Hierarchical Model Predictive Control for on-Line High-Speed Railway Delay Management and Train Control in a Dynamic Operations Environment

Wang, Yihui; Zhu, Songwei; Li, Shukai; Yang, Lixing; De Schutter, Bart

DOI
10.1109/TCST.2022.3140805

Publication date
2022

Document Version
Accepted author manuscript

Published in
IEEE Transactions on Control Systems Technology

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.
Hierarchical Model Predictive Control for on-Line High-Speed Railway Delay Management and Train Control in a Dynamic Operations Environment

Yihui Wang, Songwei Zhu, Shukai Li, and Lixing Yang

Abstract—In practice, the operation of high-speed trains is often affected by adverse weather conditions or equipment failures, which result in delays and even cancellations of train services. In this article, a novel two-layer hierarchical model predictive control (MPC) model is proposed for on-line high-speed railway delay management and train control for minimizing train delays and cancellations. The upper layer manages the global objectives of the train operation, that is, minimizing the total train delays and providing guidance for the speed control in the lower layer. The objectives of the lower layer are to satisfy the running time requirements given by the upper layer and to save energy at the same time. The optimization problems in both levels of the hierarchical MPC framework are formulated as small-scale mixed integer linear programming problems, which can be solved efficiently by existing solvers. Particularly, the train control problem is solved in a distributed way for each train. Simulation analysis based on the real-life data of the Beijing–Shanghai high-speed railway shows that the proposed hierarchical MPC framework can meet the real-time requirements given by the upper layer and to save energy at the same time. The optimization problems in both levels of the hierarchical MPC framework are formulated as small-scale mixed integer linear programming problems, which can be solved efficiently by existing solvers.

Index Terms—Hierarchical model predictive control (MPC), high-speed railway, mixed integer linear programming (MILP), speed control, train rescheduling.

I. INTRODUCTION

HIGH-SPEED railway lines are of crucial importance for the mobility of passengers as well as for the competitiveness of regional economy. The reliability and punctuality of high-speed train services are the main focuses of the train operating companies and railway infrastructure managers. In normal situations, high-speed trains are operated as planned in the timetable. However, unavoidable disturbances and disruptions (caused by bad weather, infrastructure failures, malfunction of rolling stocks, etc.) often happen and result in delays and even cancellation of train services. Particularly, in this article, we consider the disturbances that only affect the operation of trains in a local area and the consequences are relatively limited. The disturbances could be caused by adverse weather conditions (e.g., heavy rain and snow, strong wind) or by signaling failures, which generally trigger temporary speed restrictions (TSRs).

When adverse weather conditions or the equipment failures occur, on the one hand, train dispatchers need to trigger the TSRs for the affected area and then take effective dispatching strategies, such as retiming, rerouting, and reordering, for the affected train services to reduce the potential train delays. On the other hand, the automatic train operation (ATO) systems or the train drivers receive the TSRs and the modified departure and arrival (or running and dwell) times via the train control system and they need to take proper driving strategies (e.g., accelerating, decelerating, coasting, and cruising) to respect the instructions given the dispatchers and to save energy consumption. As defined in the literature, the problem faced by the train dispatcher is called the on-line delay management problem or train rescheduling problem, while the problem faced by the ATO systems or train drivers is called the train control problem or the speed control problem. Both the delay management problem and train control problem are well addressed separately in the literature (see the recent survey articles, e.g., [1]–[7]). However, the traffic-related characteristics (i.e., train departure and arrival times, train orders) and the train-related characteristics (i.e., speed trajectories, traction and braking forces) are closely interacted with each other. So, we only focus on the studies that elaborate the interaction or integration of traffic management and train control in this article.

It is common to let the traffic management and train control interact in a sequential way, that is, the train rescheduling problem is solved first and then the speed profiles are adjusted accordingly. Albrecht [8] presented a sequential approach to investigate the interaction between train rescheduling and train control and concluded that anticipating train control can reduce energy consumption and even reduce delays significantly for...
certain situations. D’Ariano et al. [9] proposed target points (i.e., arrival times and advisory speeds at key locations) for the speed optimization of rescheduled trains with the aim of punctuality and energy saving. Corman et al. [10] proposed a green wave policy for traffic management, where there is a speed profile available between any two consecutive stations and the dwell times are adjusted to avoid modifications of this speed profile. Caimi et al. [11] proposed a model predictive control (MPC) approach for rescheduling trains in the complex station area, where there are multiple precalculated speed profiles available to build the blocking diagrams for train rescheduling.

Another way to coordinate the traffic management and train control is using iterative approaches, where speed profiles can be optimized according to the updated train timetable and then be fed back to the train rescheduling process for the sake of performance enhancement. Mazzaferello and Ottaviani [12] developed a double feedback loop structure to optimize the train-related and traffic-related decisions using heuristics. Similarly, an iterative train rescheduling and speed adjusting approach is presented in [13], where the drivers adjust the speed of trains in order to meet the updated train timetable. Moreover, Wang and Goberde [14] investigated the multiple-phase train trajectory optimization approach with consideration of constraints imposed by traffic management.

Unified models for the integration of traffic management and speed control approach have become popular in recent years. Yin et al. [15] formulated a train rescheduling model for metro lines that considers the time-variant passenger dynamic characteristics and the energy consumption of train operations. Xu et al. [16] presented a mixed integer linear programming model based on alternative graphs for the integration of traffic management and speed control, where the operation speeds of trains are classified into several levels and managed by indicating additional travel times for the train rescheduling process. Rao et al. [17] proposed an integrated optimization model for traffic management and train control, where the train speed profile is computed to determine the main target points (i.e., target position, target time, target speed) and sub-target points for preventing potential traffic conflicts. Luan et al. [18], [19] studied the integration problem of train management and speed control by developing three optimization models to form the real-time train schedule via optimizing the driving strategies. However, the integrated model is very complex and many approximations and simplifications are needed to obtain solutions efficiently.

The scale of the integrated traffic management and train control problem is too large for real-time application in most of the cases, which becomes computationally prohibitive for on-line decision-making in a dynamic environment. Moreover, the previous literature on the integrated optimization of train traffic management and train control is mainly confined to static optimization, which seldom involves dynamic updated information [15], [16], [18]. In addition, to realize the on-line decision-making process for the traffic management, the MPC algorithm has been developed with the strategy of rolling optimization [20]–[23], which can be efficiently applied to cope with the on-line high-speed railway delay management and train control problem.

In order to satisfy the on-line requirements of practical applications, we therefore present a hierarchical MPC approach for the on-line delay management and train control of the high-speed railway. The contributions of this article to the literature are listed as follows.

1) A hierarchical optimization framework is particularly presented for the on-line high-speed railway operations in a dynamic operations environment, where the delay management problem is addressed at a slow time scale in the upper layer, while the speed control problem is implemented in a fast time scale in the lower layer.

2) A novel hierarchical MPC algorithm is particularly designed for the on-line delay management and train control problem, which is solved in a moving-horizon manner, where the real-time updated information of the train, even considering uncertain operational conditions, can be included in the on-line decision-making process. This makes the solutions robust to uncertainty, disturbances, and even model mismatch.

3) The hierarchical MPC algorithm divides the original problem into two-layer small-scale optimization problems that can be solved relatively independently to realize the complexity reduction. More specifically, for the train control problem in the lower layer, the speed profile problem for each train can be solved in parallel, which greatly improves the computational efficiency to meet the on-line calculation requirements of high-speed trains.

The remainder of this article is organized as follows. In Section II, we give a problem statement and the formulation assumptions. Section III introduces the mathematical formulation of the hierarchical MPC scheme. The solution approach for the hierarchical MPC framework is proposed in Section IV. Experimental results based on the Beijing–Shanghai high-speed railway line are given in Section V. Finally, Section VI concludes this article.

II. PROBLEM STATEMENT AND FORMULATION ASSUMPTIONS

In this section, we first introduce the topology and the signaling principle of a high-speed railway line. The current practice for the handling process of the TSRs is then described. After that we illustrate the hierarchical model prediction control framework by a small example. Finally, the assumptions of this research are listed and explained in detail.

A. Problem Statement

In practical operations, unavoidable perturbations (or disturbances) caused by adverse weather conditions or equipment failures often happen and significantly impact the operation of trains. In order to cope with unavoidable perturbations (or disturbances), TSRs need to be triggered by the dispatchers and put into the signaling systems to address safety concerns. However, there are also more serious cases that are classified...
as “disruptions” where tracks may be totally blocked and some train services need to be suspended and fully stopped. In this article, we only consider the disturbances or perturbations that trigger TSRs and that only affect trains in a relatively small area. In practice, the starting and ending positions of the TSRs are also at the splitting points between block sections as illustrated by the yellow and orange areas in Fig. 1.

Moreover, when TSRs are triggered due to adverse weather conditions or equipment failures, train drivers (or ATO systems) of the affected trains should apply braking forces to reduce the speed of the trains to satisfy the speed limits. If drivers or ATO systems cannot reduce the speed of the trains in time, emergency braking may be triggered by the signaling system to stop trains immediately. So, it is important to have a speed control model that takes the detailed train characteristics, fixed speed limits, TSRs, arrival times, and so on into account to make sure that trains arrive at the next station smoothly and save energy consumption as well. Since the affected trains are operated at a lower speed, which results in longer running time between stations, there could be potential conflicts for the operation of neighboring trains. So, a train rescheduling model is required in the control center to take proper measures, for example, retiming (changing running and dwell times of trains) and reordering (changing the order of trains), for resolving the conflicts and minimizing delays from the planned timetable.

In this article, we propose a hierarchical MPC framework, where the problems in the upper and lower levels are both solved in a rolling horizon way. The current train rescheduling and train control framework in practice is a hierarchical setting basically. The dispatchers in the control center regulate the order of trains, the running/dwelling times, and so on, according to the measured departure and arrival times of trains at stations and the updated TSRs information. The train drivers or ATO systems adapt the behavior (dwelling, speed, etc.) of trains according to the measured statues (position, speed, etc.) of itself and the trains nearby and the running/dwelling times and TSRs specified by the dispatchers. In this article, we propose a hierarchical MPC framework as illustrated in Fig. 2 for the traffic management and train control of high-speed railways under unavoidable perturbations (or disturbances), where TSRs are triggered to ensure the safe operation of trains. Within the hierarchical MPC framework, the original integrated train rescheduling and speed control problem is effectively reduced and decomposed into two-layer optimization problem. The information that are transmitted between the upper layer and the lower layer involves the scheduled running/dwell times and the realized running/dwell times for trains, as illustrated in Fig. 2. Since the disturbances cannot be fully avoided by the anticipation and the train schedule obtained in the high level could involve potential conflicts, the feedback of the upper layer is the actual departure/arrival times that yield in the lower-level controller. Moreover, the higher-level controller is triggered when the actual departure/arrival delay reaches a predefined threshold or the information of the TSRs is updated. The rolling horizon could be expressed as a certain time span (e.g., an hour) or a certain number of trains (e.g., five trains). The lower level updates the speed profiles with a much higher frequency, which updates when a TSR is triggered, a train departs or arrives at a station, and/or a train passes a block section. Compared with the rolling horizon in the upper level, the length of the rolling horizon in the lower level is much shorter and it could, for example, be equal to the left running time to the next station. Therefore, the hierarchical MPC framework does not only reduce the computational complexity of the integrated traffic management and train control problem, but also provides an on-line decision-making approach with the real-time updated information in a dynamic operations environment.

B. Assumptions

In our hierarchical MPC framework, we make the following assumptions.

1) The operation of train services in the up- and down-directions is separated from each other; so, we can consider the operation of trains in one direction only.

2) The cancellation of train services is not considered in the train rescheduling problem since we only consider small disturbances and perturbations caused by adverse weather conditions or signal failures (e.g., short communication interruptions).

3) The rolling stock circulation plan is not considered in the train rescheduling formulation.
TABLE I
PARAMETERS AND SUBSCRIPTS FOR THE MODEL FORMULATION

<table>
<thead>
<tr>
<th>Notations</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I, F)</td>
<td>set of stations and trains</td>
</tr>
<tr>
<td>(i, f)</td>
<td>indices of stations and trains</td>
</tr>
<tr>
<td>(I_f, I_{f, \text{stop}})</td>
<td>set of stations that train (f) passes and stops at</td>
</tr>
<tr>
<td>(n_{f, \text{stop}})</td>
<td>number of scheduled stops of train (f)</td>
</tr>
<tr>
<td>(\mathcal{F}_i)</td>
<td>set of trains pass station (i)</td>
</tr>
<tr>
<td>(\mathcal{F}_{i,i+1})</td>
<td>set of trains pass station (i) and station (i+1)</td>
</tr>
<tr>
<td>(d_{f,i}, d_{f,i+1})</td>
<td>planned departure time and arrival time of train (f) at station (i)</td>
</tr>
<tr>
<td>(s_{f,i})</td>
<td>planned dwell time for train (f) at station (i)</td>
</tr>
<tr>
<td>(\sigma_f, \sigma_f^\tau)</td>
<td>disturbances of running and dwell time of train (f) at station (i)</td>
</tr>
<tr>
<td>(h_{f,i}^{\min, \max}, h_{f,i}^{\min, \max})</td>
<td>minimum arrival-arrival and departure-departure headways</td>
</tr>
<tr>
<td>(C_i)</td>
<td>capacity of station (i)</td>
</tr>
<tr>
<td>(n_i)</td>
<td>total number of small intervals between station (i) and (i')</td>
</tr>
<tr>
<td>(n_{\text{max}})</td>
<td>index of the small intervals between station (i) and (i')</td>
</tr>
<tr>
<td>(E_{\text{max}})</td>
<td>maximal kinetic energy per mass for a train at position (s_{f,i})</td>
</tr>
<tr>
<td>(E_{\text{min}})</td>
<td>minimal kinetic energy (a small positive value) per mass for a train</td>
</tr>
<tr>
<td>(\ell)</td>
<td>index of temporary speed restrictions</td>
</tr>
<tr>
<td>(L)</td>
<td>set of temporary speed restrictions</td>
</tr>
<tr>
<td>(E_{\text{max}}^\ell)</td>
<td>maximal kinetic energy of the (\ell)-th temporary speed restriction</td>
</tr>
<tr>
<td>(I_{f,1}, I_f)</td>
<td>start and end stations of the (\ell)-th temporary speed restriction</td>
</tr>
<tr>
<td>(T_{\text{start}}, T_{\text{end}})</td>
<td>start and end time of the (\ell)-th temporary speed restriction</td>
</tr>
</tbody>
</table>

III. MATHEMATICAL FORMULATION

Within the hierarchical optimization framework, two optimization models are introduced: 1) a macroscopic train rescheduling model in the upper layer considering a high-speed line with multiple stations and different types of train services and 2) a speed control model in the lower layer with consideration of the detailed train characteristics, line conditions, temporary speed limits, and so on. In this section, the notations and decision variables are introduced first. Then, the constraints and objective functions of the train rescheduling and speed profile optimization are formulated.

A. Notations and Decision Variables

Table I lists the parameters and subscripts used in the model formulation. Moreover, Table II gives the decision variables for the railway traffic delay management and train control.

B. Upper Hierarchical Layer

We consider a high-speed railway line with \(I \) stations, that is, \(i \in \mathbb{I} = \{1, 2, \ldots, I\} \), where station \(i+1 \) is the first station after station \(i \) and the train services that operate on this line are indexed by \(f \) with \(f \in F = \{1, 2, \ldots, F\} \). The set of stations that train \(f \) passes is denoted by \(I_f \) and the set of stations in which train \(f \) should stop is defined as \(I_{f, \text{stop}} \). We have \(I_f \subseteq \mathbb{I} \) and \(I_{f, \text{stop}} \subseteq I_f \). In addition, the number of scheduled stops for train service \(f \) is denoted as \(n_{f, \text{stop}} \).

The objective function of the train rescheduling model is to minimize the sum of the mean absolute delay time at all scheduled stops for all trains, that is, the deviations of the arrival and departure times with respect to the planned arrival times.

\[
\min Z_{\text{up}} = \sum_{f \in F} \sum_{i \in I_{f, \text{stop}}} \left(\frac{|a_{f,i} - \bar{a}_{f,i}|}{I_{f, \text{stop}}} + \frac{|d_{f,i} - \bar{d}_{f,i}|}{I_{f, \text{stop}}} \right)
\]

where \(a_{f,i} \) and \(\bar{a}_{f,i} \) are the actual and planned arrival (departure) times of train \(f \) at station \(i \).

The constraints for the train rescheduling problem in the upper layer involves the following five groups.

1) Departure/Arrival Constraints: The departure and arrival times of train services should satisfy the following constraints:

\[
a_{f,i+1} = d_{f,i} + r_{f,i} + \sigma_{f,i}^\tau
\]

\[
d_{f,i} = a_{f,i} + w_{f,i} + \sigma_{f,i}^w
\]

where \(r_{f,i} \) is the running time of train \(f \) between stations \(i \) and \(i+1 \), which depends on the train categories and characteristics of train \(f \), line conditions between stations \(i \) and \(i+1 \), stop patterns, TSRs, and so on, and \(w_{f,i} \) is the dwell time of train \(f \) at station \(i \). Moreover, \(\sigma_{f,i}^\tau \) and \(\sigma_{f,i}^w \) are introduced to denote the disturbances of the running time and dwell time of train \(f \) at station \(i \), which are given based on estimations. In addition, the departure time \(d_{f,i} \) should be later than or equal to the planned departure time if train \(f \) stops at station \(i \), that is,

\[
d_{f,i} \geq \bar{d}_{f,i}.
\]

2) Running/Dwell Time Constraints: The running time \(r_{f,i} \) should be larger than or equal to the minimum running time \(r_{f,i}^{\min} \), that is,

\[
r_{f,i} \geq r_{f,i}^{\min}
\]

where the minimum running times for the normal operations can be calculated based on the speed limits, characteristics of trains, and so on. If the operation of train \(f \) is affected by a TSR indexed by \(\ell \), as illustrated in Fig. 3, then the minimum running time of train \(f \) between stations \(i \) and \(i+1 \) will be much longer compared with the one for the normal operation. A binary variable \(Y_{f,i,\ell} \) is introduced to indicate whether the operation of train \(f \) between stations \(i \) and \(i+1 \) is fully affected by TSR indexed by \(\ell \), which is defined as follows:

\[
Y_{f,i,\ell} = \begin{cases} 1 & \text{if } d_{f,i} \geq T_{f,\ell}^{\text{start}} \text{ and } a_{f,i+1} \leq T_{f,\ell}^{\text{end}}, i, i+1 \in I_{\ell}, \\ 0 & \text{otherwise} \end{cases}
\]

where \(I_{\ell} \) denotes the set of stations influenced by TSR \(\ell \) and \(Y_{f,i,\ell} = 1 \) means that the operation of train \(f \) between stations \(i \) and \(i+1 \) is affected by TSR \(\ell \), that is, the running process of train \(f \) between stations \(i \) and \(i+1 \) is a subset of the activation...
period of TSR ℓ. If the operation of train f between stations i and $i+1$ is affected by TSR ℓ, the minimum running time $r_{f,i}^{\text{min}}$ cannot be achieved. Hence, an updated minimum running time, that is, $r_{f,i}^{\text{min}}$ with $r_{f,i}^{\text{min}} > r_{f,i}^{\text{min}}$ is adopted to increase the feasibility of the train schedule generated in the upper level. The following constraint is introduced to consider the updated minimum running time, that is,

$$r_{f,i} \geq r_{f,i}^{\text{min}} + M(Y_{f,i,\ell} - 1)$$

(7)

where M is a sufficient large number, which is introduced to ensure $r_{f,i} \geq r_{f,i}^{\text{min}}$ when the binary variable $Y_{f,i,\ell}$ is equal to 1, but to let this constraint be fully satisfied when $Y_{f,i,\ell}$ is equal to 0. For constraint (7), the value of M should be larger than $r_{f,i}^{\text{min}} - r_{f,i}^{\text{min}}$. It is worth to note that the operation of train f between stations i and $i+1$ could be partially affected by TSRs. Due to the difficulty of accurate estimation of minimum running times, if the operation of train between two consecutive stations is partially affected by TSRs, only the minimum running time constraint (5) is involved. This could result in potential train conflicts; however, these conflicts can be well taken care of in the lower-level control.

It is worth to note that the maximum running times are not specified in the upper layer model because the values of the TSRs cannot be known in advance and it decides the maximum running times. However, the delay of train services is considered in the objective function, which indirectly considers the maximum running times.

Moreover, if train service f does not stop at station i, then the dwell time $w_{f,i}$ should be equal to zero. In addition, if a train is scheduled to stop at a certain station, then this station cannot be skipped during the rescheduling so as to guarantee the satisfaction of passengers. Therefore, in our article, we only allow trains to add new stops if needed. Therefore, we have the following constraints for the dwell times:

$$w_{f,i} \geq \bar{w}_{f,i}$$

(8)

where $\bar{w}_{f,i}$ is equal to zero if train f does not plan to stop at station i. So, when we have $w_{f,i} > \bar{w}_{f,i}$ and $\bar{w}_{f,i} = 0$, it means that the stop pattern of train f is changed at station i.

3) Headway Constraints: The operation of train services should also satisfy the headway constraints, which involve the arrival–arrival headway constraints, the departure–departure headway constraints, the arrival–departure headway constraints, and the departure–arrival headway constraints. Since we only consider the macroscopic train scheduling model in this article and the detailed station layout is not considered, we assume that the departure routes and the arrival routes of trains at stations are independent of each other, which is generally holds for most of the high-speed railway stations in China. So, we only consider the arrival–arrival and departure–departure headway constraints as illustrated in Fig. 4, which can be formulated as follows:

$$a_{f,i} - a_{f,i}^{\text{arr}} \geq h_{f,f,i}^{\text{arr}} - M\bar{h}_{f,f,i}^{\text{arr}}$$

(9)

$$d_{f,i} - d_{f,i}^{\text{dep}} \geq h_{f,f,i}^{\text{dep}} - M\bar{h}_{f,f,i}^{\text{dep}}$$

(10)

where $\bar{h}_{f,f,i}^{\text{arr}}$ and $\bar{h}_{f,f,i}^{\text{dep}}$ denote the arriving and departing order of trains f and f' at station i, that is,

$$\bar{h}_{f,f,i}^{\text{arr}} = \begin{cases} 1 & \text{if train } f \text{ arrives earlier than train } f', \\ 0 & \text{if train } f \text{ arrives later than train } f' \end{cases}$$

(11)

and

$$\bar{h}_{f,f,i}^{\text{dep}} = \begin{cases} 1 & \text{if train } f \text{ departs earlier than train } f', \\ 0 & \text{if train } f \text{ departs later than train } f' \end{cases}$$

(12)

It is worth to note that the big M in (9) and (10) should be larger than $h_{f,f,i}^{\text{arr}} + a_{f,i}^{\text{min}} + a_{f,i}^{\text{max}}$ and $h_{f,f,i}^{\text{dep}} - d_{f,i}^{\text{min}} + d_{f,i}^{\text{max}}$.

4) Train Ordering Constraints: The order of trains can only be changed at stations in our article, so we have

$$\bar{h}_{f,f,i}^{\text{arr}} = \bar{h}_{f,f,i}^{\text{dep}}$$

(13)

which means that the arrival order of trains f and f' at station $i+1$ should be the same as the departure order at station i because there are no overtaking facilities between two stations. Furthermore, the order between any two trains should also satisfy

$$\bar{h}_{f,f,i}^{\text{arr}} + \bar{h}_{f,f,i}^{\text{arr}} = 1 \quad \forall f \in F, f' \in F, i \in I_f, i \in I_{f'}$$

(14)

$$\bar{h}_{f,f,i}^{\text{dep}} + \bar{h}_{f,f,i}^{\text{dep}} = 1 \quad \forall f \in F, f' \in F, i \in I_f, i \in I_{f'}$$

(15)

which indicates that either train f arrives at station i before train f' or train f' arrives before train f at station i.

5) Station Capacity Constraints: Each station has a capacity limit, which corresponds to the maximum number of trains that can stop in or pass a station simultaneously. According to the practical operation rules, a station track (platform or siding) can only accommodate one train at most and the station tracks are usually dedicated to one operation direction, that is, either the up direction or the down direction. So, when considering the station capacities, we could only take the trains operated in the same direction into account. We introduce
binary variables \(\epsilon_{f,f';i} \) to indicate whether the arrival of train \(f \) is before the departure of train \(f' \) or not, that is,
\[
\epsilon_{f,f';i} = \begin{cases}
1 & \text{if train } f \text{ arrives before the departure of } f' \\
0 & \text{if train } f \text{ arrives after the departure of } f'.
\end{cases}
\] (16)

The station capacity constraints can be formulated as
\[
\sum_{f' \in \mathcal{E}_i} (1 - \xi_{f,f';i}) - \sum_{f' \in \mathcal{E}_i} (1 - \epsilon_{f,f';i}) \leq C_i - 1 \tag{17}
\]
for all \(f \in \mathcal{E}, i \in \mathcal{I}_f \), where \(C_i \) is the capacity\(^1\) of station \(i \). More specifically, \(\sum_{f' \in \mathcal{E}_i} (1 - \xi_{f,f';i}) \) denotes the number of trains that have arrived at station \(i \) before the arrival of train \(f \) and \(\sum_{f' \in \mathcal{E}_i} (1 - \epsilon_{f,f';i}) \) denotes the number of trains that have departed from station \(i \) before the arrival of train \(f \). In order to let train \(f \) enter station \(i \), there should be a station track available. So, the right-hand side of inequality (17) is \(C_i - 1 \).

The assembled optimization problem for the upper layer can be written as follows:
\[
\min_{(a_{f,i}, d_{f,i}, s_{f,i}, f_{s,i}, g_{f,i}, t_{s,i})} \sum_{f \in \mathcal{E}, i \in \mathcal{I}_f} |a_{f,i} - \tilde{a}_{f,i}| + \sum_{f \in \mathcal{E}, i \in \mathcal{I}_f} \left| d_{f,i} - \tilde{d}_{f,i} \right| \\
\text{s.t.} \quad (2) - (17). \tag{18}
\]

C. Lower Hierarchical Layer

The upper layer specifies the running time \(r_{f,i} \) of train \(f \) between stations \(i \) and \(i + 1 \) by using the macroscopic train rescheduling model to minimize the deviation of train operations with respect to the planned timetable. However, train \(f \) may not stop at all stations, that is, train \(f \) may skip some stations according to the planned timetable. For the train control problem, the speed profile is optimized between two consecutive stations where train \(f \) stops, denoted by stations \(i \) and \(i' \). Therefore, \(\tilde{r}_{f,i,i'} \) is introduced to denote the running time of train \(f \) between stations \(i \) and \(i' \) that are recommended by the upper layer, which can be calculated by \(\tilde{r}_{f,i,i'} = \sum_{j=i}^{i'-1} r_{f,j} \). The detailed information, such as the characteristics of trains, the section length, the grade profile, and curvature of the track between those two stations, is not explicitly considered in the upper-level model, which only takes the minimum running times between stations into account. So, the running times calculated by the upper layer may not be feasible for the detailed train operation model in the lower level, especially if there are some TSRSs appear due to the strong wind, heavy rain, big snow, and so on. These TSRSs would largely affect the running time of trains between stations. For example, the maximum speed for the type G trains is 350 km/h in CTCS-3, however, the TSR could be 200, 120, or even 60 km/h for a certain time period in the affected block sections. Therefore, the specified running times in the upper layer may not be realized and delays would occur and propagate among the trains in the high-speed lines.

The mass-point model is usually used in the literature and the operation of trains is subject to Newton’s second law.

\(^1\)It is noted that we only consider the operation of trains in one direction. So, the capacity of station here is also means the capacity for the considered direction.

As presented in previous studies [24]–[27], it is better to select the position \(s \) as an independent variable instead of the time \(t \) because the speed limits, grade profiles, and curvatures vary with respect to the position of trains. Furthermore, as in [25], [26], and [28], we take kinetic energy per mass unit \(E = 0.5u^2 \) and time \(t \) as states to eliminate some (but not all) of the model nonlinearities. As given in [28], the continuous-space train dynamic model can be written as
\[
mρ \frac{dE}{ds} = u(s) - R_0(E) - R_t(s, E) \tag{19}
\]
\[
\frac{dt}{ds} = \frac{1}{\sqrt{2E}} \tag{20}
\]
where \(m (m > 0) \) is the train’s mass [kg], \(ρ \) \((ρ > 0)\) is the rotating mass factor [28], \(v \) \((v ≥ 0)\) is the train’s speed [m/s], \(s \) \((s ≥ 0)\) is the train’s position [m], \(u \) corresponds to the traction or braking force [N], \(R_0 : \mathbb{R} → \mathbb{R} \) is the basic resistance including roll resistance and air resistance [N], and \(R_t : \mathbb{R} → \mathbb{R} \) is the line resistance caused by track grade, curves, and tunnels [N]. More specifically, the basic resistance and the line resistance can be calculated by
\[
R_0(E) = R_{0,1} + 2R_{0,2}E \tag{21}
\]
\[
R_t(s, E) = \tilde{R}^l(s) + 2\tilde{R}^r(s)E \tag{22}
\]
where \(R_{0,1} \) and \(R_{0,2} \) are the coefficients of the basic resistance, and \(\tilde{R}^l(s) \) and \(\tilde{R}^r(s) \) are the components of line resistance that do not depend on the train’s speed.

In order to formulate the microscopic train operation control model, the block sections between stations are considered, where the length of a block section is around 1000 to 1500 m. Each block section is then split into small intervals with a length of, for example, 50 or 100 m for the detailed computation of speed profiles. The position of the nodes that divided these small intervals between stations \(i \) and \(i' \) are denoted by \(s_{i,0}, s_{i,1}, \ldots, s_{i,n}, \ldots, s_{i,N_{i,i'}} \) and the length of those intervals can be calculated by \(Δs_{i,n} = s_{i,n} - s_{i,n-1} \) for \(n \in N_{i,i'} = \{1, 2, \ldots, N_{i,i'}\} \). The splitting points for the block sections are given in \(N_{i,i'}^B \). An illustrative example for the small intervals is given in Fig. 5, where there are three block sections between stations \(i \) and \(i' \) and each block section is then split into multiple small intervals. Particularly, the splitting points of the block sections are 1, 10, 17, and 23, that is, \(N_{i,i'}^B = \{1, 10, 17, 23\} \) for the small example given in Fig. 5.

Particularly, \(s_{i,0} \) is basically the position of station \(i' \) and we have \(s_{i,N_{i,i'}} = s_{i,1} \) if station \(i' \) is the next station that train \(f \) stops at after station \(i \). By appropriately defining the discretization of the intervals, without loss of generality the
coefficient of the line resistance can be written as follows:

\[R_i^2(s) = R_{i,n}^2 \quad \text{for } s \in [s_{i,n-1}, s_{i,n}] \quad \text{and } n \in \mathbb{N}_{i,i'} \quad (23) \]

\[R_i^2(s) = R_{i,n}^2 \quad \text{for } s \in [s_{i,n-1}, s_{i,n}] \quad \text{and } n \in \mathbb{N}_{i,i'} \quad (24) \]

In addition, we introduce \(a_{f,i,n} \) and \(d_{f,i,n} \) to denote the arrival and departure times of train \(f \) at node \((i, n) \) between stations \(i \) and \(i' \). We then have

\[a_{f,i,0} = d_{f,i} \quad \forall f \in \mathbb{F}, i \in \mathbb{I}_f \quad (25) \]

\[d_{f,i,N_{i,i'}} = a_{f,i'} \quad \forall f \in \mathbb{F}, i, i' \in \mathbb{I}_f \quad (26) \]

which means that when train \(f \) departs from station \(i \), it immediately arrives at node 0 between stations \(i \) and \(i' \) and train \(f \) arrives at station \(i \) immediately when it departs from the last node \(N_{i,i'} \) between stations \(i \) and \(i' \). When the arrival time \(a_{f,j} \) is not equal to \(d_{f,i} \), this means that train \(f \) dwells at station \(i \). In addition, we have

\[d_{f,i,n} = a_{f,i,n} \quad \forall f \in \mathbb{F}, i \in \mathbb{I}_f, n \in \mathbb{N}_{i,i'} \quad (27) \]

which means that train \(f \) is not allowed to dwell at the intermediate intervals between stations \(i \) and \(i' \). By solving the differential equations (19) and (20), we obtain

\[E_{f,i,n} = a_{f,i,n} E_{f,i,n-1} + \beta_{f,i,n} u_{f,i,n} + \gamma_{f,i,n} \]

\[a_{f,i,n} = d_{f,i,n-1} + \frac{1}{2} \left(\frac{1}{\sqrt{2E_{f,i,n-1}}} + \frac{1}{\sqrt{2E_{f,i,n}}} \right) \Delta s_{i,n} \quad (29) \]

for all \(f \in \mathbb{F}, i \in \mathbb{I}_f, n \in \mathbb{N}_{i,i'} \), where

\[\alpha_{f,i,n} = e^{-\Delta s_{i,n}/(R_0 + R_{i,n}' + R_{i,n}'')} \quad \beta_{f,i,n} = -\left(1/2(R_0 + R_{i,n}) \right) \left(e^{-\Delta s_{i,n}/(R_0 + R_{i,n}' + R_{i,n}'')} - 1 \right) \]

\[\gamma_{f,i,n} = (R_0 + R_{i,n}' + R_{i,n}'') \left(e^{-\Delta s_{i,n}/(R_0 + R_{i,n}' + R_{i,n}'')} - 1 \right) \]

See [28] for more details of these calculations.

The operation of trains should satisfy the constraints introduced by the train dynamics, line characteristics, and so on. Specifically, the traction and braking forces \(u_{f,i,n} \) should be larger than the maximum braking force (a negative value) and smaller than the maximum traction force, that is,

\[u_{\min} \leq u_{f,i,n} \leq u_{\max} \quad \forall f \in \mathbb{F}, i, i' \in \mathbb{I}_f, n \in \mathbb{N}_{i,i'} \quad (30) \]

where the maximum braking force is considered as a constant and the maximum traction force is a nonlinear function of the train’s speed\(^2\) as in [28]. It is worth to note that the traction/braking force \(u_{f,i,n} \) is a constant for small interval \([s_{i,n-1}, s_{i,n}]\). So, the operation regime of trains (e.g., acceleration, deceleration, coasting, or cruising) in a small interval does not change in this small interval. Therefore, if the speed limits are respected at the nodes of this interval, then all the intermediate points inside the interval also satisfy the constraints caused by speed limits, that is,

\[0 \leq E_{f,i,n} \leq E_{i,n}^{\max} \quad \forall f \in \mathbb{F}, i, i' \in \mathbb{I}_f, n \in \mathbb{N}_{i,i'} \quad (31) \]

Note that if train \(f \) dwells at station \(i \), then the speed of trains should be zero when it stops. However, since we have \(E_{f,i,n} \) in the denominator in (29), we introduce a small positive number \(E_{\min} \), such that \(E_{f,i,n} \geq E_{\min} > 0 \). This means that the speed of trains is always strictly larger than zero, which is not restrictive in practice as stated in [26] and [28]. Therefore, if train \(f \) dwells at station \(i \), we have the following constraints:

\[E_{f,i,0} = E_{\min} \quad (32) \]

\[E_{f,i,N_{i,i'}} = E_{\min} \quad (33) \]

Furthermore, during the operation process, there could be temporary speed constraints caused by extreme weather or equipment failures, under which a TSR generally appears and affects a certain area (defined by block sections) for a certain time period. In addition, it is possible that there are several TSRs that need to be respected simultaneously in a high-speed railway line. A TSR is denoted by a tuple

\[(E_{TSR}^l, t_{tstart}^l, t_{tend}^l, s_{l,\bar{L}_l}, s_{l,\bar{A}_l}) \]

where \(E_{TSR}^l \) indicates the maximum speed that can be operated by trains, \(t_{tstart}^l \) and \(t_{tend}^l \) are the start and end time of this TSR, respectively, and \(s_{l,\bar{L}_l} \) and \(s_{l,\bar{A}_l} \) indicate the start and end positions of the TSR. Note that these two positions correspond to the start and end of block sections, that is, \(n_{l} \in \mathbb{N}_{l,i,i'}^B \) and \(n_{l} \in \mathbb{N}_{l,i,i'}^B \). Here, we introduce \(N_{TSR}^l \) to denote all the nodes that are affected by TSR \(l \). In addition, \(N_f \) is introduced to denote all the nodes passed by train \(f \). Therefore, we need to determine whether train \(f \) is affected by TSR \(l \) or not, that is,

\[T_{tstart}^l \leq d_{f,i,n} \leq T_{tend}^l \quad (35) \]

So, if (35) is satisfied, then train \(f \) is affected by TSR \(l \) and is required to respect the following constraints:

\[E_{f,i,n} \leq E_{TSR}^l \quad \forall (i,n) \in \mathbb{N}_{TSR}^l \cap \mathbb{N}_f \quad (36) \]

Moreover, the safe operation of train \(f \) is guaranteed by the advanced signaling systems as mentioned in Section II-A. When TSRS are triggered, the operation of trains may be highly affected by the signaling system. Therefore, it is important to consider the interaction between neighboring trains to save energy by avoiding unnecessary acceleration and deceleration. In the lower layer of our hierarchical framework, the optimal control problem of each train considers the behavior, that is, the speed profile, of its preceding train. Let train \(f' \) be the predecessor of train \(f \). Here, we adopt the approach proposed by [16] to describe the speed limits introduced by the preceding train \(f' \), where the speed of train \(f \) is dependent on the number of free block sections \(n_{b,f,i,n} \) between trains \(f \) and \(f' \) when train \(f \) is at position \(s_{i,n} \) that is,

\[\sqrt{2E_{f,i,n}} \leq 300 \text{ km/h}, \quad n_{b,f,i,n} = 5 \]

\[\sqrt{2E_{f,i,n}} \leq 250 \text{ km/h}, \quad n_{b,f,i,n} = 4 \]

\[\sqrt{2E_{f,i,n}} \leq 200 \text{ km/h}, \quad n_{b,f,i,n} = 3 \quad (37) \]

\[\sqrt{2E_{f,i,n}} \leq 160 \text{ km/h}, \quad n_{b,f,i,n} = 2 \]

\[\sqrt{2E_{f,i,n}} \leq 120 \text{ km/h}, \quad n_{b,f,i,n} = 1 \]

The value of \(n_{b,f,i,n} \) is determined by the arrival and departure times of train \(f \) and its preceding train \(f' \). Particularly, the
arrival and departure times of train \(f' \) are based on its speed profile obtained in the previous time step because the train control problem are solved for each train independently in the lower level. We introduce \(\text{pred}(k, n_i) \) to denote the index of the block section that is \(n_i \) block sections preceding the block section that involves position \(s_i, n_i \). If \(a_{f,i,n} \geq d_{f,i,\text{pred}(n,i)} \), that is, there are more than five free block sections between trains \(f \) and \(f' \), the operation of train \(f' \) does not affect train \(f \). However, if \(d_{f,i,\text{pred}(n,i)} \leq a_{f,i,n} \leq d_{f,i,\text{pred}(n,i)} \), then we have \(n_i^b = 5 \), which means that the speed of train \(f \) at \(s_i, n_i \) should be less than 300 km/h. The other speed restriction constraints caused by the preceding train can be introduced in a similar way.

In order to ensure the feasibility of the train operation problem in the lower layer, the running time of train \(f \) between two dwelling stations, denoted by \(i \) and \(i' \), cannot be formulated as hard constraint, but should be included as a soft constraint in the objective function. Additionally, the total energy consumption of the trains is also considered in the objective function. Thus, the objective function can be given as follows:

\[
\min Z_{\text{low},f,i,i'} = \sum_{(i,n) \in N_{f,i,i'}} \theta_1 (a_{f,i,n} - d_{f,i,n}) + \theta_2 |r_{f,i,i'} - \bar{r}_{f,i,i'}| \tag{38}
\]

where the set of all the nodes between stations \(i \) and \(i' \) that are passed by train \(f \) is denoted as \(N_{f,i,i'} \), \(r_{f,i,i'} \), that is, \(a_{f,i,n} - d_{f,i,n} \), is the actual running time of train \(f \) between stations \(i \) and \(i' \), \(\bar{r}_{f,i,i'} \) is the recommended running time between those two stations, and \(\theta_1 \) and \(\theta_2 \) are weights introduced to indicate the relative importance of the two components of the objective function. The term \(\max(a_{f,i,n}, 0) \) indicates that regenerative braking is not considered here. The second term in the objective function of the lower level is the deviation with respect to the train schedule specified in the upper level. It is noted that the running time of train \(f \) between stations \(i \) and \(i' \) could be shorter or longer than the predefined running time in the upper level. So, even if there are TSRs appearing in the high-speed railway line, the train optimal control problem is still feasible in the lower layer.

IV. Hierarchical MPC Formulation and Solution Approach

For the formulated train rescheduling and speed control problem, the train rescheduling problem is executed at a slow time scale in the upper layer, while the speed control problem is implemented in a fast time scale in the lower layer. The hierarchical framework is illustrated in Fig. 6, which shows that the original integrated train rescheduling and speed control problem is effectively reduced and decomposed into a two-layer small-scale optimization problem. The reduced upper layer problem is only related to the train rescheduling problem, which can be solved fast when compared to the original integrated problem. The decision variables of the upper layer involve the running/dwell times (i.e., \(r_{f,i} \) and \(u_{f,i} \)) and the arriving/departing order between trains (i.e., \(\bar{r}_{f,i,i'} \), \(\bar{r}_{f,i,i'} \), and \(\epsilon_{f,i,i'} \)), while the departure and arrival times (i.e., \(d_{f,i} \) and \(a_{f,i} \)) of train services are the state variables. In the lower layer, a distributed optimal control structure is formulated for the train speed control problem, where the speed control problem of each train can be solved independently with consideration of the influence of only the preceding train. The decision variables of the lower layer involve the traction/braking forces (i.e., \(u_{f,i,n} \)), while the unit kinetic energy (i.e., \(E_{f,i,n} \)) and arrival time (i.e., \(a_{f,i,n} \)) are the state variables.

A. MPC Problem in the Upper Layer

The upper-layer MPC controller is based on event-triggered scheme instead of time-triggered scheme and it is on a continuous time grid, which is different from the classic MPC scheme based on discrete time models. Hence, we denote the rolling horizon framework via stage \(k \) instead of sampling time step \(k \) for clarity. The prediction and control horizon \(T \) of the MPC controller in the upper layer can be chosen as a fixed time interval, for example, 30 or 45 min, according to the practical applications. The number of departure and arrival events in the control horizon \(T \) is related to the number and characteristics of train services specified in the planned timetable. We note that the upper-layer MPC controller is triggered at a slow time scale when compared with the lower-level MPC controller. Specifically, the events that can trigger the MPC controller of the upper level involve the delay events (i.e., the arrivals and departures of trains at stations that are delayed more than a predefined threshold) and the TSR events (i.e., the information of TSRs is updated). Hence, the triggered time of stage \(k \) is dependent on the arrival/departure events and the TSR events. Once the arrival/departure events or the TSR events occur, the sampling time step \(k \) is updated at once. At each sampling time step \(k \), based on the newly available feedback information from the lower level, a real-time optimization problem is formulated to determine the train rescheduling strategy (\(a_{f,i}, d_{f,i}, r_{f,i}, \bar{r}_{f,i,i'}, \bar{r}_{f,i,i'} \)) for \(f \in F, f' \in F, i \in I_f, i \in I_f \), that is, the train arrival times, dwell times, running times, and the arriving and departing orders over the prediction time horizon \(T \). Since the train rescheduling strategy is based on the indices of train services and stations, we denote the index sets of the relevant train services and stations in predictive time horizon \(T \) by \(F_k \) and \(I_k \) for time step \(k \). The control horizon of the MPC problem in the upper
level is the same as the prediction time horizon. Moreover, the control strategy calculated at time step \(k \) will be applied to the trains until next event occur, that is, sampling time step \(k + 1 \).

According to economic criteria for reducing train delays, the optimization problem at the higher layer for time step \(k \) over the prediction time horizon \(T \) is formulated as follows:

\[
\min \left(a^k_{f,i}, d^k_{f,i}, r^k_f, s^k_f, q^k_f \right) \quad \sum_{f \in \mathcal{I}_k} \sum_{i \in \mathcal{C}_f} \left| a^k_{f,i} - \bar{a}_{f,i} \right|_1^T \left(f^\text{stop}_{f,k} \right) + \left| d^k_{f,i} - \bar{d}_{f,i} \right|_1^T \left(f^\text{stop}_{f,k} \right)
\]

s.t. \((2) - (17), \quad (39) \)

where \(f^\text{stop}_{f,k} \) is the number of scheduled stops for train service \(f \) at stage \(k \), \(a^k_{f,i} \) and \(d^k_{f,i} \) are the rescheduled arrival and departure times in the optimization problem at stage \(k \). The optimization problem at the upper level can be transformed into a mixed integer linear programming (MILP) model. By solving the above optimization problem (39), the controller at the upper layer computes its desired control inputs for the running times of each train between the consecutive stations, which are the reference signals of the train control problem at the lower layer. In the MPC framework, the optimization problem for the train rescheduling is solved online in an event-triggered way with the updated departure/arrival times (i.e., the measurements that feedback from the lower layer) and the updated TSR information. At the triggered time instant of stage \(k + 1 \), a new optimization problem is formulated again whenever the delay threshold is reached or the TSR information is updated, which in practice makes the solutions more robust to uncertainty, disturbances, and even model mismatch.

To prove the recursive feasibility of the train rescheduling problem in (39), we first separate the constraints into two sets as follows.

1) \(\mathcal{C}_1(a^k, d^k, r^k, w^k, Y^k) \): This is the set of constraints that are related to the running/dwell times, the departure/arrival times, and the binary indicators for the TSR influence, that is, \((2) - (8) \), at stage \(k \). In particular, we have \(a^k = \{ a^k_{f,i} \mid f \in \mathcal{F}_k, i \in \mathcal{I}_k \} \) and \(d^k = \{ d^k_{f,i} \mid f \in \mathcal{F}_k, i \in \mathcal{I}_k \} \). The other sets can be defined in a similar way.

2) \(\mathcal{C}_2(\epsilon^k, \eta^k, \epsilon^k) \): This is the set of constraints that are related to the binary variables for describing the departure/arrival orders among trains, that is, \((9) - (17) \), at sampling time step \(k \).

We suppose that a feasible solution \(S(a^{k-1}, d^{k-1}, r^{k-1}, w^{k-1}, y^{k-1}, z^{k-1}, \eta^{k-1}, \epsilon^{k-1}) \) is available for the train rescheduling problem at time step \(k - 1 \). Many candidate solutions, for example, \(S(a^k, d^k, r^k, w^k, Y^k) \), are recursively feasible to the train rescheduling problem with constraint set \(\mathcal{C}_1(a^k, d^k, r^k, w^k, Y^k) \) at time step \(k \), because there are no upper limits for the running/dwell times and departure/arrival times. Even though the TSRs would prolong the running times of trains, the problem with constraint set \(\mathcal{C}_1(a^k, d^k, r^k, w^k, Y^k) \) is always feasible. Moreover, there exists at least one feasible solution that satisfy \(\mathcal{C}_1(a^k, d^k, r^k, w^k, Y^k) \) and \(\mathcal{C}_2(\epsilon^k, \eta^k, \epsilon^k) \), that is, the specified departure/arrival orders in the planned timetable. Hence, the feasibility of the upper layer can be solved.

B. MPC Problem in the Lower Layer

In the lower layer, based on the reference of the running times calculated in the higher layer, a speed control problem is implemented in a fast time scale by using the MPC algorithm. With the reference running times of each train obtained from the upper layer, the MPC controllers in the lower level are implemented in a distributed way, where the speed control problem of each train is calculated independently and the influence of the neighboring trains is simplified by only considering the preceding train to reduce the computational complexity significantly. Hence, the communication between the preceding train and the following train is required and the speed profile of the leading train needs to be sent immediately to the following train when the profile is updated. The distributed MPC problems in the lower level are also event-triggered, where the events are defined as the deviations from the optimized speed profiles are larger than the predefined thresholds.

To develop the MPC algorithm for the train control problem at a fast time scale, for each train \(f \), we consider the sampling time step as \(k_f \) and the prediction horizon as \(S_f \). The sampling time step \(k_f \) is dependent on the departure/arrival events at the block section level and the events caused by TSRs. It is worth to note that the prediction horizon of the MPC controller in the lower layer is based on the position instead of time. The prediction horizon \(S_f \) should cover the distance between the current position of train \(f \) and the planned stopping platform. Moreover, the movement authority-related information, that is, the operational status (e.g., position and speed) of the preceding train, is considered in the lower-layer problem. During the prediction horizon \(S_f \), the set of the block sections that could be traversed by train \(f \) is denoted by \(N_{k_f}, S_f \). The reference running time during the prediction horizon is denoted as \(r_{f,k_f} \), which is calculated by the higher layer. At sampling time step \(k_f \), based on the newly available feedback information, for example, the movement authority information, a real-time optimization problem is formulated for each train to determine the train operation control strategy \(u_{f,i,n} \) as follows:

\[
\min_{u_{f,i,n}} \sum_{\tilde{g}, \tilde{n} \in N_{f,k_f}} \theta_1 \max(u_{f,i,n}, 0) \Delta s_{i,n} + \theta_2 |f_{k,f} - f_{k_f}| \quad \text{s.t.} \quad (20) - (36), \quad (40)
\]

where the first term is to minimize the energy consumption and the second term is to track the reference running time given by the upper layer. In the lower layer, a set of distributed MPC controllers (one controller for each train) are implemented in the fast time scale. These MPC controllers are implemented as a special case of the shrinking horizon strategy since the prediction horizon in the lower layer is the distance to the next stopping station and it is reduced with the increasing of the sampling time step. The optimization problem given in (40) can be transformed into an MILP problem by approximating the nonlinear terms by piecewise affine functions and applying the transformation properties given by [29] by introducing auxiliary binary-valued and real-valued variables. The resulting MILP problem can then be effectively solved.
Algorithm 1: Hierarchical MPC Algorithm for on-Line Railway Delay Management and Train Control

Step 1. In the upper layer, at each sample step k, obtain the measured feedback information, i.e., departure and arrival times of trains at stations, and the TSR data.

Step 2. Formulate the train rescheduling problem (39) under constraints (2)-(17) for sample step k with given prediction horizon T (i.e., sets of relevant train services and train stations are denoted as F_k and I_k) in a slow time scale.

Step 3. Solve train rescheduling problem (39) for sample step k using existing solvers, e.g., CPLEX, and obtain the updated train departure/arrival times, stop patterns, and running times.

Step 4. Taking running times obtained from the upper layer as references, formulate the lower layer train control problems in a fast time scale and solve them in a distributed way.

Step 4.1 For each train $f \in F_k$, at the sample step k_f, formulate the train speed control problem (40) under constraints (20)-(36) over the predictive horizon S_f.

Step 4.2 Solve speed control problem (40) for each train using existing solvers, e.g., CPLEX, and obtain the optimal speed profile and apply the corresponding control input to each train during sample step k_f.

Step 4.3 In the next step $k_f + 1$, for each train, based on the new measured feedback information of itself and its preceding train, repeat Steps 4.1-4.2 without communications with other trains, until the solution process of the upper layer is triggered, i.e., a train departs from or arrives at a station.

Step 5. Based on the measured feedback information for the train departure times, arrival times, and the TSR data in the next step $k - 1$, repeat Steps 1-4 until the end of the decision horizon.

by existing solvers similar as the optimization problem in the upper level. We refer to [28] for more details about the MILP transformation.

The proof of the recursive feasibility of the lower layer is similar as the one for the upper layer. Hence, we explain the reasons for the feasibility briefly for the sake of simplicity. The reference running time specified by the upper layer is considered as a soft constraint in the objective function instead of a hard constraint for the lower-level problem. Hence, the updates of the running times in the higher level do not influence the recursive feasibility. The newly triggered TSRs may cause the speed train control problem infeasible because the speed of trains may not be reduced to satisfy the TSRs in some extreme scenarios; however, the dispatchers and the centralized train control system need to check the influence of the TSRs on the operation of trains before setting the TSR command to avoid infeasibilities. So, the recursive feasibility of the lower layer can also be ensured.

C. Whole Hierarchical Model Predictive Control Algorithm

The whole hierarchical MPC algorithm for the on-line railway delay management and train control is summarized as given in Algorithm 1. In addition, the flowchart of the algorithm proposed in this article is illustrated in Fig. 7.

According to the above hierarchical MPC algorithm, the original complex high-speed railway delay management and speed control problem is assigned to different layers, in which different optimal control problems with specific tasks are solved. The hierarchical algorithm effectively reduces the computation burden for the original optimization problem. Specifically, in the higher layer train rescheduling model (that is simpler and more abstract) is presented to predict the long-term behavior of the railway system and to minimize the specified objective function over a long time horizon. In the lower layer, the train speed control model (that is more accurate) is adopted to optimize the current control strategies by concentrating on a shorter time horizon. We note that the MPC controller in the upper and lower layers are both event-triggered. Several events would occur during the prediction horizon, in general. However, if no events occur during the prediction horizon, the solution process in the upper layer will be triggered at the end of the prediction horizon. For the lower layer, if the prediction horizon is reached, which basically means that a train arrives at the planned station. This would trigger the MPC controllers in the upper and lower layers. It should be noted that, in the proposed hierarchical MPC framework, the train dynamic model is a hybrid discrete event system, and the formulated problems in the upper layer and in the lower layer are both mixed integer linear programming problems, which are nonconvex. It becomes more cumbersome to give the rigorous proof of stability for the nonlinear system with the nonconvex constraints, which needs to be investigated in our future work. Specifically, the speed control problem for each train is calculated in a distributed manner that only needs the information of its preceding train, not other trains.

Fig. 7. Flow chart of the hierarchical MPC algorithm.
which greatly improves the computational efficiency compared to the centralized control of all the trains. The modularity of distributed manner benefits that if a new train is added to the system, the algorithm at the group involving the new train is only modified. Moreover, with the hierarchical MPC algorithm, both the upper layer problem and the lower layer problem are formulated as small-scale mixed integer linear programming problems, which can be efficiently solved by the existing solvers, such as CPLEX and GUROBI.

V. CASE STUDY

To illustrate the effectiveness and feasibility of the proposed hierarchical MPC scheme, numerical experiments are performed based on the actual data of Beijing–Shanghai high-speed railway. All of these experiments are conducted by using MATLAB 2016b and CPLEX 12.8 on a personal computer (Windows 10 operating system, Intel(R) Core i7-7700HQ CPU at 2.80 GHz, 8.0 GB RAM).

A. Setup of the Case Study

The Beijing–Shanghai high-speed railway is one of the busiest high-speed railway lines in China; its total length is 1318 km. There are 23 stations on this high-speed railway line and the exact locations of these stations are listed in Table III. For our case study, the planned (or original) timetable is based on the actual timetable of the Beijing–Shanghai high-speed railway on a day of 2019. The time period considered in this article is from 10:00 A.M. to 12:00 A.M. and the number of involved train services is 33 for this time period. For the train services that have started running before 10:00 A.M., we assume that they are operated according to the planned timetable before 10:00, that is, no delays at the beginning of the considered time period. However, the disturbances are considered for the operation of trains during the time period. It is noted that the planned timetable of the Beijing–Shanghai high-speed railway is a noncyclic timetable. The TSRs that are considered in this case study are given in Table IV, where four TSRs are considered at four different locations of the line. The activation periods of these four TSRs are between 10:00 A.M. and 11:30 A.M., while different TSRs appear at different time periods.

The maximum running speed of the considered trains is 300 km/h. The minimum arrival and departure headway of two consecutive trains are chosen as 3 min at stations. Moreover, the minimum running times of trains between stations is set as 90% of the planned running times as specified in the planned timetable. The values of θ_1 and θ_2 in the objective function (40) are taken as 1×10^{-9} and 30, respectively. The disturbances of running times and dwell times, that is, $\sigma_{r,i}$ and $\sigma_{w,i}$, in the higher level obey uniform distribution in our case study. More specifically, the disturbances of running times range from 30 to 60 s and the disturbances of dwelling times at a station range from 0 to 30 s. In addition, disturbances that also obey uniform distributions are introduced for the lower level to indicate the tracking errors of the optimized speed profiles, which range from 0 to 90 s.

B. Comparison of the Proposed HMPC Strategy With Other Policies

To evaluate the effectiveness of the hierarchical control scheme, we compare it with two widely accepted train regulation policies, that is, the first-scheduled-first-served (FSFS) policy and the first-come-first-served (FCFS) policy. The detailed settings for these three strategies are given as follows.

1) Hierarchical MPC (HMPC) strategy: The control horizon and prediction horizon in the upper layer of the HMPC framework are both set as 30 min. The control horizon and prediction horizon in the lower layer are usually taken as the left running times to the next stop, which are much shorter when compared to those of the upper layer. The calculations in the framework are event-triggered. Particularly, the events that trigger the computations in the upper layer are train delay events, TRS events, and so on. Specifically, when a train has a delay of more than 1.5 min at stations, the train schedule in the upper layer and speed profiles in the lower layer need to be updated. Moreover, when the error between the operation speed of trains and the planned speed profile is bigger than a predefined threshold, that is, 2 km/h, the speed profile of a particular train needs to

Table III

<table>
<thead>
<tr>
<th>Station index</th>
<th>Station name</th>
<th>Position (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Beijing South</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>Langfang</td>
<td>59</td>
</tr>
<tr>
<td>S3</td>
<td>Tianjin South</td>
<td>131</td>
</tr>
<tr>
<td>S4</td>
<td>Changzhou West</td>
<td>219</td>
</tr>
<tr>
<td>S5</td>
<td>Dezhou East</td>
<td>327</td>
</tr>
<tr>
<td>S6</td>
<td>Jiaxing West</td>
<td>419</td>
</tr>
<tr>
<td>S7</td>
<td>Tai’an</td>
<td>462</td>
</tr>
<tr>
<td>S8</td>
<td>Qufu East</td>
<td>533</td>
</tr>
<tr>
<td>S9</td>
<td>Zhengzhou East</td>
<td>589</td>
</tr>
<tr>
<td>S10</td>
<td>Zaozhuang</td>
<td>625</td>
</tr>
<tr>
<td>S11</td>
<td>Xuzhou East</td>
<td>688</td>
</tr>
<tr>
<td>S12</td>
<td>Suzhou East</td>
<td>767</td>
</tr>
<tr>
<td>S13</td>
<td>Bengbu South</td>
<td>844</td>
</tr>
<tr>
<td>S14</td>
<td>Dingxiang</td>
<td>897</td>
</tr>
<tr>
<td>S15</td>
<td>Chuzhou</td>
<td>959</td>
</tr>
<tr>
<td>S16</td>
<td>Nanjing</td>
<td>1018</td>
</tr>
<tr>
<td>S17</td>
<td>Zhenjiang South</td>
<td>1079</td>
</tr>
<tr>
<td>S18</td>
<td>Dashang North</td>
<td>1112</td>
</tr>
<tr>
<td>S19</td>
<td>Changzhou North</td>
<td>1144</td>
</tr>
<tr>
<td>S20</td>
<td>Wuxi East</td>
<td>1201</td>
</tr>
<tr>
<td>S21</td>
<td>Suzhou North</td>
<td>1227</td>
</tr>
<tr>
<td>S22</td>
<td>Kunshan South</td>
<td>1259</td>
</tr>
<tr>
<td>S23</td>
<td>Shanghai Hongqiao</td>
<td>1302</td>
</tr>
</tbody>
</table>
be optimized again. The state-of-the-art MPC solutions are calculated for the upper hierarchical layer and the lower hierarchical layer, respectively.

2) FSFS strategy: The order of trains that depart from stations in practice will follow the order specified in the planned timetable. If possible, the dwell times and running times of trains should stay the same as the ones in the planned timetable; however, they will be affected by the running and dwell time disturbances. Moreover, if the operation of trains is affected by the TSRs, the minimum running time between stations should change accordingly. For this study, the minimum running times under the TSRs are calculated via the detailed train characteristics model. Furthermore, when the train schedule is updated according to the FSFS policy, the speed curves of the trains and the corresponding energy consumption are recalculated.

3) FCFS strategy: The order of trains follows the actual arrival order at stations. The running times and dwell times of trains in the FCFS strategy are obtained similarly as what we have for the FSFS strategy.

In the lower level, extra speed limitation constraints may be added to the train control model according to the number of free block sections between the current train and the preceding train via (37).

In this experiment, the higher level of the HMPC framework is triggered 13 times during the considered time period and the computation time of these calculations ranges from 20 to 26 s for the optimization problem in the higher level. The MPC controllers in the lower level are triggered 415 times during the considered time period and the average computation time is around 16 s. We note that the triggered frequency of different trains is different, which depends on the operation status of trains and the TSRs. For example, the controllers of trains 16 and 17 are triggered 12 and 22 times, respectively.

Specifically, the numbers of the constraints, the real-valued variables, and the integer-valued variables are about 10000, 5000, and 45000, respectively, in the upper-layer problem. In the lower-layer problems, the number of the constraints ranges from 10000 to 15000; the number of the real-valued variables ranges from 2000 to 3000; and the numbers of the integer-valued variables ranges from 18000 to 27000. Based on the computation times, the higher layer of the HMPC framework can satisfy the real-time requirement, in general, while more efficient algorithms need to be investigated for the lower layer. In addition, the computation times of the FSFS and FCFS are much smaller than that of the higher level of the HMPC framework, and they are equal to 0.42 and 0.39 s, respectively.

The performance comparison of these three strategies is given in Table V, where the departure/arrival time deviations (mostly delays) and the average energy consumption per kilometer are reported. As can be observed from Table V, the proposed HMPC strategy reduces the delay by 70.01% and 72.28% when compared with the FSFS and FCFS policies. However, the delay reduction of the HMPC strategy is achieved at the cost of a higher energy consumption.

Table V

<table>
<thead>
<tr>
<th>Performance index</th>
<th>HMPC</th>
<th>FSFS</th>
<th>FCFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay (min)</td>
<td>278.66</td>
<td>929.16</td>
<td>1005.16</td>
</tr>
<tr>
<td>Average energy consumption (kWh/km)</td>
<td>14.31</td>
<td>12.12</td>
<td>12.14</td>
</tr>
</tbody>
</table>

Fig. 8. Train rescheduled solutions obtained by the HMPC strategy.

Particularly, the average energy consumption per kilometer of the HMPC strategy increases by 18.07% and 17.87% when compared with the FSFS and FCFS policies. In addition, the rescheduled timetable obtained by the HMPC is illustrated in Fig. 8. The detailed comparison among the rescheduled solutions computed by the HMPC, FSFS, and FCFS strategies are given in Figs. 9 and 10. In Fig. 8, the running times of trains prolonged if their operations are affected by the TSRs. Moreover, it can be observed from Fig. 8 that the operations of some trains that are not affected by TSRs may slightly deviate from the planned timetable, for example, trains 5 and 30. This is because the upper layer of the HMPC approach involves the estimations of the running and dwell time disturbances, which affect the actual arrival and departure times of trains at stations.

In Fig. 9, the arrival times of trains 8, 13, 16, and 19 obtained by the HMPC strategy are earlier than those obtained by FSFS and FCFS, which means less delays. In addition, we note that trains 16 and 19 run faster before the TSRs, that is, between stations S1 and S2, to reduce delays for the HMPC approach. Moreover, the speed profiles of train 16 obtained by these three strategies are given in Fig. 11, where the speed profiles of the HMPC strategy is much higher than the FSFS and FCFS strategies. Train 16 plans to depart from station S2 at 10:58 and arrive at station S3 at 11:16, so it is influenced by TSR 3 of Table IV. The running times between stations, the delays, and the energy consumption of the three strategies are reported in Table VI for train 16. Due to the TSR between stations S2 and S3 (as can be seen from Fig. 11), the running time of train 16...
between S1 and S3 is longer than the planned running time, that is, 36 min, in the original timetable. As can be seen from Table VI, the running times obtained by the HMPC strategy are shorter than those of the FSFS and FCFS strategies. However, the energy consumption of the HMPC strategy is much higher than that of the FSFS and FCFS strategies. The faster running of trains results in higher energy consumption. In Fig. 10, the departure order of trains 12 and 22 obtained by different strategies are different. Specifically, train 12 departs from station S5 earlier than train 22 in the HMPC and FSFS strategies, while the departure order is different in the FCFS strategy.

It is worth to note that the delay recovery is much more important than the energy consumption, in general, during disruptions. So, the higher energy consumption of the HMPC approach is acceptable in practical applications. Moreover, the trade-off between the total delay and the energy consumption is investigated by adjusting the weights in the lower layer problem, as shown in Fig. 12. We note that with the increase of the relative importance of the energy consumption, the energy consumption of the HMPC approach decreases. Specifically, when the delays obtained by the HMPC approach is larger than 600 min, the resulting energy consumption is smaller than the FCFS and FSFS approaches. It can be concluded that the HMPC approach could reduce the delay and energy consumption at the same time.

C. Robustness Performance of the Proposed HMPC Approach

In the actual operation of high-speed railways, disturbances occur due to various reasons, which makes the disturbances uncertain and unpredictable. So, there is a high robustness requirement for a rescheduling method. The results of a good train rescheduling approach should not change largely
TABLE VII

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Mean</th>
<th>SD</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total disturbance (min)</td>
<td>114.06</td>
<td>8.09</td>
<td>7.10%</td>
</tr>
<tr>
<td>Total delay (min)</td>
<td>286.58</td>
<td>6.59</td>
<td>2.30%</td>
</tr>
<tr>
<td>Average energy consumption (kW·h/km)</td>
<td>14.30</td>
<td>0.068</td>
<td>0.47%</td>
</tr>
</tbody>
</table>

VI. CONCLUSION

In this article, we have tackled the on-line high-speed railway delay management and train control problem under a dynamic operation environment. A practical and effective hierarchical MPC framework has been proposed, where train schedules and speed profiles are updated based on the real-time updated information. Moreover, different updating frequencies are adopted for the train rescheduling in the upper control level and the speed profile optimization in the lower control level. The optimization problems in the upper layer and lower layer are both formulated as mixed integer linear programming problems, which can be solved efficiently with existing solvers. The effectiveness and robustness of the proposed two-level hierarchical control framework have been analyzed through several numerical experiments based on the data from the Beijing–Shanghai high-speed railway. When compared with the widely used strategies, the presented hierarchical MPC framework can yield smaller train delays at the cost of an acceptable increase in the energy consumption. Moreover, the hierarchical MPC framework has good robustness performance for different disturbances.

To investigate the trade-off between delay management and energy consumption better, an interesting research direction is to integrate a simple dynamical train model in the current model of the upper layer. Hence, the energy consumption is also included in the performance index of the upper layer, which would improve the performance and consistency of the proposed hierarchical MPC framework. We note that the computation efficiency of the lower-level controllers is not sufficient for the real-time application. In our future work, more efficient algorithms should be designed to update the

when the disturbances vary. To analyze the robustness of the proposed HMPC approach, a series of numerical experiments is performed. We generate different disturbances in the higher level randomly according to the uniform distributions for different scenarios, where the disturbance at each station ranges from 0.5 to 1 min. The considered time period, original timetable, and the TSR information are the same as those of the previous experiment. The robustness analysis results of the 100 disturbed scenarios are illustrated in Table VII, where the average values of the total disturbance, the total delay, the energy consumption per kilometer, the mean value, the standard deviation, and the coefficient of variation are listed. Specifically, the coefficient of variation is defined as the percentage between the standard deviation and the mean value. The total disturbance ranges from 81.68 to 122.73 min, while the total delay ranges from 273.47 to 301.15 min and the average energy consumption per kilometer ranges from 14.11 to 14.49 kW·h. We note that the coefficient of variation of the total disturbance, that is, 7.10%, is much larger when compared with those of the total delay and average energy consumption. Hence, the proposed HMPC approach has good robustness to disturbance in general.

More specifically, the total delay of several trains and the total delay at several stations are shown in Figs. 13 and 14 for 30 disturbed scenarios, where the z-axis represents the total delay. It can be observed that there is no obvious change for different scenarios. In Fig. 13, trains 1 and 5 have much less delay when compared with the other trains, because they are not influenced by TSRs. For train 13, the average total delay for the tested 100 scenarios is 31.28 min and the standard deviation is 0.83 min, which means that the fluctuation is relatively small. In Fig. 14, stations 2, 9, and 22 have much smaller delays when compared with other stations. The reasons are given as follows: 1) there is no TSR between stations 1 and 2 and 2) a few trains are influenced by the TSR between stations 8 and 9 and the TSR between stations 21 to 22. For station 3, the average delay of the tested 100 scenarios is 43.49 min and the standard deviation is 1.13 min. Therefore, it can be concluded that the proposed HMPC approach is relatively robust to the fluctuations of disturbances.

Fig. 13. Delays of several trains in 30 scenarios.

Fig. 14. Delays of several stations in 30 scenarios.
train speed profiles. In addition, the robustness of the proposed hierarchical MPC approach is important for practical applications. We would like to investigate on a robust MPC scheme and evaluate its performance in our future work. Another promising future work direction is to extend the hierarchical optimization problem for on-line delay management and train control in a large-scale high-speed railway network, where a distributed optimization framework could be introduced for the train rescheduling and control problem to reduce the computational complexity.

APPENDIX

NUMBER OF VARIABLES AND CONSTRAINTS IN THE HIERARCHICAL MPC APPROACH

The numbers of variables and constraints of the train rescheduling problem in the upper layer are given in Table VIII, where \(|F_i|, |I_i|, |L_i|, |F_{ij}|, \) and \(|F_{ij+1}| \) are the numbers of elements in \(F_i, I_i, L_i, F_{ij}, \) and \(F_{ij+1} \), respectively. Similar analysis can be done for the lower optimization problem.

Table VIII

<table>
<thead>
<tr>
<th>Variables or constraints</th>
<th>Total number at most</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable (a_{f_{ij}})</td>
<td>(\sum_{i \in F_i}</td>
</tr>
<tr>
<td>Variable (d_{f_{ij}})</td>
<td>(\sum_{i \in F_i}</td>
</tr>
<tr>
<td>Variable (r_{f_{ij}})</td>
<td>(\sum_{i \in F_i}</td>
</tr>
<tr>
<td>Variable (w_{f_{ij}})</td>
<td>(\sum_{i \in F_i}</td>
</tr>
<tr>
<td>Binary variable (Y_{f_{ij},l})</td>
<td>(\sum_{l \in F_{ij}} \sum_{j \in I_i}</td>
</tr>
<tr>
<td>Binary variable (Z_{f_{ij},l})</td>
<td>(\sum_{l \in F_{ij}}</td>
</tr>
<tr>
<td>Binary variable (\eta_{f_{ij},l})</td>
<td>(\sum_{l \in F_{ij}}</td>
</tr>
<tr>
<td>Binary variable (\xi_{f_{ij},l})</td>
<td>(\sum_{l \in F_{ij}}</td>
</tr>
<tr>
<td>Auxiliary variables</td>
<td>(2 \sum_{l \in F_{ij}} \sum_{j \in I_i}</td>
</tr>
<tr>
<td>Departure/arrival constraints</td>
<td>(2 \sum_{I_{ij} \in I_i}</td>
</tr>
<tr>
<td>Headway and ordering constraints</td>
<td>(3 \sum_{l \in F_{ij}}</td>
</tr>
<tr>
<td></td>
<td>(+ 3 \sum_{l \in F_{ij}} \sum_{j \in I_i}</td>
</tr>
<tr>
<td></td>
<td>(+ 2 \sum_{l \in F_{ij}} \sum_{j \in I_i}</td>
</tr>
<tr>
<td>Station capacity constraints</td>
<td>(2 \sum_{l \in F_{ij}}</td>
</tr>
</tbody>
</table>

REFERENCES

Yihui Wang received the B.Sc. degree in automation from Beijing Jiaotong University, Beijing, China, in 2007, and the Ph.D. degree in systems and control from the Delft University of Technology, Delft, the Netherlands, in 2014. She is currently an Associate Professor with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. Her research interests include train optimal control, train scheduling, and railway disruption management.

Songwei Zhu received the B.Sc. degree in signal and control of rail transit from Beijing Jiaotong University, Beijing, China, in 2018, where he is currently pursuing the Ph.D. degree with the State Key Laboratory of Rail Traffic Control and Safety. His main research interests are train scheduling, train rescheduling, and energy-efficient train control.

Shukai Li received the M.S. and Ph.D. degrees in systems engineering from Tianjin University, Tianjin, China, in 2010 and 2013, respectively. He is currently a Professor with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China. His interesting researches include nonlinear systems and robust control, and their applications in railway traffic.

Lixing Yang received the B.S. and M.S. degrees from the Department of Mathematics, Hebei University, Baoding, China, in 1999 and 2002, respectively, and the Ph.D. degree from the Department of Mathematical Sciences, Tsinghua University, Beijing, China, in 2005. He is currently a Professor with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing, China. He has authored and coauthored over 100 articles. His current research interests include uncertain programming, intelligent systems, and applications in transportation planning and rail traffic control systems.

Bart De Schutter (Fellow, IEEE) received the Ph.D. degree (summa cum laude) in applied sciences from Katholieke Universiteit Leuven, Leuven, Belgium, in 1996. He is currently a Full Professor and the Head of the Department with the Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands. His current research interests include multilevel and distributed control, control of discrete-event and hybrid systems, intelligent transportation systems, and smart infrastructure networks.

Dr. De Schutter is a Senior Editor of the IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS and an Associate Editor of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL.