Print Email Facebook Twitter Low-cost acoustic force trap in a microfluidic channel Title Low-cost acoustic force trap in a microfluidic channel Author Tsan, Vi hung (Student TU Delft) Fan, D. (TU Delft Team Carlas Smith) Caneva, S. (TU Delft Dynamics of Micro and Nano Systems) Smith, C.S. (TU Delft BN/Nynke Dekker Lab; TU Delft ImPhys/Rieger group; TU Delft Team Carlas Smith; TU Delft ImPhys/Computational Imaging) Verbiest, G.J. (TU Delft Dynamics of Micro and Nano Systems) Date 2023 Abstract A low-cost glass-based microfluidic flow cell with a piezo actuator is built using off-the-shelf parts (total cost €9 per device) to apply acoustophoretic force on polystyrene micro-beads. The main challenge in the fabrication of these devices was to ensure their leak tightness, which we solved using double-sided tape and nail polish. Beads with 1.5 μm diameter flowing in a 100 μm deep channel were trapped at 7.5 MHz using a 23.7 peak-to-peak voltage (Vpp) sinusoidal input. The trap located at 50 ± 0.1 μm depth was measured to have a stiffness of approximately 0.6 pN/μm. With this simple device we can trap and control the axial position of micrometer scale objects, which allows for the manipulation of beads and cells. We intend to use the device for force spectroscopy on micro-bead tethered DNA. This can be combined with super-resolution imaging techniques to study mechanics and binding of protein structures along a DNA strand as a function of induced tension. Subject Acoustic force spectroscopyAcoustic trappingAcoustophoreticLow-costMicrofluidics To reference this document use: http://resolver.tudelft.nl/uuid:dc7862b5-579b-4253-aa91-de46acdf5c1a DOI https://doi.org/10.1016/j.ohx.2023.e00428 ISSN 2468-0672 Source HardwareX, 14 Part of collection Institutional Repository Document type journal article Rights © 2023 Vi hung Tsan, D. Fan, S. Caneva, C.S. Smith, G.J. Verbiest Files PDF 1_s2.0_S2468067223000354_main.pdf 2.02 MB Close viewer /islandora/object/uuid:dc7862b5-579b-4253-aa91-de46acdf5c1a/datastream/OBJ/view