Coupling of rigorous multiphase flash with advanced linearization schemes for accurate compositional simulation

Abd, Abdul Salam; Abushaikha, Ahmad; Voskov, Denis

DOI
10.2118/203956-MS

Publication date
2021

Document Version
Final published version

Published in
Society of Petroleum Engineers - SPE Reservoir Simulation Conference 2021, RSC 2021

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Abstract

The properties of fluids flowing in a petroleum reservoir are quantified by understanding the thermodynamic behavior of each flowing phase in the system. This work describes proper techniques to formulate and execute a thermodynamic model for accurately predicting the equilibrium behavior of oil-gas-brine systems within the practical range of pressure and temperature. The three-phase flash algorithm is validated against published data from the available literature. The multiphase flash procedure is implemented to generate linearized physical properties by using an Operator Based Linearization (OBL) modelling technique allowing for a combination of multiple complex physics in the nonlinear solution of governing equations. This is the first implementation of three-phase flash calculations for hydrocarbons and brines based on fugacity-activity models coupled with an advanced highly efficient linearization scheme. Our approach increases the efficiency and flexibility of the modelling process of physical phenomena such as fluid flow in porous subsurface reservoirs.

Introduction

The costs of enhanced oil recovery (EOR) processes from hydrocarbon reservoirs have come down since 2014, and it accounts for 2% of global oil production (IEA, 2020). This share is increasing with the accessibility to new technology that helps engineers tap more of the available subsurface resources and the fact that many fields have become mature production provinces. However, implementing EOR comes with challenges on many fronts, such as the interactions between carbon dioxide and hydrocarbons that highlight the importance of multiphase equilibria, as vapor-liquid-liquid equilibrium is observed. This challenge is exacerbated by the fact that almost all reservoirs would have water content either from direct injection during secondary flooding or the presence of an aquifer in the formation. The presence of water causes an aqueous phase to form, and hence modelling multiphase equilibrium becomes more challenging yet essential in understanding the fluid flow of different phases in the subsurface reservoir.

In recent years, several methods have been proposed to achieve accurate phase-state identification of multi-component systems at a given temperature, pressure, and composition (Nasrifar & Moshfeghian, 2020).
These phase behavior prediction techniques form an integral part in the development of compositional reservoir simulations, and thus as chemical equilibrium is accurately predicted, the fluid flow obtained from reservoir simulations is more reliable. Typically, the presence of water in hydrocarbons systems poses difficulties for multiphase equilibrium calculations at the level of stability tests and flash calculations convergence (Heidemann, 1974; Mokhatab, 2003; Neoschil & Chambrette, 1978; Peng & Robinson, 1980). Many researchers tend to thus neglect the presence of the aqueous phase in the compositional simulation and reduce the problem to two-phase flash only. Such an approach causes inconsistencies at the physical level, which may cause a serious error in simulation results, like CO$_2$ sequestration in the depleted gas or oil fields where the amount of CO$_2$ dissolved in the reservoir should be predicted by a full three-phase flash calculation.

The phase partitioning of hydrocarbon-brine systems is usually modelled by either using an equation of state (EOS) (Redlich & Kwong, 1949; Soave, 1972; Peng & Robinson, 1976) or an activity-based model that utilizes Henry's law (Li & Nghiem, 1986; Luks, Fitzgibbon & Banchero, 1976; Mehra, Heidemann & Aziz, 1982; Nghiem & Heidemann, 1982). In the former, the fugacity of each phase is typically calculated using a standard EOS such as modified Peng-Robinson (PR), Redlich-Kwong (RK), or Soave-Redlich-Kwong (SRK) that does not represent the presence of water in the system accurately. However, the second approach relies on an EOS to calculate the fugacities of the non-aqueous phase (liquid hydrocarbon and vapor gas), while an activity model is used to calculate the activity and Henry's coefficient of the aqueous phase (water). Both approaches are referred to as φ-φ (fugacity-fugacity) model and φ-γ (fugacity-activity) model respectively, where φ refers to the fugacity of the phase evaluated through an EOS while γ is the activity coefficient calculated through gas solubility modeling techniques.

The partitioning of the components in each phase is calculated using Rachdroid-Rice equations. These equations are solved to determine the phase composition and mole fractions for a given set of overall mole fraction and K values. (Li and Nghiem, 1982) argued that molar phase fractions could be allowed to go to negative values for two-phase mixtures in what they called the negative flash approach. This approach was extended by (Whitson and Michelsen, 1989) to show that the results of a two-phase negative flash can reliably substitute conventional phase stability testing. Extending the RR equations for multiphase equilibrium calculations, (Michelsen, 1994) proposed a positive flash approach to solving the RR function where the molar phase fractions are kept within the physical boundaries ([0,1]). Later, (Leibovici and Nichita, 2008) developed the first multiphase negative flash approach with robust continuously differentiable functions when the physical phase boundaries are crossed. This approach was then followed by (Iranshahr et al., 2010a) work, where he suggested a generalized RR problem for an arbitrary number of phases with a robust nested bisection solution procedure. Although (Whitson and Michelsen, 1989) have shown the ability to detect phase instability using two-phase negative flash, performing a three-phase negative flash is not enough to confirm the phase-state of single-or two-phase mixtures. Thus, (Iranshahr et al., 2010a) suggested using a multistage negative-flash approach to identify the phase-state of such compositions.

Thermodynamic equilibrium computations for phase split equilibrium have always been computationally demanding and impose many numerical complexities. Motivated to simplify these computations, a tie-simplex based parameterization method has been developed, which treats the thermodynamic problem using an extension of tie-simplices defined by equilibrium compositions. The work of (Voskov and Tchelepi, 2009) proposed parametrization of the compositional space based on tie-simplices and assembling them into a table to be later interpolated as a function of pressure. This approach is called isothermal Compositional Space Adaptive Tabulation (CSAT) methodology and is valid for an arbitrary number of phases. The CSAT was then generalized for thermal applications by (Iranshar et al., 2010b), where linear interpolation to obtain a tie-line for a composition with the specified pressure and temperature values and extended to realistic multiphase systems in (Iranshahr et al. 2012). The previous work formed the basis for Zaydullin...
et al. (2012, 2016) to develop an adaptive compositional space-parameterization approach to represent governing differential equations in tie-simplex space, thus allowing for continuous representation of the phase envelope as a function of composition and pressure. Following these ideas, Voskov (2017) introduced an Operator-Based Linearization (OBL) technique to parameterize nonlinear terms (operators) in the governing equations using uniform mesh in the space of nonlinear unknowns. The developed operators are linearly interpolated during the course of the simulation on a mesh with predefined accuracy to speed up property calculations (including phase behavior evaluation) for multiple industrial applications (Khait and Voskov, 2018a,b; Kala and Voskov, 2020; Lyu et al. 2021). Moreover, the full details of implementing the OBL technique in an advanced parallel framework for reservoir simulation with high order discretization schemes such as Mixed Hybrid Finite Element method (MHFEM) and Mimetic Finite Difference (MFD) is discussed in details in our work of (Abd and Abushaikha, 2021; Abd et al., 2021; Nardean et al., 2020; Li et al., 2020; Abushaikha and Terekhov, 2020; Zhang and Abushaikha, 2019a,b; Hjieij and Abushaikha, 2019a,b; Abushaikha et al., 2017) that we refer the reader to.

In general, the properties of fluids flowing in a petroleum reservoir are quantified by understanding the thermodynamic behavior of each flowing phase in the system. This necessitates that the composition of each phase should be known under the closing assumptions. This work describes new proper techniques to formulate and execute a thermodynamic model for accurately predicting the equilibrium behavior of oil-gas-brine systems within the practical range of pressure and temperature. This comprehensive thermodynamic model combines the φ-φ (fugacity-fugacity) and φ-γ (fugacity-activity) approaches to accurately perform three-phase flash calculations in the presence of aqueous brine. The model is implemented in a fully functioning reservoir simulator and parameterized using the OBL approach to solve the governing equations. The performance of the proposed model is validated for 1-D and 2-D meshes with highly heterogenous properties and provides accurate results for phase identification during the course of the simulations.

**Theoretical Basis**

The implementation of a φ-γ EoS-based model provides a more accurate determination of the aqueous phase behavior. The main challenge in calculating the phase split is determining how many phases are present in the mixture at a specific temperature and pressure. Typically, an explicit analysis of Michelsen's stability test is used (Baker, Pierce & Luks, 1982; Michelsen, 1982), where stationary points are located. The solution at these points is used to determine the stability of the system, but it requires multiple initial estimates of the equilibrium ratio (K) to avoid missing any instability regions.

To achieve thermodynamic equilibrium, the fugacity of each component in each phase should be equal. A generic equation could represent a three-phase system at equilibrium by,

\[ f_i^V = f_i^L = f_i^{\text{Aq}} \]  

where \( f_i \) is the fugacity of the vapor (V), liquid (L), or aqueous (Aq) phase, and \( i \) is the index of the component. The equation indicates that when three phases are present, their respective composition will keep changing until thermodynamic equilibrium is achieved. The equilibrium state is identified by calculating the equilibrium ratio \( k \) which is obtained by solving a typical Rashford-Rice (RR) equation (Rachford & Rice, 1952) using nested bisection (Iranshahr et al., 2010a) or Newton's method (Michelsen, Mollerup & Breil, 2008) that allows for detailed analysis of the composition of each component in each phase: liquid \( (x_i) \), vapor \( (y_i) \) and water \( (w_i) \) phases,

\[ k_{xy} = \frac{y_i}{x_i} \]  

\[ k_{wy} = \frac{y_i}{w_i} \]
Next, we discuss Henry's law and fugacity computations for different phases and the implementation of stability analysis and phase split calculations.

**Henry's Law**

Henry's constant is used to model the solubility of gases in the aqueous phase and was suggested in multiphase flash calculations by (Li & Nghiem, 1986) and later modified by (Harvery, 1996). The correlation of Henry's law constants used in this work is defined by (Akinfiev & Diamond, 2003) with respect to given pressure and temperature,

\[
\ln H_i = (1 - \eta) \ln \left( \frac{RT}{\rho_{H_2O}} \right) + \eta \ln \left( \frac{\rho_{H_2O}}{\rho_{H_2O}^0} \right) + 2 \rho_{H_2O}^0 \Delta B
\]

(4)

where \( \eta \) is a constant for each gas component dissolved in the aqueous phase, \( \rho_{H_2O}^0 \) is the density of water and \( \Delta B \) is the difference in the interaction between dissimilar molecules and that of identical solvent molecules. This interaction parameter is calculated from fitting experimental data into the correlation below,

\[
\Delta B = \tau + \beta \left( \frac{10^3}{T} \right)^{0.5}
\]

(5)

where \( \tau \) and \( \beta \) are empirical constants calibrated experimentally for different components tabulated in Table 1

<table>
<thead>
<tr>
<th>Component</th>
<th>( \eta )</th>
<th>( \tau )</th>
<th>( \beta )</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>−0.114535</td>
<td>−5.279063</td>
<td>6.187967</td>
</tr>
<tr>
<td>H2S</td>
<td>0.77357854</td>
<td>0.27049433</td>
<td>0.27543436</td>
</tr>
<tr>
<td>N2</td>
<td>−0.008194</td>
<td>−5.17537</td>
<td>6.906469</td>
</tr>
<tr>
<td>C1</td>
<td>−0.092248</td>
<td>−5.779280</td>
<td>7.262730</td>
</tr>
<tr>
<td>C2</td>
<td>−0.6091</td>
<td>−16.8037</td>
<td>20.0628</td>
</tr>
<tr>
<td>C3</td>
<td>−1.1471</td>
<td>−25.3879</td>
<td>28.2616</td>
</tr>
<tr>
<td>C4</td>
<td>−1.6849</td>
<td>−33.8492</td>
<td>36.1457</td>
</tr>
</tbody>
</table>

**Calculation of molar volume of water.** The molar volume of water \( V_{mH_2O} \) is estimated by the correlation of (Fine & Millero, 1973),

\[
V_{mH_2O} = V_0 - \frac{V_{mH_2O}^0 P}{B + A_1 P + A_2 P}
\]

(6)

where the constant parameters \( V_0 \) and \( \rho_{mH_2O}^0 \), \( A_1 \), \( A_2 \) and \( B \) are defined as,

\[
V_0 = 1 + 18.159725 \times 10^{-3} T + (0.9998396 + 18.224944 \times 10^{-3} T - 7.9222210 \times 10^{-6} T^2 - 55.44846 \times 10^{-7} T^3 + 149.7562 \times 10^{-10} T^4 - 393.2952 \times 10^{-15} T^5)
\]

(7)

\[
A_1 = 3.2891 - 2.3910 \times 10^{-3} T + 2.8446 \times 10^{-4} T^2 - 2.8200 \times 10^{-6} T^3 + 8.477 \times 10^{-9} T^4
\]

(8)

\[
A_2 = 6.245 \times 10^{-5} - 3.913 \times 10^{-6} T - 3.499 \times 10^{-8} T^2 + 7.942 \times 10^{-10} T^3 - 3.299 \times 10^{-12} T^4
\]

(9)

\[
B = 1.9654 \times 10^{3} + 147.0377 T - 2.21554 T + 1.0478 \times 10^{-2} T^3 - 2.2789 \times 10^{-5} T^4
\]

(10)

and the temperature, \( T \) is in degrees Celsius.

The density can be easily defined then as,

\[
\rho_{H_2O} = \frac{1}{V_{mH_2O}}
\]

(11)
Calculation of water saturation pressure. Water saturation pressure is obtained using a correlation of (Saul & Wagner, 1987) as reported by (Shibue, 2003),

\[
\ln P_s = \frac{T_c \ln P_c}{T} - a_1 \tau + a_2 \tau^{1.5} + a_3 \tau^3 + a_4 \tau T_c + a_5 \tau^4 + a_6 \tau^7.5
\]  

(12)

where \( T_c \) and \( P_c \) are the critical pressure and temperature of the water component, while \( \tau = 1 - \frac{T}{T_c} \). The empirical constants are reported in Table 2 The input parameters for the molar volume correlation.

<table>
<thead>
<tr>
<th>Component</th>
<th>( a_1 )</th>
<th>( a_2 )</th>
<th>( a_3 )</th>
<th>( a_4 )</th>
<th>( a_5 )</th>
<th>( a_6 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O</td>
<td>-7.85951783</td>
<td>1.84408259</td>
<td>-11.7866497</td>
<td>22.6807411</td>
<td>-15.9618719</td>
<td>1.80122502</td>
</tr>
</tbody>
</table>

The saturation pressure can also be calculated by the semi-empirical equation of (Frost & Kalkwarf, 1953), which requires more parameters but gives fairly similar results to (Saul & Wagner, 1987).

Calculation of water component fugacity in the aqueous phase. The equation of (King et al., 1992) is applied to obtain saturated reference water fugacity,

\[
\mathcal{f}_H^0 = P_s \frac{v_m \mu}{\rho H_2O R T}
\]  

(13)

Fugacity Computation

Liquid and vapor phases. The fugacity of the liquid and the vapor phase is calculated using the Peng-Robinson (PR) EOS defined as:

\[
P = \frac{RT}{V_m - b} - \frac{a}{V_m + 2b V_m - b^2}
\]  

(14)

where,

\[
a = 0.45724 \frac{R^2 T_c^2}{P_c}
\]

\[
b = 0.07780 \frac{RT_c}{P_c}
\]

\[
\alpha = \left(1 + \kappa (1 - \sqrt{T_r})\right)^2
\]

\[
\kappa = 0.37464 + 1.54226 \omega - 0.26992 \omega^2, \quad \omega < 0.5
\]

\[
\kappa = 0.3796 + 1.4855 \omega - 0.1644 \omega^2 + 0.01667 \omega^3, \quad \omega \geq 0.5
\]

The parameter \( \omega \) represents the acentric factor of the species, while \( R \) is the gas constant. The critical temperature and pressure are denoted by \( T_c \) and \( P_c \) respectively. The cubic equation is solved by writing it in an expanded form to represent the compressibility factor, \( Z \) as follows:

\[
Z^3 - (1 - B)Z^2 + (A - 2B - 3B^2)Z + (AB - B^2 - B^3) = 0
\]  

(15)

where,

\[
A = a_0 \frac{P}{R^2 T^2}
\]

\[
B = b \frac{P}{RT}
\]

The following composition-dependent mixing rule is applied to calculate \( a \) and \( b \),
where $k_{ij}$ is the binary interaction coefficients determined from experimental values of mixtures.

The fugacity coefficient of each component can be hence calculated using the equation:

$$
\ln \phi_i = \frac{b_i}{B} (Z - 1) - \ln (Z - B) - \frac{1}{\delta_2 - \delta_1} \frac{2a_{ij} - b_i}{B} \ln \left( \frac{Z + \delta_2 B}{Z + \delta_1 B} \right)
$$

where $\delta_1$ and $\delta_2$ are empirical constant for PR-EOS defined as $1 - \sqrt{2}$ and $1 + \sqrt{2}$ respectively.

The result of the fugacity calculation is used to obtain a new equilibrium ratio $k_i$ that is updated at each iteration level using the following relation:

$$
k_i^{n+1} = K_i^n \frac{f_i^n}{f_i^n}
$$

**Aqueous phase.** The water-rich phase is modelled using an activity model that is based on Henry’s law constants. The fugacity of the aqueous phase is reported in (Spycher & Pruess, 2005) as,

$$
f_i^{aq} = w_i H_i \gamma_i
$$

where $H_i$ is henry’s constant $\gamma_i$ is the activity coefficients and $w_i$ is the molar fraction of each component in the aqueous phase.

We note that the fugacity coefficient of the components in the aqueous does not depend on the molar composition,

$$
\phi_i = \frac{H_i}{P} \quad i \neq w
$$

Combining the fugacity expression for fugacities in the vapor and water-rich phase yield a thermodynamic equilibrium relationship expressed as follows,

$$
w_i H_i \gamma_i = P \phi_i \gamma_i
$$

**Activity Coefficient**

The activity coefficient is calculated using a correlation by (Rogers & Pitzer, 1982) to account for the deviation of a certain mixture from ideality. Pitzer’s relation is reliable for high salt content solutions, and this is important since the activity coefficients are highly influenced by the anions, cations, and interactions between particle pairs. The model is represented by,

$$
\ln \gamma_i = \sum c^{2m_c} \lambda_{i-Na} + \sum c^{2m_a} \lambda_{i-Cl} + \sum \sum c^{2m_c m_a} \xi_{i-Na-Cl}
$$

where $m_c$ is the cation molality, $m_a$ is the anion molality, $\lambda_{i-Na}$ and $\lambda_{i-Cl}$ are the second-order parameters representing cations and anions, and $\xi_{i-Na-Cl}$ is a third order parameter dependent on pressure and temperature. The parameters $\lambda_{i-c}$ is assumed to be zero for NaCl dissolved in solutions. The parameters $\lambda_{i-Na}$ and $\xi_{i-Na-Cl}$ are estimated using the following correlation with the relevant constants tabulated in Table A-1 Pitzer parameters for the second-order parameter $\lambda_{i-Na}$ of the activity coefficients and Table A-2 Pitzer parameters for the third-order parameter $\xi_{i-Na-Cl}$ of the activity coefficients of Appendix A respectively.

$$
X(T, P) = c_1 + c_2 T + c_3 \frac{P}{T} + c_4 P + c_5 \frac{P}{T} + c_6 P + c_7 \frac{P}{T^2} + c_8 \frac{P}{T^3} + c_9 T \ln P + c_{10} \frac{P}{T} + c_{11} P^2 + c_{12} P T
$$
Phase Split Calculations
The flash procedure is used to determine the composition of each phase in a certain system. Typically, the computations are carried out at constant pressure and temperature to determine the unknown variables $F_j$ and $x_{ij}$ representing the molar ratio of each phase in the system and the mole fraction of a component $i$ is phase $j$ respectively. If $N_p$ is the total number of phases and $N_c$ is the number of components, then the total number of unknowns is represented by $N_p + N_p N_c$.

The phase composition and the phase distributed should both add to unity, and the overall composition can be written as,

$$z_i = \sum_{j=1}^{N_p} x_{ij} F_j \quad (26)$$

The equilibrium ratio, $K$, is generally defined to reference phase 1 as,

$$K_{1j} = \frac{x_{ij}}{x_{i1}} \quad (27)$$

The $K$ values are updated using a successive substitution scheme to minimize the Gibbs energy of the system by utilizing the fugacity coefficients of the three phases.

Stability Analysis
The successive substitution method (SSI) is used to update and solve both the stability and flash calculations in our suggested scheme. The RR equations are handled through a generalized negative flash strategy developed by (Iranshar et al., 2010a). This method can be labelled as mathematically abstract as it allows for phase fraction to be negative.

In stability analysis, the initial guess of the equilibrium ratios greatly affects the number of minimum points in the TPD function or in other words its local minimization process. This means that instability might go undetected if the system is not initialized properly. In some cases, improper initialization might lead to convergence problems in the phase split calculations as well. Based on the work (Michelsen, 1952; Baez et al., 2007; Li and Firoozabadi, 2012), $N_c + 4$ sets on initial $K$ guesses is suggested. If we have a two-phase system of vapor and hydrocarbon liquid, Wilson correlation and its inverse are applied as initial guesses for stability analysis like most commercial simulation software. The (Wilson, 1968) formula is written as,

$$K_{i, \text{wilson}} = \frac{P_{ci}}{P} \exp\left[5.37 \left(1 + \omega_i \left(1 - \frac{T_{ci}}{T}\right)\right)\right] \quad (28)$$

where $T_{ci}$, $P_{ci}$ and $\omega_i$ are the critical temperature, critical pressure and acentric factor of component $i$.

However, when an aqueous phase is present in the system, Wilson's correlation becomes unreliable. The following set of $K_{i, \text{stab}}$ values is suggested to increase the possibility of selecting appropriate initial $K$ values,

$$K_{i, \text{stab}} = \left\{ K_{i, \text{wilson}}, \frac{1}{K_{i, \text{wilson}}}, \sqrt{K_{i, \text{wilson}}}, \frac{1}{\sqrt{K_{i, \text{wilson}}}}, K_{i, \text{pure}} \right\} \quad (29)$$

where,

$$K_{i, \text{pure}} = \begin{cases} 0.9 i, & i \neq j \\ 0.1 N_c - x_j, & j = i \end{cases}$$

In our system, and since an activity model is implemented, we obtain an initial estimate of the equilibrium constant between the vapor and aqueous phase from the work of (Ballard, 2002) and adopted by (Wapperom, 2019),
where \( w_i \) and \( y_i \) are the liquid and vapor mole fraction of component \( i \) respectively, \( \phi_i \) is the fugacity coefficient, \( \gamma_i \) is the activity coefficient and \( P_{sat} \) is the saturation pressure. We assume that an infinite dilution activity coefficient is presentable of the component in the aqueous phase due to the high dilution. Furthermore, the Poynting factor (exponential term) and the vapor fugacity coefficient are assumed to be equal to unity for simplification, thus reducing the equation to,

\[
K_{iw} = \frac{y_i}{w_i} = \frac{P_{sat}}{P} \gamma_i^\infty
\]  

(31)

The saturation pressure is calculated according to the following correlation,

\[
P_{sat} = P_c e^{[a_1 + a_2]} \]

(32)

The constants \( a_1 \) and \( a_2 \) are temperature dependent and are calculated using the parameters in Table 3,

\[
a_1 = a_{11} + a_{12} \frac{T}{T_i} + a_{13} \ln \frac{T}{T_i} + a_{14} \frac{T}{T_i}^6
\]

(33)

\[
a_2 = a_{21} + a_{22} \frac{T}{T_i} + a_{23} \ln \frac{T}{T_i} + a_{24} \frac{T}{T_i}^6
\]

(34)

<table>
<thead>
<tr>
<th>( a_{11} )</th>
<th>( a_{12} )</th>
<th>( a_{13} )</th>
<th>( a_{14} )</th>
<th>( a_{15} )</th>
<th>( a_{22} )</th>
<th>( a_{25} )</th>
<th>( a_{24} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.927140</td>
<td>−6.096480</td>
<td>−1.288620</td>
<td>0.169347</td>
<td>15.25180</td>
<td>−15.68750</td>
<td>−13.47210</td>
<td>0.43577</td>
</tr>
</tbody>
</table>

The saturation pressure of water is calculated separately using Antoine equation with the empirical constants listed in Table.

\[
P_{sat} = e^{[a_1 + a_2]} \]

(35)

<table>
<thead>
<tr>
<th>( a_1 )</th>
<th>( a_2 )</th>
<th>( a_3 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.048399</td>
<td>4030.18245</td>
<td>−38.15</td>
</tr>
</tbody>
</table>

The activity coefficient at infinite dilution for water is equal o unity while the other computed are computed using,

\[
\gamma_i^\infty = e^{[a_1 + a_2 N_i + a_3 \frac{N_i}{N_i}}
\]

(36)

The parameters \( N_i \) represents the number of carbon atoms in each component, and the constants to calculate infinite dilution activity coefficient are tabulated in Table 5.

<table>
<thead>
<tr>
<th>( a_1 )</th>
<th>( a_2 )</th>
<th>( a_3 )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.688</td>
<td>0.642</td>
<td>0</td>
</tr>
</tbody>
</table>
If a vapor-liquid (V-L) stability is carried out, \( K_i^{\text{wilson}} \) and \( \frac{1}{K_i^{\text{wilson}}} \) are sufficient as initial estimates. Other stability tests as vapor-water (V-W) and liquid-water (L-W) requires the full set of \( K_i^{\text{stab}} \) in addition to \( K_i^{\text{activity}} \) to initialize the system properly.

**Model Validation and Applied Reservoir Simulation Cases**

In this section, we present a brief comparison of the performance of the implemented code for a three-phase system and compare the results with published models from the literature. We then test the proposed thermodynamic model for 1-D and 2-D reservoir simulation cases using the OBL scheme.

**Ternary Diagram of a C_{1}-nC_{10}-H_{2}O mixture (3-phase system)**

In the work of (Iranshar et al., 2010a), a full PR-EOS approach is used to establish and calculate the thermodynamic equilibrium between the vapor, liquid, and the aqueous phases. Initially, a three-phase negative-flash is performed. If the composition is inside the tie triangle (three-phase), its state is confirmed. Otherwise, based on the results of the three-phase negative-flash, additional two-phase negative-flash computations are necessary. This approach does not determine with confidence the number of phases in each region as stability testing is not performed. Opposed to our suggested approach, the (Iranshar et al., 2010a) approach would not be able to appropriately characterize the dissolution of gases into the aqueous phase as only EoS models are used. The full PR-EOS approach shows the tie-triangle eventually degenerates into a line at a pressure of 170.53 bar, while the activity approach shows that the three-phase region is maintained at that pressure and only degenerates at around a pressure of 192 bar, see Fig. 1. The prediction of the aqueous phase using an EoS model is challenging and does not provide accurate representation of the system's thermodynamic state as certain conditions. Thus, the degeneration of the tie triangle is noticed at a higher pressure when compared to (Iranshar et al., 2010a) approach.

**Analysis of 1-D and 2-D Reservoir Simulations**

The objective of this analysis is to couple the three-phase activity-based flash model with the transport equations in a reservoir using an advanced highly efficient linearization scheme named Operator Based Linearization (OBL) (Voskov, 2017). The governing equations for the multiphase flow of a fluid in a porous medium are given by the conservation of mass, Darcy's law, and an equation of state. It is assumed that the diffusion and dispersion forces are very small so they can be neglected. The continuity equation is as follows,

\[
F_i = \frac{\partial N_i}{\partial t} + L_i = 0 \tag{37}
\]

where \( F_i \) is the residual function that should amount to zero after the system converges to an acceptable solution, \( \frac{\partial N_i}{\partial t} \) is the accumulation term and \( L_i \) is the flux term.

The term \( N_i \) refers to the total molar mass of fluid species \( i \), and is defined as:

\[
N_i = \sum_{j=1}^{n_p} (\rho_j \phi_j X_{ij}) \tag{38}
\]

where \( n_p \) is the number of fluid phases, \( \rho_j \) is the density of phase \( j \) that depends on pressure, temperature, and molar fraction, \( \phi \) is the porosity and \( X_{ij} \) is the mole fraction fluid species \( i \) in the fluid phase \( j \).

Also, the flux term \( L_i \) incorporates the effects of different transport phenomena, including advective, diffusive and dispersive processes as well as the well source term:
where \( u_j \) is the velocity for phase \( j \), \( D_{ij} \) is the dispersivity tensor for fluid species \( i \) in phase \( j \), \( q_i^W \) is the well rate of species \( i \).

The velocity \( u_j \) is given by Darcy’s law:

\[
L_i = \nabla \cdot \sum_{j=1}^{n_p} \left( \rho_j X_{ij} u_j - \rho_j \phi S_i D_{ij} \nabla X_{ij} \right) + q_i^W
\]

(39)

Where \( K \) is the rock permeability, \( k_{rj} \) is the relative permeability of phase \( j \), \( p_j \) is the pressure of phase \( j \), and \( g \) is the acceleration of gravity.

These equations are general in their applicability, where each component may exist in any or all of the three-phase equations. The governing equation is discretized and re-written in term of state-based (physical properties of fluid and rock) and space-based (properties transformed in space) operators following the OBL approach:
\[ V \phi_{ij} \left[ a_i(\omega) - a_{ej}(\omega_n) \right] - \Delta t \sum_{k \in U} \sum_{i=1}^{n_p} \left[ I^l_i \beta_{ij}(\omega) \Delta \Phi^l_{ij} + I^d_i \gamma_{ij}(\omega) \Delta \Phi^d_{ij} \right] + \theta(\xi, \omega, u) \]  

(41)

Where,

- \( \omega \) is a state-dependent parameter
- \( \xi \) is a space-dependent parameter
- \( \omega(\omega) = \left(1 + c_r \frac{(p - p_{ref})}{\rho_j s_j D_{ij}} \right) \rho_j k_{ij} / \mu_j \)
- \( \gamma(\omega) = (1 + c_r \frac{(p - p_{ref})}{\rho_j s_j D_{ij}}) \rho_j s_j D_{ij} \)
- \( \epsilon(\omega) = x_{ij} \)
- \( \theta(\xi, \omega, u) = \Delta t \sum_{i=1}^{n_p} x_{ij} \rho_j s_j (\xi, \omega, u) \)

The parameters \( \omega \) and \( \omega_n \) are nonlinear unknowns in the current and previous timestep, respectively; \( \theta(\xi, \omega, u) \) is the source term; \( V, \phi_0 \) and \( c_r \) are initial volume, porosity and rock compressibility, respectively; \( \Phi^l_{ij} \) is the phase pressure difference between neighbor cells; and \( I^l \) and \( I^d \) are the space-dependent part of convective and diffusive transmissibility, respectively.

For the subsequent tests, we simulate various injection scenarios in two different meshes (1-D and 2-D) and project the injection and production conditions on the ternary diagram of an \( nC_{10} - CO_2 - H_2O \) mixture. The first mesh is in 1-D and is composed of 1000 cells in the x-direction with an injector and a producer being placed at the far ends of the grid, see Fig. 2. The permeability is scalar at a value of 1000 md in the x and y directions and 10 md in the z-direction with a domain porosity of 0.3. On the other hand, the second mesh is taken as the seventh layer of the SPE-10 model, see Fig. 3, with four producers are around the corners while the injector is placed in the middle. The mesh is 60x220x1 with porosity and permeability being highly heterogenous, see Fig 4.
**Test I – Pure CO<sub>2</sub> Injection.** We initialize the 1-D and 2-D models with a Decane-Carbon Dioxide-Water mixture at a pressure and temperature of 100 bar and 400 K respectively. The injector well is used to inject pure CO<sub>2</sub> at 120 bar while the producers are operating at an average pressure of 80 bar. The ternary diagram of the nC10- CO<sub>2</sub>- H<sub>2</sub>O mixture at the given condition is generated using the multiphase flash package, see Fig 5. The injection and production conditions are shown on the diagram as red and green points respectively. The maps in Fig. 6 show the progression of the composition of each component in the reservoir as the simulation ceases, along with the final pressure distribution across the cells.
Figure 5—Ternary phase diagram for a nC10- CO2 – H2O system with constant Pressure and Temperature at 100 bar and 400 K respectively. The injection path is drawn between the injection condition (red point) and the initial reservoir condition (green point).

Figure 6—The saturation maps of the reservoir components at a simulation time of t=3500 days. The flow tends to move to the region of the highest permeability and towards the four producer wells.
The concentration distribution of each component is plotted against the distance traveled at the end of each simulation and is shown for both the 1-D and 2-D models in Fig. 7-a and Fig. 7-b respectively. The profiles are visualized in the x-direction for the 1-D, and against a horizontal line starting from the injector to the right side of the mesh in the 2-D case. We notice that composition profiles are almost similar for both models with the points \(a\), \(b\), \(c\), and \(d\) on the ternary diagram featuring the main shocks. The solution route starts at pure \(CO_2\) composition then enters the two-phase (V-L) region with a shock from the injection condition \(a\) across the curve to point \(b\). As Fig. 5 shows, point \(b\) lies on a tie line that extends through point \(a\). At point \(c\), the solution route switches to the non-tie-line path as it enters to the three-phase (V-L-Aq) region. After that, another shock is noticed as the path enters a two-phase (L-Aq) region and reaching to point \(d\) at the initial reservoir conditions.

Figure 7—Test I solution profiles of composition and pressure with distance at the end simulation time for (a) 1-D model and (b) fixed trajectory in the 2D layer of SPE10 model
The concentration maps of Fig. 7 show that the \( nC_{10} \) concentration increases steadily as the solution path is traced from the injection composition to the initial composition upstream where this profile mirrors that of the oil saturation in the reservoir. The profile pattern for \( CO_2 \) is similar to an inverted version of the profile for \( nC_{10} \) where the concentration declines monotonically as the solution path is traced, and the \( CO_2 \) concentration drops to zero behind the trailing shock (c-d).

**Test II – Injection of 50:50 mixture of \( CO_2 \) and \( H_2O \).** In this test, we inject a mixture of \( CO_2 \) and \( H_2O \) into a reservoir with the same initial composition tested previously. The reservoir sits at 100 bar and 450 K for pressure and temperature respectively, and these conditions do not change between the 1-D and 2-D models. The ternary diagram at the provided conditions is visualized in Fig. 8. We notice that the pure \( CO_2 \) (blue), V-L (yellow), and V-Aq (orange) regions are significantly larger compared to the previous due to the increase in the temperature. The variations in the composition and the pressure at the final time are shown in Fig. 9.

![Figure 8—Ternary phase diagram for a nC10- CO2 – H2O system with constant Pressure and Temperature at 100 bar and 450 K respectively. The injection path is drawn between the injection condition (red point) and the initial reservoir condition (green)](image)

![Figure 9—The saturation maps of the reservoir components at a simulation time of \( t=6500 \) days. The area around the injector is fully swept as shown by the residual nC10 map.](image)
At the injection conditions, $CO_2$ and $H_2O$ start accumulating with $CO_2$ mobilizing faster due to its lower density. It is noticed that the total injection path for both the 1-D and 2-D models are virtually similar. Initially, the concentration of $CO_2$ starts increasing from point a to point b as the injection path passes through the V-Aq (orange) region, and no oil is present in the system yet. At point b, we notice a shock in the $nC_{10}$ composition as the path enters the V-L (yellow) region for a brief period, then proceeds to the V-L-Aq (green) region at c. This behavior can be observed through examining the water composition profiles for both 1-D in Fig. 10, where at the injection point a, water content is maximum and starts decreasing as the path makes its way out of the V-Aq (orange) region to point b. The water composition then starts increasing again in the three-phase region and then stabilizes as it enters the L-Aq (red) region at point d.

Figure 10—Test II solution profiles of compositions with distance at the end simulation time for 2-D SPE10 model

The traditional approach of modelling three-phase behavior using an equation of state does not accurately represent the partitioning of impurities in the aqueous phase. In general, the presence of impurities decreases $CO_2$ solubility in brine and affects $H_2O$ contents in non-aqueous phase. In Fig. 11, the fraction of dissolved $CO_2$ in each of the three phases is shown based on the $\varphi$-$\gamma$ approach for the 1-D model. The profile of the dissolved $CO_2$ in the water phase shows a low solubility of $CO_2$ with a compositional fraction at around 1.5%, particularly in the V-L-Aq region. A similar trend is noticed in Fig. 12 where the 2-D maps of the $CO_2$ solubility is shown. The $CO_2$ concentration in the vapor phase is highest at the location of the injector well as opposed to the $CO_2$ of the liquid phase since the area is swept from existing hydrocarbons by the influx of the $H_2O$ - $CO_2$ mixture. Some pockets are seen in the water phase map indicating a V-L region where water does not exist for $CO_2$ to dissolve in.
Concluding Remarks

An accurate phase behavior prediction in a three-phase (Oil/Gas/Water) system entails solving the system of nonlinear equations in a multistage flash scheme utilizing efficient and robust phase stability testing. The minimization of the TPD function allows determining the number of existing phases in the system. If a phase is missing during a three-phase negative flash, then a two-phase flash is performed to determine the equilibrium phase distribution. The implemented thermodynamic procedure relies on the conventional cubic equation of state (EoS) models to establish an equilibrium relation between the liquid and the gaseous hydrocarbon phases. As for the activity model in the aqueous phase, the liquid phase partitioning is expressed in terms of a proper activity model. Another set of phase partitioning can be hence derived...
relating the equilibrium ratios of the gaseous and the aqueous phase. The phase partitioning of the water component is treated separately to account for the effect of dissolved salts and other chemical properties of the brine. Eventually, we end up with sets of algebraic relations for all phases of the system and use a negative flash procedure to solve the partitioning of the liquid, vapor, and aqueous phases.

The three-phase negative flash algorithm is validated against data from the available literature. The variations in the pressure and temperature of a particular mixture cause the appearance and disappearance of phases of which the model captures accurately. The multiphase flash procedure is implemented to generate linearized physical properties by using an Operator Based Linearization (OBL) modelling technique allowing for the combination of multiple complex physics in the nonlinear solution of governing equations. The final package is integrated into a fully implicit reservoir simulator and applied to different scenarios of $CO_2$ and $H_2O$ injection in 1-D and 2-D models. The concentration profiles of the compositions and their projection on the ternary diagrams were in high agreement, thus proving the ability of the package to simulate full-field cases with real petrophysical properties.

In the next stage, the simulation analysis will be further extended to include mixtures with multiple components for multilayered 3-D field models. Many problems such as the geological storage of $CO_2$ in depleted hydrocarbon reservoirs and reactive transport analysis through tracking the composition of ions in the brine phase can be investigated upon the multiphase flash package.

Acknowledgments
This publication was supported by the National Priorities Research Program grant NPRP11S-1210-170079 from Qatar National Research Fund.

References


### Appendix A

**Pitzer Parameters**

**Table A-1—Pitzer parameters for the second-order parameter $\lambda_{i,Na}$ of the activity coefficients**

<table>
<thead>
<tr>
<th>Cont.</th>
<th>CO2</th>
<th>H2S</th>
<th>N2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1$</td>
<td>$-0.0652869$</td>
<td>1.0365869</td>
<td>$-2.0939363$</td>
<td>$-5.4066455E-1$</td>
<td>$-2.143686$</td>
<td>0.513068</td>
<td>0.52862384</td>
</tr>
<tr>
<td>$c_2$</td>
<td>$1.6790636E-4$</td>
<td>$-1.1784797E-3$</td>
<td>3.1445269E-3</td>
<td>7.2997588E-4</td>
<td>2.598765E-3</td>
<td>$-0.000958$</td>
<td>$-1.0298104E-3$</td>
</tr>
<tr>
<td>$c_3$</td>
<td>40.838951</td>
<td>$-1.7754826E+2$</td>
<td>3.9139160E2</td>
<td>1.5176903E2</td>
<td>4.6942351E2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_4$</td>
<td>0</td>
<td>$-4.5313285E-4$</td>
<td>0</td>
<td>3.1927112E-5</td>
<td>$-4.6849541E-5$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_5$</td>
<td>0</td>
<td>0</td>
<td>$-1.5918098E-5$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_6$</td>
<td>$-3.9266518E-2$</td>
<td>0</td>
<td>0</td>
<td>$-1.642651E-5$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_7$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_8$</td>
<td>2.1157167E-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_9$</td>
<td>6.5486487E-6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_{10}$</td>
<td>0</td>
<td>0.4775165E+2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_{11}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$-8.4616602E-10$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_{12}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.095219E-6</td>
<td>0</td>
</tr>
</tbody>
</table>

**Table A-2—Pitzer parameters for the third-order parameter $\xi_{i,Na-Cl}$ of the activity coefficients**

<table>
<thead>
<tr>
<th>Cont.</th>
<th>CO2</th>
<th>H2S</th>
<th>N2</th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1$</td>
<td>$-1.144624E-2$</td>
<td>0.010274152</td>
<td>$-6.3981858E-3$</td>
<td>$-2.9990084E-3$</td>
<td>$-1.0165947E-2$</td>
<td>$-0.007485$</td>
<td>0.0206946</td>
</tr>
<tr>
<td>$c_2$</td>
<td>2.8274958E-5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_3$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_4$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_5$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_6$</td>
<td>1.3980876E-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_7$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_8$</td>
<td>$-1.4349005E-2$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_9$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_{10}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_{11}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$c_{12}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>