Comparison of water jets and conventional propeller jets

Henk Verheij

Port Infrastructure Seminar
June 22, 2010
conventional propellers

- propeller with rudder
- outflow velocity: 5 - 8 m/s
- azimuthal system
- bow thruster

TU Delft
Delft University of Technology
Deltanes
water jets

- low-powered small boats
- high-powered fast ferries

outflow velocity: 20 – 25 m/s !!!
principles of water jets

forward mode

reverse mode

TU Delft
Delft University of Technology

Deltasres
CFD simulations

forward mode

reverse mode

TU Delft
Delft University of Technology

Deltareas
berthing manoeuvres

relevant aspects:

- manoeuvres
- applied power
- location quay wall
inland navigation: pump jets
high-powered jets

Stena Discovery: 4 x 17,000 kW

resulting formulas:

\[V_0 = 0.9 \left(\frac{f_p P}{\rho A} \right)^{0.33} \]

\[V_{x,r} = 12.4 \left(\frac{1}{x} \right)^{1.17} V_0 \exp\left(-92.8 \frac{r^2}{x^2} \right) \]
low-powered jets

resulting formula:

\[V_{x,r} = 2.8 \frac{D_0}{(x)^{0.85}} V_0 \exp\left(-25 \frac{r^2}{x^2}\right) \]

ferry Terschelling: 2 x 750 kW
comparison of flow velocities in the jet axis

- high-powered water jet
- circular free jet
- low-powered water jet
- propeller jet
Comparison Flow Field Formulas

<table>
<thead>
<tr>
<th>Thruster</th>
<th>Outflow Velocity</th>
<th>Velocity in the Jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Propeller</td>
<td>$V_0 = 1.1 \left(\frac{f_p P}{\rho D^2} \right)^{0.33}$</td>
<td>$V_{x,r} = 2.8 \left(\frac{D}{x} \right)^{1.0} V_0 \exp \left(-15.4 \frac{r^2}{x^2} \right)$</td>
</tr>
<tr>
<td>Water Jets:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Low-powered</td>
<td>$V_0 = 0.9 \left(\frac{f_p P}{\rho A} \right)^{0.33}$</td>
<td>$V_{x,r} = 2.8 \left(\frac{D_0}{x} \right)^{0.85} V_0 \exp \left(-25 \frac{r^2}{x^2} \right)$</td>
</tr>
<tr>
<td>- High-powered</td>
<td></td>
<td>$V_{x,r} = 12.4 \left(\frac{1}{x} \right)^{1.17} V_0 \exp \left(-92.8 \frac{r^2}{x^2} \right)$</td>
</tr>
<tr>
<td>Circular Free Jet</td>
<td>$V_0 = \frac{Q}{A}$</td>
<td>$V_{x,r} = 6.2 \left(\frac{D}{x} \right)^{1.0} V_0 \exp \left(-69 \frac{r^2}{x^2} \right)$</td>
</tr>
</tbody>
</table>

Conclusions:
1. Low-powered jets resemble conventional propeller jets.
2. High-powered jets resemble circular free jets.
observed jet scour

cracks in a road due to jet scour
Scour: means a longer sheet piling taking into account scour depth
Protection: means additional dredging to realize the constriction thickness
mitigating measures

scour or a bed protection is the consequence of the chain:

• bed protection: \(d \geq 0.5 \frac{V_{bed}^2}{2g} \)

 rock <> mattrasses:
 a rock protection is thicker than a mattress, but might be cheaper

• no protection but allowing the development of a scour hole:

 \[
 \frac{S}{d_{85}} = \frac{h_p}{d_{85}} C_{ad} C_{m,r} \left[a \frac{B}{B_{crit}} - 1 \right]
 \]

• avoiding scour forces by reduction of the applied engine power to
 less than 10\%
conclusions

• there are significant differences between a high-powered jet and a low-powered jet regarding:
 - the decrease of the flow velocities in the jet axis, and
 - the diffusion of the jet in radial direction
• the characteristic flow field seems to depend on the power and induced turbulence
• low-powered jets resemble the flow field of a conventional propeller jet, although the flow velocities are about 50% higher
• high-powered jets resemble the flow field of a circular free jet
• pump jets installed in inland vessels: probably comparable with a low-powered jet, but no proof