Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.
Prediction of software reliability

Willem D. van Driel a, b, *, J.W. Bikker c, M. Tijink c

a Signify Eindhoven, HTC 7 – 1C, 5656AE Eindhoven, the Netherlands
b Delft University of Technology, the Netherlands
c CQM, 5616, RM, Eindhoven, the Netherlands

ARTICLE INFO

Keywords:
Software
Reliability
Maturity growth
Bayesian statistics

ABSTRACT

It is known that quantitative measures for the reliability of software systems can be derived from software reliability models. And, as such, support the product development process. Over the past four decades, research activities in this area have been performed. As a result, many software reliability models have been proposed. It was shown that, once these models reach a certain level of convergence, it can enable the developer to release the software. And stop software testing accordingly. Criteria to determine the optimal testing time include the number of remaining errors, failure rate, reliability requirements, or total system cost. In this paper we will present our results in predicting the reliability of software for agile testing environments. We seek to model this way of working by extending the Jelinski-Moranda model to a ‘stack’ of feature-specific models, assuming that the bugs are labelled with the feature they belong to. In order to demonstrate the extended model, several prediction results of actual cases will be presented. The questions to be answered in these cases are: how many software bugs remain in the software and should one decide to stop testing the software?

1. Introduction

Digitization and connectivity of lighting systems has seen an exponentially increasing impact in the last years within the lighting industry [1,2]. The impact is far beyond the impact on single products and extends to an ever-larger amount of connected systems. Continuously, more intelligent interfacing with the technical environment and with different kind of users is being built-in by using more and different kind of sensors, (wireless) communication, and different kind of interacting or interfacing devices, see Fig. 1. When the number of components and their interactions significantly increase, so-called large or complex systems are formed. The commonly used description of a large or complex system is given as [1,2]:

A complex system: a system composed of interconnected parts that as a whole exhibit one or more properties (behavior among the possible properties) not obvious from the properties of the individual parts.

With the increasing amount of complexity, it is imperative that the reliability of such systems will enter a next frontier.

The trend towards controlled and connected systems also implies that other components will start playing an equal role in the reliability of such systems. Here, reliability needs to be complimented with availability and other modelling approaches are to be considered [3]. In the lighting industry, there is a strong focus on hardware reliability, including going from component reliability to system reliability. However, in the controlled and connected systems, software plays a much more prominent role than in even sophisticated “single” products such as color-adjustable lamps at home, streetlights, UV sterilization lights and alike. In these systems, availability is more strongly determined by software reliability than by hardware reliability [3]. In a previous study, the reliability of software was evaluated using the Goel-Okumoto reliability growth model [4]. It is known that different models can produce very different answers when assessing software reliability in the future [5]. A significant amount of research has been performed in the area of reliability growth and software reliability, that considers the process of finding (and repairing) bugs in existing software, essentially during a test phase [6–11]. A typical assumption is that the development of the software has finished, except for the bugs that have to be detected and repaired [5,8,12]. The software reliability models then answer questions such as: what is the number of remaining bugs?, how many would we find if we spend a specified number of additional weeks of testing, etc. [13,14]. In a more recent study Rana et al. [15] demonstrated the use of eight different software reliability growth models that were evaluated on eleven large projects. Prior classification of the expected shape was proven to improve the software reliability prediction.
In many software developments companies, software is developed in a cadence of sprints resulting in biweekly releases in the so-called Scaled Agile Framework (SAFe) [16]. This means there is a second reason why bugs are found, apart from finding them by doing tests, namely, new bugs are introduced because new features are added to the software continuously. An important class of software reliability growth models is known as General Order Statistics (GOS) models [17,18]. The special case in which the order statistics come from an exponential distribution is known as the Jelinski-Moranda model [19]. The main assumption for this class of models is that the times between failures of a software system can be defined as the differences between two consecutive order statistics. It is assumed that the initial number of failures, denoted by a, is unknown but fixed and finite. In this paper, we seek to model this way of working by extending the Jelinski-Moranda model to a ‘stack’ of feature-specific models, assuming that the bugs are labelled with the feature they belong to. The feature-specific model parameters can be considered as random effects, so that differences between features are modelled as well. In order to demonstrate the extended model, two use cases will be presented. Here, we model the software testing phase to get a detailed sense of the software maturity. Once software is deemed mature enough by the organization, it is released to the end-users. The new, operational use of the software is different from testing phase, and this phase is not being modelled. The questions to be answered in the two cases are: how many software bugs remain in the software and should one decide to stop testing the software [20,21]? This paper builds on the mathematical model that describes the number of bugs detected in every time interval (sprint), specified per software feature. We derive a way to evaluate the likelihood function, which is used in the next section on estimation. We set out with the model with only one feature, which is a variant of the Jelinski-Moranda model but adapted for the counts per sprint. We need expressions for conditional probabilities based on recent history, where only the cumulative counts turn out to be important. We extend the results to multiple features, where we shift the time axis as different software features are completed at different times. We conclude by describing how all ingredients are combined to the likelihood function.

2. Mathematical derivations and approach

Full details for the mathematical derivations can be found in [22]. The basic concept includes that a software tool has bugs which are detected at time Ti after testing starts at time 0. Ti is independent and exponentially distributed, i.e., Individual bugs are found independently following an exponential distribution. To model agile software development, where new functionality is added after each sprint (taking say two working weeks), we consider software as a set of features: one feature can be considered a single part of the software, or the result of a single “sprint” of development. Bugs are found and fixed for the existing features (the latest and earlier features), and new features can be added at later points in time. This way, you can track and predict the remaining number of bugs for the current set of features (or any other interesting set of features). We use a Bayesian setup [23,24] that allows us to combine the bugs originating from different features. We implemented our Bayesian approach in the Stan modelling framework [25] to estimate the software reliability model for multiple features. We do not employ strong priors although that would be possible, e.g., expressing a prior belief of the degree to which added features are similar to each other in total number of bugs aTi or the speed aTi which bugs are found, bTi.

For a feature f, given values for (aTi, bTi), the setup from above is in essence a Jelinski–Moranda model. The values (aTi, bTi) are considered random, unknown parameters, having the same role as random effects in a (non) linear mixed effects model following some distribution. In a Bayesian context, the aTi, bTi can be considered priors with associated hyperpriors. In our setup, aTi and bTi are modelled as independent truncated normal distributions, where the truncation are at 0 to ensure positive aTi and bTi. Both distributions have a mean and standard deviation parameter, although they are not equal to the expected value and standard deviation due to the truncation. Their posterior distributions give some insight to which extent features are different in size and complexity (in terms of speed of finding bugs). The reading of input data, preprocessing the data, fitting the Stan model, and inspecting convergence and results are done using Python. The Stan website (mc-stan.org) states “Stan is a state-of-the-art platform for statistical modeling and high-performance statistical computation.” The website offers an extensive amount of documentation and examples. The Stan language requires specification of a model in terms of different concepts which are briefly described below. The model is applied in the situation that we have observed a number of sprints with counts to which we fit the data. The key Stan model components are as follow:

- Input data: detect the upper bounds for Number of bugs found in the time interval (N) and the Cumulative number of bugs detected (C) and time point at which a feature starts.
- Parameters: total bugs remaining, the bTi the hyperpriors for the truncated normal distributions of a Ti and bTi.
- Transformed parameters: aTi is considered a transformed parameter, calculated from a combination of data and a model parameter.
- Model: distributions for aTi and bTi hyperpriors for these, and a specification of log likelihood contributions by a double for-loop over features and over sprints, where the feature starting sprints are used.

The bug reports may come from different sources (implemented regression tests and tests by the team). Only bugs of sufficient severity are considered in the predictions. To handle the various sources we simply took the aggregate counts per sprint as input, assuming that the total number of tests in a sprint was comparable, we get a discrete time axis that was reasonably close to both test effort and calendar time. Ticket data were fed into the code, where we distinguished tickets with severity levels S (high) and A (low). We used JIRA [26] output of bug data, a typical one is shown in Fig. 2. Pick-and-mix was used for ticket severity allocation. These tickets either had the allocation open or closed. Open means the issues were being solved, closed means it was solved. Recurring tickets were treated as a new open ticket which can be closed as soon as it is known to be recurrent. Ticket severity denoted as S, A, B, C, or D. S are issues seen as a blocker that need immediate attention. A is seen as critical, B as major C and D as minor severity levels. We have only analyzed the closed tickets. Fig. 2 depicts the full flowchart of the process: from tickets to dashboard values. Actual sprint dates have an equal length for each sprint of two weeks. The outcome is produced automatically.
3. Results

As a real application case, we took connected lighting products that enables you to harness the Internet of Things to transform your building and save up to 80% on energy. LED luminaries with integrated sensors collect anonymous data on lighting performance and how workers use the workplace. This enables you to optimize the lighting, energy uses, cleaning, and space usage to improve efficiency, reducing energy usage, and cost. Workers can use software apps on their smartphones to book meeting rooms, navigate within the office and personalize the environment around their workstation further improving productivity and employee engagement. These smart lighting system with open API integrates seamlessly with the IT system and enables a variety of software applications to create a more intelligent work environment for both building operations managers and employees.

In total, we analyzed 8 connected lighting system projects with the developed tool. All these projects are still in the development phase and follow clear software quality principles. In total, it concerns approximately 10,000 software tickets or bugs. Fig. 3 depicts the ticket distributions when classified as high (A + S tickets) and low (B + C + D) tickets. The variation per project is clear, tickets classified as high cover approximately 12% of all, and low about 88%. This was to be expected as severe tickets should appear less than less severe ones.

Predicted results of 4 projects, 1, 4, 6 and 7, are depicted in Fig. 4. It shows the cumulative growth of severe (orange – red) and less severe (blue – green) tickets as function of sprints (in this case weeks). For
projects 4 and 6 no signs of maturity is near, for projects 1 and 7, maturity is in sight. The predicted data is shown in Table 1. This table depicts the average values of predicted nr of tickets in coming sprints. Some projects are seeing maturity that are those with a low nr of remaining bugs after 10 sprints such as project 1. Most projects are seeing good levels of maturity for high severity tickets. Project 5 is the exemption, with still a large amount of severe tickets remaining in the code. Again, all projects are still in the development stage. The predicted values presented in Table 1 can serve for decisions to be taken if the software can be launched into the market. Also, this data can be used to allocate manpower for further code development and/or enhancement. Question remains for all these projects: can we take that decision?

As a final remark notice that by implementing the software reliability tooling and metrics, the number of bugs or tickets observed in the performance of the software in actual applications was reduced by 40%. This can be seen as a major achievement.

4. Discussion & conclusions

Software failures differ significantly from hardware failures. They are not caused by faulty components or wear-out due to e.g. physical environment stresses such as temperature, moisture, and vibration. Software failures are caused by latent software defects. These defects were introduced in the software while it was created. However, these defects were not detected and/or removed prior of being released to the customer. In order to prevent that these defects are noticed by the customer; a higher level of software reliability has to be achieved. This means to reduce the likelihood that latent defects are present in released software. Unfortunately, even with the most highly skilled software engineers following industry best practices, the introduction of software defects is inevitable. This is due to the ever-increasing inherent complexities of the software functionality and its execution environment. Here, software reliability engineering may be helpful, a field that relates to testing and modelling of software functionality in a given environment of a particular amount of time. But certainly, there is currently no method available that can guarantee a totally reliable software. In order to achieve the best possible software, a set of statistical modelling techniques are required that:

- Can assess or predict the to-be-achieved reliability.

Table 1

<table>
<thead>
<tr>
<th>Project</th>
<th>Predicted nr of tickets</th>
<th>Low (B ± C ± D)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+1 sprint</td>
<td>+10 sprints</td>
</tr>
<tr>
<td>1</td>
<td>0.3 ± 1.7</td>
<td>1.4 ± 2.6</td>
</tr>
<tr>
<td>2</td>
<td>0.7 ± 2.3</td>
<td>3.2 ± 4.8</td>
</tr>
<tr>
<td>3</td>
<td>1.0 ± 3.0</td>
<td>5.1 ± 5.9</td>
</tr>
<tr>
<td>4</td>
<td>0.5 ± 1.5</td>
<td>2.4 ± 3.6</td>
</tr>
<tr>
<td>5</td>
<td>3.9 ± 4.1</td>
<td>19.3 ± 9.7</td>
</tr>
<tr>
<td>6</td>
<td>0.6 ± 1.4</td>
<td>2.9 ± 4.1</td>
</tr>
<tr>
<td>7</td>
<td>0.2 ± 0.8</td>
<td>0.8 ± 2.2</td>
</tr>
<tr>
<td>8</td>
<td>0.2 ± 0.8</td>
<td>1.0 ± 2.0</td>
</tr>
</tbody>
</table>

Fig. 4. Predicted tickets as function of sprints (weeks) for projects 1, 4, 6 and 7. Blue lines concerns low severity tickets orange lines the high ones. Future tickets are given in green and red.
Based on the observations of software failures during testing and/or operational use.

In order to achieve these two requirements, many software reliability models have been proposed. It was shown that, once these models reach a certain level of convergence, it can enable the developer to release the software. And stop software testing accordingly. Criteria to determine the optimal testing time include the number of remaining errors, failure rate, reliability requirements, or total system cost. Typical questions that need to be addressed are:

- How many errors are still left in the software?
- What is the probability of having no failures in a given time period?
- What is the expected time until the next software failure will occur?
- What is the expected number of total software failures in a given time period?

Certainly, the question on “How many errors are left” is something completely different from “What is the expected number of errors in a given time period”. One cannot estimate the first directly, but you can estimate the second. In our approach, we are content with “expected number of errors that a long testing period would yield”.

In this paper we presented an approach to predict software reliability for agile testing environments. The new approach diversifies from the many others in the sense that it combines features with tickets using Bayesian statistics. By doing that, a more reliable number of predicted tickets (read: software bugs) can be obtained. The developed system software reliability approach is applied to 8 software development projects, to demonstrate how software reliability models can be used to improve the quality metrics. The new approach is carved down in a tool, programmed in Python. The outcome of the predictions can be used in the Quality dashboard maturity grid to enable a better judgement of software reliability approach is applied to 8 software development projects, to demonstrate how software reliability models can be used to improve the quality metrics. The new approach is carved down in a tool, programmed in Python. The outcome of the predictions can be used in the Quality dashboard maturity grid to enable a better judgement of software reliability. What is the probability of having no failures in a given time period? What is the expected time until the next software failure will occur? What is the expected number of total software failures in a given time period?

References


CRediT authorship contribution statement

Willem D. van Driel: methodology, writing—original draft preparation
Jan Willem Bikker: conceptualization, project administration, investigation
Matthijs Tijink: conceptualization, writing—review and editing, software, investigation

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This paper is a result of the SCOTT project (www.scott-project.eu) which has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under grant agreement No 737422. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and Austria, Spain, Finland, Ireland, Sweden, Germany, Poland, Portugal, Netherlands, Belgium, Norway.