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MUSIC SIGNAL PROCESSING 

Zhiyao Duan, Slim Essid, Cynthia C.S. Liem, 
Gaël Richard, and Gaurav Sharma

In the physical sciences and engineering domains, music has 
traditionally been considered an acoustic phenomenon. From a 
perceptual viewpoint, music is naturally associated with hear-

ing, i.e., the audio modality. Moreover, for a long time, the ma-
jority of music recordings were distributed through audio-only 
media, such as vinyl records, cassettes, compact discs, and mp3 
files. As a consequence, existing automated music analysis ap-
proaches predominantly focus on audio signals that represent 
information from the acoustic rendering of music.

Music performances, however, are typically multimodal 
[1], [2]: while sound plays a key role, other modalities are 
also critical to enhancing the musical experience. In particu-
lar, the visual aspects of music—be they disc cover art, vid-
eos of live performances, or abstract music videos—play an 
important role in expressing musicians’ ideas and emotions. 
With the popularization of video-streaming services over the 
past decade, such visual representations also are increasingly 
available with distributed music recordings. In fact, video-
streaming platforms have become one of the preferred music 
distribution channels, especially among the younger genera-
tion of music consumers.

Simultaneously seeing and listening to a musical perfor-
mance often provides a richer experience than pure listening. 
Researchers have found that “the visual component is not a 
marginal phenomenon in music perception, but an important 
factor in the communication of meanings” [3]. Even for presti-
gious classical music competitions, studies have revealed that 
visually perceived elements of the performance, such as the 
musician’s gestures, motions, and facial expressions, affect the 
evaluations of judges (experts or novices alike) even more sig-
nificantly than the sound [4].

Symphonic music provides another example of visible com-
municated information where large groups of orchestra musi-
cians play simultaneously in close coordination. For expert 
audiences familiar with the genre, both the visible coordination 
between musicians and the ability to closely watch individuals 
within the group add to the attendee’s emotional experience of 
a concert [5]. Attendees unfamiliar with the genre can also be 
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better engaged via enrichment, i.e., offering supporting infor-
mation in various modalities (e.g., visualizations or textual 
explanations) beyond the stimuli that the event naturally trig-
gers in the physical world.

In addition to the audiences at music presentations, others 
also gain from information obtained through audiovisual rath-
er than audio-only analysis. In educational settings, instrument 
learners benefit significantly from watching demonstrations by 
professional musicians, where the visual presentation provides 
deeper insight into specific instrument-technical aspects of the 
performance (e.g., fingering or choice of strings). Generally, 
when broadcasting audiovisual productions involving large 
ensembles captured with multiple recording cameras, it is also 
useful for the producer to be aware of which musicians are vis-
ible in which camera stream at each point in time. For such 
analyses to be done, relevant information needs to be extracted 
from the recorded video signals and coordinated with record-
ed audio. As a consequence, there has recently been growing 
interest in the visual analysis of musical performances, even 
though such analysis was largely overlooked in the past.

Aim and focus 
In this article, we aim to introduce this emerging area to the 
music signal processing community and the broader signal pro-
cessing community. To our knowledge, this article is the first 

overview of research in this area. For conciseness, we restrict 
our attention to the analysis of audiovisual music performances, 
which is an important subset of audiovisual music productions 
that is also representative of the main challenges and techniques 
of this field of study. Other specific applications, such as the 
analysis of music video clips or other types of multimodal re-
cordings not involving audio and visuals (e.g., lyrics or music 
score sheets), although important in their own right, are not cov-
ered here to maintain a clear focus and a reasonable length.

Significance and challenges

Significance
Figure 1 illustrates some examples of how visual and aural 
information in a musical presentation complement each other, 
and how they offer more information on the performance than 
what can be obtained by considering only the audio channel 
and a musical score. In fact, while the musical score is often 
considered to be the ground truth of a musical presentation, 
significant performance-specific expressive information, such 
as the use of vibrato, is not indicated in the score and is instead 
evidenced in the audiovisual performance signals.

Compared to audio-only music performance analysis, the 
visual modality offers extra opportunities to extract musi-
cally meaningful cues out of recorded performance signals. 

A

B

C

A

B

C

The player’s hand
positions correspond
to played pitches.

The violinist’s hand
movement produces
vibrato frequency
fluctuations. String
choices affect timbre.

Piano sounds have strong
onsets with subsequent
sound decays. The way the
pianist makes impacts on the
piano keys affects the loudness
and timbre of the sound.

The violinist’s bowing
movements affect the
sound produced,
e.g., causing subtle
onset entrances and
subsequent tone
development.

(a)

(b)

(c)

FIGURE 1. Examples of the information present in three parallel representations of a music performance excerpt: (a) a spectrogram of a recorded audio 
signal, (b) a video recording of performing musicians, and (c) a score of the performed music. 
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In some cases, the visual modality allows for addressing tasks 
that would not be possible in audio-only analysis, e.g., tracking 
a musician’s fingerings or a conductor’s gestures and analyz-
ing individual players in the same instrumental section of an 
orchestra. In other cases, the visual modality provides signifi-
cant help in task solving, e.g., in source separation and in the 
characterization of expressive playing styles. In the “Overview 
of Existing Research” section, we discuss several representa-
tive tasks along these lines.

Audiovisual analysis of musical performances broadens 
the scope of music signal processing research, connecting the 
audio signal processing area with other areas, i.e., image pro-
cessing, computer vision, and multimedia. The integration of 
the audio and visual modalities also naturally creates a connec-
tion with emerging research areas, such as virtual reality and 
augmented reality, and extends music-related human–comput-
er interaction. It serves as a controlled test bed for research on 
multimodal data analysis, which is critical for building robust 
and universal intelligent systems.

Challenges
The multimodal nature of audiovisual analysis of music pos-
es new research challenges. First, the visual scenes of music 
presentations present new problems for image processing and 
computer vision. Indeed, the visual scene is generally cluttered, 
especially when multiple musicians are involved, who addition-
ally may be occluded by each other and by music stands. Also, 
musically meaningful motions may be subtle (e.g., fingering 
and vibrato motion), and camera views may be complex (e.g., 
musicians not facing toward cameras, zoom-in/out, and chang-
es of views).

Second, the way to integrate audio and visual processing in 
the modeling stage of musical scene analysis is a key challenge. 
In fact, independently tackling the audio and visual modalities to 
merely fuse the output of the corresponding (unimodal) analysis 
modules at a later stage is generally not an optimal approach. To 
take advantage of potential cross-modal dependencies, it is better 
to combine low-level audiovisual representations as early as pos-
sible in the data analysis pipeline. This is, however, not always 
straightforward. Certain visual signals (e.g., the bowing motion 
of string instruments) and audio signals (e.g., note onsets) of a 
sound source are often highly cor-
related, yet some performer move-
ments (e.g., head nodding) are not 
directly related to sound [6]. How 
to discover and exploit audiovi-
sual correspondence in a complex 
audiovisual scene of music perfor-
mances is thus a key question.

Third, the lack of annotated 
data is yet another challenge. While 
commercial recordings are abun-
dant, they are usually not annotated 
and are also subject to copyright 
restrictions that limit their distribu-
tion and use. Annotated audio data 

sets of musical performances are already scarce because of the 
complexities of recording and ground-truth annotation. Audiovi-
sual data sets are even scarcer, and their creation requires more 
effort. The lack of large-scale annotated data sets limits the appli-
cation of many supervised learning techniques that have proven 
successful for data-rich problems. We note that available music 
data sets were surveyed in a recent paper [7] that detailed the cre-
ation of a new multitrack audiovisual classical music data set. The 
data set provided in [7] was relatively small, with only 44 short 
pieces, but was richly annotated, providing individual instrument 
tracks to allow the assessment of source separation methods and 
associated music score information in a machine-readable format.

At the other end of the data spectrum, the YouTube-8M 
data set [8] provides a large-scale labeled video data set (with 
embedded audio) that also includes many music videos. How-
ever, the YouTube-8M data set is currently annotated only with 
overall video labels and therefore is suited primarily for video/
audio classification tasks.

Overview of existing research
It is not an easy task to give a well-structured overview of an 
emerging field, yet here we make a first attempt from two per-
spectives. The following section categorizes the existing work 
into different analysis tasks for different instruments, while the 
section after that provides a perspective on the type of audiovi-
sual correspondence that is exploited during the analysis.

Categorization of audiovisual analysis tasks
Table 1 organizes existing work on audiovisual analysis of musi-
cal presentations along two dimensions: 1) the type of musical 
instrument and 2) the analysis task.

The first dimension is not only a natural categorization of 
musicians in a music performance but is also indicative of the 
types of audiovisual information revealed during the perfor-
mance. For example, percussionists show large-scale motions 
that are almost all related to sound articulation. Pianists’ hand 
and finger motions are also related to sound articulation, but 
they are much subtler and also indicative of the notes being 
played (i.e., the musical content). For guitars and strings, the 
left-hand motions are indicative of the notes being played, while 
the right-hand motions tell us how the notes are articulated (e.g., 

Table 1. A categorization of existing research on audiovisual analysis of music performances according to 
the type of instrument and the analysis task.

Visual Is Critical Is Significant 

Tasks Fingering Association Play/Nonplay Onset Vibrato Transcription Separation
Percussion N/A — [9] — N/A [10] —
Piano [11], [12] — — — N/A — —
Guitar [13]–[16] — — — — [16] —
Strings [17] [18], [19] [9], [20] [19] [21] [17], [20] [22]
Wind — — [9] [23] — — —
Singing N/A — — — — — —
Certain combinations of instruments and tasks do not make sense, and are marked N/A. Various techniques and their 
combinations have been employed, including support vector machines, hidden Markov models, nonnegative matrix fac-
torization, and deep neural networks.
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legato or staccato). For wind instruments, note articulations are 
difficult to see, and almost all visible motions (e.g., the fingering 
of a clarinet or the hand positioning of a trombone) are about 
notes. Finally, singers’ mouth shapes reveal only the syllables 
being sung but not the pitch; also, their body movements can be 
correlated with the musical content but are not predictive enough 
for the details.

The second dimension is about tasks or aspects that the 
audiovisual analysis focuses on. The seven tasks/aspects are fur-
ther classified into two categories: tasks in which visual analysis 
is critical and those in which visual analysis provides significant 
help. In the first category, there are the following tasks:

■■ Fingering analysis: It is very difficult to infer the fingering 
purely from audio, while it becomes possible by observing 
the finger positions. There has been research on fingering 
analysis from visual analysis for guitar [13]–[16], violin 
[17], and piano [11], [12]. Fingering patterns are mostly 
instrument specific, but the common idea is to track hand 
and finger positions relative to the instrument body. 

■■ Audiovisual source association: This is a task that deter-
mines which player in the visual scene corresponds to which 
sound source in the audio mixture. The problem is addressed 
for string instruments by modeling the correlation between 
visual features and audio features, such as the association 
between bowing motions and note onsets [18] and that 
between vibrato motions and pitch fluctuations [19].
The second category contains more tasks. They can be listed 

as follows:
■■ Playing/nonplaying (P/NP) activity detection: In an ensem-

ble or orchestral setting, it is extremely difficult to detect 
from the audio mixture whether a certain instrument is 
being played, yet the visual modality, if not occluded, 
offers a direct observation of the playing activities of each 
musician. Approaches based on image classification and 
motion analysis [9], [20] have been proposed.

■■ Vibrato analysis: This is for string instruments. The period-
ic movement of the fingering hand detected from visual 
analysis has been shown to correlate well with the pitch 
fluctuation of vibrato notes and has been used to detect 
vibrato notes and analyze the vibrato rate and depth [21].

■■ Automatic music transcription: This and its subtasks, such 
as multipitch analysis, are very challenging if only audio 
signals are available. Studies have found that audiovisual 
analysis is beneficial for monophonic instruments like the 
violin [17], polyphonic instruments like the guitar [16] and 
drums [10], and musical bodies like string ensembles [20]. 
The common underlying idea is to improve audio-based 
transcription results with play/nonplay activity detection 
and fingering analysis. 

■■ Audio source separation: This is a task that can be signifi-
cantly improved by audiovisual analysis. The motions of 
players are often highly correlated with the characteristics 
of the sound sources [6]. There has been work on modeling 
such correlations for audio source separation [22].
Besides instrumental players, conductor gesture analysis 

has also been investigated in audiovisual music performance 

analysis. Indeed, conductors do not directly produce sounds 
(besides occasional noises), but they are critical in musical presen-
tations. Under the direction of different conductors, the same 
orchestra can produce significantly different renditions of the 
same musical piece. One musically interesting research prob-
lem is comparing the conducting behaviors of different conduc-
tors and analyzing their influences on the sound production of 
the orchestra. There has been work on conductor baton tracking 
[24] and gesture analysis [25] using visual analysis.

Different levels of audiovisual correspondence
Despite the various forms of music performances and analysis 
tasks, the common underlying idea of audiovisual analysis is to 
find and model the correspondence between audio and visual 
modalities. This correspondence can be static, i.e., between a 
fixed image and a short time frame of audio. For example, a 
certain posture of a flutist is indicative of whether the musician 
is playing or not; a static image of a fingering hand is informa-
tive regarding the notes being played.

This correspondence can also be dynamic, i.e., between a 
dynamic movement observed in the video and the fluctuation 
of audio characteristics. For example, a strumming motion of a 
guitar player’s right hand is a strong indicator of the rhythmic 
pattern of the music passage; the periodic rolling motion of a 
violin player’s left hand corresponds well to the pitch fluctuation 
of vibrato notes. Because of the large variety of instruments and 
their unique playing techniques, this dynamic correspondence 
is often instrument specific. The underlying idea of dynamic 
correspondence, however, is universal among different instru-
ments. Therefore, it is appealing to build a unified framework 
for capturing this dynamic correspondence. If such correspon-
dence can be captured robustly, the visual information can be 
better exploited to stream the corresponding audio components 
into sources, leading to visually informed source separation.

In the following three sections, we further elaborate upon 
these different levels of audiovisual correspondence by summa-
rizing existing works and presenting concrete examples.

Static audiovisual correspondence
In this section, we first discuss works focusing on the modeling 
of static audiovisual correspondence in musical performances. 
Static here refers to correspondences between sonic realiza-
tions and their originating sources that remain stable over the 
course of a performance and for which the correspondence 
analysis does not rely on short-time dynamic variations. After 
giving a short overview with more concrete examples, a more 
extended case study discussion will be given on P/NP detection 
in instrument ensembles.

Overview
Typical static audiovisual correspondences have to do with posi-
tions and poses: which musician sits where, at what parts of the 
instrument the interaction occurs that leads to sound production, 
and how the interaction with the instrument can be characterized.

Regarding musicians’ positions, when considering large 
ensemble situations, it is too laborious for a human to annotate 
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every person in every shot, especially when multiple cameras 
record the performance at once. At the same time, because of 
the typically uniform concert attire worn by ensemble mem-
bers and musicians being part of large player groups that will 
actively move and occlude one another, recognizing individual 
players purely by computer vision methods is again a nontrivial 
problem, for which it also would be unrealistic to acquire large 
amounts of training data. However, within the same piece, 
orchestra musicians will not change positions relative to one 
another. Therefore, the orchestra setup can be considered as a 
quasi-static scene.

The work in [26] proposed to identify each musician in each 
camera over a full-recording timeline by combining partial 
visual recognition with knowledge of the scene’s configuration 
and a human-in-the-loop approach in which humans were stra-
tegically asked to indicate the identities of performers in visu-
ally similar clusters. With minimal human interaction, a scene 
map was built up, and the spatial relations within this scene 
map assisted face clustering in crowded quasi-static scenes.

Regarding positions of interest on an instrument, work has 
been performed on the analysis of fingering. This can be seen 
as static information, as the same pressure action on the same 
position of the instrument will always yield the same pitch 
realization. Visual analysis has been performed to analyze fin-
gering actions on pianos [11], [12], guitars [13]–[16], and vio-
lins [16], [17]. The main challenges involve the detection of the 
fingers in unconstrained situations and without the need to add 
markers to the fingers.

Case study: P/NP detection in orchestras
Whether individual musicians in large ensembles are playing 
their instrument or not seems to be unimportant; however, this 
information can be significant to critical in audiovisual analy-
sis. Within the same instrument group, not all players may 
be playing at once. If this occurs in a 
multichannel audio recording, it is not 
trivial to distinguish which subset of in-
dividuals is playing, while this will vi-
sually be obvious. Furthermore, having 
a global overview of which instruments 
are active and visible in performance 
recordings provides useful information 
for audiovisual source separation.

In [9], a method was proposed to 
detect P/NP information in multicamera 
recordings of symphonic concert perfor-
mances in which unconstrained cam-
era movements and varying shooting 
perspectives occur. As a consequence, 
performance-related movement may 
not always be easily observed from the 
video, although coarser P/NP informa-
tion can still be inferred through face 
and pose clustering.

A hierarchical method was proposed, 
which is illustrated in Figure 2 and that 

focuses on employing clustering techniques rather than learning 
sophisticated human–object interaction models. First, musician 
diarization is performed to annotate which musician appears 
when and where in a video. For this, keyframes are extracted 
at regular time intervals. In each keyframe, face detection is 
performed, including an estimation of the head pose angle and 
an inference of bounding boxes for the hair and upper body of 
the player. Subsequently, segmentation is performed on the esti-
mated upper body of the musician, taking into account the gaze 
direction of the musician, as the instrument is expected to be 
present in the same direction.

After this segmentation step, face clustering methods are 
applied, including several degrees of contextual information 
(e.g., on the scene and upper body) and different feature sets, 
the richest ones consisting of a pyramid histogram of orient-
ed gradients, the Joint Composite Descriptor, Gabor texture, 
edge histogram, and auto color correlogram.

Upon obtaining per-musician clusters, a renewed cluster-
ing is performed per musician, aiming to generate subclusters 
that contain images of only the same musician, performing one 
particular type of object interaction, recorded from one par-
ticular camera viewpoint. Finally, a human annotator action 
completes the labeling step: an annotator has to indicate who 
the musician is and whether a certain subcluster contains a 
playing or nonplaying action. As the work in [9] investigated 
various experimental settings (e.g., clustering techniques and 
feature sets), yielding thousands of clusters, the expected 
annotator action at various levels of strictness is simulated by 
setting various thresholds on how dominant a class within a 
cluster should be.

An extensive discussion of evaluation outcomes per frame-
work module is given in [9]. Several takeaway messages can 
be derived from this work. First of all, the face and upper 
body regions are most informative for clustering. Furthermore, 

Cluster 7 (P)

A

B

Cluster 5 (P)

Cluster 8 (NP)

Cluster 6 (NP)

Cluster 4 (P)Cluster 3 (NP)

Cluster 2 (X)Cluster 1 (NP)

(a) (b)

FIGURE 2. An example of hierarchical clustering steps for P/NP detection: (a) Diarization is performed 
on global face clustering results to identify a musician’s identity. (b) Then, within each global artist 
cluster, subclusters are assigned with a P/NP label.
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FIGURE 3. An overview of an audiovisual vibrato detection and analy-
sis system for string instruments in ensemble performances that was 
proposed in [21].

the proposed method can effectively discriminate play-
ing versus nonplaying action, while generating a reasonable 
number of subclusters (i.e., enough to yield informative 
subclusters, but not too many, which would cause a high 
annotator workload). Face information alone may already be 
informative, as it indirectly reveals pose. However, in some 
cases, clustering cannot yield detailed, relevant visual analy-
ses (e.g., subtle mouth movements for a wind player), and 
the method has a bias toward false positives, which can be 
caused by playing-anticipation movement. The application of 
merging strategies per instrumental part helps in increasing 
timeline coverage, even if a musician is not always detect-
ed. Finally, high annotator rejection thresholds (demanding 
clear majority classes within clusters) effectively filter out 
nonpure clusters.

One direct application of P/NP activity detection is in auto-
matic music transcription. In particular, for multipitch esti-
mation (MPE), P/NP information can be used to improve the 
estimation of instantaneous polyphony (i.e., the number of pitch-
es at a particular time) of an ensemble performance, assuming 
that each active instrument produces only one pitch at a time. 
Instantaneous polyphony estimation is a difficult task from the 
audio modality itself, and its errors constitute a large proportion 
of music transcription errors. Furthermore, P/NP is also helpful 
for multipitch streaming (MPS), i.e., assigning pitch estimates 
to pitch streams corresponding to instruments: a pitch estimate 
should be assigned only to an active source. This idea has been 
explored in [20], and it was shown that both MPE and MPS 
accuracies are significantly improved by P/NP activity detection 
for ensemble performances.

Dynamic audiovisual correspondence
In a music performance, a musician makes many movements 
[6]. Some of these (e.g., bowing and fingering) are the articu-
lation sources of sound while others (e.g., head shaking) are 
responses to the performance. In both cases, the movements 
show a strong correspondence with certain feature fluctuations 
in the music audio. Capturing this dynamic correspondence is 
important for the analysis of musical presentations.

Overview
Because of the large variety of musical instruments and their 
playing techniques, dynamic audiovisual correspondence 
displays different forms. In the literature, researchers have in-
vestigated the correspondence between bowing motions and 
note onsets of string instruments [18], between hitting actions 
and drum sounds of percussion instruments [10], and between 
left-hand rolling motions and pitch fluctuations of string vibra-
to notes [19], [21]. On the visual modality, object tracking and 
optical flow techniques have been adopted to track relevant 
motions, while on the audio modality, different audio features 
have been considered.

The main challenge lies in determining where to look for 
the dynamic correspondence and what to look for. This is chal-
lenging not only because the correspondence is dependent on 
the instrument and playing technique, but also because there 
are many irrelevant motions in the visual scene [6] and inter-
ferences from multiple, simultaneous sound sources in the 
audio signal. Almost all existing methods rely on prior knowl-
edge of the instrument type and playing techniques to attend to 
relevant motions and sound features. For example, for the asso-
ciation between string players and score tracks, [18] captured 
the correspondence between bowing motions and some note 
onsets. This is informed by the fact that many string instru-
ment notes are started with a new bow stroke and that different 
tracks often show different onset patterns. For the association 
of wind instruments, the onset cue is still useful, but the motion 
capture module would need to be revised to capture the more 
subtle and diverse finger movements.

Case study: Vibrato analysis of string instruments
Vibrato is an important musical expression, and vibrato analy-
sis is important for musicological studies, music education, 
and music synthesis. Acoustically, vibrato is characterized 
by a periodic fluctuation of pitch, with a rate between 5 and 
10 Hz. Audio-based vibrato analysis methods rely on the esti-
mation of the pitch contour. In an ensemble setting, however, 
multipitch estimation is very challenging because of the inter-
ference of other sound sources. For string instruments, vibrato 
is the result of periodic change of the length of the vibrating 
string, which is effectuated by the rolling motion of the left 
hand. If the rolling motion is observable, then vibrato notes 
can be detected and studied with the help of visual analysis. 
Because such analysis does not suffer from the presence of 
other sound sources (barring occlusion), it offers a tremen-
dous advantage for vibrato analysis of string instruments in 
ensemble settings.

In [21], an audiovisual vibrato detection and analysis system 
was proposed. As shown in Figure 3, this approach integrates 
audio, visual, and score information and contains several 
modules to capture the dynamic correspondence among 
these modalities.

The first step is to detect and track the left hand for each 
player using the Kanade–Lucas–Tomasi tracker. This results 
in a dynamic region of the tracked hand, shown as the green 
box in Figure 4(a). Optical flow analysis is then performed to 
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calculate motion velocity vectors for each pixel in this region 
in each video frame. Motion vectors in frame t  are spatially 
averaged as ( ) [ ( ), ( )],t u t u tu x y=  where ux  and uy  represent 
the mean motion velocities in the x  and y  directions, respec-
tively. It is noted that these motion vectors may also contain 
the slower large-scale body movements that are not associ-
ated with vibrato. Therefore, to eliminate the body movement 
effects, the moving average of the signal ( )tu  is subtracted 
from itself to obtain a refined motion estimation ( ) .tv  Fig-
ure 4(c) shows the distribution of all ( )tv  across time, from 
which the principal motion direction can be inferred through 
principal component analysis, which aligns well along the fin-
gerboard. The projection of the motion vector ( )tv  onto the 
principal direction is defined as the one-dimensional (1-D) 
motion velocity curve ( ) .tV  Taking an integration over time, 
one obtains a 1-D hand displacement curve ( ) ( ) ,X t dVt08 x x=  
which corresponds directly to the pitch fluctuation.

To use the motion information to detect and analyze vibra-
to notes, one needs to know to which note the hand motion 
corresponds. This is solved by audiovisual source association 
and audio–score alignment. In this work, audiovisual source 
association is performed through the correlation between 
bowing motions and note onsets, as described in [18]. Audio–
score alignment [27] synchronizes the audiovisual perfor-
mance (assuming perfect audiovisual synchronization) with 
the score, from which onset and offset times of each note are 
estimated. This can be done by comparing the harmonic con-
tent of the audio and the score and dynamic time warping. 
Score-informed source separation is then performed, and the 
pitch contour of each note is estimated from the separated 
source signal.

Given the correspondence between the motion vectors and 
the sound features (pitch fluctuations) of each note, vibrato 
detection is performed with two methods. The first uses a sup-
port vector machine to classify each note as vibrato or nonvibra-
to using features extracted from the motion vectors. The second 

technique simply sets a threshold on the autocorrelation of the 
1-D hand displacement curve ( ) .tX

For vibrato notes, the vibrato rate can also be calculated from 
the autocorrelation of the hand displacement curve ( ) .tX  
However, the vibrato extent (i.e., the dynamic range of the 
pitch contour) cannot be estimated by capturing the motion 
extent. This is because it varies based upon the camera dis-
tance and angle as well as the vibrato articulation style, hand 
position, and instrument type. To address this issue, the hand 
displacement curve is scaled to match the estimated noisy 
pitch contour from score-informed audio analysis. Specifical-
ly, assuming ( )tF  is the estimated pitch contour [in a Musical 
Instrument Digital Interface (MIDI) number] of the detected 
vibrato note from audio analysis after subtracting its dc 
component, the vibrato extent ve (in musical cents) is esti-
mated as ,vet  with

	 ( )
( )

,arg minv F t v
w
X t

100 ·e
v

e
e

t t
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e
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= -
=

t
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where ( )F t100 ·  is the pitch contour in musical cents and wet  is 
the dynamic range of ( ) .tX

Music source separation using dynamic 
correspondence
Audio source separation in music recordings is a particularly 
interesting task, where audiovisual matching between the vi-
sual events of a performer’s actions and their audio rendering 
can be of great value. Notably, such an approach enables ad-
dressing audio separation tasks that could not be performed 
in a unimodal fashion (solely analyzing the audio signal), as 
when considering two or more instances of the same instru-
ments, say, a duet of guitars or violins, as done in the work of 
Parekh et al. [22]. Knowing whether a musician is playing or 
not at a particular point in time gives important cues for source 
allocation. Seeing the hand and finger movements of a cellist 
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FIGURE 4. The motion capture results from (a) left-hand tracking, (b) color-encoded pixel velocities, and (c) a scatter plot of frame-wise refined motion 
velocities. 
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helps us attend to the cello’s section sound in an orchestral per-
formance. The same idea applies to visually informed audio 
source separation.

Overview
There is a large body of work in multimodal (especially au-
diovisual) source separation for speech signals, but much 
less effort has been dedicated to audiovisual music perfor-
mance analysis for source separation. It was shown in the 
work of Godoy et al. [6], however, that there are certain play-
ers’ motions that are highly correlated to the sound charac-
teristics of audio sources. In particular, by analyzing a solo 
piano performance, the authors highlighted the correlation 
that may exist between music and hand movements or the 
sway in the upper body. An earlier work by Barzelay and 
Shechner [28] exploited such a correlation in introducing an 
audiovisual system for individual musical source enhance-
ment in violin–guitar duets. The authors isolated audio-asso-
ciated visual objects by searching for cross-modal temporal 
incidences of events and then used these to perform musical 
source separation.

Case study: Motion-driven source separation 
in a string quartet
The idea that motion characteristics obtained from visual 
analysis encode information about the physical excitation of 
a sounding object is also exploited in more recent studies. 
As an illustration, we detail a model in which it is assumed 
that the characteristics of a sound event (e.g., a musical note) 
is highly correlated with the speed of sound-producing mo-
tion [22]. More precisely, the proposed approach extends the 
popular nonnegative matrix factorization (NMF) framework 
using visual information about objects’ motion. Applied to 
string quartets, the motion of interest is mostly carried by the 

bow speed. The main steps of this method are the following 
(see Figure 5):
1)	 Gather motion features, i.e., average motion speeds (fur-

ther described later), in a data matrix M RN C! #
+  that sum-

marizes the speed information of the coherent motion 
trajectories within predefined regions. In the simplest 
case, there is one region per musician (i.e., per source). 

CC jj
=/  is the number of motion clusters, where C j  is 

the number of clusters per source ,j  and N  is the frame 
size of the short-time Fourier transform (STFT) used for 
computing the audio signal’s spectrogram.

2)	 Ensure that the typical motion speeds (such as the bow 
speed) are active synchronously with the typical audio 
events. This is done by constraining the audio spectrogram 
decomposition obtained by NMF V WH.  and the motion 
data decomposition M H A. <  to share the same activity 
matrix ,H RK N! #

+  where W R KF! #
+  is the matrix collect-

ing the so-called nonnegative audio spectral patterns (col-
umn-wise), and where [ , , ]A c1 fa a=  gathers nonnegative 
linear regression coefficients for each motion cluster, with 

[ , , ] .Kcc c
T

1 fa aa =

3)	 Ensure that only a limited number of motion clusters is 
active at a given time. This can be done by imposing a 
sparsity constraint on .A

4)	 Assign an audio pattern to each source for separation and 
reconstruction. This is done by assigning the kth basis 
vector (column of )W  to the jth  source, if argmaxc kca  
belongs to the jth  source cluster. The different sources are 
then synthesized by element-wise multiplication between 
the soft mask, given by j( ) ./ ( ),W H WHj  and the mixture 
spectrogram, followed by an inverse STFT, where ./  stands 
for element-wise division, and W j  and H j  are the subma-
trices of spectral patterns wk  and their activations hk  
assigned to the jth  source (see Figure 6).
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FIGURE 5. A joint audiovisual music source separation system. 
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A possible formulation for the complete model can then be 
written as the following optimization problem:

	 ,Dminimize V WH M H A A
, w

KL F

k1

2
1, ,

k

0≥W H A
; m n+ +-

6

<

=

^
^

h
h

� (2)

where DKL  is the Kullback–Leibler divergence, m  and n  are 
positive hyperparameters (to be tuned), and . F  is the Frobe-
nius norm.

More details can be found in [22], but for most situations, 
this joint audiovisual approach significantly outperformed 
the corresponding sequential approach proposed by the same 
authors and the audio-only approach introduced in [29]. For 
example, for a subset of the University of Rochester Multimod-
al Music Performance data set [7], the joint approach obtained 
a signal-to-distortion ratio of 7.14 dB for duets and 5.14 dB for 
trios, while the unimodal approach of [29] obtained signal-to-
distortion ratios of 5.11 dB and 2.18 dB, respectively. It is worth 
mentioning that, in source separation, a difference of 1 dB+  is 
usually acknowledged as significant.

The correlation between motion in the visual modality and 
audio is also at the core of some other recent approaches. 
While bearing some similarities to the system detailed pre-
viously, the approach explained in [18] further exploits the 
knowledge of the MIDI score to well align the audio record-
ing (e.g., onsets) and video (e.g., bow speeds). An extension 
of this work is presented in [19], where the audiovisual source 
association is performed through a multimodal analysis of 
vibrato notes. It is in particular shown that the fine-grained 
motion of the left hand is strongly correlated with the pitch 
fluctuation of vibrato notes and that this correlation can be 
used for audiovisual music source separation in a score-
informed scenario.

Current trends and future work
This article provides an overview of the emerging field of au-
diovisual music performance analysis. We used specific case 
studies to highlight how techniques from signal processing, 
computer vision, and machine learning can jointly exploit the 
information contained in the audio and visual modalities to ef-
fectively address a number of music analysis tasks.

Current work in audiovisual music analysis has been con-
strained by the availability of data. Specifically, the relative-
ly small size of current annotated audiovisual data sets has 
precluded the extensive use of data-driven machine-learning 
approaches, such as deep learning. Recently, deep learning 
has been utilized for vision-based detection of acoustic timed 
music events [23]. Specifically, the detection of onsets per-
formed by clarinet players was addressed in this work by using 
a three-dimensional convolutional neural network (CNN) that 
relied on multiple streams, each based on a dedicated region 
of interest (ROI) from the video frames that was relevant to 
sound production. For each ROI, a reference frame was exam-
ined in the context of a short surrounding frame sequence, 
and the desired target was labeled as either an onset or not 
an onset. Although state-of-the-art audio-based onset detec-
tion methods outperform the model proposed in [23], the data 
set, task setup, and architecture setup gave rise to interesting 
research questions, especially on how to deal with significant 
events in temporal multimedia streams that occur at fine tem-
poral and spatial resolutions.

Interesting ideas exploiting deep-learning models can also 
be found in related fields. For example, in [30] a promising 
strategy in the context of emotional analysis of music videos 
was introduced. The approach consisted in fusing learned 
audiovisual midlevel representations using CNNs. Another 
important promising research direction is transfer learning, 
which could better cope with the limited size of annotated 

C

N

Source j

K

N K

C

N

F

K

K

N

t

v

Source j
Motion Speeds 

Audio Mixture’s
Spectrogram

M

≈

≈

H A

arg maxc αkc

H
W

wk hk

F

V

FIGURE 6. A joint audiovisual source separation—an illustration of the audio pattern assignment to source j (an example for the k th basis vector).



72 IEEE Signal Processing Magazine   |   January 2019   |

audiovisual musical performance data sets. As highlighted in 
[31], it is possible to learn an efficient audio feature represen-
tation for an audio-only application, specifically audio event 
recognition, by using a generic audiovisual database.

The inherent mismatch between the audio content and the 
corresponding image frames in a large majority of video re
cordings remains a key challenge for audiovisual music anal-
ysis. For instance, at a given point in time, edited videos of 
live performances often show only part of the performers’ 
actions (think of live orchestra recordings). In such situations, 
the audiovisual analysis systems need to be flexible enough to 
effectively exploit the partial and intermittent correspondences 
between the audio and visual streams. Multiple-instance learn-
ing techniques already used for multimodal event detection in 
the computer vision community may offer an attractive option 
for addressing this challenge.

As new network architectures are developed for dealing 
with multimodal temporal signals and as significantly larger 
annotated data sets become available, we expect that deep 
learning-based data-driven approaches will lead to rapid prog-
ress in audiovisual music analysis, mirroring the deep-learning 
revolution in computer vision, natural-language processing, and 
audio analysis.

Beyond the immediate examples included in the case stud-
ies presented in this article, audiovisual music analysis can be 
extended toward other music genres, including pop, jazz, and 
world music. It can also help improve a number of applications 
in various musical contexts. Video-based tutoring for music 
lessons is already popular (e.g., guitar lessons on YouTube). 
The use of audiovisual music analysis can make such lessons 
richer by better highlighting the relations between the player’s 
actions and the resulting musical effects. Audiovisual music 
analysis can similarly be used to enhance other music under-
standing/learning activities, including score-following, auto-
accompaniment, and active listening.

Better tools for modeling the correlation between visual 
and audio modalities can also enable novel applications 
beyond the analysis of music performances. For example, 
in recent work on cross-modal audiovisual generation [32], 
sound-to-image sequence generation and video-to-sound 
spectrogram generation have been demonstrated using deep 
generative adversarial networks. Furthermore, the underly-
ing tools and techniques can also help address other per-
forming arts that involve music. Examples of such work 
include dance movement classification [33] and alignment 
of different dancers’ movements within a single piece [34] 
by using (visual) gesture tracking and (audio) identification 
of stepping sounds.
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