 Cost Coefficients 

 
Distance to desti-

nation C1 

Capacity differ-

ence C2 

Altitude differ-

ence C3 

Variation ranges 0 – 3  0 – 3 0 – 3 

6.8. RESULTS AND DISCUSSION  

The case problem was solved with the proposed simulation-optimization ap-

proach. The extracted to dumped capacity ratio is set to be sufficiently small (sce-

nario I) thus the dumping site has sufficient spare capacity. For each loop iteration, 

one hundred random dumping sequences with a slice (section) length of 100 m are 

set to be created. The number of simulation replications is set to 20 replications as is 

suggested in Section 4.1.6. The computation for the complete case was run on a 

20˚ 

SP 

BWE | 𝑒
𝑙𝑒
𝑣
.(
𝐵
𝑊
𝐸
)
−
𝑒𝑙
𝑒𝑣
.(
𝑆
𝑃
)|

 

(
|𝑒𝑙𝑒𝑣. (𝐵𝑊𝐸) − 𝑒𝑙𝑒𝑣. (𝑆𝑃)|

tan 20°
) 



114 Results and Discussion 

 

6 

Core™ i5-3380M Intel CPU @ 2.90GHz and each loop iteration took about seven 

minutes.  

Figure 6.10 illustrates the trajectory of the number of feasible short-term sched-

ules as the simulation-optimization loop iterations progressed. In the 1st loop itera-

tion, no feasible schedules were seen. After that, the control module suggested a new 

set of input parameters. Here is the beginning of an upward trend. From the 2nd to 

the 7th loop iteration, the number of feasible schedules increased gradually, but rose 

sharply in the 8th loop iteration. It reached the highest point, with a figure of 76 fea-

sible schedules, in the 9th loop iteration. There was a slight drop in the last loop iter-

ation when the stopping criteria were met.  

Box plots are drawn for makespan values of the feasible short-term schedules, 

see Figure 6.11. They provide a useful way to visualize the range, overall patterns, 

and also to study the distributional characteristics of a group of makespans as well 

as the level of the makespans. A single striking observation about the box plots could 

be a downward trend of the minimum values as the simulation-optimization loop 

proceeds. This indicates that the quality of solutions increases, with a figure of 24%, 

until it reaches its optimum value in the 10th loop iteration.  

 

Figure 6.10. Trajectory of feasible short-term schedules as simulation-optimization 

loop proceeds.  
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Figure 6.11. Box plots of makespan values of the feasible short-term schedules for 

different simulation-optimization loop iterations.  

Some observations emerge from the box plots: 

 The box plots of the 5th and the 6th loop iterations are comparatively tall. This 

suggests that the range of makespan values are quite disperse. The possible ex-

planation for this could be that the algorithm starts to explore a wider range in 

the solution space of this problem.  

 In almost all the box plots, the 4 sections (quartiles) of the box plot are uneven 

in size. This shows the diversity, in the thicker section, and the similarity, in the 

thinner section, of the obtained results.  

 The medians of the box plots of the 9th and the 10th loop iterations are at the 

same level, however they show a different distributional characteristic.  

 Most of the box plots are positively (right) skewed and only two of them show 

a symmetric distribution (7th and 8th).  

To reduce the computational load, in every simulation-optimization loop iteration, 

the ten best schedules are selected to be tested by the simulator and only their out-

puts are analyzed by the control module to redefine the input parameters. The cri-

teria for the selection of the best schedules are: 
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 Makespan: Having a short makespan is a necessary condition for the selection 

of the best schedules but it is not sufficient. The following two criteria should 

also be considered.  

 Utilizations of excavators: After the makespan, the total and also individual uti-

lizations of the excavators should be analyzed in order to select the best sched-

ules. For example, Figure 6.12 presents the utilizations of nine different sched-

ules ((a) – (i)) whose makespan are about 2700 (min). The total utilizations of 

the equipment vary from 62% – 67%. Among these, schedules (b), (e), (f), and 

(i) have the highest utilizations and are added to the selection list. Next, the 

other criterion should be taken into account to narrow down the list.  

 

Figure 6.12. Utilizations of nine different feasible schedules, output of optimization 

block. 

 Utilizations of Spreaders: Likewise to the excavators, the total and individual 

utilizations of the spreaders should be analyzed. Figure 6.13 displays the utili-

zation of the same nine schedules ((a) – (i)). Based on the selection list’s items 

((b), (e), (f), and (i)), the total utilizations fluctuate between 48% – 49%. Here, 
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the individual utilizations play a crucial role. For instance, consider schedule 

(f) of Figure 6.13, the utilization of I2 is about 97% while other spreaders have 

lower utilizations. In this case, experiments revealed that there is a high chance 

of not meeting the target utilization when the unscheduled breakdown behav-

ior is added to the model by the simulator. The argument can be correct for 

schedule (g) as well; its total utilization is about 51%, but there is a high chance 

to not to meet the target in reality. These investigations narrow down the list to 

the schedule (e) in Figure 6.13 to be the best schedule. Having defined the best 

schedule, the following will now move on to discuss more details of its results.  

 

Figure 6.13. Utilizations of nine different feasible schedules, output of optimization 

block. 
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The output result of the transportation problem is given in Table 6.6. For each 

extraction sequence, the transportation problem finds the optimal connections be-

tween the excavators and the spreaders. For instance, in the first extraction sequence, 

bench I1 will receive materials from extraction benches B4 and B1. The question is 

now, “which one of the excavators sends the materials first?” The job-shop schedul-

ing problem will find the optimal schedule over time. Its detail and the formulation 

were discussed earlier in Section 5.3. The output of the job-shop scheduling problem 

in the form of a Gantt chart is presented in Figure 6.14. The completion times (ci) and 

start/end times of different tasks of benches are shown in the figure. As can be seen, 

bench B4 sends first, then bench B1. Waiting for the assigned spreader causes the 

gap between two tandem tasks. In the case of bench B5, which produces only coal, 

no waiting times were expected as a result of material changes. In summary, the 

proposed method minimizes the number of these gaps with effective resource allo-

cations.  

The details of the simulation model of the Hambach mine from the simulation 

concept to practical full-scale implementation can be found in Chapter 5. The fol-

lowing will conclude the salient findings of this study.  

Table 6.6. Output of the transportation problem. 

 

Extraction Sequence Connections of the Spreaders to Excavators

1 (I1 => B4), (I1 => B1), (I2 => B3), (C => B5), (I2 => B6), (I3 => B2)

2 (I1 => B3), (I1 => B1), (I2 => B2), (C => B5), (I2 => B6), (I1 => B4)

3 (I1 => B4), (I2 => B3), (I1 => B1), (I5 => B6), (C => B5), (I2 => B6), (I3 => B2)

4 (I1 => B1), (I4 => B4), (I2 => B3), (I4 => B6), (C => B5), (I3 => B2)

5 (I2 => B3), (I2 => B6), (I1 => B4), (I4 => B1), (C => B5)

6 (I2 => B2), (I1 => B3), (I1 => B1), (I4 => B4), (C => B5), (I2 => B6), (I1 => B4)

7 (I2 => B2), (I1 => B3), (I4 => B4), (I4 => B6), (C => B5), (I2 => B1)

8 (I6 => B2), (I1 => B1), (I2 => B3), (C => B5), (I5 => B4), (I2 => B6)

9 (I6 => B2), (I1 => B1), (I4 => B4), (C => B5), (I2 => B6), (I3 => B2), (I4 => B1)

10 (I6 => B2), (I4 => B4), (I2 => B3), (C => B5), (I5 => B4), (I2 => B6), (I1 => B4), (I4 => B1)

11 (I2 => B2), (I1 => B3), (I1 => B1), (I4 => B4), (I4 => B6), (C => B5)

12 (I1 => B1), (I5 => B2), (C => B5), (I5 => B3), (I1 => B4), (I2 => B6)

13 (I6 => B2), (I4 => B4), (I3 => B6), (I3 => B1), (C => B5), (I3 => B3), (I1 => B4)

14 (I6 => B2), (I1 => B1), (I2 => B3), (C => B5), (I3 => B3), (I1 => B4), (I1 => B6)

15 (I5 => B6), (I2 => B3), (C => B5), (I4 => B4), (I3 => B6)

16 (I4 => B4), (I2 => B6), (I6 => B3), (I6 => B6), (C => B5)

17 (I4 => B3), (C => B5), (I4 => B4), (I1 => B4)

18 (I1 => B4), (I1 => B6), (I1 => B3), (C => B5)

19 (I5 => B6), (I5 => B3), (C => B5), (I4 => B4), (I3 => B6)
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Figure 6.14. A feasible Gantt chart. 

6.9. CONCLUSIONS 

Throughout this chapter, a new simulation-based optimization approach has 

been proposed. The approach was capable of optimizing the dispatch decisions in 

an opencast mine operated under the paradigm of continuously excavated material 

flow. It combined deterministic optimization with stochastic simulation in a closed 

loop. A transportation problem and a job-shop scheduling problem composed the 

optimization model. The performance of the proposed approach was tested in the 

Hambach mine (case 2). In this case, for a given extraction sequence, one hundred 

random dumping sequences were created. From the obtained results, it can be con-

cluded that: 

 The number of feasible short-term schedules increased as the simulation-opti-

mization loop progressed. 

 The algorithm stopped after ten loop iterations when no further improvements 

were seen.  
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 The box plots of the makespans of the schedules showed a downward trend of 

the minimum values as the simulation-optimization loop proceeded. This indi-

cated that the quality of solutions increased, with a figure of 24%, until it 

reached its optimum value in the 10th iteration.  

 The selection of the ten best schedules to be run in the simulator reduced the 

computational load quite effectively. The criteria for the selection of the best 

schedules were the makespans, total/individual utilizations of excavators, and 

total/individual utilizations of spreaders. 
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7.1. CONCLUSIONS  

This chapter, first, provides general conclusions from this dissertation and then 

outlines recommendations for future research. Continuous mining systems require 

large investments and operational costs. Decisions in daily production scheduling 

are impacted by uncertainties, such as incomplete knowledge about the deposit and 

operational downtimes. These can have a significant influence on the actual produc-

tion performance. In this dissertation, a stochastic mine process simulator capable of 

capturing different sources of uncertainty, including geological uncertainty and un-

scheduled breakdowns of equipment, has been developed. An algorithmic approach 

to simulate the process of opencast mines was proposed. The evaluation function 

and three major KPIs including coal quality, quantity, and utilization of major equip-

ment were defined. The approach was framed in a formal description containing all 

mining elements. Throughout this study, two types of simulations, namely Monte-

Carlo simulation and Discrete-Event Simulation (DES), were integrated. A synthetic 

experiment was used to demonstrate the strength and limitation of the integrated 

approach; TRL 4 was achieved. Thereafter, it has been extended to a new technology 

readiness level (TRL 6) by implementing it in an industrial relevant environment. 

The obtained results showed that such an approach provides the mine-planning en-

gineer a valuable tool to foresee critical situations affecting the continuous supply of 

raw material to customers, and the system performance. This dissertation further 

proposed a new simulation-based optimization algorithm applicable to short-term 

production planning of opencast mines. Deterministic optimization and stochastic 

simulation were combined in a closed loop. The proposed approach was capable of 

optimizing dispatch decisions for the given extraction sequences. Furthermore, in 

this dissertation, in order to overcome the capacity constraint problem at the dump-

ing site, the creation of a number of random dumping sequences was proposed. The 

following sub-sections contain chapter-specific conclusions. 

Chapter 4: Synthetic Experiment: 2D Case Study 

A synthetic experiment in a fully controllable environment demonstrated that 

the developed concept was capable of quantifying the effects of geological uncer-

tainty and unscheduled downtimes. Their impacts on the ability of delivering con-

tractually defined coal quantities and qualities have been shown. It has been found 

that: 

 Relying on the estimated model would indicate a biased and optimistic predic-

tion of the ash content. This is due to ignoring the in-situ variability and the 
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geological uncertainty. Histograms of multiple replications also illustrated this 

finding.  

 The geological uncertainty does not only affect the amount of coal produced, 

but also affects waste management and downtimes due to dispatching. 

 The range of uncertainty can be mapped by stochastic predictions. These pre-

dictions are based on realizations of the reserve block model.  

 The average of the realizations showed a similar behaviour to reality. 

 For this case study, the results illustrated that the ash content of more than 50% 

of the delivered trains deviated from the specified target. This will incur oppor-

tunity costs and economic losses due to the penalties.  

Chapter 5: Simulation Modeling – Real-size Case Studies 

In this chapter, the developed simulation model of Chapter 4 has been extended 

to a new technology readiness level (TRL 6) by implementing it in an industrially 

relevant environment. A framework for modeling, simulation, and validation of the 

simulation model of a large continuous mine has been presented in detail. The 

framework was implemented in the two case studies. The case study approach was 

chosen to provide detailed illustrations of steps of a simulation study, implementa-

tion issues, and challenges in practical applications. A number of important practical 

implications emerge from this study:  

 The quality of the historical data that are used for the calibration of the simula-

tion model is very important.  

 Experienced problem formulators and simulation modelers are crucial for a 

successful simulation study.  

 The occurrence of rare events (e.g., long breakdowns of equipment) may not be 

well captured in simulation experiments.  

The second aim of this chapter was to demonstrate the strength of simulation 

modeling as an operational decision support tool for material management. The rel-

evance was clearly supported by the current findings. The results indicated that a 

validated simulation model could be used to assess the impacts of different scenarios 

(e.g., different task schedules) in the mine. Based on the type of analysis and the 

measured KPIs, the best scenario among all can be executed in reality. 

Chapter 6: Simulation-based Optimization – Full-size Case Study 

Throughout this chapter, a new simulation-based optimization approach has 

been proposed. The approach was capable of optimizing the dispatch decisions in 

an opencast mine operated under the paradigm of a continuous excavated material 
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flow. It combined deterministic optimization with stochastic simulation in a closed 

loop. A transportation problem and a job-shop scheduling problem composed the 

optimization model. The performance of the proposed approach was tested in the 

Hambach mine (case 2). In this case, for a given extraction sequence, one hundred 

random dumping sequences were created. From the obtained results, it can be con-

cluded that: 

 The number of feasible short-term schedules increased as the simulation-opti-

mization loop progressed. 

 The algorithm stopped after ten loop iterations when no further improvements 

were seen.  

 The box plots of the makespans of the schedules showed a downward trend of 

the minimum values as the simulation-optimization loop proceeded. This indi-

cated that the quality of solutions increased, with a figure of 24%, until it 

reached its optimum value in the 10th iteration.  

 The selection of the ten best schedules to be run in the simulator reduced the 

computational load quite effectively. The criteria for the selection of the best 

schedules were the makespans, total/individual utilizations of excavators, and 

total/individual utilizations of spreaders. 
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7.2. RECOMMENDATIONS FOR FUTURE RESEARCH 

In this dissertation, a few important topics with respect to the theoretical un-

derstanding and applicability of simulation modeling and simulation-based optimi-

zation have been investigated. However, there exists further scope for research.  

The first recommendation for future research would be to extend the system 

simulation to capture stochastic demand and seasonal effects on downtime behav-

ior. As a second recommendation, a single step optimization approach is recom-

mended, i.e. physical sequencing can be merged into the deterministic optimization. 

This is because in a two-step optimization approach of short-term production sched-

uling, the scheduling elements, i.e. physical sequencing and equipment utilization, 

are artificially separated so that they do not benefit from their simultaneous optimi-

zation.  
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A 
A.1. TECHNOLOGY READINESS LEVELS – TRL  

To describe the status of the developed technologies in this dissertation, refer-

ences to technology readiness levels (TRL) are made. These standards are defined 

by the European Commission (2014) and can be found in Table A.1.  

Table A.1. Technology readiness levels defined by European Commission (2014). 

Technology Read-

iness Level 
Description 

TRL 1 Basic principles observed 

TRL 2 Technology concept formulated 

TRL 3 Experimental proof of concept 

TRL 4 Technology validated in lab 

TRL 5 Technology validated in relevant environment (industrially relevant 

environment in the case of key enabling technologies) 

TRL 6 Technology demonstrated in relevant environment (industrially rele-

vant environment in the case of key enabling technologies) 

TRL 7 System prototype demonstration in operational environment 

TRL 8 System complete and qualified 

TRL 9 Actual system proven in operational environment (competitive manu-

facturing in the case of key enabling technologies; or in space) 
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