Print Email Facebook Twitter Ultrathin Piezoelectric Resonators Based on Graphene and Free-Standing Single-Crystal BaTiO3 Title Ultrathin Piezoelectric Resonators Based on Graphene and Free-Standing Single-Crystal BaTiO3 Author Lee, M. (TU Delft QN/Steeneken Lab; Kavli institute of nanoscience Delft) Renshof, Johannes R. (Kavli institute of nanoscience Delft; Student TU Delft) van Zeggeren, K.J. (TU Delft ImPhys/Practicum support; Kavli institute of nanoscience Delft) Houmes, M.J.A. (TU Delft QN/van der Zant Lab; Kavli institute of nanoscience Delft) Lesne, E.L. (TU Delft QN/Steele Lab; Kavli institute of nanoscience Delft) Siskins, M. (Kavli institute of nanoscience Delft) van Thiel, T.C. (TU Delft QN/Groeblacher Lab; TU Delft QN/Caviglia Lab; Kavli institute of nanoscience Delft) Guis, R.H. (TU Delft Dynamics of Micro and Nano Systems) van Blankenstein, M.R. (TU Delft QRD/Wimmer Group; Kavli institute of nanoscience Delft) Verbiest, G.J. (TU Delft Dynamics of Micro and Nano Systems) Caviglia, A. (TU Delft QN/Caviglia Lab; Kavli institute of nanoscience Delft) van der Zant, H.S.J. (TU Delft QN/van der Zant Lab; Kavli institute of nanoscience Delft) Steeneken, P.G. (TU Delft Dynamics of Micro and Nano Systems; TU Delft QN/Steeneken Lab; Kavli institute of nanoscience Delft) Date 2022 Abstract Suspended piezoelectric thin films are key elements enabling high-frequency filtering in telecommunication devices. To meet the requirements of next-generation electronics, it is essential to reduce device thickness for reaching higher resonance frequencies. Here, the high-quality mechanical and electrical properties of graphene electrodes are combined with the strong piezoelectric performance of the free-standing complex oxide, BaTiO3 (BTO), to create ultrathin piezoelectric resonators. It is demonstrated that the device can be brought into mechanical resonance by piezoelectric actuation. By sweeping the DC bias voltage on the top graphene electrode, the BTO membrane is switched between the two poled ferroelectric states. Remarkably, ferroelectric hysteresis is also observed in the resonance frequency, magnitude and Q-factor of the first membrane mode. In the bulk acoustic mode, the device vibrates at 233 GHz. This work demonstrates the potential of combining van der Waals materials with complex oxides for next-generation electronics, which not only opens up opportunities for increasing filter frequencies, but also enables reconfiguration by poling, via ferroelectric memory effect. Subject 2D materialsactuatorscomplex oxidesferroelectricsnano-electromechanical systemspiezoelectricsresonators To reference this document use: http://resolver.tudelft.nl/uuid:ccec2b69-0c6c-4f37-b98e-34c708676bef DOI https://doi.org/10.1002/adma.202204630 ISSN 0935-9648 Source Advanced Materials, 34 (44) Part of collection Institutional Repository Document type journal article Rights © 2022 M. Lee, Johannes R. Renshof, K.J. van Zeggeren, M.J.A. Houmes, E.L. Lesne, M. Siskins, T.C. van Thiel, R.H. Guis, M.R. van Blankenstein, G.J. Verbiest, A. Caviglia, H.S.J. van der Zant, P.G. Steeneken Files PDF Advanced_Materials_2022_L ... rystal.pdf 1.98 MB Close viewer /islandora/object/uuid:ccec2b69-0c6c-4f37-b98e-34c708676bef/datastream/OBJ/view