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Geo-Distinctive Visual Element Matching for
Location Estimation of Images

Xinchao Li, Martha Larson, and Alan Hanjalic, Fellow, IEEE

Abstract—We propose an image representation and matching
approach that substantially improves visual-based location
estimation for images. The main novelty of the approach,
called distinctive visual element matching (DVEM), is its use of
representations that are specific to the query image whose location
is being predicted. These representations are based on visual
element clouds, which robustly capture the connection between
the query and visual evidence from candidate locations. We then
maximize the influence of visual elements that are geo-distinctive
because they do not occur in images taken at many other locations.
We carry out experiments and analysis for both geo-constrained
and geo-unconstrained location estimation cases using two large-
scale, publicly available datasets: the San Francisco Landmark
dataset with 1.06 million street-view images and the MediaEval’15
Placing Task dataset with 5.6 million geo-tagged images from
Flickr. We present examples that illustrate the highly transparent
mechanics of the approach, which are based on commonsense
observations about the visual patterns in image collections. Our
results show that the proposed method delivers a considerable
performance improvement compared to the state-of-the-art.

Index Terms—Geo-location Estimation, information retrieval,
large scale image retrieval.

1. INTRODUCTION

NFORMATION about the location at which an image was
I taken is valuable image metadata. Enriching images with
geo-coordinates benefits users by supporting them in search-
ing, browsing, organizing and sharing their images and image
collections. Specifically, geo-information can assist in generat-
ing visual summaries of a location [35], [39], in recommending
travel tours and venues [6], [50], in discovering areas of inter-
est [34], in photo stream alignment [53], and in event mining
from media collections [8], [54].

While many modern mobile devices can automatically assign
geo-coordinates to images during capture, a great number of
images lack this information [44]. Techniques that automatically
estimate the location of an image [4], [11], [17], [18], [26], [44]
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Fig. 1. Colored boxes indicate potential visual matches between areas of a
query image (top row) and location images taken at three different locations
(columns). Note how these areas differ when the location is different from the
query location (left and middle columns) and when it is the same (right column).

have been receiving increasing research attention in recent years.
Specifically, predicting geographic location solely from visual
content holds the advantage of not depending on the availability
of the textual annotation. The challenge of visual content-based
geo-location estimation derives from the relationship between
visual variability and location. Images taken at a single location
may display high visual variability, whereas images taken at
distinct locations may be unexpectedly similar.

The core idea underlying our approach to this challenge is
depicted in Fig. 1, which illustrates the pattern of visual match-
ing that we will exploit in this paper. Inspecting each column of
images in turn, we can see similarities and differences among
the areas of the images marked with colored boxes. These areas
contain visual elements that match between query image (top
row) and the location images (lower rows). We use the term
visual element to denote a group of pixels (i.e., an image neigh-
borhood) that is found around salient points and that also can
automatically be identified as being present in multiple images,
i.e., by means of visual matching. Note that Fig. 1 does not
represent the output of any specific visual matching system, but
is rather intended to represent the commonsense observation
about patterns of visual matching that motivates our approach.

© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications. standards/publications/rights/index.html for more information.
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Moving from left to right in the figure, we notice that the ar-
eas matched in the first two locations (left and middle columns)
share similarity. Here, the visual elements contained in these
areas correspond to FedEx trucks, street lights, and fire es-
capes. The locations in these two columns are different from
the query location. These visual matches introduce visual con-
fusion between the query image and images taken at other
locations. In contrast, the location in the third column is the
same as the query location. The matching areas contain visual
elements corresponding to specific, distinguishing features of
the real-world location, not found in other locations, in this
case, elements of the architecture. We call such visual elements
geo-distinctive.

This paper introduces a visual matching approach to im-
age geo-location estimation that exploits geo-distinctive visual
elements, referred to as distinctive visual element matching
(DVEM). This approach represents a contribution to the line
of research dedicated to developing search-based approaches to
visual-content-based geo-location estimation for images. Under
search-based geo-location estimation, the target image (whose
geo-coordinates are unknown) is used to query a background
collection, a large collection of images whose geo-coordinates
are known. Top-ranking results from the background collection
are processed to produce a prediction of a location, which is then
propagated to the target image. As is customary in search-based
approaches, we refer to the target image as the query image.
The DVEM approach represents a significant extension to our
generic geo-visual ranking framework [31] for image location
estimation.

As will be explained in detail in Sections II and III, DVEM
represents a considerable advancement of the state of the art
in search-based approaches to visual-content-based image geo-
location estimation. In a nutshell, the innovation of DVEM is
its use of a visual representation that is ‘complete’ in that it
is aggregated per location and is ‘contextual’ in that it is spe-
cific to the query image. This representation is computed in
the final stage of search-based geo-location estimation, during
which top-ranked results are processed. Because the representa-
tion is calculated at prediction time, it can change as necessary
for different queries. As discussed in Section III, existing ap-
proaches involve steps that rely on image-level representations.
In contrast, our approach aggregates directly from the visual-
element level to the location-level. This fact allows for highly
effective integration of the geo-distinctiveness information. The
experimental results we present in this paper demonstrate that
DVEM can achieve a substantial improvement for both major
types of image geo-location prediction covered in the literature:
geo-constrained and geo-unconstrained.

The remainder of the paper is organized as follows. In
Section II, we present the rationale underlying our proposed
approach, DVEM, and describe its novel contribution in more
detail. Then, in Section III, we provide an overview of the re-
lated work in the domain of image location estimation and po-
sition our contribution with respect to it. Section IV describes
the DVEM approach in detail. Our experimental setup is ex-
plained in Sections V and VI reports our experimental results.
Section VII concludes the paper and provides an outlook to-
wards future work.
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II. RATIONALE AND CONTRIBUTION

The fundamental assumption of content-based geo-location
estimation is that two images that depict the same objects and
scene elements, are likely to have been taken at the same
location. On the basis of this assumption, search-based geo-
location estimation exploits image content by applying object-
based image retrieval techniques. The rationale for our approach
is grounded in a detailed analysis of the particular challenges
that arise when these techniques are applied to predict image
location.

We examine these challenges in greater depth by returning
to consider Fig. 1. In Section I, we have already discussed the
existence of confounding visual elements in images from the
wrong location (left and middle columns), and also of charac-
teristic visual elements in images from the true location (right
column). We now look again at these cases in turn.

Geo-distinctivness Images taken at a wrong location (Fig. 1
left and middle) capture an underlying reality that is different
from the reality captured by the query. The figure shows two
typical sources of confounding visual elements: (a) elements
corresponding to real-world objects that are able to move from
one location to the other, such as a FedEx truck. (b) elements
corresponding to objects that are identical or highly similar and
occur at multiple locations, such as the fire escapes and the
street lamps. A third case (not depicted) occurs when objects
or scene elements at different locations appear having similar
visual elements in images due to the way in which they were
captured (i.e., perspective, lighting conditions, or filters).

Our approach is based on the insight that confounding visual
elements will occur in many locations that are not the true loca-
tion of the image. DVEM is designed to limit the contribution of
visual elements that occur in many locations, and instead bases
its prediction on visual elements that are discriminative for a
specific location.

Location representation Images taken at the true location
(Fig. 1 right column) imply a related set of challenges. Concep-
tually, to relate a query image and its true location, we would
like to count how many visual elements in the query correspond
to real-world aspects of the location. Practically, however, such
an approach is too naive, since we cannot count on our image
collection to cover each location comprehensively. Further, we
face the difficulty that the true-location images in our back-
ground collection may have only a weak link with the query
image. Specifically for the example in Fig. 1, the variation in the
perspective is significant between the query and the images from
the true location (right column), which will heavily weaken their
visual correspondences. We again must deal with the same set of
factors that give rise to confounding visual elements, mentioned
above: camera angle, zoom-level, illumination, resolution, and
filters. These also include the presence of mobile objects such as
pedestrians, vehicles, and temporary signs or decorations. We
have no control over the presence of these distractors, but we
can seek to reduce their impact, which will in turn limit their
contribution to the match between query and wrong locations.

DVEM builds on the practical insight that we should focus
on aggregating evidence across the whole location, rather than
merely counting visual elements common between a query and
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Fig. 2.
search-based location estimation framework [31].

an image in the background collection. In particular, we aim
to integrate two tendencies, which are illustrated by the right
column of Fig. 1. Here, it can be see that the match between
query image and true location typically involves: (a) a wider
variety of different visual elements than matches with wrong
locations and (b) visual elements that are distributed over a
larger area within the query image. These tendencies can be
considered to be reflections of the commonsense expectation
that the number of ways in which a query can overlap with
true-location images is much larger than the number of ways in
which a query can overlap with wrong-location images.

Connection with search-based geo-location estimation Next
we turn to describe how DVEM extends our general geo-visual
ranking (GVR) framework [31]. As previously mentioned,
DVEM contributes to the processing step in a search-based geo-
location estimation pipeline. Fig. 2 depicts the GVR framework
in the top row, and the DVEM extension in the bottom row. The
dashed line indicates the steps that compose DVEM and the
arrow shows that it replaces the Location Ranking step of GVR.

Here, we provide an introduction to the functioning of GVR.
In the Candidate Image Selection step, we use the query image to
query a background collection (corpus) of geo-tagged images,
i.e., images annotated with geo-coordinates. In the Location
Extraction step, we group the retrieved images according to
their locations, creating image sets corresponding to candidate
locations. This information serves as input into DVEM.

The three steps of DVEM are designed to address the chal-
lenges covered at the beginning of the section, and incorporate
both geo-distinctiveness and location representation:

1) Location as Visual Element Cloud builds a ‘contextual’
query-specific representation of each candidate-location
image set that reflects the strength of the visual evidence
relating that image set to the query.

2) Geo-Distinctiveness Modeling captures the ability of vi-
sual elements to discriminate the image sets of the candi-
date locations that are competing for a given query.

3) Visual Matching per Location calculates the ranking score
for each candidate location with respect to the query to
incorporate both the distinctiveness of visual elements
and the matching strength between visual elements and
the location.

Vi Ay
~
./.. -~
______________ a v i s i, o s
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Geo-distinctiveness Visual Matching Per :
Z =— : 1
Modeling Location .

Geo-distinctive Visual Element Matching (DVEM)

Our proposed Geo-distinctive Visual Element Matching (DVEM) approach, depicted with its integration as the location ranking step of the generic

These steps are explained in detail in Section IV, which also
includes further motivating examples.

Novel contributions As stated in the introduction, the novel
contribution of DVEM is its use of query-specific, ‘contex-
tual’, visual representations for geo-location estimation. No
collection-wide representation of location is needed. Instead,
flexible representations are built at prediction time. These rep-
resentations aggregate evidence for ranking a location with
respect to its specific competitors for each query. The aggre-
gation moves from the visual-element level to the location
level.

The implications of this contribution are best understood
via a comparison with classical information retrieval. DVEM
can clearly claim the traditional vector space model with the
TF-IDF weighting scheme used in information retrieval as a
progenitor. TF-IDF consists of a Term Frequency (TF) compo-
nent, which represents the contents of items (documents), and
an Inverse Document Frequency (IDF) component, which dis-
criminates items from others in the collection [3]. DVEM uses
the same basic principle of combining a representative compo-
nent, the visual element cloud, and a discriminative component,
geo-distinctiveness modeling. However, its application of these
principles is unique, and differentiates DVEM from the ways
in which TF-IDF has been deployed for bag-of-feature-based
image retrieval in the past.

1) DVEM does not match at the level of the item (i.e., individ-
ual image) but rather matches at the level of the candidate
image set. The visual element cloud generated from the
candidate image set makes it possible for individual visual
elements to contribute directly to the decision, compen-
sating for the potentially weak visual link of any given
location image with the query.

2) DVEM dispenses with the need to define individual loca-
tions at the collection level offline at indexing time. Instead
DVEM defines ‘contextual’ visual representations of lo-
cations over the candidate image sets, which represent the
images most relevant for the decision on the location of a
particular query at prediction time.

The use of ‘contextual’ visual representations of locations that

are created specifically for individual queries has two important
advantages. First, these representations involve only images that



have been visually verified in the Candidate Image Selection
step. Since images that are not relevant to the location estimation
decision are not present in the candidate image set, the location
representations can focus on the ‘contextual’ task of ranking
the competing locations to make the best possible decision for
a given query, improving robustness.

Second, the number of competing locations for any given
query is relatively low compared to the total number of images
in the collection meaning that the geo-distinctiveness calcula-
tion is computationally quite light. This solves the problem of
making geo-distinctiveness computationally tractable. It allows
DVEM to scale effortlessly as the number of possible candi-
date locations grows to be theoretically infinite in the case of
geo-location estimation at global scale.

As we will show by experimental results in Section VI, these
advantages deliver an overall significant improvement of the
location estimation performance compared to state-of-the-art
methods. For completeness, we mention another connection to
classic information retrieval techniques. Query expansion [3]
refines the query using the initial result list. The fact that our
‘contextual’ representation is related to the query, means that our
approach can be conceptually considered to be related to query
expansion, which has also proven effective in the visual do-
main. An example from the area of object-based image retrieval
is [10], which builds a model of the query. DVEM goes beyond
query expansion, as it builds multiple models, one for each
member of a set of candidate locations represented in the initial
results list.

III. RELATED WORK

Visual-only geo-location estimation approaches can be
divided into two categories. The first is geo-constrained
approaches. Such approaches estimate geo-location within a ge-
ographically constrained area [5], [23], [42], [48] or a finite set of
predetermined locations [21], [27], [33], [37], [43]. The second
is geo-unconstrained approaches, which estimate geo-location
at a global scale [18], [31]. The difference lies in the specifica-
tion of the geo-location estimation task. Under geo-constrained
approaches, the locations to be predicted are defined in advance.
Under geo-unconstrained approaches, the locations to be pre-
dicted are defined by the data that is available at the moment of
prediction. Note that if off-planet images are included in the col-
lection, geo-unconstrained location would also cover locations
beyond global scale. The challenge of geo-unconstrained geo-
location estimation is daunting: a recent survey [25] indicated
that there are still ample opportunities waiting to be explored in
this respect.

In this work, our overall goal is to substantially improve
the accuracy of image location estimation using only their vi-
sual content, and to achieve this improvement in both the geo-
constrained and geo-unconstrained scenarios. As demonstrated
by our experimental results, DVEM’s representation and match-
ing of images using geo-distinctive visual elements achieves a
substantial performance improvement compared to existing ap-
proaches to both geo-constrained and geo-unconstrained loca-
tion estimation.

IEEE TRANSACTIONS ON MULTIMEDIA

A. Geo-Constrained Content-Based Location Estimation

City-scale location estimation. Chen et al. [5] investigated
the city-scale location recognition problem for cell-phone im-
ages. They employed a street view surveying vehicle to collect
panoramic images of downtown San Francisco referred to as
the San Francisco Landmark dataset, which were further con-
verted into 1.7 million perspective images. Given a query im-
age taken randomly from a pedestrian’s perspective within the
city, a vocabulary-tree-based retrieval scheme based on SIFT
features [36] was employed to predict the image’s location
by propagating the location information from the top-returned
image.

We choose this dataset for our experiments on the geo-
constrained setting, and use this approach as one of our base-
lines. The other papers that evaluate using this data set are [15],
[40], [47], [48], [55]. Gopalan [15], modeled the transformation
between the image appearance space and the location grouping
space and incorporated it with a hierarchical sparse coding ap-
proach to learn the features that are useful in discriminating im-
ages across locations. Tolias et al. [47] proposed an aggregated
selective matching kernel to enforce selective feature matching
to improve retrieval on urban sceneries and building photos.
Sattler et al. [40] exploited implicit feature matching in their
structure-based localization strategy, which builds a 3D model
for each geo-tagged landmark/object, and then compares the
query image against these 3D models to find its location. Torii
et al. [48] described a representation of the repeated structures
present in images, which is shown to be a distinguishing feature
for place recognition. Zhang et al. [55] proposed a graph-based
query specific fusion approach where multiple retrieval sets are
merged and reranked to further enhance the retrieval precision.
The experiments in Section VI-D make a comparison with all
these approaches. In addition to these approaches, Cummins
and Newman [12] focused on recognizing places in the context
of detecting loop closure in SLAM (simultaneous localization
and mapping) system. A probabilistic approach is proposed that
incorporates information regarding visual words that co-occur.
The approach is able to explicitly account for distortion in the
visual environment.

The DVEM is suited for cases in which there is no finite
set of locations to apply a classification approach. However, we
point out here that classification approaches have been proposed
for geo-constrained content-based location estimation. Gronat
et al. [16] modeled each geo-tagged image in the collection
as a class, and learned a per-example linear SVM classifier for
each of these classes with a calibration procedure that makes the
classification scores comparable to each other. Due to high com-
putational costs of both the offline learning and online querying
phases, the experiment was conducted on a limited dataset of
25 k photos from Google Streetview taken in Pittsburgh, U.S.,
covering roughly an area of 1.2 x 1.2 km?. Beyond city scale.
Authors that go beyond city scale, may still address only a
constrained number of locations. Kalantidis et al. [21] investi-
gated location prediction for popular locations in 22 European
cities using scene maps built by visually clustering and align-
ing images depicting the same view of a scene. Our approach
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resembles [21] in that we also use sets of images to represent
locations. Note however that in DVEM location representations
are created specifically for individual queries at prediction time,
making it possible to scale beyond the fixed set of locations. Li
et al. [27] constructed a hierarchical structure mined from a set
of images depicting about 1,500 predefined places of interest,
and proposed a hierarchical method to estimate an image’s lo-
cation by matching its visual content against this hierarchical
structure. Subsequent to the initial submission of this paper for
review, Weyand et al. [S1] proposed a deep learning approach to
image geo-location estimation. This approach divides the world
into regions based on photo density, and formulates the loca-
tion estimation task as image classification. Then, it employs
convolutional neural networks to classify query image into one
of the regions. We have reimplemented [51] in [52] for the
purpose of studying geo-privacy. In our experiments, DVEM
outperformed [51].

B. Geo-Unconstrained Content-Based Location Estimation

Estimating location from image content on a global scale
faces serious challenges. First, there are effectively an infinite
number of locations in the world. Geo-unconstrained location
estimation must strive to be able to make predictions for as
many of these locations as possible. Second, geo-unconstrained
location prediction is generally carried out on large collec-
tions of user-contributed social images. As a consequence, less-
photographed locations are underrepresented. These challenges
imply that geo-unconstrained location estimation cannot be ad-
dressed by training a separate model for each location on the
surface of the Earth. Finally, the visual variability of images
taken at a given location is often high, and is also quite erratic.
For instance, images taken at a location of a monument that
is a tourist attraction will probably focus on some aspects of
the monument, limiting the scope of the captured visual scene.
However, images taken at an arbitrary beach may be taken from
any view point to capture a wide variety of the visual scene. This
variability can heavily hinder inference of location-specific in-
formation from the visual content of images, and exacerbates
the difficulty of linking images showing different aspects of a
location.

The problem of geo-unconstrained content-based image lo-
cation estimation was first tackled by Hays and Efros [18].
They proposed to use visual scene similarity between images
to support location estimation with the assumption that im-
ages with higher visual scene similarity are more likely to have
been taken at the same location. In recent years, research on
geo-unconstrained location prediction has been driven forward
by the MediaEval Placing Task [25]. The Placing Task result
most relevant to DVEM is our submission to the 2013 Placing
Task [29]. This submission deployed a combination of local and
global visual representations within the GVR system [30], [31],
and out-performed other visual-content-based approaches that
year. In this paper, we adopt [31] as a baseline, which represents
our 2013 Placing Task submission.

Further, we focus on 2015, the most recent edition of the Plac-
ing Task [7], which received three submissions using visual-
content-based approaches. Kelm et al. [22] exploited densely

sampled local features (pairwise averaged DCT coefficients)
for location estimation. Since this submission is not yet a func-
tional, mature result [22], it is not considered further here. Li
et al. [28] employed a rank aggregation approach to combine
various global visual representations in a search-based scheme,
and used the top ranked image as the source for location estima-
tion. Instead of using hand-crafted features, Kordopatis-Zilos
et al. [24] made use of the recent developments in learning vi-
sual representations. They fed a convolutional neural network
with images from 1,000 points of interest around the globe and
employed it to generate the features. Location is then estimated
for the query image by finding the most probable location among
the most visually similar photos calculated based on their prox-
imity in the feature space.

Our DVEM is related to these approaches in the sense that it
is data driven and search based. However, these approaches are
dependent on finding significant image-level matches between
the query image and individual images in the background col-
lection. They do not attempt to compensate for the possibility
that the match between the query image and individual images
taken at the true location might be minimal, due to the way in
which the image was taken, or exploit geo-distinctiveness.

C. Geo-Distinctive Visual Element Modeling

As discussed in Section II, in a classical information retrieval
system, document (item) distinctiveness is traditionally com-
puted offline during the indexing phase at the level of the entire
collection [3]. This approach is also used in the classical bag-of-
feature-based image retrieval system. For example, the distinc-
tiveness of each visual word is generated from its distribution
in the image database, either as individual visual word [45], or
as set of co-occurring visual words [9]. Note that our system
uses the approach of [45] in the Candidate Image Selection step
(first block in Fig. 2), as a standard best practice. Our novel use
of geo-distinctiveness goes above and beyond this step, as we
describe next.

The key example of the use of distinctiveness for content-
based geo-location estimation is the work of Arandjelovi¢ and
Zisserman [2], who modeled the distinctiveness of each local
descriptor from its estimated surrounding local density in the
descriptor space. This approach differs from ours in two ways.
First, we use geo-distinctiveness, calculated on the basis of in-
dividual locations, rather than general distinctiveness. Second,
we use spatially verified salient points, rather than relying on
the visual appearance of the descriptors of the salient points. As
we will show with experimental results in Section VI, which
uses Arandjelovi¢ and Zisserman [2] as one of the baselines,
this added step of geo-distinctive visual elements matching sig-
nificantly improves location estimation.

Where geo-distinctiveness has been used in the literature,
it has been pre-computed with respect to the background
collection (i.e., the database). Schindler er al. [42] mined
geo-distinctive features from the database images, and used
Information Gain to select discriminative features. Similarly,
Knopp et al. [23] focused on the geo-distinctiveness of regions
in the database images rather than of individual feature points.
Turcot and Lowe [49] moved one step further to only select



features in the database images that are not only location-wise
distinctive, but also geometrically robust. Doersch ef al. [13]
built a collection of image patches from street view photos of
12 cities around the world, and mined the image patches that
are location-typical—both frequent and discriminative for each
city—based on the appearance similarity distribution of the im-
age patches. Similarly, Fang et al. [14] incorporated learned
geo-representative visual attributes into the location recogni-
tion model in order to improve the classification performance.
These learned geo-representative visual attributes were shown
to be useful for city-based location recognition, i.e., to assign a
given image to one of the cities.

Pre-computing distinctive features on the background collec-
tion is effective. However, it has drawbacks. First, the query im-
age is not taken into account, as pointed out by Knopp et al. [23].
Second, for a given target image, it is not necessary to distin-
guish between every possible location, but rather only from
the locations that are the closest candidates. As the collection
grows larger, arguably generic geo-discriminative features will
become less effective, and it will become more important to
choose geo-discriminative features wisely in a query-specific
manner. This consideration motivates the way in which we ex-
ploit geo-distinctiveness in our approach. We describe our use
of geo-discriminativeness next.

In our work, instead of extracting location-typical features
from the image collection and using them to assess the query, we
turn the approach around. We focus on the visual elements that
we extract from the query, and model their geo-distinctiveness
on the basis of the candidate locations for this particular query
at prediction time. We calculate geo-distinctiveness with respect
to the locations represented by the candidate images selected by
the Candidate Image Selection step, and not with respect to the
entire Geo-Tagged Image Corpus (cf. Fig. 2).

Independently, and in parallel with us developing our ap-
proach, Sattler et al. [41] also proposed to calculate geo-
discriminative features using only the initial list of retrieved
images. However, our approach differs from that of Sattler
etal. [41] in a key aspect. As mentioned above, and explained in
detail in Section IV, our approach works with locations with a
‘contextual’ representation we refer to as a visual element cloud.
We use this representation through all the steps of calculating the
score of each candidate location. Specifically, the contribution
of geo-discriminativeness is calculated on the level of individ-
ual elements within the cloud. In contrast, Sattler et al. [41]
made geo-discriminativeness contribute to the final ranking at
the level of the image, rather than at the level of the visual ele-
ment. This decision is not surprising, given that the focus of our
paper is specifically geo-location estimation, whereas Sattler
et al. [41] approach geo-location estimation first as an image-
ranking problem. The superior performance of our approach, as
shown by the experimental results in Section VI, demonstrates
the effectiveness of our approach.

IV. GEO-DISTINCTIVE VISUAL ELEMENT MATCHING

In this section, we present DVEM in depth, providing a de-
tailed description of the components depicted in Fig. 2. We start

IEEE TRANSACTIONS ON MULTIMEDIA

with the GVR framework [31] (Fig. 2, top row), the generic
search-based location estimation pipeline upon which DVEM
builds. The framework was introduced in Section II. Here, we
provide the necessary additional detail.

The first step of GVR is Candidate Image Selection, and
serves to retrieve, from the collection of geo-tagged images, a
ranked list of candidate images that are most visually similar to
the query ¢. In contrast to the original version of GVR, our new
pairwise geometric matching approach is used for this step [32].
The result is a ranked list of images that have been visually veri-
fied, ensuring that we can be confident that their visual content is
relevant for the decision on the location of the query image. We
limit the ranked list to the top 1000 images, since this cutoff was
demonstrated to be effective in [31]. In the second step, Location
Extraction, a set G of candidate locations is created by applying
an interactive geo-clustering process using the geo-coordinates
found by moving down the top ranked images [31]. If new
geo-coordinates are found within the distance d of an already
selected candidate location, the geo-coordinates of this location
are updated by calculating the centroid of the geo-coordinates of
all images at that location, otherwise a new candidate location
is created. We set the distance d such as to meet the prediction
resolution of the system. The set of images /, associated with
each location g in G is referred to as the candidate location im-
age set. In the third step, Location Ranking, visual proximities
for each g are calculated on the basis of sets /, and the query
q, resulting in Score(g, g). Finally, Score(g, q) is used to rank
the locations g in G. The top-ranked location provides the geo-
location estimate, and is propagated to the query image. As
previously mentioned, DVEM replaces the Location Ranking
step of GVR. Specifically, it contributes an advanced and highly
effective method for calculating Score(g, ¢). The remainder of
this section discusses each of the steps of DVEM (bottom row
Fig. 2) in turn.

A. Location as Visual Element Cloud

The visual element cloud is a representation of /, that aggre-
gates the evidence on the strength of the visual link between
I, and the query g. Note that a separate visual element cloud
is created for each location g in G. The cloud, illustrated in
Fig. 3, serves as a representation of the location g in terms of
visual elements that occur in the query. For the first step of
creating the cloud, we adopt the standard approach of detecting
salient points in the images using a salient point detector and
representing these points with feature vectors (i.e., descriptors)
describing the local image neighborhoods around the points.
The size of the neighborhood is determined by the salient point
detector.

Next, we calculate correspondences between the salient
points in the query and in the individual images on the basis
of the local image neighborhoods of the points. Then, we apply
geometric matching, which secures the consistency of transfor-
mation between different salient points. In this work, we use
pairwise geometric matching [32], as applied in the Candidate
Image Selection step, but another geometric verification ap-
proach could also be chosen. The result of geometric matching
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(a)

Fig. 3.

(b)

Tllustration of the visual element cloud. Figure (a) shows the correspondences ¢ between the query image (center) and images taken in one location. The

relationship between the visual element cloud constructed for this location and the query is illustrated in Figure (b). The cloud is represented by the visual elements

from the query and the images of the location that these elements appear in.

is a set of one-to-one correspondences ¢ between salient points
in the query and in the individual images /, [cf. Fig. 3(a)], and
a set of matching scores IniScore(c) associated with the cor-
respondences c. The visual elements are the salient points in
the query image that have verified correspondences in I,. Note
that our use of one-to-one correspondences ensures that a vi-
sual element may have only a single correspondence in a given
image. As will be explained in detail below, the matching score
IniScore(c) allows us to incorporate our confidence concerning
the reliability of the visual evidence contributed by individual
visual elements into the overall Score(g, q) used to rank the
location.

Finally, we aggregate the visual elements and their scores
per image in I, in order to generate the visual element cloud
[cf. Fig. 3(b)]. Formally expressed, the visual element cloud S,
for location g is calculated as:

S, = {W.le € E;, W, = {w(e);|j =0, 1..m(e)}} (1)

Here, E, is the set of visual elements that occur in the query and
link the query with the images I, representing location g. W, is
the set of weights w(e); of correspondences between the visual
element e appearing in the query and the jth image in I, in
which it also appears. The total number of images which have
correspondences involving element e in the set /, is denoted
by m(e).

The weights w(e); are obtained by using a Gaussian function
to smooth the initial matching score, IniScore(c), of the corre-
spondence ¢ in which the jth appearance of the visual element
e is involved, and is defined by

2)

IniScore(c)?
—— )

w(e); =1 —exp(

Here, § controls the smoothing speed as shown in Fig. 4. The
choice of smoothing function is motivated by the need to take
advantage of the information in the middle range of the matching
score, and prevent values in the high range from dominating.
Note that any smoothing function with the general form of the
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Fig. 4.
various §.

Matching score smoothing function w(e); vs. IniScore(c) for

curve in Fig. 4 is potentially a viable smoothing function. Here,
we investigate only (2).

The § parameter is set according to the general, data-set in-
dependent, behavior of the geometric verification method that
is employed. Note that when 6 =1 the values of w(e); are
effectively either O or 1, meaning that visual elements either
contribute or do not contribute, rather than being weighted.

B. Geo-Distinctiveness Modeling

We start our explanation of geo-distinctiveness modeling with
an illustration of the basic mechanism. Fig. 5(a) (top two rows)
contain pairs of images. They show the correspondences be-
tween the query image (lefthand member of each pair) with
images taken at locations other than the query location (right-
hand member of each pair). As in the case of the visual element
cloud, these correspondences pick out the visual elements that
we use for further modeling.
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Tllustration of geo-distinctiveness modeling. Figure (a) shows how visual elements corresponding to two common objects in the query image (white

delivery van and fire escape) give rise to strong matches with images from different locations. The geo-distinctiveness of these visual elements in the query image
under different region resolutions is shown in Figure (b), with the color changing from black to red to represent the increase of geo-distinctiveness.

Fig. 5(b) (bottom row) shows how the geo-distinctiveness
weights are calculated. The image is divided into regions, and
a geo-distinctiveness weight is calculated per region. The three
versions of the query image represent three different settings of
region size, indicated by the increasing diameters of the circles.
In the figure, the center of the circle indicates the center of the
region, and the color indicates the weight. The color scale runs
from red to black, with red indicating the most geo-distinctive
regions. Examination of Fig. 5(b) shows the ability of geo-
distinctiveness weights to focus in on specific, distinguishing
features of the real world location. Visual elements correspond-
ing to common objects occurring at multiple locations (e.g., the
white delivery van and fire escape) automatically receive less
weight (i.e., as shown by black).

Expressed formally, geo-distinctiveness is calculated with
the following process. We divide the query image, of size
w X h, into non-overlapping small regions with size a x 4,
a = min(w/a, h/a). For completeness note that we allow right
and bottom regions to be smaller than @ x @, in the case that w
or & is not an integer multiple of a.

We then transfer the scale represented by each visual element
from the level of the neighborhood of a salient point to the
level of an image region. We carry out this transfer by mapping
visual elements to the regions in which they are located. Note
that the consequence of this mapping is that all visual elements
contained in the same image region are treated as the same
visual element. The effect of the mapping is to smooth the

geo-distinctiveness of the visual elements in the query image.
Changing a will change the size of the region, and thereby also
the smoothing. The effect can be observed in Fig. 5(b), e.g., the
fire escape at the top middle of the photo is less discriminative
(the circle turns black) as the area becomes larger. For each
visual element e in each image in the image set /, for location
g in G, we calculate a geo-distinctiveness weight Wg,,. Recall
that e in each image in /, stands in a one-to-one correspondence
¢ with a visual element in the query image. Wg,, is thenxbrk
defined as

Weoo(e) = log (|G|/n(r(e))), ifn(r(f))<ﬂ 3)
0, otherwise,

where |G| is the total number of location candidates. Further, the
rest of the notation used in the formula is defined as follows: r(e)
is the image region of the query containing the visual element
corresponding to e and n(r(e)) is the total number of locations
in G with an image from their image set /, that is involved in a
correspondence with any visual element occurring in the query
region r(e). Finally, ¢ is a threshold completely eliminating
the influence of elements that have correspondences with many
locations in G. The effect of parameters a and ¥ is discussed in
the experimental section. We note that (3) takes the general form
of a standard IDF weight in information retrieval. We anticipate
that any conventional variation on the formulation of IDF would
be a viable weight. However, here we investigate (3).
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Fig. 6. Distribution of the ratio of number of unique visual elements between

wrong locations and true locations averaged over all queries in the dataset. The
scheme with @10 means the results are calculated based on the top-10 wrong
locations in the initial ranked list for each query. The scheme with @ Max means
the results are calculated based on the wrong location that has the maximum
number of visual elements among all wrong locations in the initial ranked list.

C. Visual Matching Per Location

We start our discussion of visual matching by considering
the patterns of visual elements associated with a true match
between a query image and a location. First, we investigate
whether or not we can indeed expect relatively more visual
elements in true-location visual element clouds compared to
wrong-location visual element clouds. We carry out the analysis
on two datasets, the San Francisco Landmark dataset and the
MediaEval’15 Placing Task dataset. These are the same geo-
location estimation image sets used in our experiments and will
be described in detail in Section V. Results are shown in Fig. 6.
Here, we see that the ratio between the number of unique visual
elements in a wrong-location cloud and a true-location cloud
is mainly distributed between O and 1. The observation holds
whether the top-10 ranked wrong locations are considered (solid
line), or whether only the wrong location with the most visual
elements is considered (dashed line). This analysis points to the
fact that there are relatively more unique visual elements present
in the true location compared with a wrong location. This fact
motivates us to include aggregation of visual elements as part
of our visual matching model.

Next, we return to our earlier statement (see Section II) that we
expect the match between queries and a true location to display
(a) a variety of visual elements, and (b) visual elements that are
distributed over a greater area of the image, than in the case of
a match with a false location. These expectations are borne out
in our calculations of visual correspondences, as illustrated in
Fig. 7. The images from the true location (lefthand side) capture
a broad and diverse view of the scene and thus match different
regions of the query image, e.g., the column and the bridge,
as opposed to the images taken at a wrong location (righthand
side) that only have correspondences with few specific visual
elements, e.g., the top of the column. This pattern leads us to not
simply aggregate visual elements, but select them in a particular

o e o mm mm Em wm E Em Em Ee Em wm w—

_———_—_,

Fig. 7. Tllustration of the initial correspondence set between the query image
and the photos in two different locations with the color intensity from black to
red representing the increase of the strength of the initial matching score. The
left photo set is from the same location as the query image.

way. Specifically, for a given area of the image query, only a
single visual element is allowed to contribute per location. This
approach rewards locations in which visual elements are diverse
and distributed over the query image.

Expressed formally, visual matching uses the following pro-
cedure. We divide the query, of size w x h, into regions b x b,
b = min(w/b, h/b). This splitting resembles what we used for
geo-distinctiveness modeling, but serves a separate purpose in
the current step. Then, in order to calculate the match between
g and a candidate location image set /,, we iterate through each
region of the query image. For each region, we select the single
visual element e that has the strongest matching score with im-
ages from a given location. Recalling that W, are the weights of
the visual correspondences with the query for image set /, rep-
resenting location g, the strongest matching score is expressed
as w, = max(W,). The result is a set of k visual elements. Note
that although the same query image regions are used for all loca-
tions, k may vary per location, and is less than the total number
of query regions in the cases where some query regions fail to
have links in terms of visual elements with a location.

The final visual proximity score between location g and the
query image g combines a visual representation of the loca-
tion g and of the query ¢. The representation of the query
uses the visually distinctive weights Wg,,(e) from (3): r, =
(W5eo(0), Weeo(1), ..., Wieo(k)). The representation of the lo-
cation combines these weights with visual matching weights
lI)eZ re = (ﬁ)oWGeD(O), 11}1 WGeo(l), veey lI)kWGeD(k)). The combi-
nation is calculated as,

Score(g,q) =4 -ty = Y WeWseole) &

ecE,

Further experiments, not reported here, show that the weights of
r, provide an essential contribution to the calculation. The final
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location estimation for the query is calculated by ranking the
locations by this score, and propagating the top-ranked location
to the query.

V. EXPERIMENTAL SETUP

In this section, we describe the setup of our experimental
framework for assessing the performance of DVEM. This pro-
vides the background for our experimental results of parameter
selection (see Section VI-A), geo-contrained location estima-
tion (see Section VI-B), geo-unconstrained location estimation
(see Section VI-C), and our comparison with the state of the art
(see Section VI-D).

A. Datasets

We carry out experiments on two image datasets that are com-
monly used in location estimation, one for the geo-constrained,
and one for the geo-unconstrained image geo-location predic-
tion scenario.

San Francisco Landmark dataset [5]: This datasetis designed
for city-scale location estimation, i.e., geo-constrained location
estimation. The database images (background collection) are
taken by a vehicle-mounted camera moving around downtown
San Francisco, and query images are taken randomly from a
pedestrian’s perspective at street level by various people using
a variety of mobile photo-capturing devices. We use 1.06 M
perspective central images (PCI) derived from panoramas as the
database photos, and the original 803 test images as queries.
For our detailed experiments in Sections VI-A and VI-B we use
10% of the test images for development, and report results on the
other 90% of the test images. For the San Francisco landmark
data set, we follow the common practice of considering the
location of both the database photos and the query images to be
the building ID, and not the geo-coordinates. The geo-location
of an image is considered correctly predicted if the building
ID is correctly predicted. Note that one query image can have
multiple associated building IDs. For evaluation, a prediction is
considered successful if the estimated location (building ID) is
one of the query’s building IDs.

MediaEval’l5 Placing Task dataset [7]: This dataset is
designed for global scale location estimation, i.e., geo-
unconstrained location estimation. It is a subset of the
YFCCI100M collection [46], a set of Creative Commons images
from Flickr, an online image sharing platform. The background
collection and the query images were randomly selected in a
way that maintained the global geographic distribution within
the online image sharing community. The MediaEval 2015 Plac-
ing Task dataset is divided into 4.6 M training and 1 M test im-
ages. Here again for our detailed experiments in Sections VI-A
and VI-C we use 2% of the test set for development, and report
results on the other 98% of the test set. The ground truth for
this dataset consists of geo-coordinates, either recorded by the
GPS of the capture device or assigned by hand by the uploading
users. These geo-coordinates define the location of an image.
An image is considered to be correctly predicted if its predicted
geo-coordinates fall within a given radius r.,, of the ground
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truth location. r,,, controls the evaluation precision and the
tolerance of the evaluation to noise in the ground truth.

B. Computing Visual Similarity

Conceptually, we consider the visual matches between dif-
ferent areas of two images as evidence that their visual content
reflects the same location in the physical world, possibly dif-
fering as to how they are captured, e.g., capturing angle, scale
or illumination. In order to identify these areas and assess the
strength of the link between their occurrences in images, we de-
ploy our recently-developed image retrieval system [32]. This
system is based on pairwise geometric matching technology and
is built upon the standard bag-of-visual-words paradigm. The
paradigm is known to scale up well to a large-scale datasets [1],
[19], [45]. To further speed up retrieval and improve accuracy,
we use pairwise geometric matching in the following pipeline
of state-of-the-art solutions:

1) Features & Vocabularies: Since up-right Hessian-Affine
detector [38] and Root-SIFT [1] have proven to yield su-
perior performance, we use this feature setting to find
and describe invariant regions in the image. We use exact
k-means to build the specific visual word vocabulary with
a size of 65,536 based on the features from the training
images.

2) Multiple Assignment: To address the quantization noise
introduced by visual word assignment, we adopt the strat-
egy used in [20], which assigns a given descriptor to
several of the nearest visual words. As this multiple as-
signment strategy significantly increases the number of
visual words per image (on average each descriptor is as-
signed to four visual words), we only apply this at the
query side.

3) Initial ranking: We adopt the Hamming Embedding
technique combined with burstiness weighting proposed
in [19] in the initial ranking phase.

4) Geometric verification: To find the reliable correspon-
dences for DVEM, the pairwise geometric matching tech-
nology [32] is employed for fast geometric verification,
which is reported to be the state-of-the-art in image re-
trieval in terms of speed and accuracy. In an experiment
conducted on the development data, we established the
importance of pruning. Specifically, we found that due to
a high inter-similarity of the street view images taken in
downtown San Francisco, removing the correspondences
with a low matching score generated by pairwise geomet-
ric matching can generally help to improve the estimation.
Here, the threshold is set to 4.

The ranked list resulting from this computation of vi-

sual similarity is used in the Candidate Image Selection step
(cf. Fig. 2) and for two baselines, as discussed next.

C. Experimental Design

We carry out two different sets of evaluations that compare
the performance of DVEM to the leading content-based ap-
proaches to image geo-location estimation. The first set (see
Sections VI-B and VI-C) assesses the ability of DVEM to out-
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perform other search-based geo-location estimation approaches,
represented by VisNN and GVR:

1) VisNN: Our implementation of the 1-NN approach [18],
which uses the location of the image visually most similar
to the query image as the predicted location. It is a simple
approach, but in practice has proven difficult to beat.

2) GVR: Method used in [31], which expands the candidate
images by their locations and uses the summed visual
similarity of images located in one location as the ranking
score for that location. This method is chosen for compar-
ison since it has been demonstrated to outperform other
state-of-the-art approaches for geo-unconstrained location
estimation [29], [30].

The second set of evaluations (see Section VI-D) compares

our methods with other state-of-art methods, which do not nec-
essarily use a search-based framework.

D. Evaluation Metrics

Our main evaluation metric is Hit Rate at the top N results
(HR@N). Recall that given a query, the system returns a ranked
list of possible locations. H R@ N measures the proportion of
queries whose correct location falls within the top N predicted
locations. HR@1 represents the ability of the system to cor-
rectly predict the location of a query image when it is forced to
make a single prediction (top 1 result) for every query image.

In order to compare our method directly to other work on the
San Francisco Landmark Dataset, we also report results using
a Precision-Recall Curve. Like HR@1, our Precision-Recall
Curve reflects the performance of the system with respect to its
top-1 (best) estimate. The curve is generated by imposing a con-
fidence threshold on the prediction, and changing the threshold
S0 as to generate precision scores at a range of specific recall
rates. Note that because we are interested in only the top-1
prediction, the following holds: If the score of the query ex-
ceeds the threshold—which means that a prediction is made for
the query—then the precision is either 1 (location is correctly
predicted) or O (location is not correctly predicted).

VI. EXPERIMENTAL RESULTS

We implemented our DVEM framework on top of the object-
based image retrieval system [32] by constructing a Map-
Reduce-based structure on a Hadoop-based cluster containing
1, 500 cores. The initial visual ranking (the Candidate Image
Selection step in Fig. 2) takes about 105 mins for San Francisco
Landmark dataset (803 queries on a collection of 1.06 M photos)
and about 88 hours for the MediaEval’ 15 dataset (1 M queries
on a collection of 4.6 M photos). The DVEM stage is executed
after the initial visual ranking, and takes 2.4 ms per query.

In this section, we report the experimental results and com-
pare our DVEM method with reference methods in both the
area of geo-constrained and of geo-unconstrained location es-
timation. We use part of the test data (10% for San Francisco
Landmark dataset and 2% for MediaEval’ 15 dataset) as develop-
ment data to set the parameters of DVEM, and use the rest of the
test data to evaluate the system. Recall that the parameters are
the image region size a defined in Section I'V-B, the frequency

TABLE I
HR@1 (%) COMPARISON OF DVEM ON DEVELOPMENT DATA FOR SAN
FRANCISCO (FIXED GROUND TRUTH) AND MEDIAEVAL’ 15 DATASETS
(Tevar = 1 KM) WITH DIFFERENT a, b, AND ¥

San Francisco MediaEval ’15

9=5 9=6
. 10 30 20 100 3 20 10
0 | 813 80 825 813 |81 82 81 8
30 80 80 813 80 | 8 79 79 78
20 | 813 813 80 80 |78 78 78 76
10 80 825 838 838 |72 73 73 72
a=10,b=20 a=0,b=30

9 i 5 6 114 5 6 7
838 838 838 825 | 81 81 82 81

threshold ¢ defined in (3) and the query region size b defined in
Section IV-C. The parameter é defined in (2) is set empirically
to 5 based on the general observation that the initial correspon-
dence score generated by pairwise geometric matching [32]
usually reflects a strong match when it is above 10. As pre-
viously mentioned, the number of top-ranked images from the
image retrieval system, which are used to generate the candidate
locations set G, is set to 1000. Note that we use the same G for
GVR.

A. Impact of the Parameters

We start our series of experiments by evaluating the impact of
a, b, ¥ on the system performance using our development data.
We explore the parameter space with grid search, as shown in
Table 1. For both a and b, we considered the values 0, 30, 20
and 10 (Table I, top). Note that @ = 0 means that the system
assigns a different geo-distinctiveness weight to each individual
visual element, and a = 30, 20, 10 are regions increasing in size.
Similarly, » = 0 means that system deploys all visual elements
appearing in the images of a given location for query-location
matching, and b = 30, 20, 10 are regions increasing in size.
With a or b going below 10, performance dropped dramatically,
and these values were not included in the table. We choose a =
10, b = 20 as an operating point for the San Francisco Landmark
dataset and a = 0, b = 30 for the MediaEval’15 dataset. For
¥, we considered the values 4, 5, 6 and 7, but found little
impact (Table I, bottom). We choose ¢ = 5 for the San Francisco
Landmark dataset and ¢ = 6 for the MediaEval dataset.

We notice that the performance is mainly influenced by the
parameter a, which is used to smooth the geo-distinctiveness of
the visual elements in the query. The optimal values for parame-
ter a are different on the two datasets. A manual investigation of
the difference revealed that it can be attributed to the difference
in the respective capture conditions. During the investigation it
was observed that the queries in the San Francisco Landmark
dataset are typically zoomed-in images, taken on the street with
a limited distance between the camera and the captured object
(e.g., car or building). High levels of zoom result in the salient
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Fig. 8. HR@N performance (%) for varying N on the test set of the San
Francisco Landmark dataset. (a) performance with respect to the original ground
truth, (b) performance with respect to the fixed ground truth released in April
2014.

points that correspond to object details, e.g., a single tire on a
car can have multiple salient points assigned to it. Such a high
resolution of salient points may confuse object matching and is
for this reason not productive for location estimation. For this
reason, it appears logical that a value of a (specifically, a =
10) that leads to a higher level of grouping of salient points
for the purposes of geo-distinctiveness assessment leads to the
best performance In contrast, the queries in the MediaEval’ 15
dataset that have the best potential to be geo-located are mostly
zoomed-out images capturing a scene from a distance. The level
of detail is much less than in the previous case, and the salient
points tend to already pick out object-level image areas relevant
for location estimation. Aggregating the salient points through
image splitting like in the previous case would have a negative
effect, as it would reduce the resolution of salient points too
drastically, leading to a loss of geo-relevant information. For
this reason, it is logical that the parameter value a = 0 is the
optimal one, reflecting that no image splitting should be carried
out.
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Fig. 9. Performance on the test set of the MediaEval’ 15 Placing Task dataset.
(a) HR@1 performance (%) with respect to different evaluation radiuses,
(b) HR@N performance (%) for varying N and at the evaluation radius
of 1 km.

B. Geo-Constrained Location Estimation

The performance of different methods on the San Francisco
Landmark dataset is illustrated in Fig. 8. DVEM consistently
outperforms both VisNN and GVR across the board, with the
performance gain of 3% and 4% for HR@1 with respect to the
fixed ground truth released in April 2014 [see Fig. 8(b)].

GVR performs even worse than VisNN with respect to the
fixed ground truth. This is due to the fact that in the street-
view dataset the background collection images are captured
by the survey vehicle, which can make multiple near-duplicate
images per location. When a location contains the same visual
elements as the query image, e.g., the fire escapes in Fig. 5(b),
the summed visual similarity of images taken in this location
will heavily influence the estimation. Recall from Section V-
C that GVR expands the candidate images by their locations
and uses the summed visual similarity of images located in
one location as the ranking score. As such, GVR makes use
of the summed visual similarity of images, and is impacted by
this effect. In contrast, DVEM can handle this situation since it
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Fig. 10.

Tllustration of the relative performance among the methods VisNN, GVR and DVEM on the MediaEval’15 Placing Task dataset: (a) the initial visual

rank of top-10 most similar photos for a given query, the location of the top ranked photo is the result of VisNN, (b) ranked candidate locations using GVR,
(c) ranked candidate locations using DVEM. There are maximum 4 photos shown for each location.

differentiates visual elements based on their geo-distinctiveness
and eliminates the influence of redundancy by matching not at
the image level, but rather at the level of the visual element
cloud.

We note that, 52 out of 803 (6.5%) query images do not
correspond to any image in the database collection in terms of
location. Consequently, the maximal performance that can be
reached is 93.5%. In addition, the ground truth is automatically
labeled based on building ID, which is generated by aligning im-
ages to a 3D model of the city consisting of 14 k buildings based
on the location of the camera [5]. This process introduces noise
into the ground truth. We conducted a manual failure analysis on
the 74 queries for which DVEM makes wrong estimation with
respect to HR@ 1. We found that for 9 queries, the ground-truth
database images are irrelevant, and for 32 queries, the database
images located in the top-1 predicted location are relevant, but
their building ID is not included in the ground truth. This makes
the maximum performance that could be achieved by DVEM an
HR@1 of 88.3%.

C. Geo-Unconstrained Location Estimation

Fig. 9 shows the performance of different methods with dif-
ferent values of 7., [see Fig. 9(a)] and different Hit Rates [see
Fig. 9(b)] on the MediaEval’ 15 Placing Task dataset. This figure
demonstrates that DVEM consistently outperforms both VisNN
and GVR. The gain in performance is 12% over VisNN and 5%
over GVR for HR@1.

Next we turn to investigate in more detail why VisNN is
outperformed by GVR, which is in turn outperformed by our
new DVEM approach. In general, GVR outperforms VisNN
because it can leverage the existence of multiple images from
the true location that are visually similar to the query. GVR fails,
however, when wrong locations also are associated with multiple
images that are visually similar to the query. In contrast, DVEM
is able to maintain robust performance in such cases. Fig. 10
contains an example that illustrates the difference. The query

q is shown on the left. VisNN is illustrated by row (a), which
contains the top-10 images returned by VisNN. There is no
correct image for the query location among them. This reflects
that the collection lacks a single good image-level visual match
for the query. GVR is illustrated by row (b), which contains
five sets of images from the five top-ranked candidate locations.
We see that the top-1 candidate location image set contains
many images similar to the query, although it is not the true
location. Instead, the true location, whose candidate location
image set also contains many images, is ranked second. DVEM
is illustrated by row (c), which again contains five candidate
location image sets. This time, the correct location is ranked first.
We can see that the DVEM decision avoided relying too heavily
on the distinctive floor pattern, which is common at many tourist
locations, and cause GVR to make a wrong prediction. Instead
DVEM is able to leverage similarity matches involving diverse
and distributed image areas (such as the ceiling and the alcoves
in the walls), favoring this evidence over the floor, which is less
geo-distinctive.

D. Comparison With the State-of-the-Art

In this experiment, we compare DVEM with other state-
of-the-art location estimation systems regarding both the geo-
constrained and geo-unconstrained case. We compare our results
with the top results that have been reported by other authors on
the two experimental datasets that we use.

First, we look at geo-constrained location estimation using
the San Francisco Landmark dataset. Results are reported in
Figs. 11 and 12. We compare DVEM with the methods of Tolias
et al. [47], Arandjelovi¢ and Zisserman [2], Torii et al. [48],
Chen et al. [5], Zhang et al. [55], Gopalan [15], Sattler ez al. [40],
and Sattler er al. [41]. All results are calculated on the test set
as defined in the San Francisco Landmark dataset releases, and
are reported as they appear in each paper cited. For DVEM, we
generate the Precision-Recall-Curve in Fig. 12 by thresholding
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Fig. 11. HR@N performance (%) for varying N on the test set of the San

Francisco Landmark dataset. (a) performance with respect to the original ground
truth, (b) performance with respect to the fixed ground truth released in April
2014.
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Fig. 12.  Precision-Recall for the top-1 estimation on the test set of the San
Francisco Landmark dataset with the fixed ground truth released in April 2014.

the score generated by (4). In all three graphs of Figs. 11 and 12,
our proposed DVEM approach outperforms the state-of-the-art.

For completeness, we include additional discussion of our
experimental design. The papers cited in Figs. 11 and 12 use
a variety of tuning methods, which are sometimes not fully
specified. We assume that these tuning methods are compa-
rable to our choice, namely to use 10% of the test data (see
Section VI-A). Referring back to Table I, we can see that our

IEEE TRANSACTIONS ON MULTIMEDIA
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Fig. 13.  HR@]I performance (%) with respect to different evaluation radiuses

on the MediaEval’ 15 Placing Task dataset.

demonstration of the superiority of DVEM is independent of this
assumption. In the table, we see that the difference in perfor-
mance for DVEM for the best and the worst parameter settings
is less than 4% absolute. If the performance of a poorly tuned
version of DVEM falls by this amount, it still remains competi-
tive with well-tuned versions of the other approaches in Figs. 11
and 12. This assures us that the superiority of our approach does
not lie in our choice of tuning.

Next, we look at geo-unconstrained location estimation. We
compare our method to Li et al. [28], and the neural network-
based representation-learning approach by Kordopatis-Zilos
et al. [24]. Results are reported on the entire test set as defined
by the data release made by the MediaEval 2015 Placing Task.
The results in Fig. 13 show that our DVEM system redefines the
state-of-the-art on the MediaEval’15 dataset. Again, for com-
pleteness, we include additional discussion of our experimental
design. The submissions to the MediaEval 2015 Placing Task
are not allowed to tune on the test data. They do, however, have
access to a leader board which includes 25% of the test data.
In 2015, teams made a limited number of submissions to the
leader board (<=3). Our experimental design was different in
that we tuned on 2% of the test data. However, again referring
back to Table I we can see the magnitude of the advantage that
this choice gave us. The worst parameter settings yielded per-
formance that was lower than that of the best parameter settings
by 1% absolute. If the performance of a very poorly tuned ver-
sion of DVEM falls by this amount, it would still outperform its
competitors in Fig. 13. We point out that the independence of
the superiority of DVEM from the way in which the parameters
are set can be considered a reflection of an observation already
made above: the choice of the critical parameter a is dependent
on how data was captured in general (i.e., zoom-in Vs zoom-out)
and not on the specific composition of the dataset.

VII. CONCLUSION

We have presented a visual-content-based approach for pre-
diction of the geo-locations of images, based on commonsense
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observations about challenges presented by visual patterns in
image collections. These observations led us to propose a highly
transparent approach that represents locations using visual el-
ement clouds representing the match between a query and
a location, and leveraging geo-distinctiveness. The evaluation
conducted on two publicly available datasets demonstrates that
the proposed approach achieves performance superior to that
of state-of-the-art approaches in both geo-constrained and geo-
unconstrained location estimation.

We close with three additional observations about the value
of the DVEM approach moving forward. First, a key chal-
lenge is that the distribution of image data used for geo-
unconstrained location prediction is highly sparse over many
regions. This sparsity has led to the dominance of search-
based approaches such as DVEM over classification approaches,
already mentioned above. An additional consequence, we
expect, is that the search-based framework will remain dom-
inant, and that new, deep-learning approaches will contribute
features, as in [24]. These can enhance DVEM, i.e., learned im-
age representations would replace the bag-of-words pipelines
in the initial ranking step (Candidate Image Selection in
Fig. 2).

Second, note that as the background collection (i.e., the Geo-
tagged Image Corpus in Fig. 2) grows, DVEM either needs
to choose between a larger number of location candidates, or
needs to sacrifice its performance at lower resolutions. How this
trade-off is made in practice will depend both on the density
distribution of images that are added to the background col-
lection, and the impact of these images on patterns of visual
similarity. Here, human behavior is critical. For example, if San
Francisco suddenly starts building large numbers of identical
buildings distributed throughout the city, this development will
have an impact on DVEM. The interaction between how people
design the environment around them, the patterns with which
they take pictures, and automatic geo-location approaches such
as DVEM will remain a fascinating direction of study as in-
creasingly more images are captured, and become available for
multimedia research.

Finally, independent of other developments, we believe that
a key innovation of DVEM will remain important. Recall that
DVEM calculates representations over a ‘contextual’ image set,
rather than the whole collection, it is not forced to pre-define
locations of a particular scale. The result is that DVEM is able
to apply geo-distinctiveness to predict the location of images on
a continuous scale, limited only by the visual evidence present
in the data set. This ability to automatically adjust the pre-
cision of the prediction to the information (visual evidence)
available in the data set is an important property of the al-
gorithm, and that will deserve additional investigation in the
future.
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