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Abstract—The European COUNT project exploits two comple-
mentary single electron tunneling devices for use in electrical cur-
rent metrology: a single electron pump as a current source and a
single electron counter as a current meter. An electron pump has
been developed with on-chip resistors in order to suppress cotun-
neling. The intended accuracy is 1 ppm for a current of a few pi-
coampere. Apart from being a quantum current standard, the elec-
tron pump could also be the basis of a capacitance standard. A
coaxial tunable cryogenic capacitor of 1 picofarad has been devel-
oped for this purpose. A passive electron counter based on a single
electron transistor embedded in a resonant tank circuit has been
further investigated and developed in order to reach both high sen-
sitivity and high counting speed. The intended accuracy is 10 ppm
for a current of a few picoampere.

Index Terms—Capacitance, charge transfer, current measure-
ment, single electron counter, single electron pump, tunnel tran-
sistor.

I. INTRODUCTION

OVER a decade ago, scientists managed to control the
movement of single electrons through devices with

characteristic dimensions in the nanometer region. It was
readily recognized that this so-called single electron tunneling
(SET) effect could be the basis for a quantum standard of elec-
trical current. Consequently, several major national metrology
institutes (NMIs) have started research programs aiming at
the realization of such a standard. Several promising SET
techniques have been investigated since then [1].
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From a fundamental point of view, a quantum standard
for current is of great importance, since the ampere is one
of the seven SI base units. The SET current standard closes
the so-called quantum triangle, relating voltage, current, and
frequency by quantum effects.

SET effects are visible in systems which contain a small
metallic island, weakly coupled (e.g., through tunnel junctions)
to an external circuit. When the island capacitanceis suffi-
ciently small, the presence of an extra electron on the island can
easily be detected. This effect is most clearly observable when
the charging energy is the dominant energy in the
system because it exceeds the energy of the electrons associated
with the applied voltage and their thermal energy . For
metallic structures with characteristic dimensions smaller than
100 nm, this requires operation at temperatures below 50 mK.

By attaching a capacitive gate coupling to the island, the is-
land charge can be manipulated. The most familiar SET struc-
ture is the single electron transistor, which has two tunnel junc-
tions and one gate capacitance. Two more complicated devices,
an electron pump and an electron counter, will be discussed
below; they are the focus of the European COUNT project.

II. SET CURRENT SOURCE: THE R-PUMP

The electron pump has junctions and gates
which are supplied with an ac signal of frequency. When the
amplitude and phase of the signals is correct, the cur-
rent equals . For small , the dominant error in this
transport rate is due to co-tunneling, which is simultaneous tun-
neling of electrons through several islands. Co-tunneling can be
reduced to acceptable levels by increasingto 7 [2]. However,
the resulting six ac control signals demand a complex tuning
procedure to cancel cross-capacitances between islands.

An alternative technique to reducing co-tunneling in small
pumps has been developed at PTB as part of the COUNT

project [3]. On-chip resistive Cr-microstrips of typically 50 k
are placed in series with the pump (see Fig. 1). These resistors
cause higher (as compared to a device without resistors) energy
dissipation of the tunneling electrons, which suppresses unde-
sired higher order quantum mechanical effects such as co-tun-
neling more strongly than the desired tunneling events.

The first experiments on a three-junction R-pump show that
it is superior to those of its analog without on-chip resistors.
In the pumping regime, the current steps on the– curve ex-
hibit an evaluated differential resistance50 G for a sample
with room temperature resistance of 400 k, which indicates
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Fig. 1. SEM-image and equivalent circuit of four-junction single electron
pump with on-chip Cr resistors in series.

a wide range of stable pump operation by the offset voltages.
The accuracy of pumping was evaluated to be on the order of
100 ppm for a current of 1 pA, based on a practical uncertainty
of a few microvolt in setting the bias voltage. The pumping ac-
curacy in these experiments is probably mainly due to the in-
creased temperature of 80 mK, which can be evaluated from
the rounding of the – curves while pumping. A more accu-
rate way of determining the pumping accuracy is by measuring
the leakage charge on a neighboring island while pumping one
electron to and from the island, such that the average transport
in time should be zero [2].

The results of the first tests were used for further design
optimization. In particular, the junctions were reduced in size
down to 20 40 nm , while maintaining low resistance. The
estimated junction capacitances were below 150 aF. As an
effect of these smaller tunnel junctions, an increased Coulomb
blockade region and increased step size were observed, indi-
cating better stability against error mechanisms. Due to the
reduced RC-product, it was possible to observe well-pro-
nounced pumping up to the frequencies MHz (see
Fig. 2). For different resistors (different configurations of Cr
microresistors), one can clearly observe the remarkable effect
of resistors on the current step width and, hence, on stability of
the pumping regime.

The zero-temperature rate of co-tunneling in a three-junction
R-pump has been calculated independently using both numer-
ical and analytical approaches. For these calculations, realistic
parameters (resistance and capacitance of the tunnel junctions,
resistance of Cr-micro-strips) of our experimental R-pumps
were considered. The results show that even at zero temperature
the metrological accuracy of 10 ppb can be achieved only with
the state-of-the-art three-junction R-pumps whose parameters
approach the practical limits of the fabrication process [3]. On
the other hand, our estimations made for a similar four-junction
pump demonstrated improvement of the pumping accuracy
by two or three orders of magnitude. The operating speed of
the four-junction devices is expected to be similar to that of
the three-junction devices, i.e., giving a dc current of several

Fig. 2. Current steps for the R-pump with smaller junctions for different
frequencies and series resistancesR. For differentRs, one can clearly observe
the effect of resistors on the current step width.

picoamperes. The intended accuracy is 1 ppm for a current of
a few picoampere. If necessary five-junction devices will also
be developed.

When an R-pump is connected to a high stability capacitor
suitable for low-temperature applications (a so-called cryogenic
capacitor) [4], it can be used to charge the capacitor with elec-
trons one by one [5]. Measuring the resulting voltage across the
capacitor, and transferring the value of the capacitor to room
temperature capacitors results in a quantum capacitance stan-
dard in terms of e. As part of the COUNT project, new types of
stable, reproducible cryogenic coaxial capacitors have been de-
veloped [6], [7]. The METAS design incorporates mechanisms
to enable them to be tuned precisely to a nominal value of 1 pF
[6]. The coaxial design results in excellent stability, since at
first order small radial displacements of the electrodes relative
to each other do not result in changes in capacitance. The ca-
pacitor was measured to be free from drift and stable in time to
better than 1 ppm for several hours, both at room temperature
and at cryogenic temperatures. The temperature dependence of
the capacitor from 300 to 4 K has been investigated using an
Andeen-Hagerling 2500-A capacitance bridge. Several temper-
ature cycles were performed to establish the capacitor’s temper-
ature dependence. Knowledge of this temperature dependence
enables us to adjust it at room temperature such that its value at
low temperature will be within 100 ppm of 1 pF, enabling the
most accurate types of ac bridge to be used to compare it with a
room temperature standard.

III. SET CURRENT METER: THE RF-SET

A single electron counter consists of a long one-dimensiona
(1-D) array of islands capacitively coupled to an SET transistor
(see Fig. 3). When an electric current is forced through the array,
electrons are transferred quasiregularly, enabling the SET tran-
sistor to sense the passage of the individual electrons that make
up the electric current. Contrary to the case of the electron pump,
where individual electrons are actively forced to move, the elec-
tron counter will passively detect passing electrons.

The method of electron counting relies on a detector that is
not only able to detect the minute charge variations when elec-
trons pass, but also to do this at a high speed. Conventional
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Fig. 3. SEM picture and schematic representation of a capacitively coupled
electron counter.

SET-based electrometers are limited to operation speeds of typ-
ically 1 kHz, corresponding to a maximum current of 0.1 fA.
Recently a single electron transistor has been developed that can
be operated at radio frequencies (RF-SET) [8]. In the COUNT
project, the RF-SET is optimized and adapted for accurate cur-
rent measurements. The aim is to reach an accuracy of 10 ppm
for currents up to a few picoampere.

In the RF-SET, the sensing SET transistor is integrated in a
resonant circuit formed by an external inductortogether with
the parasitic capacitance of the bonding pad of the tran-
sistor (see Fig. 4). By changing the gate voltage, the differen-
tial resistance, , of the sensing transistor is influenced: for
some values, the transistor is blocked (i.e., 1 M ),
while for others it is open (i.e., k ). The resulting
rapidly changing resistance value can be observed by
measuring the reflection of irradiated power. In the case of an
electron counter, passing electrons modulate the gate voltage.
The counting speed of the device is limited by the quality factor

of the resonant circuit, which should not be too high in order
to be sensitive to rapidly changing signals.

In reflection experiments, the SET impedance should
match the impedance of the microwave transmission line. While
the parasitic capacitance pF is given, the external
inductance was chosen to be nH for a carrier frequency

MHz. A setup with smaller inductance for use at
higher frequency is also under development, in order to obtain
higher counting speed. A microwave fixture in which the tank
circuit inductor and the transmission line are integrated on a
single substrate has been developed, fabricated, and tested for
routine characterization of the RF-SET.

In order to test the working principle of the RF-SET, instead
of a current through a 1-D array, a 2-MHz gate signal is ap-
plied with an amplitude of about e [9]. As
can be seen in Fig. 5, apart from the frequency of the irradiated
power, the reflected power shows two side bands. These side-

Fig. 4. Schematic representation of the RF-SET resonant circuit. The inductor
is chosen such that it forms a resonant circuit with the parasitic capacitance,
C , of the contact pad. By changing the gate voltageV the resistance of the
SET transistor is influenced.

Fig. 5. Reflected power versus the carrier frequency. The carrier is amplitude
modulated by the SET, generating two side bands, for a signal at gate of 0.038
e and 2 MHz. The inset shows the reflected signal as a function of the
frequency for one of the sidebands, with a gate signal corresponding to 0.0095
e and 1MHz. From the measured data, we can deduce a charge sensitivity
of 3.2 �e=

p
Hz. The SET was in superconducting state and the drain-source

bias was 0.856 mV.

bands differ an amount in frequency compared to the carrier,
indicating that it has detected a fictitious current .

The signal-to-noise ratio determines the sensitivity of the de-
vice. At low frequency 1/f-noise is the main factor, while at fre-
quencies in the MHz range the white noise of the amplifiers and
other components dominates. At present, the charge sensitivity

of the best sample so far is 3.2e Hz, corre-
sponding to an energy sensitivity
[9]. Note that this sensitivity has a fundamental lower limit of

, which is determined by shot noise.
Although the detector itself needs some optimization, the em-

phasis with respect to the development of the electron counter
will be on adapting the RF-SET for current measurement oper-
ation. The RF-SET is a multipurpose device that will not only
be given its first application in metrology, it is also useful as a
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diagnostic tool for devices (sensors, logic or memory elements)
that operate on the basis of single electrons.

IV. SUMMARY AND CONCLUSION

The European project COUNT aims for the realization of
a quantum standard for electrical current. The focus is on the
improvement of two complementary SET devices: an electron
pump (R-pump) in order to generate currents and an electron
counter (RF-SET) in order to measure currents up to a few pi-
coamperes.

The first measurements carried out at several laboratories of
the COUNT consortium, both on R-pumps and on RF-SET de-
vices, seem to be very promising. Optimization of device pa-
rameters and measurement techniques is necessary in order to
reach the desired accuracy.

For more information and current progress of this project,
visit www.count.nl.
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