The Debriefing of Research Games: A Structured Approach for the Validation of Gaming Simulation Outcomes

Jop van den Hoogen; Julia Lo; Sebastiaan Meijer

Abstract
Debriefing is an overlooked topic in the gaming simulation literature, especially in the context of gaming for applied research and design. Building upon existing frameworks, mostly in the fields of policy and educational games, and linking the design of the debriefing with the intricacies of innovation in complex networked infrastructures, we state that debriefing should touch upon five important topics: qualitative data generation, internal validation, external validation, reliability analysis and a robust planning for action.

Keywords
research gaming simulations; debriefing; validity; reliability; experiment

1 Introduction
Due to co-evolutionary processes of system elements, networked infrastructures are highly hostile towards radical innovations (Geels, 2007; Markard, 2011). However in certain cases, only these innovations allow a system to further adapt to rapidly shifting environmental conditions. We assume that the main function of gaming simulation is to build niches: protective spaces where radical innovations can be envisioned, experimented with and nurtured without the immediate selection pressure working upon the innovation from the incumbent regime.

Our starting assumption is that in accordance with Klabbers (2003a), the design of a game as an artifact, including its debriefing, is intrinsically linked to the process of the design of the real system that is being simulated. As such, debriefing of gaming simulation for these purposes should differ to a large extent from the debriefing of more usual applications such as games for education and training. This paper focuses on the debriefing of gaming simulation for applied research. Using insights from gaming simulation debriefing literature and methodological literature on experimental research, we use a structured approach to
identify how to debrief games for research, focusing on what topics to address and which participants to involve.

2 Simulation and Gaming Simulation

According to Axelrod (2006), simulation can be seen as large scale thought experiments. The power of simulation is that it allows the experiment to incorporate many variables and relationships that a normal person cannot handle and portray the emergent behavior of systems that have multiple interdependent processes operating simultaneously (Harrison & List, 2004). As in the first half of the 20th century the recognition arose that many of the phenomena we see are related to chaotic and emergent properties of non linear dynamic systems, new methods were needed to do justice to these properties (Ackoff, 1974). Thus in the advent of the system sciences, simulation as a means to understand complexity became widespread in fields such as operations research, meteorology, and evolutionary modelling. Bratley, Fox and Schrage (1987, p. 9) define the act of simulation as “driving a model of a system with suitable inputs and observing the corresponding outputs”. Hence, simulation involves both modelling, i.e. building an abstract representation of reality, and experimenting, i.e. manipulating the parameters of this model. By studying systems holistically rather than studying them by breaking it down and studying the isolated parts, simulation offers the possibility to capture so-called epiphenomena of collections of interacting elements.

Gaming simulation also offered this advantage but added the possibility to study systems in which technical and social elements both interacted and accordingly followed different rules than purely technical systems. In the beginning this led to its application mainly in the military and logistics domain (Brewer & Shubik, 1979; Mayer, 2009). Later on the recognition arose that the wickedness of the problems involving complex systems was caused by a myriad of incongruent opinions and perceptions around policy issues and led gaming simulation to become more consensus-oriented than scientific-oriented (Geurts & Joldersma, 2001). Rather than testing hypotheses, policy games offer the chance to create consensus between decision makers through the multilogue mode of communication where people with different perspectives engage with each other simultaneously (Duke, 2011). Outcomes of games therefore provide decision makers not with ready to use decisions, rather games help to create a future memory (Wenzler & Chartier, 1999).

2.1 Research games in organizations

Klabbers (2003b) stated that designing effective gaming simulations is an interplay between designing the game itself, i.e. design-in-the-small (DIS) and the intended effects of the game on the design of the referent system, e.g. design-in-the-large (DIL). If we wish to structure a debriefing, and thus make the debriefing a design consideration as proposed by Crokall (2010), we should inform this process with the peculiarities of the context in which simulation is employed. As Klabbers (2006) states, the goal of a gaming simulation (DIS) should serve the meta-goal of DIL-processes. Kriz and Hense (2006) sought to combine these two design processes by linking usual applications of gaming simulation to Greif and Kurtz (1996) model of organizational development (see Figure 1).

Organizational development is different from innovation because in the first the organization is intended to change whereas in the latter a product or process the organization governs is intended to change. However, the model shown above helps us in clearly distinguishing different functionalities of gaming simulation, such as diagnosis, design, testing and training. In Table 1, we adapt the four functionalities of gaming simulations to an innovation context.

<table>
<thead>
<tr>
<th>Research approaches</th>
<th>Game functionality</th>
<th>Main activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inductive; what theories can be built upon observing the real world? What is happening? What is the system like?</td>
<td>Present State SG</td>
<td>Generation of hypotheses</td>
</tr>
<tr>
<td>Constructive; what designs can improve the present state? What should we do to improve the system?</td>
<td>Future State SG</td>
<td>Design of artifacts, policies and strategies</td>
</tr>
<tr>
<td>Deductive; does our theory hold in the real world? Is this design really improving the system?</td>
<td>Test Scenario SG</td>
<td>Testing of hypotheses</td>
</tr>
<tr>
<td>Instructive; can we instruct people how to go from present state to future state? Can we train people how to handle the new design?</td>
<td>Training SG</td>
<td>Transfer of knowledge and skills</td>
</tr>
</tbody>
</table>
Since the generation and testing of hypotheses is what defines research, we name games 1 and 3 games for research. In game 2, gaming simulation is used for design and we see similarities with policy games. The fourth is well known and comes in the forms of educational games and games for learning. This distinction closely follows Peters and Vissers (1998) categorization of games for research, policy and learning.

3 Debriefing
In the gaming simulation field, debriefing gets less attention than it deserves (Denney, Sims & Collins, 1998) and as Crookall (2010) states that learning comes from debriefing, not from the game itself, a stronger focus on debriefing is needed. In addition, studies focusing on the debriefing part of gaming simulation mainly involved gaming simulation for policy making and learning. We see that the debriefing of games for applied research needs more attention. In general, the debriefing literature mostly focused on describing a phased approach using Kolb’s (1984) experiential learning cycles as a framework (Van der Meij, Leemkuil & Li, 2013). In debriefing sessions the main focus lies on sharing insights and the transfer of insights to the referent system that had been simulated (Kriz, 2003). Notable examples of elaborations on the debriefing of these kind of games are Sims (2002) and Lederman (1992).

3.1 Phases
Peters and Vissers (2004) touch upon the implications of using gaming simulation for research on the debriefing. They state that it serves three purposes:
1. provide a moment of cooling-down for the participants
2. protect the instrument gaming simulation
3. validate researchers interpretation of simulation outcomes

Whereas the latter is straightforward, at least at first sight, the other two are relevant as well but nonetheless neglected somewhat in the literature on gaming simulation. However for our purposes of debriefing gaming simulations for research the first two are important. Firstly, what we ask from participants in a game and in a debriefing is substantially different. In a game we ask them to be immersed, taking on the game, tasks and responsibilities as if real. On the other hand, we ask game players in a debriefing to reflect on what has happened in the game and to what extent this was perceived as ‘real’. If one is to say that the first involves single-loop learning and the latter double-loop learning, we believe a cooling-down moment is crucial for allowing game players to switch from one mental state to the other. Secondly, in our gaming simulations, game player availability is a big constraint, since an organization can only spare so many employees. Therefore we need to be cautious in treating them and making sure successive participation is guaranteed. Additionally, participants join the normal organization after playing the game and we need to control to what extent this might have effects. Sometimes, controversial innovations may become subjected to gaming simulation and in the debriefing we need to make sure what information remains inside the realms of the game and what is allowed to enter the organization.

Nevertheless, validation is what we believe to be the most important part of debriefing. Regarding this aspect we see two striking phased approaches from the literature. Lederman and Stewart (1986) and Van Ments (1983) mention three guiding concepts that structure a debriefing process. We adapt both approaches to coalesce them into one (see Table 3).

<table>
<thead>
<tr>
<th>Is the game...</th>
<th>Lederman and Stewart (1986)</th>
<th>Van Ments (1983)</th>
<th>Our interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>Validity questions</td>
<td>Establishing the facts</td>
<td>What did happen and is this similar to real life?</td>
</tr>
<tr>
<td>Reliable</td>
<td>Reliability questions</td>
<td>Analyzing causes</td>
<td>To what extent was the simulation deterministic, chaotic or stochastic?</td>
</tr>
<tr>
<td>Actionable</td>
<td>Utility questions</td>
<td>Planning action in real life</td>
<td>Is the information retrieved from the simulation impetus for action</td>
</tr>
</tbody>
</table>

Kriz (2010) is one of the first to apply a systems perspective to the debriefing process and elaborates on six phases or topics to be addressed during a debriefing following Thiagarajan (1993). Most importantly here is that a systems perspective advocates the holistic studying of complex systems and in the debriefing process, the key idea is to allow for many perspectives on the same phenomenon to arise. Firstly, in line with many others, this debriefing process involves a moment of cooling down. Secondly, the analysis of what had happened in the game and to what extent this is externally valid is deemed to take place by mixing many insights from the participants to arrive at a rich picture of the processes and its relation to real world processes. Furthermore in a separate phase, the debriefing should give attention to probable path dependent processes: some early decisions might have long lasting impact on the course of the game. Thus, a debriefing should assess these path dependencies by finding out critical decisions and what-if scenarios. Table 4 provides an overview of the six phases.
3.3 Participants

Finally, gaming simulations contain of different types of participants. Next to the presence of game players, there may also a number of nonparticipating person, e.g. colleagues, managers, policy designers, researchers, additional facilitators and observers (Kriz, 2010; Peters & Vissera, 2004). The presence of different types of participants may strongly influence the different phases within a debriefing session, and the applied format within the phases.

4 Experimental Research

The main objective in experiments is to manipulate on one or more independent variables and measure its effects on a dependent variable (Zechmeister, Zechmeister & Shaughnessy, 2001). Experimental research can be divided into two streams: one stream adopting a classical linear perspective on causality and one stream adopting a complexity perspective. Whereas the first sees experimental objects as trivial machines (the same pill given to the same participant will always produce the same results), the latter accounts for non-triviality (dynamic feedback systems show path dependent and chaotic behavior). In the design of experiments this results in treating the subject as either a black box in classical laboratory experiments or treating the subject as a collection of interacting elements in computer simulation.

In general, the quality of any research instrument can be described using two closely related concepts (Pellegrino, 2009): reliability and validity. Whereas the first determines to what extent repeated measured result in similar findings, the latter determine to what extent causal claims are correctly based on the measurements.

4.1 Reliability of experiments

4.1.1 Measurement reliability

Most commonly, the reliability of a research method is defined as the extent to which the measurement methods will measure the same values of a variable if measurements are repeated (Messick, 1975; Hunt, 1983). Quantitatively the reliability of these instruments is portrayed as the error margin of the instrument. For instance, if a temperature measure of an object of 38 degrees half of the times gives a value of 37 and half of the times gives a value of 39, its error margin is 1/38.

4.1.2 Sensitivity

Making sure that measurement instruments reliably measure variables is not the only way we are to make sure that a repeated experiment will show similar results, especially when one experiments with systems. That is because causal relations in an ecology of thousands of bidirectional causal relations are rarely so-cal-
led trivial machines. Stochastic and chaotic properties of dynamic feedback systems might give different results for the same starting conditions or different results for almost the same starting conditions respectively. So in one experiment we might conclude that A leads to B, whereas in a repeat run using the same sample and setup we might conclude that A does not lead to B. Accounting for this is called sensitivity analysis in the realms of computer simulation experiments and is certainly an important aspect of reliability in our context. In computer simulation experiments on stochastic or chaotic systems, multiple runs are executed to see if results are sensitive to initial conditions or to critical game player decisions during game play.

4.2 Validity of experiments

In general, the quality of experimental research can be described using external and internal validity (Zechmeister et al., 2001). Internal validity describes the extent to which one can trust a causal claim to be real inside the scope of the experiment, whereas external validity is “the extent to which findings from an experiment can be generalized to individuals, settings, and conditions beyond the scope of the specific experiment” (Zechmeister et al., 2001, p.161, italics added).

4.2.1 Internal validity

Internal validity is often defined as the extent to which the causal relation was isolated from potential confounders in an experimental setting. These founders might be different research settings for the treatment group than for the non-treatment group or adverse selection of research participants for the treatment. Experimentalists use random treatment assignment to assure internal validity.

4.2.2 External validity

External validity has been understood in many sometimes conflicting ways (Morton & Williams, 2010) and to better clarify this concept we distinguish between the extent that findings can be translated from sample to population and from isolation to a real-world setting, i.e. the ‘fieldness’ of the experiment (Harrison & List, 2004). We then arrive at generalizability and ecological validity. Experimentalists ensure generalizability by finding a representative sample from a population the research wishes to study. This representativeness is achieved by finding a subset of a population that shows the most important features that the population also shows. Thus, experimentalists first try to obtain a large enough sample. Secondly, in case the population is very poorly understood, the research may wish to randomly sample from this population. If the population is very clear, than more fine tuned ways of sampling might be done, for instance using stratified or convenient sampling.

Ecological validity on the other hand more resembles Raser’s (1969) way of defining validity of gaming simulation using the concepts of psychological realism, structural validity and process validity. Gaming simulations are often highly artificial environments and many contextual cues, processes and structural elements are omitted from the model in order to simulate it. However, these omissions might render the causal claim invalid once the claim is translated from the artificial model to the real world. Experimentalists usually enrich the experimental setting with cues from the real world, in much the same way as game designers try to ensure to properly model the real world by omitting only irrelevant parts. Furthermore the above mentioned sensitivity analysis could profoundly enrich the assessment of external validity. Given that structural and process validity are deemed sufficiently high, do the systemic qualities of the game resemble the qualities of the referent system? Here the assessment would focus on whether parameter sensitivity, tipping points and critical game player decisions hold true in real life. Additionally, the epiphenomena that emerge out of game player interaction, e.g. system level constructs such as punctuality, robustness, group dynamics, social atmosphere, can be assessed on their resemblance to the referent system: do we see the same emergent behavior in the game as we see in real life?

4.2.3 Measurement validity

Measurement or test validity refers to the measurement instrument itself, in which construct, criterion and content validity can be distinguished, see also Table 5 American Psychological Association, American Educational Research Association, and National Council on Measurement in Education, 1966). These concepts have been predominantly applied in the psychology domain, in relation to the use of questionnaires.

We summarize the concepts in Table 5 and show where in the design of experiments these play a role.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Experimental design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validity</td>
<td></td>
</tr>
<tr>
<td>Internal validity</td>
<td>—</td>
</tr>
<tr>
<td>External validity</td>
<td>Generalizability</td>
</tr>
<tr>
<td>Measurement Validity</td>
<td>Construct validity</td>
</tr>
<tr>
<td>Content validity</td>
<td>Assess whether items from the test cover all dimensions of the construct</td>
</tr>
<tr>
<td>Criterion validity</td>
<td>Compare results of test to one or more objective measurements</td>
</tr>
<tr>
<td>Reliability</td>
<td></td>
</tr>
</tbody>
</table>
Further research should test the proposed debriefing framework for research games. Furthermore, theoretical implications of the role of the facilitator or observers (e.g., facilitation techniques), the phenomenon of debriefing stress, different organizational cultures, professional codes or ethical considerations should be more in-depth investigated as they might demand the debriefing process to be differently structured.

Acknowledgments
This research was funded through the Railway Gaming Suite program, a joint project by ProRail and Delft University of Technology.

References

Authors / Contact

Jop van den Hoogen
Delft University of Technology
Delft, The Netherlands
j.vandenhoogen@tudelft.nl

Julia Lo
Delft University of Technology
Delft, The Netherlands
j.c.lo@tudelft.nl

Sebastiaan Meijer
KTH Royal Institute of Technology, Delft University of Technology
Stockholm, Sweden
smeijer@kth.se