New capillary number definition for displacement of residual nonwetting phase in natural fractures

AlQuaimi, B. I.; Rossen, W. R.

DOI
10.1002/2017GL073211

Publication date
2017

Document Version
Final published version

Published in
Geophysical Research Letters

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable). Please check the document version above.
New capillary number definition for displacement of residual nonwetting phase in natural fractures

B. I. AlQuaimi and W. R. Rossen

Abstract

We propose a new capillary number for flow in fractures starting with a force balance on a trapped ganglion in a fracture. The new definition is validated with laboratory experiments using five distinctive model fractures. Capillary desaturation curves were generated experimentally using water-air forced imbibition. The residual saturation-capillary number relationship obtained from different fractures, which vary in aperture and roughness, can be represented approximately by a single curve in terms of the new definition of the capillary number. They do not fit a single trend using the conventional definition of the capillary number.

1. Introduction

Naturally fractured reservoirs (NFRs) have been explored and exploited globally for geothermal energy, petroleum production, coalbed methane production, and nuclear waste sequestration [Rampsport et al., 1979; Pruess and Tsang, 1990; Persoff and Pruess, 1995]. Understanding and predicting the behavior of NFRs requires understanding the flow in a single fracture [Rossen and Kumar, 1992]. A single fracture has rough walls and variable aperture, as well as asperities where the two opposing fracture walls are in contact with each other [Olsson and Barton, 2001]. Thus, it can be represented as a two-dimensional network of locations of wide and narrow aperture [Tsang, 1984; Brown and Scholz, 1985; Wang and Narasimhan, 1985; Brown et al., 1986; Schrauf and Evans, 1986; Pyarak-Nolte et al., 1988; Morrow et al., 1990; Rossen and Kumar, 1992; Odling and Roden, 1997; Hughes and Blunt, 2001]. Therefore, fractures can be considered as 2-D analogs of the 3-D networks of throats and bodies that compose the pore network of rock matrix [Rossen and Kumar, 1992; Hughes and Blunt, 2001]. During two-phase flow in a fracture, there is a similar competition between viscous and capillary forces as in rock matrix, which can be represented by a capillary number. However, the capillary number for rock is not adequate to describe the mobilization of nonwetting phase in fractures. Moore and Slobod [1955] defined the capillary number N_{ca} as

$$N_{ca} = \frac{V \mu}{\gamma \cos \theta}$$ \hspace{1cm} (1)

where V is the superficial velocity, μ is the viscosity of the displacing fluid, γ is the interfacial tension, and θ is the contact angle. Another form of the capillary number uses the permeability of the matrix [Reed and Healy, 1977]:

$$N_{ca} = \frac{K|\nabla P|}{\gamma \cos \theta}$$ \hspace{1cm} (2)

where K is permeability, $|\nabla P|$ is the magnitude of the pressure gradient, θ is the contact angle, and γ is interfacial tension. One can derive equation (2) from a force balance on a trapped nonwetting ganglion, assuming that pore-throat radius and pore length each scale with the square root of permeability [Sheng, 2010]. This assumption is reasonable for geometrically similar porous media like packings of beads or sand. Hughes and Blunt [2001] analyzed multiphase flow in a single fracture using a pore-network model. They generated a model of the fracture from published aperture data and defined the capillary number for this model as

$$N_{ca} = \frac{Q \mu_w}{\Delta \delta N_f}$$ \hspace{1cm} (3)

where Q is the volumetric flow rate, μ_w is the viscosity of water, $\Delta \delta$ is the change in driving pressure, N_f is the matrix saturation, and γ is the interfacial tension.
where Q is the volumetric flow rate, μ_w is the displacing fluid viscosity (water in this case), \bar{a} is the mean aperture, b is the resolution (width of the pixels), N_p is the number of pixels perpendicular to flow across the fracture, and γ is the interfacial tension. (We have changed their nomenclature for consistency with our derivation below.) This definition is equivalent to equation (1); superficial (Darcy) velocity is replaced by the volumetric flow rate Q divided by cross-sectional area ($\bar{a}bN_p$).

The assumption in the derivation of the capillary number for rock from a force balance on a trapped ganglion is that permeability scales with the product of pore-throat radius and pore-body length. This assumption is questionable for fractures, where fracture permeability could be the same for a slit with smooth walls and no trapping and a fracture with large variations in aperture and significant trapping.

2. New Capillary Number Derivation

We present a derivation of the capillary number for a fracture based on force balance on a trapped nonwetting ganglion. The variation of aperture d is the geometric parameter that is responsible for trapping nonwetting phase in the fracture. Capillary pressure across a curved interface where the aperture is d is

$$P_c = \frac{2\gamma \cos \theta}{d}$$ \hspace{1cm} (4)

We assume that the length scale along which aperture varies in the fracture plane is much greater than the aperture itself; thus, interfaces are nearly cylindrical rather than spherical. We provide justification below. The principle radii of curvature of the interface between perfectly wetting and nonwetting phases are thus $r_1 = d \cos \theta/2$ and $r_2 \approx \infty$ [Pruess and Tsang, 1990]. Consider a fracture with some degree of roughness, where a trapped ganglion is on the verge of forward displacement as shown in the schematic of Figure 1.

The curvature across the fracture is much greater than that within the fracture plane; therefore, the maximum capillary pressure during passage through the throat can be written as

$$P_c = \frac{2\gamma \cos \theta}{d_t}$$ \hspace{1cm} (5)

where d_t is the minimum aperture, i.e., aperture at the throat. The capillary pressure difference across the ganglion, with its leading edge penetrating a throat and its trailing edge in a pore body where the aperture is d_b, is given by

$$\Delta P_c = \left(\frac{2\gamma}{d_t} - 2\gamma/d_b\right) \cos \theta$$ \hspace{1cm} (6)

[van Golf-Racht, 1982]. The pressure difference across the ganglion, of length L_g, must be greater than this pressure difference if the ganglion is to be mobilized:

$$\nabla P_{L_g} > \left(\frac{2\gamma}{d_t} - \frac{2\gamma}{d_b}\right) \cos \theta = \frac{2\gamma}{d_t} \left(1 - \frac{d_t}{d_b}\right) \cos \theta$$ \hspace{1cm} (7)

One can regroup terms in equation (7) to restate the criterion for mobilization in terms of a dimensionless capillary number:

$$\frac{\nabla P_{L_g}d_t}{2\gamma \left(1 - \left(\frac{d_t}{d_b}\right)\right) \cos \theta} = N_{ca} > 1$$ \hspace{1cm} (8)
The permeability of a fracture, approximated as a smooth rectangular slit, can also be written as a function of the average hydraulic aperture \(d_H \) [van Golf-Racht, 1982; Tsang, 1992; Zimmerman and Bodvarsson, 1996]:

\[
k_f = \frac{d_H^2}{12}
\]

Equation (9) is in effect a definition of the hydraulic aperture \(d_H \). Introducing permeability \(k_f \) into equation (8), and noting its relation to \(d_H \), yields

\[
\frac{L_g dt}{\cos \theta} = \frac{1}{C_{18/C_{19}}} \frac{d_H}{C_{18/C_{19}}} \frac{L_g dt}{\cos \theta}
\]

\[
N_{ca} = \left(\frac{\nabla P k_f}{\gamma \cos \theta} \right) \left[\left(\frac{d_H}{d_t} \right)^2 \left(\frac{L_g}{d_t} \right)^2 \frac{1}{1 - \left(\frac{d_H}{d_t} \right)} \right]
\]

The first part of this definition of the capillary number is identical to equation (2), i.e., that traditionally used for porous media. The second part is a geometric term that accounts for the effect of fracture roughness: the narrowness of the “throats,” the distance between throats, and the contrast in aperture between pore throats and bodies. A similar geometric term based on the length of a ganglion in the definition of \(N_{ca} \) for rock matrix was recently identified [Yeganeh et al., 2016]. To be useful, the terms in this definition must be derivable from a consideration of the fracture itself, without, for instance, needing to conduct a two-phase flow experiment.

We first consider a 2-D network representation of the fracture. We take the characteristic pore-throat aperture \(d_t \) to be the aperture at the percolation threshold of this network. We take \(d_b \) to be the average pore-body aperture, and the typical length of a pore \(L_p \) to be \(L_g \). A simpler approach, and equally accurate, we find, is to take the correlation length \(L_{cor} \) of the aperture distribution for \(L_p \) (Table 1). Individual ganglia may differ in length from \(L_p \) or \(L_{cor} \), but on average, they are expected to scale with either measure, as in 3-D porous media [Larson et al., 1981; Chatzis et al., 1983; Mayer and Miller, 1992]. The value of \(d_H \) is determined from the permeability of the fracture, measured in a single-phase flow experiment. In principle it could be derived from flow simulations using the measured aperture distribution. We show below that all the terms can be estimated from a map of aperture or a model for the fracture. Numerous studies characterizing aperture variation and fracture wall roughness could be used to generate such a representation [Tsang, 1984; Brown and Scholz, 1985; Wang and Narasimhan, 1985; Brown et al., 1986; Schrauf and Evans, 1986; Pyrak-Nolte et al., 1988; Morrow et al., 1990; Johns et al., 1993; Hakami and Larsson, 1996; Odling and Roden, 1997; Oron and Berkowitz, 1998; Hughes and Blunt, 2001; Karpyn et al., 2007; Lang et al., 2015, 2016].

3. Experimental Procedure and Results

We tested this capillary number experimentally as follows. We designed five model fractures made of glass plates: a clear, flat glass plate on the top and rough glass plate on the bottom, glued together at the edges using glass-adhesive material. The plates are also clamped to prevent deformation. Glass plates have been used previously to study flow in fractures [Wan et al., 2000; Chen et al., 2004a, 2004b; Yan et al., 2006; Speyer et al., 2007]. The model fracture is 30 × 10 cm and the area of interest, where the pressure is measured, 16 × 10 cm. As shown below (Table 1), these model fractures exhibit a range of apertures and scales of roughness. The model fracture is placed in a light-isolation box, and light is allowed only from a compact backlight.

Table 1. A Summary of the Geometric Parameters of the Model Fractures (All Values in μm)

<table>
<thead>
<tr>
<th>Sample</th>
<th>(d_H)</th>
<th>(d_t)</th>
<th>(d_b)</th>
<th>(L_p)</th>
<th>(L_{cor})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>660</td>
<td>0</td>
<td>1118</td>
<td>808</td>
<td>2661</td>
</tr>
<tr>
<td>2</td>
<td>79</td>
<td>8</td>
<td>138</td>
<td>68</td>
<td>819</td>
</tr>
<tr>
<td>3</td>
<td>324</td>
<td>54</td>
<td>847</td>
<td>437</td>
<td>5156</td>
</tr>
<tr>
<td>4</td>
<td>116</td>
<td>45</td>
<td>255</td>
<td>145</td>
<td>4415</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>0</td>
<td>198</td>
<td>118</td>
<td>2421</td>
</tr>
</tbody>
</table>

The value of \(d_H \) is determined from the permeability of the fracture, measured in a single-phase flow experiment. In principle it could be derived from flow simulations using the measured aperture distribution. We show below that all the terms can be estimated from a map of aperture or a model for the fracture. Numerous studies characterizing aperture variation and fracture wall roughness could be used to generate such a representation [Tsang, 1984; Brown and Scholz, 1985; Wang and Narasimhan, 1985; Brown et al., 1986; Schrauf and Evans, 1986; Pyrak-Nolte et al., 1988; Morrow et al., 1990; Johns et al., 1993; Hakami and Larsson, 1996; Odling and Roden, 1997; Oron and Berkowitz, 1998; Hughes and Blunt, 2001; Karpyn et al., 2007; Lang et al., 2015, 2016].

3. Experimental Procedure and Results

We tested this capillary number experimentally as follows. We designed five model fractures made of glass plates: a clear, flat glass plate on the top and rough glass plate on the bottom, glued together at the edges using glass-adhesive material. The plates are also clamped to prevent deformation. Glass plates have been used previously to study flow in fractures [Wan et al., 2000; Chen et al., 2004a, 2004b; Yan et al., 2006; Speyer et al., 2007]. The model fracture is 30 × 10 cm and the area of interest, where the pressure is measured, 16 × 10 cm. As shown below (Table 1), these model fractures exhibit a range of apertures and scales of roughness. The model fracture is placed in a light-isolation box, and light is allowed only from a compact backlight.
which provides a constant and even illumination beneath the fracture. A high-definition camera is placed on top of the fracture to capture images during the experiments. Water is injected through a standard infusion pump. The experiments start by measuring the hydraulic aperture of each model fracture by fully saturating the fracture with water, incrementally increasing injection rate, and recording pressure. The rate-pressure relationship was used to estimate the hydraulic aperture is \[\text{Witherspoon et al., 1980; Hakami and Larsson, 1996} \]

\[Q = \frac{1}{12} \frac{\left| \nabla P \right| d_H^3}{\mu} \]

where \(Q \) is volumetric flow rate, \(|\nabla P| \) is pressure gradient, \(w \) is the width perpendicular to flow, \(d_H \) is the hydraulic aperture, and \(\mu \) is the viscosity. The flow experiments for our model fractures showed a linear relationship between \(Q \) and \(|\nabla P| \), which indicates that the inertial forces were negligible and there was no change in aperture during flow. Table 1, column 1, illustrates the values of the hydraulic aperture.

The hydraulic aperture values and the distribution of the height values were used with the effective medium approximation (EMA) to estimate the gap distance (\(d_z \)) between the highest point of the rough plate and the flat top plate. If \(d_z \) is zero, then the two plates are estimated to be in contact at the peaks of the roughened plate. It was estimated by comparing the hydraulic aperture from the experiments to that estimated using EMA and aperture distribution:

\[\int n(d) \frac{g_m - g(d)}{g(d) - \left(\frac{5}{3} - 1 \right) g_m} \, dd = 0 \]

where \(n(d) \) is the area fraction of each aperture value, \(g(d) \) is the conductivity \((d^3) \) at a location with aperture \(d \), \(Z \) is the coordination number of the network, and \(g_m \) is the effective conductivity of the medium, i.e., \(d_H^3 \). The coordination number \(Z \) was selected to be 4 [Kirkpatrick, 1973; Rossen and Kumar, 1992]. The distance \(d_z \) was adjusted until equation (13) was satisfied with \(g_m = d_H^3 \). Table 1, column 2, shows the estimated gap \(d_z \) between peaks of the rough plate and the top plate in each model fracture. Table 1 also shows that the ratio \((d_z/L_p) \) ranges from about 3 (Sample 1) to about 30 (Sample 4). The width of a throat in
the fracture plane scales with (but is somewhat smaller than) L_p; this indicates that for all the fractures except for Sample 1 our assumption in equation (6) that interface curvature across the fracture aperture is much greater than that within the fracture plane is very good.

Water-air forced imbibition experiments were conducted using dyed (Methylene Blue, 0.001 weight %) water to enhance the contrast between air and water. The fundamental difference between water-air and water-oil imbibition is the surface tension. We assume $\cos \theta = 1$ (perfectly wetting by water), but at any case, it is constant throughout the experiments. In these experiments, the procedure is as follows. The model fracture parts are thoroughly cleaned using ethanol before fabrication. The injected water is demineralized to avoid mineral precipitation. The syringe and tubes are changed for each model fracture experiment. The water is injected at a rate of 0.5 ml/min in horizontal flow, until no further change in residual air saturation is observed. The water-injection rate is increased, and an image is taken when two conditions are satisfied: first, no further change in air saturation is observed, and, second, the pressure is stable for at least 15 min. Successive images are taken with incremental increases in injection rate until a low residual saturation is achieved. The images are loaded into the image-processing software ImageJ to determine the saturation at each pressure gradient.

Traditionally, area fraction is used as an approximation to fracture saturation [Pieters and Graves, 1994; Chen et al., 2004a, 2004b]. We developed two procedures for the analysis of the images: image thresholding to detect the boundary of the ganglion and the built-in finding-edges option in ImageJ. The difference between these two procedures is used as estimated error in the analysis of the saturation (Figure 2, y axis). The estimated error in N_{ca} (Figure 2, x axis) reflects fluctuations in the measurements of the pressure sensor. Figure 2 shows the relation between air saturation normalized to initial saturation and pressure gradient. In a few cases at relatively low-pressure difference, gas-trapped upstream was displaced into the region we monitored and became trapped there; thus, in a few cases normalized saturation increases before it declines with increasing pressure gradient.

The pressure gradient $|\nabla P|$ required to mobilize ganglia and the rate of change of saturation differ among samples. Figure 3 shows the capillary desaturation curve of the five samples using the conventional capillary number (equation (2)), which is conventionally plotted in a semi-log scale [Larson et al., 1981; Lake et al., 1986; Sheng, 2010]. The scatter is less than in Figure 2, but still, the trend varies by an order of magnitude in N_{ca}. On the other hand, if we use the experimental data along with the geometric parameters we determined for the individual model fractures (equation (11)), namely, d_m, d_h, and L_p, the relationship can be represented by approximately a single curve (Figure 4). The trends for four samples overlap each other, and sample 2 differs from the others by much less than an order of magnitude. The new definition derived from a force balance on a ganglion trapped in a fracture better represents the mobilization of nonwetting discontinuous phase in the fracture, by using the geometric parameters determined for the fracture. As noted, means exist to measure these parameters. Alternatively, it may be possible to develop heuristics to relate fractures of different types (shear or open fractures) or in different geological formations to these parameters, much as N_{ca} correlations in rock are adjusted for different formations [Larson et al., 1981; Lake et al., 1986].

Figure 4. Normalized air saturation in experiments versus new capillary number (equation (11)). The relationship can be represented by approximately a single curve if the defined fracture geometric parameters are considered.

Acknowledgments

The authors acknowledge Saudi Aramco for providing the scholarship for AlQuaimi to do his PhD and also the generous support provided by the sponsors of the Joint Industry Project on Foam for Enhanced Oil Recovery at Delft University of Technology. Additional data are made available through Delft University of Technology Repository via http://dx.doi.org/10.4121/uuid:b959da2e-f955-4991-b2bc-b2514397671f.

References

