REGULARITY OF PAIRS OF POSITIVE OPERATORS

SHANGQUAN BU, PHILIPPE CLÉMENT AND SYLVIE GUERRE-DELABRIÈRE

0. Introduction

In this paper, we consider a pair \((A, B)\) of closed operators on a Banach space \(X\) with domain \(D(A)\) and \(D(B)\). The pair \((A, B)\) is called regular if for every \(f \in X\), the problem \(Au + Bu = f\) possesses one and only one solution.

Related to the notion of coercively positive pair of operators, introduced in [S], we also consider the existence of a solution to the problem \(\lambda Au + Bu = f\) for all \(\lambda > 0\), with some uniformity in \(\lambda\). This stronger property is called \(\lambda\)-regularity.

These notions of regularity and \(\lambda\)-regularity naturally arise in vector-valued Cauchy problems; see [G], [DG], [S] and also [CD]. The uniformity in \(\lambda\), given by the \(\lambda\)-regularity, is often useful in certain applications to partial differential equations.

In [G], under the hypothesis that \(0 \in \rho(B)\) and in [DG], some sufficient conditions are given to ensure the regularity of a pair \((A, B)\) on certain subspaces of \(X\), related to the operator \(B\). These subspaces, denoted by \(D_B(\theta, p)\), are real interpolation spaces between \(D(B)\) and \(X\) (Theorem 1.2).

It was observed in [S] that if \(0 \in \rho(A) \cap \rho(B)\), then the pair is \(\lambda\)-regular on \(D_B(\theta, p)\).

In this paper, we prove the \(\lambda\)-regularity of this pair \((A, B)\), considered in [G], on \(D_B(\theta, p)\) under the weaker assumption that \(0 \in \rho(B)\) only (Theorem 2.1). Note that if \(B\) is bounded, then the pair is \(\lambda\)-regular on \(X\).

We construct an example of a regular pair \((A, B)\) of operators in a Hilbert space, with \(B\) bounded, satisfying the assumptions of the theorem of Grisvard [G], which is not \(\lambda\)-regular (Example 2.2).

1. Preliminaries

In this section we give precise definitions of regularity and \(\lambda\)-regularity of a pair of operators. Then, for the sake of completeness, we recall a result of Da Prato and Grisvard [DG] (see also [CD]), which is the starting point of our results.

Let \(X\) be a Banach space and \(A\) and \(B\) be two closed operators in \(X\).

Definition 1. The pair \((A, B)\) is called regular, if for all \(f \in X\), there exists a unique \(u \in D(A) \cap D(B)\) such that \(Au + Bu = f\).
If the pair \((A, B)\) is regular, it follows from the Banach theorem that

\[
\|u\| + \|Au\| + \|Bu\| \leq M\|Au + Bu\|
\]

for some \(M \geq 1\) and for all \(u \in D(A) \cap D(B)\).

It is easy to verify the following lemma.

Lemma 1.0. Let \(A\) and \(B\) be two closed operators in \(X\). Then the pair \((A, B)\) is regular if and only if

1. \((1.0)\) holds and
2. \(R(A + B)\) is dense in \(X\).

Moreover, if \(0 \notin \rho(A)\) or \(\rho(B)\) (where \(\rho(.)\) denotes the resolvent set of an operator), then \((1.0)\) is equivalent to

\[
\|Au\| + \|Bu\| \leq M\|Au + Bu\|
\]

for some \(M \geq 1\) and for all \(u \in D(A) \cap D(B)\).

Remark 1. The operator \(A + B\) is closed if and only if

\[
\|u\| + \|Au\| + \|Bu\| \leq M(\|Au + Bu\| + \|u\|)
\]

for some \(M \geq 1\) and for all \(u \in D(A) \cap D(B)\).

In particular, if the pair \((A, B)\) is regular, \(A + B\) has to be closed.

A regular pair of operators \((A, B)\) is called coercive in \([S]\).

Also, the stronger notion of coercively positive pair is introduced in \([S]\), which motivates our Definition 2.

Definition 2. The pair \((A, B)\) is called \(\lambda\)-regular in \(X\), if for all \(f \in X\) and for all \(\lambda > 0\), there exists a unique \(u \in D(A) \cap D(B)\) such that \(\lambda Au + Bu = f\) and moreover, for all \(\lambda > 0\),

\[
\|\lambda Au\| + \|Bu\| \leq M\|\lambda Au + Bu\|
\]

for some \(M \geq 1\), independent of \(\lambda\) and for all \(u \in D(A) \cap D(B)\).

Remark 2. Clearly if \((1.1)\) holds, then the inequality

\[
\lambda\|Au\| + \mu\|Bu\| \leq M\|\lambda Au + \mu Bu\|
\]

holds for some \(M \geq 1\), for all \(\lambda, \mu > 0\) and \(u \in D(A) \cap D(B)\), which shows that the definition of \(\lambda\)-regularity is symmetric in \(A\) and \(B\).
It is also clear that this inequality is equivalent to the following ones:

\[\|Au\| \leq M \|Au + \lambda Bu\|, \]

for some \(M \geq 1 \) and all \(\lambda > 0 \) and \(u \in D(A) \cap D(B) \), and

\[\lambda \|Bu\| \leq M \|Au + \lambda Bu\| \]

for some \(M \geq 1 \) and all \(\lambda > 0 \) and \(u \in D(A) \cap D(B) \).

Lemma 1.0.λ. Let \(A \) and \(B \) be two closed operators in \(X \) (not necessarily densely defined). If \(0 \in \rho(A) \), then the pair \((A, B)\) is \(\lambda \)-regular if and only if:

1. \((1.1)_\lambda\) holds for all \(\lambda > 0 \);
2. There exists \(\lambda_0 > 0 \) such that \(R(\lambda_0 A + B) \) is dense in \(X \).

Proof. Clearly, it is enough to prove that conditions (1) and (2) imply that the pair \((A, B)\) is \(\lambda \)-regular.

First observe that conditions (1) and (2) together with Lemma 1.0, where \(A \) is replaced by \(\lambda_0 A \), and the fact that \(0 \in \rho(A) \), imply that the pair \((\lambda_0 A, B)\) is regular. Thus, in particular, \(0 \in \rho(\lambda_0 A + B) \).

Next we show that if \(0 \in \rho(\lambda A + B) \) for some \(\lambda_1 > 0 \), then \(0 \in \rho(\lambda A + B) \) for all \(\lambda > 0 \) such that

\[\frac{\lambda}{\lambda_1} \in \left(\frac{M}{M + 1}, \frac{M}{M - 1} \right) \text{ if } M > 1 \text{ and } \left(\frac{M}{M + 1}, \infty \right) \text{ if } M = 1. \]

Indeed, problem \(\lambda Au + Bu = f \) is equivalent to

\[\lambda_1 Au + Bu = \left(1 - \frac{\lambda_1}{\lambda} \right) Bu + \frac{\lambda_1}{\lambda} f. \]

Setting \(v = \lambda_1 Au + Bu \), we have

\[v = \left(1 - \frac{\lambda_1}{\lambda} \right) B(\lambda_1 A + B)^{-1} v + \frac{\lambda_1}{\lambda} f. \]

From \((1.1)_\lambda\), it follows that

\[\|B(\lambda_1 A + B)^{-1}\| \leq M. \]

Under assumption \((*)\), by the Banach fixed point theorem, it is clear that there exists one and only one \(v \in X \) satisfying \((**)\) and hence \((\lambda A, B)\) is a regular pair for such \(\lambda \). Noting that \(\|B(\lambda_1 A + B)^{-1}\| \leq M \) also holds for \(\lambda \) in this interval, we can repeat this argument and, since \(\frac{M}{M + 1} < 1 \) and \(\frac{M}{M - 1} > 1 \), show by induction that the pair \((\lambda A, B)\) is regular for all \(\lambda > 0 \), which together with \((1.1)_\lambda\) implies that the pair \((A, B)\) is \(\lambda \)-regular. This finishes the proof of Lemma 1.0.λ. \(\Box \)
Let us recall classical definitions on closed operators: A closed linear operator $A : D(A) \subset X \to X$ (not necessarily densely defined) is called \textit{positive} in $(X, \| \cdot \|)$ [Tr] if there exists $C > 0$ such that

\begin{equation}
\| u \| \leq C \| u + \lambda Au \|, \text{ for every } \lambda > 0 \text{ and } u \in D(A),
\end{equation}

and if $R(I + \lambda A) = X$ for some $\lambda > 0$, equivalently for all $\lambda > 0$.

\textbf{Remark 3.} In [Tr], an operator A is called positive if it is positive and satisfies the additional assumption that $0 \in \rho(A)$. In this paper, it is convenient to relax this extra condition.

Observe also that A is positive if and only if the pair (A, I) is λ-regular.

If A is positive, injective and densely defined, it is easy to prove that A^{-1} is also positive.

If X is reflexive and A is positive, then A is densely defined [K].

Let $\Sigma_\sigma := \{ \lambda \in \mathbb{C} \setminus \{ 0 \}; |\arg \lambda| \leq \sigma \} \cup \{ 0 \}$, for $\sigma \in [0, \pi)$. If A is positive, there exists $\theta \in [0, \pi)$ such that (1.3) holds, [K p. 288]:

\begin{equation}
(\text{i}) \sigma(A) \subseteq \Sigma_\sigma \quad \text{and} \quad (\text{ii}) \text{ for each } \theta' \in (\theta, \pi], \text{ there exists } M(\theta') \geq 1 \text{ such that } \| \lambda(\lambda I - A)^{-1} \| \leq M(\theta'), \text{ for every } \lambda \in \mathbb{C} \setminus \{ 0 \} \text{ with } |\arg \lambda| \geq \theta'
\end{equation}

where $\sigma(A)$ denotes the spectrum of A.

The number $\omega_A := \inf\{ \theta \in [0, \pi); (1.3) \text{ holds}\}$ is called the \textit{spectral angle} of the operator A. Clearly $\omega_A \in [0, \pi)$.

An operator A is said to be of \textit{type} (ω, M) [Tan], if A is positive, ω is the spectral angle of A and

\[M := \inf\{ C \geq 0; (1.2) \text{ holds } \} = \min\{ C \geq 0; (1.2) \text{ holds } \}. \]

Note that M is also the smallest constant in (1.3) ii) for $\theta' = \pi$.

Two positive operators A and B in X are said to be \textit{(resolvent) commuting} if the bounded operators $(I + \lambda A)^{-1}$ and $(I + \mu B)^{-1}$ commute for some $\lambda, \mu > 0$, equivalently for all $\lambda, \mu > 0$.

If A and B are commuting positive operators then $A + B$ (with domain $D(A) \cap D(B)$) is closable [DG].

The following theorem, which is a consequence of a theorem of Da Prato-Grisvard [DG] and of Grisvard [G] will be essential in the sequel.

\textbf{THEOREM 1.1.} \textit{Let A and B be two commuting positive operators in X such that}

\begin{enumerate}
 \item[(i)] $D(A) + D(B)$ is dense in X,
 \item[(ii)] $\omega_A + \omega_B < \pi$.
\end{enumerate}
Then the closure of $A + B$ is of type (ω, M) with $\omega \leq \max(\omega_A, \omega_B)$. If moreover

(iii) $0 \in \rho(A)$ or $\rho(B)$ (resolvent set of A or B), then
(a) there exists $M \geq 1$ such that

(1.4) \[\|u\| \leq M\|Au + Bu\|, \text{ for all } u \in D(A) \cap D(B), \]

and $0 \in \rho(A + B)$,
(b) $R(A + B) \supseteq D(A) + D(B)$,
(c) $A + B$ is closed if and only if $R(A + B) = X$ if and only if (1.1) holds,
(d) the inverse of $A + B$ is given by

\[(A + B)^{-1}x = \frac{1}{2\pi i} \int_{\gamma} (A + z)^{-1}(B - z)^{-1}x \, dz, \]

where γ is any simple curve in $\rho(B) \cap \rho(-A)$ from $\infty e^{-i\theta_0}$ to $\infty e^{i\theta_0}$, with $\omega_B < \theta_0 < \pi - \omega_A$.

Remark 4. (1) Under hypotheses (i)–(iii) of Theorem 1.1, assumption 2) of Lemma 1.0 is always satisfied. Therefore, in order to prove the regularity of a pair (A, B), it is sufficient to verify inequality (1.1), which means that $A(A + B)^{-1}$ is a bounded operator.

(2) Similarly, under hypotheses (i)–(iii) of Theorem 1.1, assumption (2) of Lemma 1.0 is always satisfied. Therefore, in order to prove the λ-regularity of a pair (A, B), it is sufficient to verify inequality (1.1)$_\lambda$, which means that $\lambda A(\lambda A + B)^{-1}$ is a uniformly bounded operator for all $\lambda > 0$.

In this paper, we shall always be in the situation of (i)–(ii) of Theorem 1.1, which means that we will consider the following three hypotheses for a pair of positive operators A and B in X of type respectively (ω_A, M_A) and (ω_B, M_B):

H_0: $D(A) + D(B)$ is dense in X.
H_1: A and B are resolvent commuting.
H_2: $\omega_A + \omega_B < \pi$.

In order to obtain results on the regularity and the λ-regularity of a pair of operators, we need to introduce the interpolation spaces $D_A(\theta, p)$, associated with a closed operator A, for $\theta \in (0, 1)$ and $p \in [1, +\infty]$. These spaces are subspaces of X which are dense in X for the norm $\|\|\|$ whenever A is densely defined.

For $\theta \in (0, 1)$ and $p \in [1, +\infty)$, $D_A(\theta, p)$ is the subspace of X consisting of all x such that

\[\|t^\theta A(A + t)^{-1}x\| \in L^p_x, \]
where L^p_+ is the space of p-integrable Borel functions on $(0, +\infty)$ equipped with its invariant measure dt/t.

For $\theta \in [0, 1]$, $D_A(\theta, \infty)$ is the subspace of X consisting of all $x \in X$ such that

$$\sup\{\|t^\theta A(A + t)^{-1} x\| \mid t \in (0, +\infty)\} < +\infty.$$

When 0 belongs to $\rho(A)$, $D_A(\theta, p)$ equipped with the norm

$$\|x\|_{D_A(\theta, p)} = \|t^\theta A(A + t)^{-1} x\|_{L^p_+}$$

becomes a Banach space.

When $0 \in \rho(A)$ and A is bounded, $\|\cdot\|_{D_A(\theta, p)}$ is equivalent to the norm of X.

The following fundamental result, due to Grisvard (Theorem 2.7 of [G]) is the starting point of this paper.

THEOREM 1.2. Let X be a complex Banach space, and let A and B be two positive operators in X, of type (ω_A, M_A) and (ω_B, M_B) respectively, satisfying hypotheses H_0, H_1, H_2.

If $0 \in \rho(B)$, the pair (A, B) is regular in $D_B(\theta, p)$.

2. Results

The first result of this paper is the following theorem which is an extension of Theorem 1.2 to the case of λ-regularity.

THEOREM 2.1. Let X be a complex Banach space, and let A and B be two positive operators in X, of type (ω_A, M_A) and (ω_B, M_B) respectively, satisfying hypotheses H_0, H_1, H_2. If $0 \in \rho(B)$, the pair (A, B) is λ-regular in $D_B(\theta, p)$ for every $0 < \theta < 1$ and $1 \leq p \leq \infty$.

Remark 5. If moreover B is bounded, it is clear that the pair (A, B) is λ-regular in X.

The next example shows that in particular, even if X is a Hilbert space, the hypothesis $0 \in \rho(B)$ cannot be omitted in Theorem 2.1.

Example 2.2. There exists a Hilbert space G and there exist two positive operators A and B in G satisfying hypotheses H_0, H_1 and H_2, with B bounded, such that the pair (A, B) is regular, but not λ-regular in G.

Remark 6. In [L, Theorem 2.4] (see also [CD]), another example is given, where A is the derivative acting on $L^p([0, T]; Y)$ for some non reflexive space Y, such that the pair (A, B) is not λ-regular in $D_A(\theta, p)$.

Proof of Theorem 2.1. Fix \(\lambda > 0 \). By Theorem 1.2, we know that the pair \((A, \lambda B)\) is regular in \(D_B(\theta, p) \). In particular, for all \(x \in D_B(\theta, p) \),

\[
y_\lambda = (A + \lambda B)^{-1}x \in D(A) \cap D(B)
\]
and we have \(B y_\lambda \in D_B(\theta, p) \) together with the inequality

\[
\| \lambda B y_\lambda \|_{D_B(\theta, p)} \leq C \| x \|_{D_B(\theta, p)}.
\]

We shall show that \(C \) is independent of \(\lambda \). For this, we are going to use equality (\(\ast \)) of Theorem 1.1, applied to \(A \) and \(\lambda B \). Without loss of generality, since \(0 \in \rho(B) \), we can suppose that \(\gamma \) consists of the half line \((\infty e^{-\theta_0}, \infty e^{i\theta_0})\), the arc of the circle \(C_\varepsilon = \{ z : |z| = \varepsilon, |\arg(z)| \leq \theta_0 \} \) and the half line \([\varepsilon e^{i\theta_0}, \infty e^{i\theta_0})\), for some fixed \(\theta_0, \omega_B < \theta_0 < \pi - \omega_A \) and for sufficiently small \(\varepsilon \) in order to insure that \(\gamma \) is in \(\rho(-A) \cap \rho(\lambda B) \). Since \(A \) is of type \((\omega_A, M_A)\), by (1.3) there exists \(M'_A \) such that for all \(z \) such that \(|\arg z| \leq \theta_0 \),

\[
\| (A + z)^{-1} \| \leq \frac{M'_A}{|z|}.
\]

As in the proof of Theorem 3.11 of [DG], for every \(t > 0 \) we can write

\[
(\lambda B + t)^{-1}y_\lambda = (\lambda B + t)^{-1}(A + \lambda B)^{-1}x
\]

\[
= \frac{1}{2\pi i} \int_y (A + z)^{-1}(\lambda B + t)^{-1}(\lambda B - z)^{-1}x \, dz
\]

by (\(\ast \)) and \(H_1 \)

\[
= \frac{1}{2\pi i} \int_y (A + z)^{-1}(\lambda B - z)^{-1}x \frac{dz}{t + z} - \frac{1}{2\pi i} \int_y (A + z)^{-1}(\lambda B + t)^{-1}x \frac{dz}{t + z}
\]

\[
= \frac{1}{2\pi i} \int_y (A + z)^{-1}(\lambda B - z)^{-1}x \frac{dz}{t + z} - (\lambda B + t)^{-1} \frac{1}{2\pi i} \int_y (A + z)^{-1}x \frac{dz}{t + z}
\]

by analyticity of the function \(\frac{(A+z)^{-1}}{t+z} \) and the fact that \(\| \frac{(A+z)^{-1}}{t+z} \| \leq \frac{M'_A}{|z(t+z)|} \) for \(|\arg z| \leq \theta_0 \).

Hence

\[
\lambda B(\lambda B + t)^{-1}y_\lambda = y_\lambda - t(\lambda B + t)^{-1}y_\lambda = (A + \lambda B)^{-1}x - t(\lambda B + t)^{-1}(A + \lambda B)^{-1}x
\]
\[
\lambda B(\lambda B + t)^{-1} y_\lambda = \frac{1}{2\pi i} \int_{C} \frac{z}{z + t} (A + z)^{-1}(\lambda B - z)^{-1} x \, dz.
\]

First, we claim that
\[
\lim_{\varepsilon \to 0^+} \int_{C'} \frac{z}{z + t} (A + z)^{-1}(\lambda B - z)^{-1} x \, dz = 0.
\]

Since \(B\) is invertible, \(\|(\lambda B - z)^{-1}\|\) is uniformly bounded with respect to \(z\) in a neighborhood of the origin. So there exists \(\varepsilon_0\) such that \(\|(\lambda B - z)^{-1}\| \leq 2\|(\lambda B)^{-1}\|\) for \(|z| \leq \varepsilon_0\). We can suppose that \(\varepsilon_0 \leq \frac{1}{2}\). Then, for \(\varepsilon \leq \varepsilon_0\) we have
\[
\left\| \int_{C'} \frac{z}{z + t} (A + z)^{-1}(\lambda B - z)^{-1} x \, dz \right\| \\
\leq \int_{C'} \frac{|z|}{|z + t|} \|(A + z)^{-1}\| \|(\lambda B - z)^{-1}\| \|x\| |dz| \\
\leq 2M_A'\|(\lambda B)^{-1}\|\|x\| \varepsilon \int_{-\theta_0}^{\theta_0} \frac{d\theta}{t + \varepsilon \cos \theta} \leq \frac{8M_A'\|(\lambda B)^{-1}\|\|x\|\varepsilon\theta_0}{t}
\]
which tends to zero when \(\varepsilon \to 0^+\). The claim is proved; hence we have
\[
\lambda B(\lambda B + t)^{-1} y_\lambda = \frac{1}{2\pi i} \int_{\gamma_0} \frac{z}{z + t} (A + z)^{-1}(\lambda B - z)^{-1} x \, dz
\]
where \(\gamma_0\) consists of the half-lines \(\{z : \arg(z) = -\theta_0\}\) and \(\{z : \arg(z) = \theta_0\}\).

By hypotheses \(H_1\) and \(H_2\),
\[
\lambda B(\lambda B + t)^{-1} \lambda B y_\lambda = \frac{1}{2\pi i} \int_{\gamma_0} \frac{z}{z + t} (A + z)^{-1}\lambda B(\lambda B - z)^{-1} x \, dz
\]
and so
\[
\|\lambda B(\lambda B + t)^{-1} \lambda B y_\lambda\| \\
\leq \frac{1}{2\pi} \int_{\gamma_0} \frac{|z|}{|z + t|} \|(A + z)^{-1}\| \|\lambda B(\lambda B - z)^{-1} x\| |dz| \\
\leq K \int_{0}^{+\infty} \frac{r}{\sqrt{t^2 + r^2 + 2t\varepsilon\cos \theta_0}} \phi_\lambda(r) \frac{dr}{r}
\]
where K is a constant depending only on A and B, and

$$
\phi_\lambda(r) = \max\{\|\lambda B(\lambda B - re^{i\theta_0})^{-1} x\|, \|\lambda B(\lambda B - re^{-i\theta_0})^{-1} x\|\} = \phi_\lambda \left(\frac{r}{\lambda} \right).
$$

The hypothesis $x \in D_B(\theta, p)$ means that $r^\theta \phi_\lambda(t) \in L^p_\pm(R^+)$ (see [DG]); thus we have

$$
t^\theta \|\lambda B(\lambda B + t)^{-1} \lambda B y_\lambda\| \\
\leq K \int_0^{+\infty} \frac{r t^\theta}{\sqrt{1 + r^2 + 2tr\cos\theta_0}} \phi_\lambda(r) \frac{dr}{r} = K \int_0^{+\infty} \frac{(rt^{-1})^{1-\theta}}{\sqrt{1 + (rt^{-1})^2 + 2rt^{-1}\cos\theta_0}} r^\theta \phi_\lambda(r) \frac{dr}{r}
$$

where

$$
f(t) = \frac{t^{1-\theta}}{\sqrt{1 + t^2 + 2t\cos\theta_0}} \in L^\theta_\pm(R^+)
$$

$$
g(t) = t^\theta \phi_\lambda(t) \in L^p_\pm(R^+)
$$

By Young’s theorem, we can write

$$
\|t^\theta \lambda B(\lambda B + t)^{-1} \lambda B y_\lambda\|_{L^p_\pm(R^+)} \\
\leq K \|f\|_{L^\theta_\pm(R^+)} \|g\|_{L^p_\pm(R^+)} \\
\leq K' \left(\int_0^{+\infty} (r^\theta \phi_\lambda(r))^p \frac{dr}{r} \right)^{1/p} \\
= K' \lambda^\theta \left(\int_0^{+\infty} (r^\theta \phi_1(r))^p \frac{dr}{r} \right)^{1/p} \\
\leq K'' \lambda^\theta \|x\|_{D_B(\theta, p)}
$$

where K'' is a constant depending only on A and B, see [DG]. On the other hand,

$$
\|t^\theta \lambda B(\lambda B + t)^{-1} \lambda B y_\lambda\|_{L^p_\pm(R^+)} \\
= \left(\int_0^{+\infty} (t^\theta \|\lambda B(\lambda B + t)^{-1} \lambda B y_\lambda\|)^p \frac{dt}{t} \right)^{1/p} \\
= \lambda^{1+\theta} \left(\int_0^{+\infty} (t^\theta \|B(B + t)^{-1} B y_\lambda\|)^p \frac{dt}{t} \right)^{1/p} \\
= \lambda^{1+\theta} \|B y_\lambda\|_{D_B(\theta, p)};
$$
hence
\[\lambda^0 \| \lambda B y_\lambda \|_{D_B(\theta, p)} \leq K'' \lambda^0 \| x \|_{D_B(\theta, p)} \]
or
\[\| \lambda B (A + \lambda B)^{-1} x \|_{D_B(\theta, p)} \leq K'' \| x \|_{D_B(\theta, p)}. \]

This is the inequality that we wanted. It implies that
\[\| \lambda B (A + \lambda B)^{-1} \|_{D_B(\theta, p)} \leq K'', \]
which shows the \(\lambda \)-regularity of the pair \((A, B)\) on \(D_B(\theta, p) \) by Remark 4.2. \(\square \)

Let us mention another case of \(\lambda \)-regularity which is a consequence of Theorem 1.2 applied in the context of [DV], namely when \(B^s \) is bounded for all \(s \in [-1, +1] \):

Corollary 2.3. Let \(H \) be a Hilbert space and let \(A \) and \(B \) be two positive operators in \(H \) satisfying \(H_0 \), \(H_1 \) and \(H_2 \). If \(0 \leq p(B) \) and \(\sup \{ \| B^s \| \mid |s| \leq 1 \} < +\infty \), then the pair \((A, B)\) is \(\lambda \)-regular in \(H \).

Proof of Corollary 2.3. As mentioned in [DV], under the hypothesis that \(\sup \{ \| B^s \| \mid |s| \leq 1 \} < +\infty \), \(D_B(\theta, 2) = D(B^\theta) \). Thus Theorem 2.1 implies that \((A, B)\) is a \(\lambda \)-regular pair in \(D(B^\theta) \). Then Dore and Venni show that, under the hypothesis of Corollary 2.3, \((A, B)\) is a regular pair in \(H \). An adaptation of their proof can be done to prove that in fact, the pair is \(\lambda \)-regular. Indeed, for \(x \in H \), by Theorem 2.1, observing that \(B^{-\theta} x \in D_B(\theta, 2) \), we have
\[\| \lambda B (A + \lambda B)^{-1} x \| = \| B^\theta \lambda B (A + \lambda B)^{-1} B^{-\theta} x \| \leq C \| B^\theta B^{-\theta} x \| = C \| x \| \]
where \(C > 0 \) is independent of \(\lambda > 0 \). \(\square \)

Construction of Example 2.2. Let \(G \) be a complex Hilbert space and let \(A \) and \(B \) be two positive operators with \(B \) bounded, satisfying hypotheses \(H_1 \) and \(H_2 \). Observe that since \(B \) is bounded, \(H_0 \) is also satisfied. If moreover \(0 \in \rho(A) \), then by Theorem 1.1, the pair \((A, B)\) is regular and \(G = D_B(\theta, p) \) for every \(\theta \in (0, 1) \) and \(p \in [1, \infty] \). Hence if the pair \((A, B)\) is not \(\lambda \)-regular, we are done.

In order to construct such a pair, we consider, as in [BC], the space
\[G = \ell_2(H) = \left\{ x = (x_k)_{k \in \mathbb{N}} \mid x_k \in H \text{ and } \| x \|^2 = \sum_{k=1}^{+\infty} \| x_k \|^2 < +\infty \right\} \]
where \((H, \|\cdot\|)\) is a complex Hilbert space. A family \((A_k)_{k \in \mathbb{N}}\) of bounded operators on \(H\) defines the following closed densely defined operator \(A\) on \(G:\)

\[
D(A) := \{ x = (x_k)_{k \in \mathbb{N}} , \ x_k \in H , \ \sum_{k \in \mathbb{N}} \|A_k x_k\|^2 < \infty \}
\]
\[
(A x)_k := A_k x_k , \ k \in \mathbb{N} \text{ for } x = (x_k)_{k \in \mathbb{N}} \in D(A).
\]

Moreover \(A\) is bounded if and only if \(\sup_{k \in \mathbb{N}} \|A_k\| < \infty\) and if this is the case, we have \(\|A\| = \sup_{k \in \mathbb{N}} \|A_k\|\).

If \(0 \in \rho(A_k)\) for all \(k \in \mathbb{N}\) and \(\sup_{k \in \mathbb{N}} \|A_k^{-1}\| < \infty\), then \(0 \in \rho(A)\). As in [BC], we shall say that the family of positive operators \((A_k)_{k \in \mathbb{N}}\) of type \((0, M_k)\) satisfies property \((P)\) if for every \(k \in \mathbb{N},\)

(i) \(\sigma(A_k) \subset [0, \infty)\) and

(ii) for every \(\theta \in [0, \pi[,\) there is \(M(\theta)\), independent of \(k\), such that \(\|(I + zA_k)^{-1}\| \leq M(\theta)\), for every \(z \in \Sigma_\theta\).

We will need the following slight extension of Lemma 4.1 of [BC], which we state without proof.

Lemma 2.4. Let \((A_k)_{k \in \mathbb{N}}, (B_k)_{k \in \mathbb{N}}\) be two families of bounded positive operators on \(H\), satisfying property \((P)\) and such that \(A_k B_k = B_k A_k\) for all \(k \in \mathbb{N}\). Then the operators \(A\) and \(B\) defined by (2.1) are densely defined and of type \((0, M_A)\) and \((0, M_B)\) respectively. Moreover, the pair \((A, B)\) satisfies hypotheses \(H_0, H_1, H_2\).

Now suppose that \((A_k)_{k \in \mathbb{N}}\) and \((\tilde{B}_k)_{k \in \mathbb{N}}\) are two families of operators in \(H\) as in Lemma 2.4 satisfying (2.2) and (2.3):

\[
0 \in \rho(A_k) \text{ for every } k \in \mathbb{N} \text{ and } \sup_{k \in \mathbb{N}} \|A_k^{-1}\| < \infty
\]

\[
\forall l \geq 1 , \ \exists x_l \in H , \ \|x_l\| = 1 , \ \text{ such that } l \|A_l x_l + \tilde{B}_l x_l\| \leq \|A_l x_l\|.
\]

Set \(B_k = \mu_k \tilde{B}_k\), with \(\mu_k > 0\), \(k \in \mathbb{N}\) such that \(\|B_k\| \leq 1\) for all \(k \in \mathbb{N}\). Then the families \((A_k)_{k \in \mathbb{N}}\) and \((B_k)_{k \in \mathbb{N}}\) also satisfy the assumptions of Lemma 2.4. The pair \((A, B)\) defined by (2.1) satisfies \(H_0, H_1, H_2\). Moreover \(0 \in \rho(A)\) by (2.2) and \(B\) is bounded with \(\|B\| \leq 1\).

We claim that the regular pair \((A, B)\) is not \(\lambda\)-regular. Clearly for every \(\lambda > 0\), the pair \((A, \lambda B)\) is regular and if \((A, B)\) is \(\lambda\)-regular, then there exists \(M \geq 1\), independent of \(\lambda\) such that for all \(y \in G\),

\[
\|A(A + \lambda B)^{-1} y\| \leq M \|y\|
\]

Choose \(y = y^{(l)} = (y_k^{(l)})_{k \in \mathbb{N}}\) with

\[
y_k^{(l)} = 0 \text{ for } k \neq l
\]

\[
y_l^{(l)} = (A_l + \tilde{B}_l)x_l, \ l \in \mathbb{N}.
\]
Hence with $\lambda = \mu_l^{-1}$, from (2.4) we obtain

\begin{equation}
M \| (A_l + \tilde{B}_l) x_l \| \geq \| A_l x_l \| \geq l \| (A_l + \tilde{B}_l) x_l \|
\end{equation}

for every $l \in \mathbb{N}$, a contradiction since $\| (A_l + \tilde{B}_l) x_l \| \neq 0$.

It remains to construct the operators A_l and \tilde{B}_l. For this purpose, we shall need the following lemma, which can be essentially found in [BC].

Lemma 2.5. Let H be a complex separable Hilbert space with a Schauder basis $(e_n)_{n \in \mathbb{N}}$ and let $(e_n^*)_{n \in \mathbb{N}}$ be the corresponding coordinate functionals. Let $(c_n)_{n \in \mathbb{N}}$ be a nondecreasing sequence of positive real numbers and let C_k be the linear operators defined by

\begin{equation}
C_k x := \sum_{l=0}^{N_l} c_l e_l^* (x) e_k
\end{equation}

where $N_k \in \mathbb{N}$ for all $k \in \mathbb{N}$.

Then the operators C_k are bounded positive operators of type $(0, M_k)$ satisfying property (P). Moreover, $0 \in \rho(C_k)$ for all $k \in \mathbb{N}$ and $\sup_{k \in \mathbb{N}} \| C_k^{-1} \| < \infty$.

In view of this lemma, if $(a_n)_{n \in \mathbb{N}}$ and $(b_n)_{n \in \mathbb{N}}$ are two nondecreasing sequences of positive numbers and A_k, \tilde{B}_k are defined by (2.6) where $(N_k)_{k \in \mathbb{N}}$ is an arbitrary sequence of natural numbers, then the operators A_k, \tilde{B}_k satisfy all required properties except (2.3). In order to satisfy this condition, we choose for $(e_n)_{n \in \mathbb{N}}$ a conditional basis of ℓ_2 as in [BC] and we choose for $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ the sequences denoted by $f(n)$ and $g(n)$ in [BC], having the property that

$$\sup_{x \in G_0, \| x \|=1} \left\| \sum_{k=0}^{\infty} \frac{a_k}{a_k + b_k} e_k^* (x) e_k \right\| = \infty$$

where $G_0 = \text{span}\{e_n \mid n \in \mathbb{N}\}$. It follows that for every $l \in \mathbb{N}$, there exists $N_l \in \mathbb{N}$ and $\alpha_{k,l} \in \mathbb{C}$ for $0 \leq k \leq l$ such that

$$\left\| \sum_{k=0}^{N_l} \frac{a_k}{a_k + b_k} e_k^*(y^{(l)}) e_k \right\| \geq l$$

where $y^{(l)} = \sum_{k=0}^{N_l} \alpha_{k,l} e_k$. Setting

$$\begin{cases}
A_k x = \sum_{m=0}^{N_l} a_m e_m^* (x) e_m \\
\tilde{B}_k x = \sum_{m=0}^{N_l} b_m e_m^* (x) e_m
\end{cases}$$

we obtain

$$\| A_l (A_l + \tilde{B}_l)^{-1} y^{(l)} \| \geq l \| y^{(l)} \|$$
or equivalently
\[\| A_j \tilde{x}^{(i)} \| \geq I \|(A_j + \tilde{B}_j) \tilde{x}^{(i)} \| \]
where \(\tilde{x}^{(i)} = (A_j + \tilde{B}_j)^{-1}y^{(i)} \neq 0. \) Setting
\[x^{(i)} = \frac{\tilde{x}^{(i)}}{\|\tilde{x}^{(i)}\|} \]
we obtain (2.3). This concludes the construction of Example 2.2. □

Remark 7. In this construction, we can obtain a bounded operator \(A' \) by defining
\[A'_k = \nu_k A_k \text{ with } \nu_k > 0, \ k \in \mathbb{N} \]
in order to ensure that \(\| A'_k \| \leq 1 \). Then, similar arguments show that the pair \((A', B) \)
does not satisfy (1.1)_0 although it satisfies (1.1).

It follows from Theorem 2.1 that \(0 \notin \rho(A') \cup \rho(B) \). Hence one cannot assert as in Example 2.2 that the pair \((A', B) \) is regular.

REFERENCES

Shangquan Bu, Department of Mathematics, University of Tsinghua, Beijing 100084, China
Equipe d’Analyse, Case 186, Université Paris 6, 4 Place Jussieu, 75252 Paris, Cedex 05, France
sbu@math.tsinghua.edu.cn

Philippe Clément, Department of Technical Mathematics and Informatics, Delft University of Technology, P. O. Box 5031, 2600 GA Delft, The Netherlands
clement@twi.tudelft.nl