Enterprise Crowd Computing for Human Aided Chatbots

Bozzon, Alessandro

DOI
10.1145/3195555.3195566

Publication date
2018

Document Version
Accepted author manuscript

Published in
Proceedings of the 1st International Workshop on Software Engineering for Cognitive Services

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.
Enterprise Crowd Computing for Human Aided Chatbots

Alessandro Bozzon
Delft University of Technology
Delft, The Netherlands
a.bozzon@tudelft.nl

ABSTRACT
A chatbot is an example of cognitive computing system that emulates human conversations to provide informational, transactional, and conversational services. Despite their widespread adoption, chatbots still suffer from a number of performance issue due to limitations with their programming and training. In this paper we discuss Human Aided Chatbots, i.e. chatbots that rely on humans in the loop to operate. Human Aided Chatbots exploit human intelligence, brought for instance by crowd workers or full-time employees, to fill the gaps caused by limitations of fully automated solutions.

CLOSING
State-of-the-art chatbots are still far from being perfect, struggling to serve well user requests and to carry on a meaningful conversation. Each of the chatbot’s components suffer from a number of limitations when employed in real world scenarios. For instance, the LU might fail interpreting user requests, the DM might miss clarification requests for missing information, the AEIR might not find the requested information or not execute the correct requested action, and the RG might not provide a satisfactory response.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s). ACM Conference '17, July 2017, Washington, DC, USA © 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnn.nnnnnn

1 INTRODUCTION
The dream of a human-like highly intelligent computer assistant is not new. In science fiction books and movies, from Hal in “2001: A space odyssey” (1968) to Jarvis in “Iron Man” (2013), personal assistants helped heroes in their life and to manage their work duties. In research, the first conversational agents appeared in the 60’s. They were explicitly programmed, using rule-based approaches.

They had clear limitations in terms of performance and realworld utility. Recent advances in parallel processing hardware, natural language understanding machine learning, and artificial intelligence enabled the creation of a new generation of personal assistants like Google Assistant, Siri and Alexa. Chatbots are text-based conversational agents, living in messenger applications (e.g. Facebook Messenger, Telegram, Whatsapp and WeChat), and emulating a conversation with a human to provide informational, transactional, or conversational services [5]. Figure 1 shows the reference chatbot architecture introduced in [6]. Given a user request, the language understanding (LU) component infer the user’s intent and the associated information; the action execution & information retrieval (AEIR) component performs the requested actions, or retrieves the information of interest from its data source; the response generation (RG) component builds a response to the user; finally, the dialog management (DM) component preserves and update the context of a conversation to request missing information, to process clarifications by users, and to ask follow-up questions.

Figure 1: Chatbot Architecture
2 HUMAN AIDED CHATBOTS

Human Aided Chatbots are chatbots that utilise Crowd Computing in at least one of its components. Facebook M\(^1\) was a personal assistant based on the Facebook Messenger platform, and a successful example of Human Aided Chatbot. Facebook M became operational in 2015 to help developing Facebook’s artificial intelligence projects, and has been discontinued in January 2018. Facebook M allowed the execution custom transactional tasks with help of a crowd of dedicated Facebook employees.

In [5] we review the state-of-the-art in the field, and discuss a number of open research questions that need to be addressed to improve performance of chatbots, and the quality of their interaction. While human aided bots like Facebook M can serve thousands of users, widespread adoption of human aided chatbots require novel crowd computing solutions that would ensure that with the growth of the number of chatbot users, the costs associated with human computation would grow only gradually (scalability), and the latency due to human interaction would be contained (real-timeliness). Another challenge is related to privacy: as users interacting with chatbots often need to share their personal information, new methods need to be designed and developed to address privacy concerns.

3 ECROWD: ENTERPRISE CROWD COMPUTING

Enterprises have been adopting crowd computing to sustain their business needs and processes, transferring the practices of crowd-sourcing from the online environment to the internal crowd of the enterprise: the employees. Enterprise Crowd Computing differs from traditional crowd computing in terms of both the crowd it involves (i.e., employees) and the problem it targets (i.e., business problems) [8]. Crowd Computing provides an effective way to exploit the internal knowledge profiles of employees and to leverage on their non-utilised working capacity to solve business critical tasks [8]. Moreover, employees operate under contracts signed in order to commit to corporate norms and values, including, for instance, intellectual property rights and privacy [8]. Such commitment makes employees always available for contribution, possibly in an opportunistic manner [1].

Given its characteristics, we advocate for the use of Enterprise Crowd Computing in the context of Human Aided Chatbots.

In the context of a collaboration with the IBM Benelux Centre for Advanced Studies, we developed ECrowd [1, 7], a platform for Enterprise Crowd Computing designed to support the creation of custom mobile crowd computing applications for data creation, enrichment, and analysis. ECrowd has been successfully employed in a number of cognitive computing scenarios, including the training of chatbots. Figure 2 depicts some examples of cognitive tasks deployed in ECrowd, including: Information Extraction, to support the development of domain-specific language understanding (LU) chatbot module; Moral Machine (a task based on a research on the morality of future Artificial Intelligence [2]); and Cell Count, for the development of machine learning application in the medical domain. ECrowd has been developed with real-time task assignment, privacy-preservation functionalities, and notification capabilities.

However, the solicitation of prompt contributions from employees remain a challenge. In a recent work [1], we have shown that employees are generally willing to perform crowd computing tasks during their break times, but are willing to devote only short attention spans to it (2–10 minutes). Employees are not bothered by smartphone notifications, although an excessive amount of notification can facilitate the feared “crowd-out” effect. Moreover, the nature of the task is also of importance, where learning and purpose (i.e., support to the company’s goals) appear to be the most compelling reason for participation.

REFERENCES


