
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Dynamic Analysis of Communication and
Collaboration in OSS Projects

Martin Pinzger and Harald C. Gall

Report TUD-SERG-2010-017

SERG



TUD-SERG-2010-017

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the book Collaborative Software Engineering, 2010, Springer.

c© copyright 2010, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Chapter 13
Dynamic Analysis of Communication
and Collaboration in OSS Projects

Martin Pinzger and Harald C. Gall

Abstract Software repositories, such as versioning, bug reporting, and developer
mailing list archives contain valuable data for analyzing the history of software
projects and its dynamics. In this chapter, we focus on the analysis of the communi-
cation and collaboration in software projects and present an approach that works on
software archives with social network analysis techniques. Our tool called STNA-
Cockpit provides both, a meta-model to represent communication and collaboration
and a graph visualization technique to interactively explore instances of the meta-
model. These instances are reconstructed from CVS, Bugzilla, and mailing list data.
In a case study with the Eclipse Platform Core project data we demonstrate that
with STNA-Cockpit one can observe project dynamics for certain periods of time.
This allows, for example, project managers to early identify communication bottle-
necks, contributor and expertise networks, or to understand how newcomers can be
integrated fast and efficiently into their team.

13.1 Introduction

Communication and collaboration among team members are key success factors for
large, complex software projects. In addition to industry, examples of such projects
can be found in the Open Source Software (OSS) community, for example, the
Mozilla, Apache, Eclipse projects. OSS projects are of particular interest for com-
munication and collaboration research because their developers rarely or never meet
face-to-face.

Findings of previous research showed that OSS developers coordinate their
work almost exclusively by three information spaces: the implementation space,
the documentation space, and the discussion space [6]. Typically, in OSS projects
a versioning system, such as, the concurrent versions system (CVS), provides the

M. Pinzger (B)
Software Engineering Research Group, Delft University of Technology, Netherlands
e-mail: M.Pinzger@tudelft.nl

265I. Mistrík et al. (eds.), Collaborative Software Engineering,
DOI 10.1007/978-3-642-10294-3_13, C© Springer-Verlag Berlin Heidelberg 2010

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 1



266 M. Pinzger and H.C. Gall

backend of the implementation space. It keeps track of changes made to projected
related files and corresponding versions. The World Wide Web is used as the pri-
mary documentation space. Because of the distributed and informal nature of OSS
projects, discussions between project members, project associates, and users are
done and tracked in mailing lists and bug reporting systems. This results in a rep-
resentative data set that enables communication and collaboration analysis. The
representative data in OSS projects as well as its public availability motivated us
to develop the Socio-Technical Network Analysis (STNA)-Cockpit. However, our
approach is not limited to OSS projects. It can also be applied in industrial settings
in which such data is available.

STNA-Cockpit provides means and techniques to obtain a deeper insight into the
communication and collaboration structure of software projects. In particular, we
use STNA-Cockpit to address the following research questions:

• Who owns or is working on which components?
• Who are the key personalities (e.g., leading developers) in the project?
• Are there deviations in the developer contribution structure?

We address these questions by analyzing the communication and collabo-
ration structure that is reconstructed from versioning archives (implementation
space), bug tracking and mailing list archives (discussion space). We leave out the
documentation space whose analysis is out of scope for this chapter.

In summary, the chapter makes three contributions, of which the first one is a
meta-model for representing communication and collaboration in OSS projects. We
briefly describe the set of techniques and tools for importing the data and further
present the heuristics that are used by STNA-Cockpit to integrate the various data
sources into the communication and collaboration network.

The STNA-Cockpit approach is our second contribution. STNA-Cockpit uses
a graph-based visualization technique to analyze the communication and col-
laboration structure. Properties of the communication between developers and
collaboration on software components are mapped to graphical attributes in the
graph. This results in a number of graph structures that form visual patterns which
indicate, for example, team organization, the key personalities in the project, or the
owners of source code components. Furthermore, these patterns also indicate viola-
tions in the communication and collaboration structure, such as, isolated developers
or alien commits. In addition, STNA-Cockpit provides facilities to dynamically
browse the communication and collaboration network over time. It uses a sliding
time window approach that allows the user to navigate back and forth in the project
history. This enables the observation of changes in the communication and collabo-
ration structure. For example, it shows how newcomers get involved in the project,
or how leading developers hand over their job to their successors.

We demonstrate the benefits of our integrated meta-model and the STNA-
Cockpit approach in a case study with the Eclipse Platform Core project. This
is our third and last contribution. Results of the study show how STNA-Cockpit
can be used to find out, for example, the roles of different developers, such as,

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

2 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 267

communicators and connectors, and how a new developer got socialized. The
STNA-Cockpit approach proves useful to aid project leaders in observing and con-
trolling the communication and collaboration structure in software projects and can
provide an integral part in collaborative software engineering.

The remainder of the chapter is structured as follows: The next section presents
related work of social network analysis in the software engineering domain. Section
13.3 describes the concepts for modeling communication and collaboration in OSS
projects and the techniques to reconstruct them from raw data available for OSS
projects. Section 13.4 introduces the STNA-Cockpit approach and its graphical lan-
guage. The evaluation of STNA-Cockpit with the Eclipse Platform Core project is
presented in Section 13.5. And, in Section 13.6 we draw conclusions and outline
future work.

13.2 State-of-the-Art in Socio-technical Network Analysis

The public availability of project data made OSS projects to one of the most stud-
ied subjects in the software engineering research community. In [7] Karl Fogel
presents a number of guidelines to manage and the technical infrastructure to run
OSS projects. In the context of this chapter, the technical infrastructure of OSS
projects is of particular interest. It basically consists of a versioning system, bug
tracking system, and mailing lists for the communication and co-ordination of work.
Communication between developers and users takes place in discussion forums
and the bug tracker. Topics range from bug fixes, feature requests, to hints for
the installation and usage of an application. The source code typically is man-
aged with a versioning system, such as, CVS or subversion. They keep track of
changes in the source files and project documents and are also used to mark soft-
ware releases. While the “large” projects, such as, Eclipse and Mozilla provide their
own infrastructure many OSS projects are hosted by development web sites, such as,
SourceForge.net. Recent research results and emerging opportunities in OSS devel-
opment are presented by Scacchi in [20]. We would like to refer the reader to this
publication to get a deeper insight into OSS development.

The various data sources available from OSS development web sites formed the
input to several studies of organization, communication, and co-ordination aspects
in software projects. For example, Crowston et al. [5] used data from developer
mailing lists and online forums of three active projects to analyze co-ordination
mechanisms of OSS communities. The analysis is based on the Co-ordination
Theory Approach framework [15]. They found similarities between OSS groups
and reported practices of proprietary projects in the co-ordination mechanisms used
to manage task-task dependencies. Differences were found in the co-ordination of
task-actor dependencies. In particular, “self-assignment” was the most common
mechanism used in OSS projects. Later on, Howison et al. [11] took a closer look at
the dynamics of the social structure by applying social network analysis over time.
They used data obtained from the SourceForge.net bug tracking repository. Results

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 3



268 M. Pinzger and H.C. Gall

of their analyses showed that most of the participants are involved in the project for
only a short period while few participants are involved for longer periods.

Similar to our approach, Ducheneaut [6] analyzed the socialization of newcomers
to the OSS community of Python, showing that the integration of a new member
is not only depending on her technical skills but also on her ability to learn how to
participate and to build an identity for that her ideas will get accepted and integrated.
He combines the social network built from the mailing list archive with the material
structure based on CVS log. To visualize the project’s evolution he implemented the
OSS Browser, which provides a dynamic view of the social network, built on the
Conversation Map of Sack [18].

Sack et al. [19] continued this research field with an analysis across the three
information spaces that build the socio-technical network: discussion, implemen-
tation, and documentation. They tried to answer the questions how power is
distributed, how links evolve between people, and how the cognitive activity of dis-
cussions is influenced by the social and governance structures of the project. Mails,
CVS logs, and enhancement proposals of the Python project served as data basis.
Similarly, Bird et al. presented a study in which they analyzed the process by which
people join open source projects [3]. Results support their hypotheses that the rate
of immigration is non-monotonic, and that technical skill and social reputation has
an impact on becoming a developer. In our approach we reuse several of the ideas
presented by these approaches

Several other studies used data from OSS projects to analyze communication
and co-ordination aspects. For example, Ghosh showed that many open source
projects hosted at SourceForge.net are organized as self-organizing social networks
[9]. Similarly, Xu et al. studied the development community at SourceForge.net
and classified contributors into project leader, core developer, co-developer, and
active user [21]. Huang et al. used version histories to identify core and periph-
eral development teams [12]. Ohira et al. used social networks and collaborative
filtering to support the identification of experts across projects [17]. Lopez et al.
explored statistics and social network properties of the development community at
SourceForge.net to find collaborations and topological properties [14]. In particular,
they found small world phenomenon and scale free behaviors and also that weakly
associated but contributing co-developers and active users may be important factors
in open source software development.

Network visualization is a well-researched field and there exist a number of
sophisticated frameworks and tools to visualize social networks, for example, Pajek
[2] or Net Draw which is an integral part of the social network analysis tool Ucinet
[4]. While these tools can visualize various kinds of social networks including also
socio-technical networks, none of them takes into account evolution. Similar to our
approach, Ogawa et al. [16] presented a visualization technique to analyze the evo-
lution of the communication and collaboration activities of software projects. They
used data from CVS repositories and mailing list archives. The visualization is based
on combining the repository view and the mailing list view via people. The repos-
itory is represented using the Windows Explorer tree visualization and the mailing
lists are displayed as clusters within Sankey diagrams.

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

4 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 269

Aberdour [1] addressed the question on how to achieve OSS quality by compar-
ing best practices of OSS development with closed-source software development.
He reported that high-quality OSS relies on having a large and sustainable commu-
nity that has to be fully understood by the community members. The final guidelines
to high-quality OSS imply high code modularity, rapid release cycles and many bug
finders. His findings on quality justify our aim at providing means for a better under-
standing of software project dynamics, in both open and closed source software
projects.

13.3 Modeling Communication and Collaboration
in OSS Projects

In this section, we outline the motivation and present the means and techniques to
analyze the interactions of a software project team. The main focus is on the question
about the inner life of the project that consists of people playing different roles and
of the products they develop. The collaborative interaction among the project mem-
bers is reflected in the organization and has an influence on the project’s outcome
and its environment. The social structure of a community, based on communication,
is combined with collaboration information representing working teams. This inte-
gration enables to further investigate the activities going on inside the project. The
developed means and techniques are based on analyses of OSS communities, but
they can be adapted to commercial projects as well.

13.3.1 Communication in OSS Projects

Open source software projects typically have no formal organization and pre-
assigned command and control structure. Team members can join projects and
contribute as they wish. This demands organizational instruments to share and
exchange information. Bug tracking systems, such as Bugzilla, are used to manage
bug reports and development tasks. Internet mailing lists are instruments to address
information to a dynamically changing community. A mailing list has a list of sub-
scribers receiving the messages processed by the reflector address. We assume that
most of the core developers of the community interact using such designated tools.
This section shows how we derive a model of the communication in OSS projects
from Bugzilla and mailing list data.

13.3.1.1 Deriving Communication Paths from Mail Traffic

Communication in mailing lists happens on a subject/topic between a sender and at
least one receiver at a certain point in time with a given content. Discussions arising
from an initial mail can be grouped into threads – mails referring to the same subject
are kept together. Within mailing list threads, the messages can grow in a dendritic

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 5



270 M. Pinzger and H.C. Gall

Fig. 13.1 Communication paths extracted from the Eclipse Platform Core developer mailing list

way. Figure 13.1 shows an excerpt of a mail thread from the online mailing list
archive of Eclipse Platform Core.

A mail addressed to a mailing list is processed by the reflector and sent to all
subscribers. This means that the To: address is always the mailing list address
itself; hence, there is no explicit receiver address. In our example this address is
platform-core-dev. To model the communication path between sender and receiver,
the receiver needs to be reconstructed from subsequent answering mails. The iden-
tification of the sender is given by the From: field which is denoted by the name on
the right side of a message. For determining the receivers of emails we analyze the
tree structure of a mail thread and compute the To: and Cc: paths.

Figure 13.1 illustrates the two paths in our example thread whereas gray arrows
denote the To: path and light gray arrows the Cc: path. A gray arrow is established
between an initial mail and its replies. For example, Philippe Ombredanne is first
replying to the mail of Thomas Watson, so in this case Philippe Ombredanne is the
sender and Thomas Watson is the receiver of the mail. To derive Cc: receivers we
consider the person answering a mail as an intended receiver of this mail. In case this
person is already the To: receiver (as it applies with the mails number 3–5 between
Bob Foster and Pascal Rapicault) no additional path is derived, because we assume
that a mail is not sent to a person twice.

For importing the data from the mailing lists archives we extended the iQuest
tool. iQuest is part of TeCFlow,1 a set of tools to visualize the temporal evolution
of communication patterns among groups of people. It contains a component to
parse mailing lists and import them into a MySQL database. Our extension aims at
including the follow-up information of mails to fully reconstruct the structure of a
mail-thread. The sample thread shown above consists of 15 mails that result in 25
communication paths.

13.3.1.2 Deriving Communication Paths from Bug Reports

The second source outlined for modeling communication paths is a bug tracking
repository, such as, Bugzilla. Bugzilla users create reports and comments and give

1 http://www.ickn.org/ickndemo/

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

6 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 271

answers to former editors or commentators. Within a Bugzilla bug report, a person
can play different roles: (1) the reporter that opens and describes a problem; (2)
the assigned developer who takes over the ownership or current responsibility; (3)
a developer on the Cc: list who wants to be kept informed; or (4) a person that
comments on the report.

Similar to mailing lists, communication in bug reports consists of a sender, at
least one receiver, a time stamp, the subject, and the content of the message. For
the reconstruction of communication paths we consider two actions: creating a bug
report and writing a comment. The communication emerging from report creation is
the assignment of the task to the assignee by the reporter and the notification of the
persons registered as Cc: The subject of the communication is the short description
and the content is the long description of the bug report.

Comments result in further communication. Each commentator addresses their
comment to the reporter, the assignee, and all former commentators. This approach
differs to the one of Howison et al. [11] where only a communication to the imme-
diate previous poster was assumed. The subject of communication is denoted by the
short description and the content by the comment. Regarding communication with
Cc: addressees, we assume that if somebody is concerned he or she will get involved
as a commentator.

We use the Bugzilla importer of Evolizer [8] to obtain the bug report data from
Bugzilla repositories. Given the URL of the Bugzilla repository the importer down-
loads the bug reports in XML format, parses them and stores the results into the
Evolizer database. We next query each bug report from the database and reconstruct
the communication paths as illustrated before. Regarding our example we recon-
structed 36 communication paths, including three Cc:’s. In general, we expect more
communication paths in bug reports than in mailing lists archives.

13.3.2 Collaboration in OSS Projects

To model the collaboration in a project, we need to know who is or was working
on which component of the system. Versioning repositories, such as CVS, provide
details about code revisions that enable to derive this information. The minimal
information required is the author of the modification and the affected file. For each
revision the time stamp of the CVS commit, the corresponding commit message and
the extent of the file modification (number of lines added and deleted) are extracted
from the CVS log. We use the Evolizer CVS importer plug-in to obtain the CVS
log information from online repositories. The importer parses the CVS log of each
source file and stores the extracted information into the Evolizer database.

In addition to the collaboration of developers on source files, we are interested in
the ownership of source files. This enables the analysis of the interaction between
the developer and the owner of a file, and, in particular, how the communication
between the two proceeds. Girba et al. propose a measurement for the notion of code
ownership by evaluating the CVS log [10]. They define the owner of a source file as
being the developer that contributed the most code lines to it. For each source files

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 7



272 M. Pinzger and H.C. Gall

revision and author the difference between the number of lines added and number
of lines deleted is computed. The sum of these deltas presents the contribution of a
developer.

We extend the approach by Girba et al. by also taking into account the initial
files size that refers to the initial contribution of the first developer. Experiments with
CVS information from the Eclipse project showed that, when taking into account the
initial number of lines of code, the number of owner changes is reduced by around
88%. With this we can more realistically reflect code ownership relationships.

13.3.3 Integrating Communication and Collaboration Data

The person is the central entity in communication and collaboration data as obtained
from mailing lists, Bugzilla and CVS data. Therefore, we use the person to link the
three data sources to obtain a consistent view on the communication and collab-
oration in software projects. The underlying data sources, however, have different
approaches regarding the identification and characterization of a person. The per-
sonal information appearing within CVS logs, bug reports, or emails are the name of
the person, the email address and the CVS user name. The objective of the integrated
data model is to unify this person information so that each person is represented by
exactly one entity in the model. Figure 13.2 depicts the meta-model to represent the
integrated CVS, Bugzilla, and mailing list data.

The person entity is in the center of the model and links CVS with Bugzilla and
mailing list data. The possible roles of a person are highlighted by arc labels which
are author of source code contributions, owner of source files, reporter of a bug,
assignee, and person on the Cc: list, and commenter of a bug report, and sender,
receiver of an email. Furthermore, we establish a link between Issues and affected
source file revisions.

In the virtual world of the Internet it is easy to create different identifiers for a sin-
gle person. For CVS, Bugzilla, and mailing lists archive data this concerns the use of
different email addresses. For example, Chris McGee uses cbmcgee@ca.ibm.com,
jeffl@informaldata.com and sirnewton_01@yahoo.ca as his email addresses. The
mapping of these addresses to a single person is a non-trivial task.

We follow a semi-automatic approach: For each person entity extracted from
an email, CVS log, or bug report, the matching algorithm first looks up the email
address in the database. If a person with the same email address exists, the person is
assigned to the corresponding revision, issue, comment, or email. If not, the email
address is analyzed to extract the person’s name. Our algorithm assumes that a name
consists of at least two words and that they are separated by a dot or underscore
within an email address prefix. In some cases such a name cannot be derived from
the prefix, because, for example, it denotes an email distributor address, an alias, or
a nickname. In case the name could be extracted, the algorithm searches the corre-
sponding person in the object model. For this our algorithm uses the Levenshtein
string similarity measure [13]. If a person object with a similar name is found in the
object model, the new email address is added to the list of email addresses of this

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

8 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 273

Fig. 13.2 Integrated model for representing communication and collaboration data in OSS
projects

person. In every other case the person is assumed to be unknown and a new person
entity is added to the database.

While this algorithm works fine for person information obtained from Bugzilla
and mailing lists, there are problems with matching persons obtained from CVS log
data. Typically, the author stored in CVS logs indicates the CVS user name, but not
the real name of a person. Because of the high number of false matches, the mapping
of these persons is done manually.

In addition to the information of a person, email addresses contain domain infor-
mation that, for example, denotes the business unit of a developer. We use this
information to assign developers to teams. We obtain email addresses that have
been generated with MHonArc.2 The problem is that MHonArc provides a spam
mode which deters spam address harvesters by hiding the domain information of
email addresses. For example, the email address of Chris McGee is displayed as

2 http://www.mhonarc.org/

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 9



274 M. Pinzger and H.C. Gall

cbmcgee@xxxxxxxxx. In such cases our matching algorithm searches the alterna-
tive email addresses of a person to reconstruct the missing domain information. We
furthermore do a manual inspection of the results to assure the correctness of the
matching’s.

13.4 STNA-Cockpit

The objective of STNA-Cockpit is to enable an understandable perception of the
project’s set-up and to illustrate its dynamics by exploring the evolution of the
communication and collaboration structure interactively. The user can either inves-
tigate a particular period in time or move through time by shifting the observation
period forward and backward. Figure 13.3 shows a sample view of a socio-technical
network graph as created by STNA-Cockpit for the Eclipse Platform Core project.

Various graphical features are utilized to convey information concerning the
communication and collaboration structure. Basically, nodes in the graph represent
persons or work packages. Edges illustrate the communication between people or
the collaborations of developers on work packages. In the following, we present the
various graphical features and visual patterns used by STNA-Cockpit.

John Arthorne

Dj Houghton

Daniel Megert

Rafael Chaves

Darin Wright

Dirk Baeumer
Darin Swanson

PascaRapicaultl 

Erich Gamma

Jeff Mcaffer

Martin Aeschlimann

Jared Burns

Debbie Wilson

Luc Bourlier

org.eclipse.core.runtime

org.eclipse.core.resources

Fig. 13.3 Socio-technical network graph of the Eclipse Platform Core project

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

10 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 275

13.4.1 Actors

An actor can play different roles within the project: project member, source file
owner, new source file owner. A project member is illustrated by a gray actor node
and labeled with the person’s name. The color of the shadow of a node illustrates
the domain (i.e., business unit) to which the actor belongs. The default shape is
a hexagon and the border color is always black (see Fig. 13.4a). The size of an
actor node is proportional to the number of incoming and outgoing communication
paths. The bigger the node is the more this actor has communicated with other team
members. The owner of a source file is illustrated by shaping the node as diamond
(see Fig. 13.4b).

A node label with a frame indicates that the developer took over the ownership
of a source file in the corresponding work package. The change of the ownership
comes along with an alien commit that is represented by drawing the actor name in
bold face (see Fig. 13.4c).

Erich Gamma Dj Houghton John Arthorne

(a) Project member (b) Owner (c) Owner change

Fig. 13.4 Shapes and graphical features to represent actors in the STNA-Cockpit graph

13.4.2 Work Packages

A work package is illustrated by a gray rectangle. The default color of the border
is light gray and the default color of the shadow is also light gray (see Fig. 13.5a).
The border color indicates the number of bug reports that have been associated with
committed revisions (i.e., the number of commits that contained a bug report number
in the commit message). The color gradient is from light to dark gray. The darker
the color the fewer commits referenced bug reports (see Fig. 13.5b). In addition,
the shadow of a node indicates the total number of problems reported for the work
package. The color gradient ranges also from light to dark gray, whereas dark gray
indicates a work package that has been affected by many problems. Similar to actor

(a) Work package (b) Commit-problem links

org.eclipse.core.runtime.compatibility org.eclipse.core.runtime

Fig. 13.5 Shapes and graphical features to represent work packages in the STNA-Cockpit graph

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 11



276 M. Pinzger and H.C. Gall

nodes, changes in the ownership of source files are indicated by drawing the label
of the affected work package in bold face.

13.4.3 Communication and Collaboration

Ties (i.e., edges) in the graph either represent an interaction that occurs or is valid
within the selected observation period. Possible interactions are: sending an email
to a mailing list, opening a bug report, commenting on a bug report, committing
source code changes to the versioning repository, and owning source code.

The communication between actors is colored gray. The width of an edge indi-
cates the amount of communication between the associated actors (see Fig. 13.6a).
A commit of source code changes to the versioning repository is indicated by a gray
edge between the developer and the work package the modified source file belongs
to (see Fig. 13.6b). Also for these edges, the width indicates the number of commits.
In case of an alien commit, the font of the two node labels denoting the developer
and affected work package are changed to bold face as described above. The own-
ership of source files contained by work packages is represented by a black edge
between owners and work packages.

(b) Developer contribution

Oleg Besedin

Rafael Chaves

Pascal Rapiault

(a) Email and bug communication

Dirk Baeumer

org.eclipse. re. ressionsco exp

Fig. 13.6 Shapes and graphical features to represent communication and collaboration in the
STNA-Cockpit graph

Applying these patterns to the network graph of Fig. 13.3 we can see that
most of the communication has been between John Arthorne, Dj Houghton,
and Rafael Chaves. The represented communication was on bug reports solely.
During the selected observation period these three authors committed changes
to source files contained by the two packages org.eclipse.core.resources and
org.eclipse.core.runtime. Dj Houghton owns source files in these packages while
John Arthorne and Rafael Chaves performed alien commits.

13.5 Communication and Collaboration in the Eclipse Project

In this section we demonstrate STNA-Cockpit by applying it to the Eclipse Platform
Core project data. In particular, we demonstrate how STNA-Cockpit can be used to
answer the following questions:

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

12 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 277

• Who owns or is working on which source code package?
• Who are the key personalities in the Eclipse Platform Core project?
• Can we identify shortcomings in the communication and collaboration structure

in the project, meaning alien commits?

We use the Eclipse Platform Core project as an example to illustrate the benefits
of our integrated data model and the STNA-Cockpit approach. Analysis results are
interpreted in the context of this project and should not be generalized. The follow-
ing section briefly outlines the Eclipse Platform Core project and the data sources
we used in the case study.

13.5.1 The Eclipse Platform Core Project

Eclipse.org is an open source community whose projects are focused on building
an integrated and extensible development platform. The Eclipse Project is the top-
level project dedicated to providing a robust, full-featured, commercial-quality, and
freely available platform for the development of integrated tools. In this case study,
we focus on the Eclipse Platform Core component that is a main component of the
Eclipse Platform project. In January 2007, the Eclipse Platform project comprised
18 mailing lists, 34 different classified Bugzilla components and more than 350
plug-ins. To know which part of the source code is affected by a discussion within
an email or bug report the different data sources had to be mapped. Table 13.1 shows
the set of the plug-ins, mailing lists, and Bugzilla components that concern Eclipse
Platform Core. The mapping was obtained from the Eclipse Platform Core project
website.3

In total the source code of Eclipse Platform Core component consists of 17 plug-
ins. Communication between the developers of the component takes place in the
mailing list platform-core-dev. In Bugzilla, two components were used to report
problems and enter change requests for the Eclipse Platform Core project. In a first

Table 13.1 Plug-in sources, mailing list, and Bugzilla components of the Eclipse Platform Core
project

Name Plug-ins Mailing list Bugzilla

Platform.Core org.eclipse.core.contenttype platform-core-dev Platform.Runtime
org.eclipse.core.expressions Platform.Resources
org.eclipse.core.filesystem.∗
org.eclipse.core.jobs
org.eclipse.core.resources.∗
org.eclipse.core.runtime.∗
org.eclipse.core.variables

3 http://www.eclipse.org/eclipse/platform-core/

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 13



278 M. Pinzger and H.C. Gall

step, we retrieved the CVS, Bugzilla, and mailing list data of mentioned data sources
up to November 2006. From CVS we retrieved 7,479 change log entries from 997
source files. 7,907 bug reports have been imported from Bugzilla and 102 emails
were retrieved from the platform-core-dev mailing list.

After importing the data, the Evolizer database contained 2,581 persons, 101
email and 11,081 Bugzilla communication paths. 2,536 person entities were
imported from the Bugzilla data, 132 are mailing list users of which 73 have been
matched to Bugzilla users. Contributions to the source code were from 27 devel-
opers. All of them have been mapped to Bugzilla users. Because we were mainly
interested in the communication and collaboration of Eclipse developers, we con-
centrated our analysis on the 27 developers. While all these developers participated
in Bugzilla reporting; only 14 of them wrote emails to the mailing list.

In the following we show a number of applications of STNA-Cockpit and the
benefits of our integrated data model and visualization approach.

13.5.2 Ownership and Alien Commits

Assume a scenario in which a project manager wants to find out that owns or is
working on which plug-in of the Eclipse Platform Core project, and whether there
have been violations in the developer contribution structure. For this, the project
manager selects the observation period and has STNA-Cockpit draw the collabo-
ration graph that represents only the CVS information. We did this for the Eclipse
Platform Core project for the time period from 14th to 28th February 2005 and
obtained the collaboration graph depicted in Fig. 13.7.

The black edges in the graph denote the ownership of source files at that time.
For example, the graph shows that Jeff Mcaffer, Pascal Rapicault, and Dj Houghton
are the owners of source files of the org.eclipse.core.runtime.compatibility plug-
in. In general, the graph shows several owners of source files per plug-in. Most
interesting, however, is that John Arthorne contributed to this plug-ins, though; he
is not an owner of source files of any of this plug-ins. All his contributions were so
called alien commits that are indicated by the bold labels of the nodes representing
John Arthorne and the modified plug-ins. The dark gray border of work packages
further indicates that almost zero of the commits reference a Bugzilla bug report.
Moreover, the shadows of two rectangles are painted in dark gray indicating that
the two corresponding plug-ins were affected by a high number of problems. In
summary, such a view provides the project manager with an overview about the
commit and bug reporting activities within the selected observation period. Alien
commits might indicate shortcomings in the code or team organization, depending
on whether or not strict code ownership has been followed in a project.

13.5.3 Communicators

STNA-Cockpit can aid project managers in identifying the key personalities in
her project. The communicator is such a key personality who knows where the

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

14 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 279

Fig. 13.7 Collaboration in the Eclipse Platform Core project observed in the time from 14th to
28th February 2005

information ideally gets processed. Figure 13.8 illustrates the communication via
the developer mailing list and Bugzilla data over 21 months. The amount of com-
munication (i.e., the number of communication paths reconstructed from bug reports
and emails) is illustrated by the width of edges. The wider the edges of a person’s
node are, the more this person communicated with other developers.

The graph in Fig. 13.8 shows the core development team whose members fre-
quently communicate with each other. Rafael Chaves, Dj Houghton, Jeff Mcaffer
Thomas Watson, John Arthorne, and Pascal Rapicault form the core team. They are
the communicators who keep the network together and play an important role within
the project. Interesting is that they all belong to either the group @ca.ibm.com or
@us.ibm.com as indicated by the shadows of rectangles representing these devel-
opers. Another highly connected group is formed by the Swiss team (@ch.ibm.ch)
whose members are represented by the nodes on the right side of the graph. Almost
each developer of the Swiss team is in touch with the US team; however, Markus
Keller and Daniel Megert turn out as the main communicators between the two
teams during that time.

Another interesting finding concerns the environment via which the developers
communicated. Most of the communication was via Bugzilla bug reports indicated
by the gray edges. Only the core team also used the mailing list to discuss Eclipse

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 15



280 M. Pinzger and H.C. Gall

Fig. 13.8 Communicators of the Eclipse Platform Core project as from May 2004 to February
2006

Platform Core relevant issues. Such findings are of particular interest when new
ways of communication are considered.

13.5.4 Project Dynamics

Newcomers should be integrated fast into development teams to rapidly increase
productivity and foster synergy among team members. With STNA-Cockpit the
project manager can observe how newcomers actually are integrated into their
teams. For this, the project manager selects the starting observation period and
uses the time-navigation facility of STNA-Cockpit to investigate the evolution of
the communication and collaboration network over time. The graph animation
allows the project manager to observe how the newcomer behaves concerning
communication and collaboration with other team members. In particular, she
looks for communication paths that tell her the newcomer gets actively involved

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

16 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 281

(b) 2nd half of April 2004(a) 1st half of April 2004

(d) 2nd half of June 2004(c) 1st half of June 2004

Dj Houghton

John Arthorne

Rafael Chaves Jeff Mcaffer

Pascal Rapicault

Kevin Barnes

org.eclip ources

org.eclip untime

org.eclipse.co unt e.compatibility

se.core.res

se.core.r

re.r im

Rafael Chaves

Daniel Megert

John Arthorne

Dj Houghton

Da anson

Jared Burns

Eric Gamma

Kevin Barnes

org.eclipse.core.resources

rin Sw
h 

Pascal Rapicault

Dj Houghton

Sonia Dimitrov

John Arthorne
Thomas Watson

Jeff Mcaffer

Dirk Baeumer

Rafael Chaves

Erich Gamma

Darin Wright

Kevin Barnes

Darin Swanson

org.eclip co esources

org.eclip co .runtime

se. re.r

se. re

John Arthorne

Rafael Chaves

Darin Wright

Darin Swanson

Kevin Barnes

org.eclip

Luc Bourlier

se.co ariablesre.v

Fig. 13.9 Socialization of Kevin Barness in the Eclipse Platform Core project

in discussions on the developers mailing lists and bug reports. In addition, she
observes whether the newcomer contributes to the plug-ins and finally takes over
responsibility of portions of the source code.

Consider the following scenario in which Kevin Barness is entering the US
team @ca.ibm.com of the Eclipse Platform Core project in April 2004. Figure 13.9
depicts various snapshots taken from the network created for subsequent points in
time. Kevin Barness is starting as a developer in the Eclipse Platform Core team at
the beginning of April 2004. His first action is to get in touch with some key person-
alities of the project, namely Rafael Chaves and John Arthorne. His first contacts are
visualized by the graphs depicted by (Fig. 13.9a, b). In the following weeks he com-
municates also with other project members to get more involved into the project (see
Fig. 13.9c), namely Darin Wright and Darin Swanson. As (Fig. 13.9d) illustrates,
Darin Wright is a developer and Darin Swanson the owner of the files that are going
to be modified by Kevin. Rafael Chaves seems to play the role of the connector who
introduces the new developer Kevin Barness to the responsible persons. According
to the graph, he is communicating with two senior developers.

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 17



282 M. Pinzger and H.C. Gall

Another example of project dynamics concerns members leaving the project.
This is particularly interesting for OSS projects in which there exists no official
commitment or contract between members and the OSS project. In general, mem-
bers are free to join and leave an OSS project. STNA-Cockpit can be used to early
recognize such situations by observing the developer’s contributions to mailing list
forums, bug report discussions, and source code. Knowing such changes in advance
helps the project leaders to take proper actions, such as, to find active members to
take over the work of the leaving person.

13.5.5 Summary

We demonstrated the application of STNA-Cockpit to analyze the communica-
tion and collaboration structure of the Eclipse Platform Core project. Concerning
collaboration we showed how the tool can be used to find out which developers
have worked on which plug-ins during a selected observation period. Violations,
in particular, alien commits to plug-ins, were highlighted. The visualization of the
communication structure allows the project manager to observe the roles of develop-
ers in her project. For example, in the Eclipse Platform Core project, we identified
the communicators that represent the developers most active on mailing lists and
Bugzilla. They represent the right information source to obtain status reports and
also to get newcomers involved into the project. The sliding time window approach
of STNA-Cockpit was used to find out about project dynamics. For example, we
found newcomers joining the Eclipse Platform Core project, as well as, developers
leaving the project. These findings underline the value of our integrated communi-
cation and collaboration data model and visualization techniques as implemented
by STNA-Cockpit.

13.6 Conclusions and Future Work

Software repositories, such as versioning, bug reporting, and developer mailing lists
contain valuable data for analyzing the communication and collaboration structure
of software projects. We presented a meta-model to represent communication and
collaboration in OSS project and showed how an instance of such a model can
be obtained from CVS, Bugzilla, and mailing list data. We also introduced our
STNA-Cockpit tool to interactively explore the integrated model by means of graph
visualizations. With this tool the user can observe project dynamics in a software
project at any point in time and over time using the data provided by Evolizer.

Getting awareness of communication and collaboration in a project can be very
valuable for the project manager: (1) understanding how newcomers can be inte-
grated fast and efficient; (2) knowing the key contributors and communicators in
the different teams; and (3) being able to replace or add expertise holders in project
phases and in software parts. Of course all this requires the data to be available in a

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

18 TUD-SERG-2010-017



13 Dynamic Analysis of Communication and Collaboration 283

processable form but the key issue for that is the identity management. As long as
email and Bugzilla identities can be matched to people such an analysis can work
mostly automated. Such mapping data for identities should be easy to keep up-to-
date and then can be fed into tools, such as, STNA-Cockpit that then can compute
the communication and collaboration network of a project automatically. The time-
window browsing further allows one to zoom into particular phases of the project
and learn about collaboration patterns of developers.

Still, there are limitations of the current approach that are due two facts. First,
in many OSS projects such identity mapping data does not exist and has to be
reconstructed with quite some manual effort. Second, the analysis of collabora-
tion patterns is not yet reflected on software releases, features or software phases,
such as, testing or refactoring. But from our analysis we have seen a great potential
of investigating communication and collaboration data for project steering ranging
from the role of a developer to the role of a project manager.

References

1. Aberdour M (2007) Achieving quality in open source software. IEEE Software 24: 58–64.
2. Batagelj V, Mrvar A (2003) Pajek – Analysis and visualization of large networks. Graph

Drawing Software, Springer, pp. 77–103.
3. Bird C, Gourley A, Devanbu P, Swaminathan A, Hsu G (2007) Open borders? Immigration

in open source projects. Proceedings of the International Workshop on Mining Software
Repositories, IEEE Computer Society Press.

4. Borgatti SP, Everett MG, Freeman LC (2002) Ucinet for Windows: Software for Social
Network Analysis. Harvard, MA: Analytic Technologie.

5. Crowston K, Wei K, Li Q, Eseryel UY, Howison J (2005) Co-ordination of free/libre open
source software development. Proceedings of the International Conference on Information
Systems, Association for Information Systems, pp. 181–193.

6. Ducheneaut N (2005) Socialization in an open source software community: A Socio-technical
analysis. Computer Supported Cooperative Work 14: 323–368.

7. Fogel K (2005) Producing Open Source Software: How to Run a Successful Free Software
Project. Sebastopol, CA: O’Reilly Media.

8. Gall HC, Fluri B, Pinzger M (2009) Change analysis with evolizer and change distiller. IEEE
Software 26: 26–33.

9. Ghosh RA (2003) Clustering and dependencies in free/open source software development:
Methodology and tools. First Monday 8(4).

10. Girba T, Kuhn A, Seeberger M, Ducasse S (2005) How developers drive software evolu-
tion. Proceedings of the International Workshop on Principles of Software Evolution, IEEE
Computer Society Press, pp. 113–122.

11. Howison J, Inoue K, Crowston K (2006) Social dynamics of free and open source team com-
munication. Proceedings of the International Conference on Open Source Software, Boston,
Springer, pp. 319–330.

12. Huang SK, Min Liu K (2005) Mining version histories to verify the learning process of legit-
imate peripheral participants. Proceedings of the International Workshop on Mining Software
Repositories, ACM Press.

13. Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals.
Soviet Physics Doklady 10: 701–710.

14. Lopez-Fernandez L, Robles G, Gonzalez-Barahona JM (2004) Applying social network anal-
ysis to the information in cvs repositories. Proceedings of the International Workshop on
Mining Software Repositories.

SERG Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects

TUD-SERG-2010-017 19



284 M. Pinzger and H.C. Gall

15. Malone TW, Crowston K (1994) The interdisciplinary study of co-ordination. ACM
Computing Surveys 26: 87–119.

16. Ogawa M, Ma KL, Bird C, Devanbu P, Gourley A (2007) Visualizing social interaction in
open source software projects. Proceedings of the International Asia-Pacific Symposium on
Visualization, IEEE Computer Society Press, pp. 25–32.

17. Ohira M, Ohsugi N, Ohoka T, Matsumoto K (2005) Accelerating cross project knowledge col-
laboration using collaborative filtering and social networks. Proceedings of the International
Workshop on Mining Software Repositories, ACM Press.

18. Sack W (2001) Conversation map: An interface for very large-scale conversations. Journal of
Management Information Systems 17: 73–92.

19. Sack W, Detienne F, Ducheneaut N, Burkhardt JM, Mahendran D, Barcellini F (2006) A
methodological framework for socio-cognitive analysis of collaborative design of open source
software. Computer Supported Co-operative Work 15: 229–250.

20. Scacchi W (2007) Free/open source software development. Proceedings of the Joint Meeting
of the European Software Engineering Conference and the Symposium on the Foundations of
Software Engineering, ACM Press, pp. 459–468.

21. Xu J, Gao Y, Christley S, Madey G (2005) A topological analysis of the open source software
development community. Proceedings of the Proceedings of the Annual Hawaii International
Conference on System Sciences, IEEE Computer Society Press.

Pinzger, Gall – Dynamic Analysis of Communication and Collaboration in OSS Projects SERG

20 TUD-SERG-2010-017





TUD-SERG-2010-017
ISSN 1872-5392 SERG


