Print Email Facebook Twitter Probabilistic partial least squares model Title Probabilistic partial least squares model: Identifiability, estimation and application Author el Bouhaddani, S. (Leiden University Medical Center) Uh, Hae Won (Leiden University Medical Center; University Medical Center Utrecht) Hayward, Caroline (University of Edinburgh) Jongbloed, G. (TU Delft Delft Institute of Applied Mathematics) Houwing-Duistermaat, Jeanine (Leiden University Medical Center; University of Leeds) Department Delft Institute of Applied Mathematics Date 2018 Abstract With a rapid increase in volume and complexity of data sets, there is a need for methods that can extract useful information, for example the relationship between two data sets measured for the same persons. The Partial Least Squares (PLS) method can be used for this dimension reduction task. Within life sciences, results across studies are compared and combined. Therefore, parameters need to be identifiable, which is not the case for PLS. In addition, PLS is an algorithm, while epidemiological study designs are often outcome-dependent and methods to analyze such data require a probabilistic formulation. Moreover, a probabilistic model provides a statistical framework for inference. To address these issues, we develop Probabilistic PLS (PPLS). We derive maximum likelihood estimators that satisfy the identifiability conditions by using an EM algorithm with a constrained optimization in the M step. We show that the PPLS parameters are identifiable up to sign. A simulation study is conducted to study the performance of PPLS compared to existing methods. The PPLS estimates performed well in various scenarios, even in high dimensions. Most notably, the estimates seem to be robust against departures from normality. To illustrate our method, we applied it to IgG glycan data from two cohorts. Our PPLS model provided insight as well as interpretable results across the two cohorts. Subject Dimension reductionEM algorithmIdentifiabilityInferenceProbabilistic partial least squares To reference this document use: http://resolver.tudelft.nl/uuid:eb1256ff-9878-4c0e-a94c-6da03f4bfed1 DOI https://doi.org/10.1016/j.jmva.2018.05.009 Embargo date 2019-06-18 ISSN 0047-259X Source Journal of Multivariate Analysis, 167, 331-346 Bibliographical note Accepted Author Manuscript Part of collection Institutional Repository Document type journal article Rights © 2018 S. el Bouhaddani, Hae Won Uh, Caroline Hayward, G. Jongbloed, Jeanine Houwing-Duistermaat Files PDF 45582177_PPLS_JMA_acc2.pdf 655.59 KB Close viewer /islandora/object/uuid:eb1256ff-9878-4c0e-a94c-6da03f4bfed1/datastream/OBJ/view