Strategie voor meerjarig wegonderhoud op autosnelwegen

Dynamisch beslissingsondersteunend model voor onderhoudsstrategieën voor verhardingsconstructies

Afstudeerverslag

Ing. J.J.A.M. Backx
1318543
Mei 2012

Technische Universiteit Delft
Faculteit Civiele Techniek & Geowetenschappen

BAM Infraconsult BV
BU Wegen en Gebiedsinfra
COLOFON

Titel rapport:	Strategie voor meerjarig wegonderhoud op autosnelwegen
Plaats:	Breda
Datum:	Mei 2012
Omvang:	90 pagina's
Bijlagen:	6 bijlagen
Status:	Afstudeerverslag
Auteur:	Ing. J.J.A.M. Backx 1318543

Afstudeercommissie:

|Voorzitter: | Prof.ir. F.M. Sanders |
|Technische Universiteit Delft |
|Faculteit Civiele Techniek en Geowetenschappen |
|Sectie Transport & Planning |

Dagelijkse begeleider:

|Drs.ir. J.G. Verlaan |
|Technische Universiteit Delft |
|Faculteit Civiele Techniek en Geowetenschappen |
|Sectie Bouwprocessen |

Commissielid:

|Ir. F.S. Zuurbier |
|Technische Universiteit Delft |
|Faculteit Civiele Techniek en Geowetenschappen |
|Sectie Transport & Planning |

Technische Universiteit Delft
Faculteit Civiele Techniek en Geowetenschappen
Master Transport & Planning
Stevinweg 1 / Postbus 5048,
2628 CN Delft / 2600 GA Delft
Website: www.citg.tudelft.nl

BAM Infraconsult BV, BU Wegen en Gebiedsinfra
Stadionstraat 30 / Postbus 9559
4815 NG Breda / 4801 LN Breda
Website: www.baminfraconsult.nl
VOORWOORD

Voor u ligt het document ‘Strategie voor meerjarig wegonderhoud op autosnelwegen’. Dit afstudeeronderzoek is uitgevoerd in opdracht van BAM Infraconsult bv ter afronding van het masterprogramma van Transport & Planning aan de faculteit Civiele Techniek & Geowetenschappen aan de Technische Universiteit Delft.

Het onderzoek bevat een studie naar mogelijke onderhoudsstrategieën voor meerjarig wegonderhoud op autosnelwegen. Het betreft een optimalisatieprobleem van aanleg- en onderhoudskosten tegenover de opbrengsten voor beschikbaarheid van het wegdek. Er wordt onderzocht welke verhardingsconstructie het beste voldoet onder restrictie van de opgelegde kwaliteitseisen.

Deze periode heeft me ontzettend veel gebracht. Bij het afsluiten van deze fase kan ik zeker zeggen dat ik mezelf beter heb leren kennen.

Breda, mei 2012

Jack Backx
INHOUDSOPGAVE

COLOFON .. II
VOORWOORD ... III
LIJST MET FIGUREN ... III
LIJST MET TABellen ... VI
SAMENVATTING .. X
SUMMARY .. XIII

1 INTRODUCTIE... 1
 1.1 AANLEIDING TOT HET ONDERZOEK .. 1
 1.2 OPRACHTFORMULERING .. 6
 1.3 ONDERZOEKSAANPAK .. 7
 1.4 PROJECTAFBAKING ... 9
 1.5 BEGRIJPSBEPALING ... 9
 1.6 LEESWIJZER .. 9

2 MEERJARIG WEGONDERHOUD OP AUTOSNELWEGEN ... 10
 2.1 INTRODUCTIE ... 10
 2.2 INDELING HOOFDWEGENNET IN TRACÉDELEN EN SEGMENTEN 11
 2.3 SEGMENTEIGENSCHAPPEN ... 14
 2.4 SCHADEONTWIKKELING EN CONDITIEGEDRAG VERHARDINGSTYPEN 17
 2.5 ONDERHOUDSMAATREGELEN ... 20
 2.6 SEGMENTAFSLUITING EN IMPACT VERKEERSHINDER .. 28

3 BESCHIKBAARHEIDSPRINCIPE OP AUTOSNELWEGEN .. 30
 3.1 INTRODUCTIE ... 30
 3.2 DEFINITIE VERKEERSHINDER ... 30
 3.3 HET BETALINGSMODEL ... 31
 3.4 WERKING BESCHIKBAARHEIDSMODEL .. 34

4 ONTWERP BESLISSINGSMODEL .. 36
 4.1 DOELSTELLINGSFUNCTIE ... 36
 4.2 RANDvoorWAARDEN .. 40
 4.3 TOEPASSING GENETISCH ALGORITME .. 42
 4.4 INVOER EXCEL BESLISSINGSMODEL ... 43

5 INVOER MODEL ... 46
 5.1 SEGMENTEIGENSCHAPPEN .. 46
 5.2 FINANCIERINGSGEGEvens .. 46
 5.3 AANLEGKOSTEN EN LEVENSDUURVERWACHTING .. 46
 5.4 ONDERHOUDSKOSTEN .. 47
 5.5 LEVENSDUURVERLENGING ... 48
 5.6 OPBRENGSTEN ... 48
 5.7 VOORWAARDEN .. 48

6 RESULTATEN .. 49
 6.1 RESULTATEN ONDERHOUDSSTRATEGIE OP BASIS VAN VERHARDINGSTYPE I 50
 6.2 RESULTATEN ONDERHOUDSSTRATEGIE OP BASIS VAN VERHARDINGSTYPE II ... 52
 6.3 RESULTATEN ONDERHOUDSSTRATEGIE OP BASIS VAN VERHARDINGSTYPE III .. 54
 6.4 VERGELIJKING RESULTATEN ... 56
INHOUDSOPGAVE

7 GEVOELIGHEIDSANALYSE MET MONTE-CARLOSIMULATIE .. 58
 7.1 MONTE-CARLOSIMULATIE .. 58
 7.2 VERHARDINGSTYPE I ... 60
 7.3 VERHARDINGSTYPE II ... 62
 7.4 VERHARDINGSTYPE III ... 63
8 CONCLUSIES EN AANBEVELINGEN ... 65
 8.1 CONCLUSIES ... 65
 8.2 AANBEVELINGEN ... 66
LITERATUURLIJST ... 67
BIJLAGEN .. 68
 BIJLAGE I. GEVOELIGHEIDSANALYSE KOSTENVERWACHTING VERHARDINGSTYPE I .. 68
 BIJLAGE II. GEVOELIGHEIDSANALYSE LEVENSDUURVERWACHTING VERHARDINGSTYPE I 70
 BIJLAGE III. GEVOELIGHEIDSANALYSE KOSTENVERWACHTING VERHARDINGSTYPE II ... 72
 BIJLAGE IV. GEVOELIGHEIDSANALYSE LEVENSDUUR VERHARDINGSTYPE II ... 74
 BIJLAGE III. GEVOELIGHEIDSANALYSE KOSTENVERWACHTING VERHARDINGSTYPE III .. 75
 BIJLAGE VI. GEVOELIGHEIDSANALYSE LEVENSDUUR VERHARDINGSTYPE III .. 77
LIJST MET FIGUREN

FIGUUR 1-1: ONDERZOEKSPLAN EN PROBLEEMSTELLING ... 1
FIGUUR 1-2: VERSCHUIVING VAN ROLLEN EN TAKEN ... 2
FIGUUR 1-3: Onderzoeksgebied ... 4
FIGUUR 1-4: Projectkader afstudeeronderzoek .. 5
FIGUUR 1-5: Modelcyclus [F. Huismann, 1994] ... 7
FIGUUR 1-6: Onderzoeksschema strategisch wegonderhoud .. 8
FIGUUR 2-1: Hoofdkenmerken hoofdribruaan .. 11
FIGUUR 2-2: Verkeersbelasting per rijkstrook ... 12
FIGUUR 2-3: Wegsectie ... 12
FIGUUR 2-4: Sectie-indeling ... 13
FIGUUR 2-5: Traceedele met 4 segmenten ... 13
FIGUUR 2-6: Wegindeling wiziging traceëdeelen .. 14
FIGUUR 2-7: Verhardingstypen ... 15
FIGUUR 2-8: Schematische weergave werking input inspectie .. 17
FIGUUR 2-9: Rente- en inflatie op aanleg en onderhoud .. 17
FIGUUR 2-10: Schadecategorieën wegverharding ... 18
FIGUUR 2-11: Classificatie schadeneventas .. 18
FIGUUR 2-12: Productieproces sealen deklaag .. 22
FIGUUR 2-13: Conditieverbetering na sealen deklaag .. 22
FIGUUR 2-14: Productieproces vervangen deklaag ... 23
FIGUUR 2-15: Conditieverbetering na vervangen deklaag ... 23
FIGUUR 2-16: Productieproces vervangen deklaag ... 24
FIGUUR 2-17: Conditieverbetering na vervangen tussenlaag STAB+ en ZOAB+ 24
FIGUUR 2-18: Productieproces vervangen toplaag ... 25
FIGUUR 2-19: Conditieverbetering na vervangen toplaag ... 25
FIGUUR 2-20: Productieproces TOP+ en onderlaag ... 26
FIGUUR 2-21: Conditieverbetering na vervangen TOP+ en onderlaag 27
FIGUUR 2-22: Statische en dynamische werkzaamheden .. 28
FIGUUR 2-23: Rijkstrookafsluiting .. 29
FIGUUR 3-1: Voertuigverliesuren ... 30
FIGUUR 3-2: De traditionele vorm versus betalingsmechanisme O.b.v. DBFM-overeenkomst ... 33
FIGUUR 3-3: Betalingsformule beschikbaarheidsvergoeding .. 33
FIGUUR 3-4: Beschikbaarheidsvergoeding .. 34
FIGUUR 3-5: Beschikbaarheid wegsectie .. 34
FIGUUR 3-6: Werkbare uren ingedeeld in tudvensters ... 35
FIGUUR 4-1: Doelstellingenfunctie ... 36
FIGUUR 4-2: Aanlegkosten ... 37
FIGUUR 4-3: Onderhoudskosten .. 38
FIGUUR 4-4: Aanlegkosten .. 39
FIGUUR 4-5: Budgetvoorwaarden ... 40
FIGUUR 4-6: Uitvoeringsvoorwaarden .. 40
FIGUUR 4-7: Conditievoorwaarden ... 41
FIGUUR 4-8: Werking genetisch algoritme .. 42
FIGUUR 4-9: Financieringsgegevens ZOAB ... 43
FIGUUR 4-10: Segmenteigenschappen ... 44
FIGUUR 4-11: Aanleg-gegevens .. 44
FIGUUR 4-12: Onderhoudsmaatregel-gegevens Verhardingstyp I .. 45
LIJST MET FIGUREN

FIGUUR 4-13: Onderhoudsmaatregel-gegevens verhardingstype I ... 45
FIGUUR 6-1: Kosten & opbrengsten verhardingstype I ... 50
FIGUUR 6-2: Conditieverloop aanleg- en onderhoudsstrategie verhardingstype I .. 51
FIGUUR 6-3: Kosten & opbrengsten verhardingstype II ... 52
FIGUUR 6-4: Conditieverloop aanleg- en onderhoudsstrategie verhardingstype II .. 53
FIGUUR 6-5: Kosten & opbrengsten verhardingstype III ... 54
FIGUUR 6-6: Conditieverloop aanleg- en onderhoudsstrategie verhardingstype III .. 55
FIGUUR 7-1: Principe Monte-Carlosimulatie ... 58
FIGUUR 7-2: Principe kansverdeling categorie 1 ... 59
FIGUUR 7-3: Principe kansverdeling categorie 2 ... 59
FIGUUR 7-4: Principe kansverdeling categorie 3 ... 60
FIGUUR 7-5: Kansverdeling projectresultaat verhardingstype I .. 61
FIGUUR 7-6: Kansverdeling projectresultaat verhardingstype II .. 62
FIGUUR 7-7: Kansverdeling projectresultaat verhardingstype III .. 64
FIGUUR 8-1: Resultaten kansverdeling projectkosten m.b.v. Monte-Carlosimulatie ... 65
LIJST MET TABELLEN

TABEL 2-1: Snelheden per toepassingsgebied ... 11
TABEL 2-2: Breedtes per segment 2x3 rustroken .. 14
TABEL 2-3: Aanlegkosten verhardingstype I ... 15
TABEL 2-4: Aanlegkosten verhardingstype II .. 16
TABEL 2-5: Aanlegkosten verhardingstype III ... 16
TABEL 2-6: Faalkans en gemiddelde levensduur wegdek .. 19
TABEL 2-7: Formulering conditieverloop en veroorderingsgedrag .. 20
TABEL 2-8: Indicatie onderhoudskosten sealen deklaag ... 22
TABEL 2-9: Indicatie onderhoudskosten vervangen deklaag ... 23
TABEL 2-10: Indicatie onderhoudskosten vervangen deklaag ... 24
TABEL 2-11: Indicatie kosten vervangen toplaag per m² voor Dubbellaags ZOAB 25
TABEL 2-12: Onderhoudskosten vervangen tussenlaag STAB + Dubbellaags ZOAB (140 MM IN / UIT) .. 26
TABEL 2-13: Categorisatie tijdsduur werkzaamheden ... 28
TABEL 3-1: Samenhang hinderklassen en hindercategorie ... 31
TABEL 4-1: Toelichting doelstellingenfunctie ... 36
TABEL 4-2: Toelichting aanlegkosten .. 37
TABEL 4-3: Toelichting onderhoudskosten .. 38
TABEL 4-4: Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 1 38
TABEL 4-5: Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 2 38
TABEL 4-6: Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 3 38
TABEL 4-7: Invloer opbrengsten .. 39
TABEL 4-8: Toelichting aanlegkosten .. 39
TABEL 4-9: Toelichting budgetvoorwaarden ... 40
TABEL 4-10: Volgorde onderhoudsmaatregelen t.d.v. elkaars .. 41
TABEL 4-11: Toelichting conditievoorwaarden .. 41
TABEL 4-12: Toelichting verbetering na onderhoudsmaatregelen voor verhardingstype 2 42
TABEL 4-13: Toelichting verbetering na onderhoudsmaatregelen voor verhardingstype 1 42
TABEL 4-14: Toelichting verbetering na onderhoudsmaatregelen voor verhardingstype 3 42
TABEL 5-1: Invloer segmentteigenschappen ... 46
TABEL 5-2: Invloer financieringsgegevens .. 46
TABEL 5-3: Invloer aanlegkosten .. 46
TABEL 5-4: Invloer verwachte levensduur ... 46
TABEL 5-5: Invloer onderhoudskosten verhardingstype I .. 47
TABEL 5-6: Invloer onderhoudskosten verhardingstype II .. 47
TABEL 5-7: Invloer onderhoudskosten verhardingstype III ... 47
TABEL 5-8: Invloer levensduurverlenging ... 48
TABEL 5-9: Invloer opbrengsten .. 48
TABEL 6-1: Financieel overzicht Verhardingstype I (kosten / opbrengst / jaarlijks budget) 50
TABEL 6-2: Financieel overzicht Verhardingstype II (kosten / opbrengst / jaarlijks budget) 52
TABEL 6-3: Financieel overzicht Verhardingstype III (kosten / opbrengst / jaarlijks budget) 54
TABEL 6-4: Vergelijking projectresultaat, kosten en budget ... 56
TABEL 6-5: Vergelijking aanlegkosten .. 56
TABEL 6-6: Vergelijking onderhoudskosten .. 56
TABEL 6-7: Vergelijking verhouding aanleg- en onderhoudskosten ... 57
TABEL 6-8: Vergelijking verhouding aanleg- en onderhoudskosten, rentelasten en inflatie 57
TABEL 6-9: Vergelijking conditienniveau en restlevensduur ... 57
Tabel 7-1: Startcondities kosten Verhardingstype I ... 60
Tabel 7-2: Startcondities levensduur Verhardingstype I ... 61
Tabel 7-3: Startcondities kosten Verhardingstype II ... 62
Tabel 7-4: Startcondities levensduur Verhardingstype II ... 62
Tabel 7-5: Startcondities kosten Verhardingstype III ... 63
Tabel 7-6: Startcondities levensduur Verhardingstype III .. 63
Samenvatting

Probleem
Bij de traditionele bouwproces is Rijkswaterstaat verantwoordelijk voor het ontwerp, aanleg en beheer & onderhoud van vrijwel elk infrastructureel project. Bij de nieuwe marktvorm wordt de aannemer vroegtijdig betrokken bij het project en wordt de volledige verantwoordelijkheid voor het ontwerp tot aan het onderhoud bij de aannemer gelegd.

Het probleem voor de aannemer is de omgang met de nieuwe contractvormen. Door de nieuwe verantwoordelijkheden is het voor de aannemer noodzakelijk om een andere kijk op projectaanpak te verwezenlijken. Het ontbreekt de aannemer aan kennis om een goede relatie te leggen tussen de ontwerfase en de gevolgen voor het aanleg- en onderhoudstraject. Tijdens het ontwerp dient rekening te worden gehouden dat ze ook de verantwoordelijkheid dragen voor het beheer en onderhoud.

Voor de aannemer is het interessant om goed inzicht te krijgen in de relatie tussen het ontwerp, de aanleg, en het onderhoud met de daarbij behorende kosten en opbrengsten. Specifiek voor dit onderzoek wordt gekeken naar het inzicht in de strategie voor meerjarig wegonderhoud op autosnelwegen bij toepassing van een DBFM-contract. Dit vertaalt zich naar de volgende onderzoeksvraag:

CENTRALE VRAAGSTELLING
Wat is de meest gunstige strategie en de te kiezen wegconstructie voor meerjarig wegonderhoud op basis van minimale kosten, maximale beschikbaarheidsvergoeding en handhaving van het gestelde kwaliteitsniveau?

Aanpak
De strategie voor meerjarig wegonderhoud wordt gebaseerd op volgende drie uitgangspunten:
- minimale aanleg- en onderhoudskosten;
- handhaving van het vereiste kwaliteitsniveau van het eindproduct;
- maximale beschikbaarheidsvergoeding door minimale verkeershinder tijdens onderhoudswerkzaamheden.

Om te komen tot de onderzoeksvraag wordt elk van de uitgangspunten onderzocht. Uiteindelijk wordt een berekening verwacht op basis van de kenmerken van aanleg, onderhoud en opbrengsten. Dit wordt onderzocht door het ontwikkelen van een dynamisch beslissingsondersteunend model, waarmee inzicht wordt verkregen in de te kiezen verhardingtype in relatie tot de kosten en opbrengsten, de maximale beschikbaarheid tijdens de exploitatiefase en de gestelde kwaliteitseisen. Voor de ontwikkeling van dit model is onderzoek nodig naar de factoren die leiden tot de strategie.

Er is gekozen voor 3 toepasbare verhardingstypen.
- Verhardingstype I: asfaltconstructie + deklaag ZOAB+ (5cm);
- Verhardingstype II: betonconstructie + deklaag ZOAB+ (5cm);
- Verhardingstype III: asfaltconstructie + dubbellaags ZOAB (2,5 + 4,5 cm).

Per verhardingtype worden de kosten, verwachte levensduur en toepasbare onderhoudsmaatregelen met bijhorende levensduurverlenging onderzocht. Voor de conditie wordt een bovenwaarde en kritieke waarde (waarschuwingssiveau) vastgesteld, waardoor handhaving van het gewenste kwaliteitsniveau geborgd wordt.
Modelontwerp en bouw
In dit onderzoek wordt een beslissingsmodel ontworpen voor de optimale planning van onderhoudsmaatregelen voor wegconstructies op een bepaalde sectie van een autosnelweg gedurende een langere periode. Met optimaal wordt bedoeld: het minimaliseren van aanleg en onderhoudskosten tegenover de opbrengst, waarbij rekening gehouden moet worden met kwaliteitseisen en uitvoeringsvoorwaarden.

Het optimalisatieprobleem bestaat uit het toekennen van onderhoudsmaatregelen (A) aan segmenten (S) over een planningshorizon (T) gelijk aan de contractduur voor het meerjarig wegonderhoud.

Om te bepalen wat de meest gunstige strategie is, wordt een wiskundige formule opgesteld. Hierbij geldt dat er een minimum wordt gezocht voor de sommatie van aanlegkosten, kosten van onderhoudsmaatregelen van alle segmenten. De opbrengsten worden hierbij meegenomen. Om tot een doeltreffende onderhoudsstrategie te komen worden randvoorwaarden gesteld aan de doelstellingsfunctie. De randvoorwaarden zijn te verdelen in 3 typen voorwaarden, te kennen; budgetvoorwaarden; uitvoeringsvoorwaarden en conditievoorwaarden.

Voor de optimalisatie wordt gebruik gemaakt van een dynamische eindwaarde methode. Bij de dynamische eindwaarde methode wordt de inflatie meegerekend over de kosten en opbrengsten, vanaf het moment dat de berekening wordt gemaakt tot het moment dat de kosten daadwerkelijk worden gemaakt.

Uit de drie optimalisatieberekeningen kan worden opgemaakt welke verhardingsconstructie het meest geschikt is voor het aanleggen en onderhouden van een sectie. Deze optimalisatie levert een eindwaardeberekening op basis van kosten en opbrengsten voor elke verhardingsconstructie.

Resultaten
Het projectresultaat is het hoogst bij verhardingstype I. De aanlegkosten voor verhardingstype I is het laagst. Daarop volgt respectievelijk verhardingstype III en II. Uit de verhouding kun je opmaken dat de aanlegkosten voor verhardingstype II relatief hoog zijn. Er kan worden geconcludeerd dat de hoge investering bij aanleg in deze situatie niet opwegen tegen de lage onderhoudskosten, zoals bij verhardingstype II geldt.

<table>
<thead>
<tr>
<th>Onderhoudsstrategie</th>
<th>Totale kosten (incl. inflatie en rente)</th>
<th>Aanlegkosten (excl. rente)</th>
<th>Onderhoudskosten (excl. rente en inflatie)</th>
<th>Restlevensduur (jaar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verhardingstype I</td>
<td>€ 1,183,604</td>
<td>€ 337,068</td>
<td>€ 261,099</td>
<td>1,5 jaar</td>
</tr>
<tr>
<td>Verhardingstype II</td>
<td>€ 1,246,946</td>
<td>€ 433,142</td>
<td>€ 174,757</td>
<td>< 1,0 jaar</td>
</tr>
<tr>
<td>Verhardingstype III</td>
<td>€ 1,297,329</td>
<td>€ 373,429</td>
<td>€ 277,655</td>
<td>± 2,0 jaar</td>
</tr>
</tbody>
</table>

Vergelijking aanleg- en onderhoudskosten

De resultaten uit het onderzoek geven een onvolledig beeld van de werkelijkheid. De invoervariabelen zijn onderhevig aan een aantal onbekende factoren die zich in de toekomst voor kunnen doen. Daarom is aanvullend een Monte-Carlo simulatie verricht waarbij de spreiding van de mogelijke invoervariabelen werd meegenomen in het uiteindelijke resultaat. Dit resultaat geeft de variatie weer van mogelijke uitkomsten op basis van de spreiding van de onbekende factoren in de toekomst. Door de verschillende mogelijke startcondities op het
model toe te passen wordt voor de aannemer duidelijk waar de risico’s liggen voor het aangaan van een onderhoudsstrategie voor meerjarig wegonderhoud.

De gevoeligheid wordt toegepast op de drie verhardingstypen. De gevoeligheidsanalyse wordt toegepast op de startcondities van aanlegkosten, verwachte levensduur, onderhoudskosten en levensduurverlenging na toepassing van een bepaald type onderhoudsmaatregel. Deze startcondities dragen een bepaalde onzekerheid. Het effect van deze onzekerheid wordt getoetst en wordt aan de hand van de resultaten uit het model geanalyseerd.

Uit deze Monte-Carlosimulatie komt naar voren dat de asphaltconstructie op basis van STAB onderlaag en tussenlagen en deklaag ZOAB+ (5 cm deklaag) de beste optie is voor meerjarig wegonderhoud op autosnelwegen.

Conclusies en aanbevelingen
Het antwoord op de centrale vraagstelling is dat verhardingstype I; asphaltconstructie op basis van STAB onderlaag en tussenlagen en deklaag ZOAB+ (5 cm deklaag) de meest gunstige strategie en de te kiezen wegconstructie voor meerjarig wegonderhoud is op basis van minimale kosten, maximale beschikbaarheidsvergoeding en handhaving van het gestelde kwaliteitsniveau.

Uit de resultaten blijkt dat de onderhoudsstrategie op basis van een asphaltconstructie met ZOAB+ deklaag de goedkoopte variant is. In vergelijking met Verhardingstype II en III heeft het de laagste aanlegkosten.

Hoewel de onderhoudskosten bij Verhardingstype I hoger zijn dan bij Verhardingstype II blijkt dat Verhardingstype I door de lage aanlegkosten de laagste projectkosten heeft. Daarbij komt dat de restlevensduur van Verhardingstype I hoger is dan bij Verhardingstype II. Verhardingstype III heeft de hoogste restlevensduur, maar is met de aanleg- onderhoudskosten hoger dan Verhardingstype I.

De waarde van de uitkomst is beperkt doordat de invoervariabelen onzeker zijn. Daarom wordt de onzekerheid in beeld gebracht met de Monte-Carlo simulatie. Deze geeft de spreiding weer van de mogelijke projectresultaten.

Uit dit resultaat waarin de gevoeligheid van de startcondities is meegenomen dat Verhardingstype I de beste variant is.

De aanbevelingen zijn:
- Er wordt aanbevolen om de tussentijdse opbrengsten mee te nemen in dit onderzoek. De onderhoudsstrategie wordt dan zo opgezet dat de onderhoudsmaatregelen worden uitgevoerd ten tijde van de uitkering van de beschikbaarheidsvergoeding. Het jaarlijks budget moet intracomptabel worden gemaakt met de kosten. Zo wordt een negatief budget voorkomen en behoudt de aannemer altijd een positieve liquiditeit.

- Nu is het onderzoek uitgevoerd voor één segment. Voor nader onderzoek kan de verkeershinder worden meegenomen door onderlinge segmenten met elkaar in verband te brengen. Zo kan inzichtelijk worden gemaakt wat de invloed is op de verkeerssituatie.

- In dit onderzoek wordt gekeken naar de wegconstructie. Voor het vervolg wordt aanbevolen een integraal pakket te optimaliseren. Dit houdt in dat naast de wegverharding ook het dynamisch verkeersmanagement, verkeersvoorzieningen en de kunstwerken worden meegenomen in het onderzoek.
Summary

Problem
In the traditional construction process Rijkswaterstaat is responsible for the design, construction and operation & maintenance of almost every infrastructure project in the Netherlands. Within the new market structure the contractor involved early in the process. The contractor will be responsible for the total process from design to maintenance.

The problem for the contractor is handling the new contract. The new responsibilities makes it necessary for the contractor to have a different perspective on the project approach. It lacks the contractor to know how to make a good relationship between the design and the implications for the construction and maintenance process. During the design should take into account that they also have the responsibility for the operation and maintenance.

For the contractor it is interesting to understand the relationship between the design, construction and maintenance with the associated costs and revenues. Specifically for this graduation study the understanding of the multi-year strategy for road maintenance on motorways using a DBFM will be examines. From this follows the following research question:

<table>
<thead>
<tr>
<th>CENTRAL QUESTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the most profitable strategy and the best pavement for multi-year highway maintenance based on minimum cost, maximum availability fee and maintaining of the required road quality?</td>
</tr>
</tbody>
</table>

Approach
The multi-year strategy for road maintenance is based on three principles:
- minimum construction and maintenance costs;
- maintaining the required quality of the finished product;
- maximum availability fee with minimum traffic disturbance during maintenance.

To achieve the central question, each of the principles studied. Eventually, a calculation is needed on the basis of the characteristics of road construction, maintenance and revenues. This is studied by developing a dynamic decision support model, which provide insight into the road construction type in relation to the costs and revenues, the maximum availability during the operational phase and the quality requirements. For the development of this model requires research into the aspects that lead to the strategy.

The choise is made for 3 usable pavement types.
- pavement structure I: foundation of asphalt with layer of porous asphalt pavement (5 cm);
- pavement structure II: foundation of concrete with layer of porous asphalt pavement (5cm);
- pavement structure III: foundation of asphalt with double layer of porous asphalt pavement (2.5 + 4.5 cm).

For each pavement structure the costs, excepted lifetime and applicable maintenance actions associated with lifetime extension was investigated. In this research the pavement condition has an upper value and critical value (alert level). Controlling the critical value leads to maintaining the road quality.
Model Design and construction
In this research a decision model designed for the optimal planning of maintenance for road constructions to a particular section of a highway for a longer period. Optimal refers to the minimization of construction maintaining the required quality of the finished product and performance conditions.

The optimization problem consists of assigning maintenance actions (A) to segments (S) over a planning horizon (T) equal to the contract for the multi-year road maintenance.

To determine the most profitable strategy, a mathematical formula investigated. This is the minimum of the sum of construction costs, maintenance costs of all segments. The revenues are included. To achieve an effective maintenance strategy constraints added to the objective function. The boundary conditions are divided into 3 types known as the budget conditions, performance conditions and condition of road quality.

For the optimization the method of dynamic end value is used. In this dynamic method, the final value takes into account the inflation on costs and revenues from the moment the calculation is made until the time that the costs actually incurred.

From the three optimization calculations can be concluded which pavement structure is most suitable for the construction and maintenance of a section. This optimization yields an end value based on costs and revenues for each pavement structure.

Results
The project result is the highest for pavement structure I. The construction costs for pavement structure I is the lowest followed respectively by pavement structure III and II. The ratio concludes that the construction costs for pavement structure II are relatively high. It can be concluded that the high investment in construction in this situation do not outweigh the low maintenance, such as pavement structure II applies.

<table>
<thead>
<tr>
<th>Maintenance strategy</th>
<th>Total costs (incl. inflation and interest)</th>
<th>Construction costs (excl. interest)</th>
<th>Maintenance costs (excl. inflation and interest)</th>
<th>Remaining lifetime (year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement structure I</td>
<td>€1,183,604</td>
<td>€337,068</td>
<td>€261,099</td>
<td>1.5 year</td>
</tr>
<tr>
<td>Pavement structure II</td>
<td>€1,246,946</td>
<td>€433,142</td>
<td>€174,757</td>
<td>< 1.0 year</td>
</tr>
<tr>
<td>Pavement structure III</td>
<td>€1,297,329</td>
<td>€373,429</td>
<td>€277,655</td>
<td>± 2,0 year</td>
</tr>
</tbody>
</table>

Comparison of construction and maintenance costs

The research results give an incomplete image of reality. The input variables are subject to a number of unknown factors which may occur in the future. Therefore, an additional Monte Carlo simulation performed. The distribution of possible input variables was included in the final result. This result again shows the variation of possible outcomes based on the distribution of unknown factors in the future. Due to the different possible input variables of the model the contractor will know what the risks are for a strategy for multi-year road maintenance.

The sensitivity analysis is applied to the three pavement structures. The sensitivity analysis is applied to the input variables of construction costs, expected lifetime, maintenance and lifetime extension after applying a particular type of maintenance action. These input variables have a certain uncertainty. The effect of this uncertainty is tested and analysed on the basis of the results from the model.
This Monte Carlo simulation shows that the pavement structure based on an asphalt construction and layer of porous asphalt (5 cm) is the best option for multi-year road maintenance on highways.

Conclusions and recommendations
The answer to the central question is that pavement structure I; foundation of asphalt with layer of porous asphalt pavement (5 cm) is the most profitable strategy for multi-year road maintenance based on minimum cost, maximum availability fee and maintaining the required quality of the finished product and performance conditions.

The results show that the maintenance strategy based on an asphalt construction with porous asphalt layer is the best variant. In comparison with pavement structure II and III it has the lowest construction costs.

Although the maintenance of pavement structure I is higher than for pavement structure II, it appears that the low construction costs leads to the best total project result. The remaining lifetime of pavement structure I is higher than for pavement structure II. Pavement structure III has the highest remaining lifetime, but with the construction costs and maintenance costs are higher than with pavement structure I.

The value of the outcome is limited because the input variables are uncertain. Therefore, an additional Monte Carlo simulation performed. This shows the distribution of possible project outcomes.

The result of the sensitivity analysis of different input variables takes into account that the best variant is pavement structure I.

The recommendations are:
- it is recommended that the interim revenues has to be included in this study. The maintenance strategy will be designed that maintenance actions are implemented at the time of payment of the availability fee. This prevents a negative budget and retains a positive liquidity.

- the research is conducted to one segment. Further investigation has to been taken to implement the impact of maintenance of traffic disruption between segments.

- this study researched the pavement. It is recommend to extend the package. This means that in addition to the pavement, the dynamic traffic management, traffic facilities and concrete buildings are implemented in the study.
1 INTRODUCTIE

In het eerste hoofdstuk wordt het probleem geïntroduceerd en wordt de onderzoeksopzet beschreven. Hierin worden de vragen beantwoord waarom, wat, waar en hoe het onderzoek wordt verricht [P.J.M. Verschuren, 2008]. De vertaalslag van de aanleiding tot het onderzoek tot het onderzoeksresultaat wordt aan de hand van het onderstaande schema (Figuur 1-1) herleidt.

Figuur 1-1: onderzoeksplan en probleemstelling

In § 1.1 wordt de aanleiding tot het onderzoek beschreven. Uit de probleembeschrijving volgt het projectkader voor het afstudeeronderzoek. Vanuit het projectkader wordt in § 1.2 de opdrachtformulering herleid. De opdrachtformulering omschrijft het doel van het onderzoek en het doel in het onderzoek. Nu het doel van het onderzoek is vastgesteld, wordt in § 1.3 omschreven welke kennis nodig is en hoe het onderzoek wordt aangepakt. In de vierde paragraaf wordt het aangegeven hoe het onderzoek wordt afgebakend zodat de doelstelling realistisch haalbaar wordt. In § 1.5 worden de belangrijke begrippen toegelicht. Tot slot geeft § 1.6 de opbouw van het rapport weer.

1.1 Aanleiding tot het onderzoek

¹ De Nota Mobiliteit is het nationale verkeers- en vervoersplan tot 2020.
² Het proces waarbij tijdens het ontwerp rekening wordt gehouden met alle fasen in de levenscyclus van een infrastructureel project.
1.1.1 Nieuwe marktbenadering met DBFM-contracten

Rijkswaterstaat is verantwoordelijk voor de weginfrastructuur in Nederland. Het uitgangspunt van Rijkswaterstaat luidt dat de weggebruiker centraal staat en dat mobiliteit gewaarborgd dient worden en streeft ernaar een publieksgericht overheidsbedrijf te worden [Rijkswaterstaat, 2004]. Het ontwikkelen van (traditioneel) weg- en waterbeheerder tot een netwerkmanager. Het is de ambitie van Rijkswaterstaat om wegwerkzaamheden hinderarm uit te voeren voor de weggebruiker, met als startpunt: minimale hinder voor de weggebruiker.

De verschuiving van rollen en taken vraagt om een nieuwe manier van samenwerken tussen opdrachtgever en opdrachtnemer. Er zijn nieuwe contractvormen in het leven geroepen, die deze markbenadering mogelijk maken.

Voor ieder initiatief groter dan 60 miljoen euro, dat benoemd is in het MIRT\(^3\) en ten uitvoer kan worden gebracht, wordt een meerwaardetoets uitgevoerd. Zodra meerwaarde is aangetoond past Rijkswaterstaat in principe een DBFM-contract\(^4\) toe. Dit is een geïntegreerde contractvorm waarbij een integrale prestatie centraal staat. De voornaamste reden voor het toepassen is de mogelijkheid om de projectkosten over een lange periode te spreiden. Het leidt tot een grotere voorspelbaarheid en transparantie van de projectkosten.

Kenmerkend voor de DBFM-contracten zijn de integrale dienstverlening, allocatie van verantwoordelijkheden en het betalingsmechanisme voor de beschikbaarheid van de weginfrastructuur. De aannemer zal nagenoeg alle operationele aspecten van een project voor zijn rekening nemen; de ontwerp- en uitvoeringstaken, de financiering en het meerjarig onderhoud. De gunning vindt plaats op basis van een EMVI-score\(^5\).

\(^3\) Meerjarenprogramma Infrastructuur, Ruimte en Transport
\(^4\) DBFM: Design (ontwerpen), Build (bouwen), Finance (financieren) & Maintenance (onderhouden)
\(^5\) EMVI-score: gunning vindt plaats op basis van economisch meest voordelige inschrijving
De score wordt bepaald aan de hand van drie gunningscriteria:
- prijscriterium op basis van inschrijvingsprijs;
- prestatiecriterium op basis van succesfactoren;
- kwaliteitscriterium op basis van waarderingspunten.

Voor dit onderzoek wordt gekozen naar het prestatiecriterium. De drie belangrijke elementen voor het prestatiecriterium zijn:
- samenwerking & rolverdeling;
- verkeershinder in de realisatiefase;
- verkeershinder in de exploitatiefase.

De factor ‘verkeershinder in de exploitatiefase’ is een nieuw begrip binnen de aannemerij. Eerst lag de verantwoordelijkheid bij Rijkswaterstaat en in dit kader wordt de zorg voor het meerjarig onderhoud bij de aannemer gelegd. Voor de aannemer vraagt dit tijdens de ontwerpfase al om inzicht in het strategisch onderhouden van de weg.

1.1.2 Strategisch meerjarig wegonderhoud

Tijdens de exploitatiefase bestaat er een spanningsveld tussen de beschikbaarheid van de wegen en ruimte voor wegonderhoud. Het fasen van werkzaamheden voor wegonderhoud is afhankelijk van de mogelijkheid om de verkeersdoorstroming te garanderen. Het werken aan de weg is noodzakelijk om de kwaliteit en capaciteit te waarborgen, alleen zullen de consequenties van de wegwerkzaamheden opgevangen moeten worden.

Rijkswaterstaat legt steeds meer de nadruk op de beschrijving van de dienst in plaats van de wijze waarop de dienst geleverd moet worden. Als dienstverlenende organisatie betaalt Rijkswaterstaat pas wanneer de gevraagde dienst daadwerkelijk wordt geleverd, dus als haar beleidsdoelstelling wordt gerealiseerd [Kenniscentrum-PPS, 2003]. De verantwoordelijkheid voor de bouw en het beheer van een autosnelweg wordt voor meerdere jaren bij de marktpartij gelegd. De beleidsdoelstellingen worden aan projecteigenschappen gekoppeld. Rijkswaterstaat stelt functionele eisen aan onder meer de capaciteit en verkeersveiligheid van de weg gedurende de contractduur. De aannemer heeft een bepaalde vrijheid voor de uitwerking van de projecteigenschappen.

Het doel van Rijkswaterstaat is het beschikbaar stellen van infrastructuur aan weggebruikers. Voor de exploitatiefase is het van belang dat deze beschikbaarheid van wegen maximaal is. De opdrachtnemer dient daarom geprikkeld te worden om verkeershinder tijdens wegwerkzaamheden te minimaliseren.

Dit wordt gedaan aan de hand van een betalingsmechanisme dat uitgaat van een bruto beschikbaarheidsvergoeding (BBV) aan de aannemer. De vergoeding die de aannemer uiteindelijk krijgt is de netto beschikbaarheidsvergoeding (NBV). De BBV wordt gekopt op beschikbaarheidscorrectie en prestatiekorting. De aannemer probeert maximale beschikbaarheid te behalen door de werkzaamheden af te stemmen op het door Rijkswaterstaat vervaardigde beschikbaarheidsmodel6. De opdracht wordt door Rijkswaterstaat functioneel omschreven.

In samenwerking met diverse partijen zoals taakorganisaties, wetenschappelijke instellingen, adviesbureaus en aannemers wordt door Rijkswaterstaat gezocht naar perspectieffijke innovatieprojecten op het gebied van wegbeheer [DVS-Innovatieprojecten-Wegbeheer, 2008]. Dit alles is erop gericht op het hinderarm uitvoeren van wegonderhoud. In het bijzonder de hinderbeleving

\[footnote{6}{Beschikbaarheidsmodel: het instrument van Rijkswaterstaat om gedurende de looptijd van de DBFM-overeenkomst de beschikbaarheid van het tracé te bepalen.}\]
tijdens werkzaamheden, de toename van het verkeer en de veranderende rol van Rijkswaterstaat dragen er toe bij dat deze innovatieprojecten zijn opgestart.

De innovatieprojecten zijn ondergebracht in 4 categorieën:
- de bronaanpak;
- het hinderarm organiseren van wegonderhoud;
- systeeminnovatie en
- productinnovatie.

1.1.3 Projectkader

Zoals eerder aangegeven streeft Rijkswaterstaat als dienstverlenende organisatie naar maximale beschikbaarheid van de infrastructuur voor weggebruikers. De verantwoordelijkheid voor het beheer en onderhoud wordt nu bij de aannemer gelegd, waar voorheen Rijkswaterstaat de verantwoordelijk droeg. In het kader van dit onderzoek wordt gekeken naar het strategisch organiseren van wegonderhoud. Het strategisch organiseren van wegonderhoud is afgeleid van het prestatiecriterium waarop de aannemer wordt beoordeeld. Hieronder is de afleiding van het onderzoeksgebied van het afstudeeronderzoek weergegeven (Figuur 1-3).

Voor de aannemer is het interessant om beter inzicht te krijgen in mogelijke onderhoudsstrategieën in relatie tot het hinderarm organiseren van wegonderhoud. De aannemer stelt zich tot doel een maximaal projectresultaat te halen en het tevreden stellen van de klant. Met behulp van het beschikbaarheidsmodel kan empirisch worden onderzocht wat de invloed is van onderhoudswerkzaamheden op de verkeersdoorstroming op autosnelwegen. Er is dus onderzoek gewenst naar de optimale relatie tussen de beschikbaarheid van autosnelwegen en het faseren van meerjarig wegonderhoud.

Dit leidt tot een optimale onderhoudsstrategie voor meerjarig wegonderhoud op basis van drie uitgangspunten.
1) het minimaliseren van de totale projectkosten. (de aanleg- en onderhoudskosten voor de wegverharding);
2) de weg moet te allen tijden voldoen aan de door Rijkswaterstaat gestelde kwaliteitsnormen voor het eindproduct;
3) het minimaliseren van verkeershinder tijdens onderhoudswerkzaamheden (met andere woorden het minimaliseren van korting op de beschikbaarheidsvergoeding).
In het projectkader wordt beschreven waarom het onderzoek wordt gedaan, hierin wordt de link gelegd met de hiervoor genoemde uitgangspunten voor de onderhoudsstrategie.

PROJECTKADER AFSTUDEERONDERZOEK

Meerjarig wegonderhoud op autosnelwegen:

Wat?
Meerjarig wegonderhoud op autosnelwegen

Waarom?
Handhaving conditieniveau van wegverharding

Hoe?
Het toepassen van onderhoudsmaatregelen

Welke?
Onderhoudsmaatregelen gerelateerd aan het opgetreden schadebeeld en rendement op restlevensduur

Wanneer?
Het moment is gekoppeld aan het maximale rendement van de onderhoudsmaatregel met minimale verkeershinder als uitgangspunt

Uitgangspunten:

Minimale projectkosten
Het minimaliseren van de totale kosten voor aanleg- en onderhoud van de wegverharding.

Handhaving kwaliteitsniveau
De wegverharding dient te allen tijden te voldoen aan de kwaliteitsnorm gesteld door Rijkswaterstaat.

Minimale verkeershinder
Het minimaliseren van verkeershinder of maximaliseren van beschikbaarheid tijdens onderhoudswerkzaamheden.

Figuur 1-4: Projectkader afstageonderzoek
1.2 Opdrachtformulering

De probleemstelling wordt gevormd door de doelstelling van het onderzoek en een logisch daaruit afgeleide vraagstelling. Het doel van het onderzoek is om een beter inzicht te krijgen in de strategie voor meerjarig wegonderhoud op autosnelwegen bij toepassing van DBFM-contract. Gegeven de drie uitgangspunten is de onderstaande doelstelling gedefinieerd.

DOELSTELLING

Het ontwikkelen van een dynamisch beslissingsondersteunend model voor een meerjarig wegonderhoudsstrategie op autosnelwegen, waarmee inzicht wordt verkregen in de te kiezen verhardingstypen in relatie tot de kosten en opbrengsten, de maximale beschikbaarheid tijdens de exploitatiefase en de gestelde kwaliteitsseisen.

Het model wordt dynamisch gemaakt, zodat de strategie voor meerjarig wegonderhoud kan worden aangepast aan de ontwikkeling in de tijd. De ontwikkelingen in de tijd is een afhankelijk van de inflatie en de schadeontwikkeling van het wegdek.

Er wordt een strategie uitgewerkt voor drie typen verhardingsconstructies, namelijk:
- asfaltconstructie + deklaag ZOAB+ (5cm)
- betonconstructie + deklaag ZOAB+ (5cm)
- asfaltconstructie + dubbellaags ZOAB (2,5 + 4,5 cm)

In dit onderzoek zullen de verschillen tussen deze drie verhardingsconstructies aan bod komen. Uiteindelijk zal er een vergelijking worden gemaakt tussen de verschillende verhardingstypen in relatie tot de aanleg- en onderhoudskosten. Dit wordt gekoppeld aan de beschikbaarheidsvergoeding in relatie tot de verkeershinder tijdens onderhoudswerkzaamheden gegeven de gestelde kwaliteitsseisen van Rijkswaterstaat.

1.1.1 Kennisbenodigdheden

Nu de doelstelling en relevantie van het onderzoek zijn bepaald, wordt afgeleid welke kennis nodig is om de doelstelling te bereiken. De uitwerking hiervan heet de vraagstelling. De formulering van de vraagstelling:

CENTRALE VRAAGSTELLING

Wat is de beste strategie en de te kiezen wegoverconstructie voor meerjarig wegonderhoud op basis van minimale kosten, maximale beschikbaarheidsvergoeding en handhaving van het gestelde kwaliteitsniveau?

De vraagstelling wordt onderzocht door middel van onderzoeksvragen. Voor het beantwoorden van de centrale vraagstelling worden onderzoeksvragen geformuleerd. De onderzoeksvragen dienen als basis voor het afstudeeronderzoek en worden afgestemd om gezamenlijk een antwoord te geven op de vraagstelling.

De strategie voor meerjarig wegonderhoud wordt gebaseerd op drie uitgangspunten, namelijk:
- minimale aanleg- en onderhoudskosten;
- handhaving van het vereiste kwaliteitsniveau van het eindproduct;
- maximale beschikbaarheidsvergoeding door minimale verkeershinder tijdens onderhoudswerkzaamheden.
Voor het onderzoek wordt een optimale relatie gezocht tussen deze drie uitgangspunten. Op basis van dit gegeven kunnen de onderzoeksvragen worden geformuleerd.

ONDERZOEKSVRAGEN

Minimale kosten
1) Welke mogelijke verhardingsconstructies en bijbehorende onderhoudsmaatregelen kunnen worden genomen voor meerjarig wegonderhoud?

Handhaving kwaliteitsniveau
2) Aan welke kwaliteitseisen moet de wegverharding voldoen tijdens de exploitatiefase?

Maximale opbrengsten door minimale verkeershinder
3) Hoe kan het meerjarig wegonderhoud worden ingericht zodat maximale beschikbaarheidsvergoeding wordt ontvangen?

1.3 **Onderzoeksaanpak**

Het ontwikkelen van een onderhoudsstrategie is onderdeel van de besliskunde. Het biedt management hulp bij het bepalen van beleid en handelen [F. Huisman, 1994]. Een kenmerkende benadering is het ontwikkelen van een wiskundig model dat de werkelijkheid nabootst in het onderzoek. In Figuur 1-5 is de modelcyclus van een beslissingsmodel gegeven.

Volgens Sijsling zijn strategische planningsvraagstukken waarbij de kostenfuncties worden geoptimaliseerd een onderdeel van Operation Research [K.J. Sijsling, 1990].

Met het definiëren van de doelstelling, centrale vraagstelling en de opgestelde onderzoeksvragen is het mogelijk om aan de hand van de bovenstaande modelcyclus een onderzoeksschema op te stellen. Op de volgende pagina is het onderzoeksschema gegeven. Dit een schematische weergave hoe het onderzoek wordt doorlopen en hoe uiteindelijk wordt gekomen tot de beste strategie voor meerjarig wegonderhoud op basis van kosten, maximale beschikbaarheidsvergoeding en handhaving van het gestelde kwaliteitsniveau.
ONDERZOEKSAANPAK

INLEIDING
H1. Introductie

Aanleiding tot het onderzoek
Stellen projectkader
Ontnachtformulering en projectafbakening

Centrale vraagstelling

ANALYTISCH KADER
H2. Meerjarig onderhoud op autosnelwegen

Analyse wegkenmerken op autosnelwegen
Analyse toepasbare wegverhardingen en de daarbij behorende type onderhoudsmaatregelen
Analyse rijstrookafsluiting en verkeersmaatregelen
Schadeontwikkeling van toepasbare wegverhardingen

Weginleging wegtechnisch op autosnelweg
Aanlegkosten toepasbare verhardingstypen
Onderhoudskosten type onderhoudsmaatregelen
Kwaliteitseisen Rijkswaterstaat

Inzicht vraagstelling 1
Inzicht vraagstelling 2

H3. Beschikbaarheidsprincipe op autosnelwegen

Definiëring verkeershinder
Het betalingsmechanisme bij beschikbaarheid
Werking beschikbaarheidsmodel

Beschikbaarheidskorting bij rijstrookafsluiting
Opbrengsten voor beschikbaarheid
Relatie beschikbaarheidskorting en strategie onderhoudsmaatregelen

Inzicht vraagstelling 3

THEORETISCH KADER
H4. Ontwerp beslissingsmodel

Vaststellen doelstellingfunctie & randvoorwaarden
Ontwerp excel-beslissingsmodel

Vertaling doelstellingfunctie & randvoorwaarden naar bruikbaar beslissingsondersteunend model
Vertaling van het beslissingsondersteunend model

Invoerblad excel-beslissingsmodel casestudie
Uitvoerblad voor excel-beslissingsmodel

EMPIRISCH KADER
H5. Toepassing beslissingsmodel

Opzet fictieve casestudie
Invoerblad excel-beslissingsmodel casestudie

Uitvoerblad excel-beslissingsmodel fictieve casestudie

Verificatie modelresultaten

H6. Modelcontrole

Validatie van het beslissingsondersteunend model
Gevoeligheidsanalyse met behulp van Monte Carlo simulatie

SYNTHETISCH KADER
H7. Conclusies en aanbevelingen

Baantwoording van de centrale vraagstelling met conclusies en aanbevelingen

Figuur 1-6: Onderzoeksschema strategisch wegonderhoud
1.4 Projectafbakening

Dit onderzoek richt zich uitsluitend op het wegonderhoud op autosnelwegen. Voor de vergelijking van typen wegconstructies worden de aanlegkosten meegenomen in het onderzoek. Voor de wegconstructies worden alleen de door Rijkswaterstaat toegestane verhardingstypen onderzocht.

1.5 Begripsbepaling

Aanleg- en onderhoudskosten
De sommatie van operationele kosten en productkosten voor het aanleggen en onderhouden van een type wegconstructie.

Betalingsmechanisme
Een betalingsregime op basis van beschikbaarheid en prestatie. Is de infrastructuur gedeeltelijk beschikbaar dan wordt de betaling gereduceerd in evenredigheid met de niet-beschikbaarheid van de infrastructuur. Matige of ondermaatse prestaties worden veelal via een boetepuntensysteem gecorrigeerd. Deze boetepunten kunnen direct of na verloop van tijd een korting op het betalingsregime oproepen [Kenniscentrum-PPS, 2003]

Meerjarig wegonderhoud
Door de aanbesteding van de DBFM-Overeenkomst wordt het onderhoud gedurende een lange periode (circa 25 jaar) bij een marktpartij gelegd.

Wegonderhoudsstrategie
Een wegonderhoudsstrategie is een strategie om één of meer onderhoudsmaatregelen op een bepaald tijdstip onder een bepaald afzettingsysteem uit te voeren. [DWW-werkgroep-ROOS, 2003]

1.6 Leeswijzer

De analyse van het onderzoeksprobleem begint met de analyse van het meerjarig wegonderhoud op autosnelwegen in hoofdstuk 2. In hoofdstuk 3 wordt het beschikbaarheidsmodel toegelicht. In hoofdstuk 4 wordt de analyse omgevormd tot het ontwerp van het model. In hoofdstuk 5 wordt de invoervariabelen voor het model beschreven. Met behulp van het model en de invoervariabelen worden de resultaten in hoofdstuk 6 beschreven. In hoofdstuk 7 wordt de gevoeligheidsanalyse uitgevoerd. Tot slot wordt in hoofdstuk 8 de conclusies en aanbevelingen van het afstudeeronderzoek gegeven.
2 Meerjarig wegonderhoud op autosnelwegen

Voor het beheer en onderhoud van het hoofdwegennet wordt uitgegaan van 3 objectcategorieën [Basis onderhoudsniveau 2007], namelijk wegverharding, dynamisch verkeersmanagement en kunstwerken.

Dit hoofdstuk zal inzicht geven in de mogelijke verhardingsconstructies en onderhoudsmaatregelen in relatie tot de aanleg- en onderhoudskosten voor meerjarig wegonderhoud. In § 2.1 wordt het begrip meerjarig wegonderhoud geïntroduceerd. In § 2.2 wordt inzicht verkregen in de wegkenmerken van de autosnelweg. In § 2.3 worden de segmenteigenschappen beschreven. In § 2.4 wordt de schadeontwikkeling van wegverharding beschreven. Op basis van de schadeontwikkeling worden in § 2.5 onderhoudsmaatregelen vastgesteld. In § 2.6 wordt een link gelegd tussen de onderhoudsmaatregelen en de daarbij benodigde verkeersmaatregelen. In de laatste paragraaf worden de onderhoudskosten op basis van de onderhouds- en verkeersmaatregel in overzichtstabellen weergegeven.

2.1 Introductie

Het DBFM-contract onderschrijft dat de opdrachtnemer naast het ontwerp, bouwen en financieren ook verantwoordelijk is voor het beheer en onderhoud van de wegbobjecten behorende bij een autosnelweg. Het beheer en onderhoud wordt de exploitatiefase genoemd en geldt meestal voor een periode van 20 jaar. Dit blijkt uit DBFM-contracten die reeds op markt zijn gezet zoals de A15 Maasvlakte – Vaanplein en A12 Lunetten – Veenendaal. Per wegbobject wordt daarom een meerjarig onderhoudsplan opgesteld. Voor de exploitatiefase is het van belang dat voor de gehele periode in beeld is welke activiteiten en welke onderhoudsstategie gekozen worden. Er wordt dus inzicht verkregen in de onderhoudskosten en activiteiten op korte en lange termijn. Een lange termijnplanning zorgt ervoor dat men niet onverwacht voor hoge uitgaven komt te staan. Voor de aannemer is deze informatie vooraf ook belangrijk om een goed onderbouwde aanbieding te kunnen doen bij Rijkswaterstaat.

Het opzetten van een meerjarig onderhoudsplan vergt inzicht in de kenmerken van wegbobjecten van een autosnelweg. De wegbobjecten dienen te voldoen aan de door Rijkswaterstaat gestelde functionele eisen. Daarom is er per object inzicht nodig in de schadeontwikkeling en de te verwachten technische levensduur. De onderhoudsmaatregelen worden hieraan gekoppeld om de functionaliteit te waarborgen.

De wegbobjecten samen leiden tot één integraal meerjarig onderhoudsplan. Het meerjarig onderhoudsplan is een strategisch plan met een dynamisch karakter. Gedurende de exploitatiefase wordt namelijk input uit inspecties gebruikt om het onderhoudsplan te synchroniseren met de werkelijke situatie.

Er zijn diverse redenen waarom het onderhoudsplan voor meerjarig wegonderhoud aangepast dient te worden. Het conditieverloop is hier een voorbeeld van. Op basis van inspecties zal de strategie tussentijds aangepast worden. Het is een iteratief proces.

De strategie voor meerjarig wegonderhoud is afhankelijk van de te onderscheiden wegbobjecten het lengteprofiel, het dwarsprofiel en het toegepaste verhardingstype. De wegingedeling is
MEERJARIG WEGONDERHOUD OP AUTOSNELWEGEN

belangrijk voor de invloed van het treffen van verkeersmaatregelen op de verkeersdoorstroming.

Per activiteit worden maatregelkosten berekend. De kosten worden opgebouwd uit vaste- en variabele kosten. De vaste kosten zijn onafhankelijk van de omvang van de werkzaamheden, daarentegen zijn de variabele kosten juist gebaseerd op de mate van omvang. Deze informatie vormt de basis voor het uitzetten van een strategie wanneer welke activiteit op een bepaalde locatie effectief is.

2.2 Indeling hoofdwegennet in tracédelen en segmenten

Het hoofdwegennet bestaat uit autosnelwegen met ongelijkvloerse kruisingen. De hoofdrijbanen zijn gescheiden van elkaar en bestaan uit minimaal 2 x 2 rijstroken met of zonder vluchtstrook. De inrichting is gebaseerd op een zo veilig en betrouwbaar mogelijke afwikkeling van relatief grote hoeveelheden verkeer. De snelheid op de hoofdrijbaan is in Nederland vastgesteld op maximaal 120 km/h. Een uitzondering hierop zijn stedelijke gebieden waar lokaal of regionaal 80 of 100 km/h wordt gehanteerd. Naast de hoofdrijbaan worden parallelbanen en verbindingswegen onderscheiden. De snelheden per toepassingsgebied worden in Tabel 2-1 gegeven.

<table>
<thead>
<tr>
<th>HOOFDRIJBAAN: (in km/h)</th>
<th>RANGEER- EN PARALLELBAAN: (in km/h)</th>
<th>VERBINDINGSWEG: (in km/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>n.v.t.</td>
<td>n.v.t.</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>n.v.t.</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Tabel 2-1: snelheden per toepassingsgebied

De hoofdrijbaan heeft een functie voor doorgaande verkeersstromen. De rangeerbaan is er voor verkeer ter plaatse van een knooppunt of aansluiting, bedoeld voor invoegend, uittredend en w evend verkeer. Een parallelbaan is een rangeerbaan die zich uitstrekt over twee of meer knooppunten of aansluitingen. Ten slotte is de verbindingsweg een verkeersbaan die de verbinding vormt tussen twee verkeersbanen, waaronder ook toeritten, afritten en lussen vallen.

De opbouw van de hoofdrijbaan wordt gegeven in Figuur 2-1. Hierin wordt het dwarsprofiel gegeven van de hoofdrijbaan (NOA7).

HOOFDKENMERKEN:
- gescheiden rijbanen met minimaal twee rijstroken per rijrichting;
- aanwezigheid van vluchtstrook;
- ongelijkvloerse kruispunten en aansluitingen;
- vloeiende in- en uitvoegingen;
- toegankelijk voor motorvoertuigen met toegestane snelheid van minimaal 80 km/h.

STANDAARD DWARSPROFIEL

<table>
<thead>
<tr>
<th>Rijbaan</th>
<th>Rijbaan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

A: Zijperm
B: Vluchtstrook
C: Rijstrook
D: Redresseerstrook
E: Middenberm

Figur 2-1: Hoofdkenmerken hoofdrijbaan

7 NOA: Nieuwe Ontwerprichtlijnen voor Autosnelwegen
Afhankelijk van het aantal rijstroken kan de volgende verkeersbelasting worden gegeven. In Figuur 2-2 is de verkeersbelasting per rijstrook gegeven. Hierop is te zien dat de rechter rijstrook (rijstroken) het zwaarst worden belast in relatie met de linker rijstrook.

VERKEERSBELASTING PER RIJSTROOK

![Diagram van verkeersbelasting per rijstrook](image1)

Figuur 2-2: Verkeersbelasting per rijstrook

Doordat elke rijstrook / vluchtstrook een andere verkeersbelasting heeft, is het in dit kader van belang de onderhoudsstrategie af te stemmen per strook. Dit betekent dat elke strook anders benaderd dient te worden omdat de belasting verschillend is.

Ook in lengterichting kunnen verkeersbelastingen per rijstrook wijzigen. Een verandering van het dwarsprofiel door bijvoorbeeld een toe- en afrit heeft gevolgen voor de verkeersbelasting op een betreffende rijstrook.

Gezamenlijk vormen de tracés een wegsectie. Een wegsectie is een deel van een rijbaan tussen twee opeenvolgende knooppunten en deze zijn weer opgebouwd uit aaneengeschakelde tracédelen. In Figuur 2-3 is zijn de onderdelen van de sectie weergegeven.

WEGSECTIE

![Diagram van wegsectie](image2)

Figuur 2-3: Wegsectie

De sectie-indeling, zoals geschematiseerd in Figuur 2-4, wordt opgebouwd door de overgangspunten van tracédelen met elkaar te verbinden. De schakel wordt gekenmerkt als lengte van een tracédeel. De onderbroken verbindingsspijlen hebben geen invloed op de lengte van een tracédeel. Deze maken geen deel uit van de opbouw van de hoofdrijbaan. In een vereenvoudigde weergave is de sectie-indeling te herleiden uit het onderstaande schema.
MEERJARIG WEGONDERHOUD OP AUTOSNELWEGEN

WEGINDELING WIJZIGING TRACÉDELEN:

In dwarsrichting worden de hoofdrijbaan opgedeeld in segmenten gelijkwaardig aan het aantal rijstroken en eventuele vluchtstrook. Een segment heeft de lengte van het tracé en de breedte van één rijstrook of vluchtstrook. Een 3-strooks autosnelweg met vluchtstrook telt dus 4 segmenten op één tracédeel (Figuur 2-5).

TRACEDEEL MET 4 SEGMENTEN:

Voor dit onderzoek wordt een tracédeel vereenvoudigd tot de hoofdrijbaan. Deze bestaat uit minimaal 2 rijstroken met of zonder vluchtstrook tot een maximum van 4 rijstroken met of zonder vluchtstrook. Andere toepassingsgebieden zoals rangeer- en parallelbanen en verbindingswegen worden niet in dit onderzoek meegenomen. Wel wordt de verkeersrelatie en verkeersintensiteit meegenomen voor de bepaling van het onderhoud per tracédeel.
In Figuur 2-6 is de opzet van de wegindeling voor dit onderzoek gegeven. De gegeven sectie bestaat uit vier tracédelen met elk vier segmenten. De benaming van de segmenten is gekoppeld aan de locatie in de lengte- en breedterichting. Het eerste cijfer staat voor het tracédeel en het tweede cijfer staat voor het segment gerekend vanaf de vluchtstrook. Deze numerieke methode vormt een matrix en maakt het mogelijk om gegevens per wegsegment te bepalen en aan de hand hiervan onderhoudsmaatregelen te koppelen.

<table>
<thead>
<tr>
<th>SEGMENTNUMMER (i)</th>
<th>LOCATIE</th>
<th>TOTALE BREEDTE (in m)</th>
<th>SPECIFICATIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vluchtstrook</td>
<td>3.35 m</td>
<td>inclusief kantstreep.</td>
</tr>
<tr>
<td>2</td>
<td>Rijstrook rechts</td>
<td>3.65 m</td>
<td>inclusief tussenstreep</td>
</tr>
<tr>
<td>3</td>
<td>Rijstrook midden</td>
<td>3.65 m</td>
<td>inclusief tussenstreep</td>
</tr>
<tr>
<td>4</td>
<td>Rijstrook links</td>
<td>4.20 m</td>
<td>inclusief kantstreep en redresseerstrook</td>
</tr>
</tbody>
</table>

Tabel 2-2: Breedtes per segment 2x3 rijstroken

Bij 2 x 4 of 2 x 5 rijstroken zal de linker rijstrook respectievelijk segmentnummer 5 of 6 hebben.

2.3 Segmenteigenschappen

2.3.1 Oppervlakte segment

De lengte van een tracé wordt gekenmerkt door een wijziging van het dwarsprofiel. Voor het onderhouden van het segment is echter niet de lengte ten opzichte van het dwarsprofiel maatgevend maar de maximale haalbaarheid van onderhoudsmaatregel. De lengte van het tracé wordt afgestemd op de snelheid van het uitvoeren van de onderhoudsmaatregel binnen het geldende tijdskeur. De breedte van het segment is afhankelijk van de locatie van het segment ten opzichte van de rijbaan. In Tabel 2-1 zijn de breedtes per segment gegeven bij 2 x 3 rijstroken.

<table>
<thead>
<tr>
<th>SEGMENTNUMMER (i)</th>
<th>LOCATIE</th>
<th>TOTALE BREEDTE (in m)</th>
<th>SPECIFICATIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vluchtstrook</td>
<td>3.35 m</td>
<td>inclusief kantstreep.</td>
</tr>
<tr>
<td>2</td>
<td>Rijstrook rechts</td>
<td>3.65 m</td>
<td>inclusief tussenstreep</td>
</tr>
<tr>
<td>3</td>
<td>Rijstrook midden</td>
<td>3.65 m</td>
<td>inclusief tussenstreep</td>
</tr>
<tr>
<td>4</td>
<td>Rijstrook links</td>
<td>4.20 m</td>
<td>inclusief kantstreep en redresseerstrook</td>
</tr>
</tbody>
</table>

Tabel 2-2: Breedtes per segment 2x3 rijstroken

Bij 2 x 4 of 2 x 5 rijstroken zal de linker rijstrook respectievelijk segmentnummer 5 of 6 hebben.

2.3.2 Locatie en onderlinge relatie

De locatie van het segment wordt aangeduid volgens de matrix-methode, waarbij ’i’ staat voor het tracédeel en ’j’ voor de locatie van het segment in het betreffende tracédeel ’i’.

De onderlinge relatie is gebaseerd op de verkeersrelatie en de daarbij geldende doorstromingsseisen. Er wordt onderscheid gemaakt tussen de relatie van segmenten binnen het tracédeel en de relatie tussen segmenten van aansluitende tracédelen. Indien er rijstroomafsluiting plaatsvindt in een tracédeel dient de doorstroming gegarandeerd te worden. Er wordt aangenomen dat er tijdens een weekend één segment kan worden afgesloten. In § 2.6 wordt verder ingegaan op rijstroomafsluiting en de bijbehorende verkeersmaatregelen.
2.3.3 Verhardingstypen

In Nederland wordt op de autosnelwegen voor de rijstroken zeer open asfaltbeton (ZOAB) toegepast. ZOAB heeft als positieve eigenschap dat het verkeersgeluid en opspatten van regen wordt verminderd. Sinds enkele jaren is een nieuwe variant op de markt gekomen, genaamd ZOAB+ gemodificeerde bitumen. Dit heeft dezelfde geluid reducerende eigenschappen als de traditionele ZOAB alleen is deze sterker en duurzamer doordat er meer bitumen wordt toegepast. Een tweede verhardingstype dat nog in de kinderschoenen staat is Dubbellaags ZOAB. Kenmerkend voor dit verhardingstype is het stille wegedek [Rijkswaterstaat, 2009].

De strategie voor meerjarig wegonderhoud wordt uitgerekend op basis deze drie verhardingstypen:
- asfaltconstructie + deklaag ZOAB+ (5cm);
- betonconstructie + deklaag ZOAB+ (5cm);
- asfaltconstructie + dubbellaags ZOAB (2,5 + 4,5 cm).

Voor het onderzoek wordt driemaal een strategie uitgezet en de resultaten worden onderling vergeleken. De opbouw van de verhardingstypen wordt gegeven in Figuur 2-7:

2.3.4 Aanlegkosten

De aanlegkosten worden per segment per verhardingstype bepaald en de onderhoudsstrategie volgt op basis van dit verhardingstype. Er volgen dus drie berekeningen om aan te tonen welke verhardingstypen met bijbehorende strategie het meest geschikt om toe te passen op een bepaalde wegsectie. Hieronder worden fictieve bedragen weergegeven. De aanlegkosten per m² per verhardingstype worden meegenomen in het model voor het meerjarig wegonderhoud.

![Verhardingstypen](image)
MEERJARIG WEGONDERHOUD OP AUTOSNELWEGEN

<table>
<thead>
<tr>
<th>ACTIVITEIT</th>
<th>HOEVEELHEID</th>
<th>EENHEID</th>
<th>PRIJS</th>
<th>BEDRAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levering Beton (30 cm)</td>
<td>0,75</td>
<td>ton</td>
<td>40,00</td>
<td>30,00</td>
</tr>
<tr>
<td>Transport Beton</td>
<td>0,75</td>
<td>ton</td>
<td>15,00</td>
<td>11,25</td>
</tr>
<tr>
<td>Aanbrengen Beton</td>
<td>0,75</td>
<td>ton</td>
<td>14,50</td>
<td>10,88</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>1,00</td>
<td>m2</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Levering ZOAB+ (5 cm)</td>
<td>0,11</td>
<td>ton</td>
<td>65,00</td>
<td>6,99</td>
</tr>
<tr>
<td>Transport ZOAB+</td>
<td>0,11</td>
<td>ton</td>
<td>12,00</td>
<td>1,29</td>
</tr>
<tr>
<td>Aanbrengen ZOAB+</td>
<td>0,11</td>
<td>ton</td>
<td>10,00</td>
<td>1,08</td>
</tr>
<tr>
<td>Aanbrengen markering</td>
<td>1,00</td>
<td>m2</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Totaal € / m²</td>
<td></td>
<td></td>
<td></td>
<td>61,88</td>
</tr>
</tbody>
</table>

Tabel 2-4: Aanlegkosten verhardingstype II

<table>
<thead>
<tr>
<th>ACTIVITEIT</th>
<th>HOEVEELHEID</th>
<th>EENHEID</th>
<th>PRIJS</th>
<th>BEDRAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levering STAB (21 cm)</td>
<td>0,53</td>
<td>ton</td>
<td>30,00</td>
<td>15,75</td>
</tr>
<tr>
<td>Transport STAB</td>
<td>0,53</td>
<td>ton</td>
<td>12,00</td>
<td>6,30</td>
</tr>
<tr>
<td>Aanbrengen STAB</td>
<td>0,53</td>
<td>ton</td>
<td>30,00</td>
<td>15,75</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>6,00</td>
<td>m2</td>
<td>0,20</td>
<td>1,20</td>
</tr>
<tr>
<td>Levering ZOAB (4,5 cm)</td>
<td>0,10</td>
<td>ton</td>
<td>62,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Transport ZOAB</td>
<td>0,10</td>
<td>ton</td>
<td>12,00</td>
<td>1,16</td>
</tr>
<tr>
<td>Aanbrengen ZOAB</td>
<td>0,10</td>
<td>ton</td>
<td>10,00</td>
<td>0,97</td>
</tr>
<tr>
<td>Levering ZSA (2,5 cm)</td>
<td>0,05</td>
<td>ton</td>
<td>80,00</td>
<td>4,30</td>
</tr>
<tr>
<td>Transport ZSA</td>
<td>0,05</td>
<td>ton</td>
<td>12,00</td>
<td>0,65</td>
</tr>
<tr>
<td>Aanbrengen ZSA</td>
<td>0,05</td>
<td>ton</td>
<td>20,00</td>
<td>1,08</td>
</tr>
<tr>
<td>Aanbrengen markering</td>
<td>1,00</td>
<td>m2</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Totaal € / m²</td>
<td></td>
<td></td>
<td></td>
<td>53,35</td>
</tr>
</tbody>
</table>

Tabel 2-5: Aanlegkosten verhardingstype III

2.3.5 Beginconditie en verouderingsgedrag

Voor de conditie-eigenschappen van de wegverharding van elk segment zijn 3 aspecten van belang:
- de beginconditie;
- het conditieverloop / schadeontwikkeling in de tijd;
- conditieverbetering op een bepaald tijdstip na een betreffende onderhoudsmaatregel.

Voor de beginconditie wordt aangenomen dat deze 100% is. De schadeontwikkeling in de tijd wordt beschreven in een gedragsmodel. Met behulp hiervan worden voorspellingen gedaan wanneer onderhoud gepleegd dient te worden. Naast het gedragsmodel wordt gedurende de exploitatiefase inspecties en metingen verricht om het werkelijke verloop van de wegconditie vast te leggen.

Met behulp van visuele inspecties en ARAN-profijlmetingen² worden voorkomende schades in kaart gebracht. Door het uitvoeren van een visuele inspectie worden de relevante schadebeelden aan de asfaltverhardingen op eenduidige wijze vastgelegd.

In Figuur 2-9 wordt de werking van deze input naast het gedragsmodel schematisch gegeven. In paragraaf 2.4 wordt het gedragsmodel beschreven die wordt gehanteerd voor het uitzetten van een onderhoudsstrategie voor meerjarig wegonderhoud.

2.3.6 Rente- en inflatie

De aanleg van de wegverharding wordt uitgezet in de uitvoeringsfase en het onderhoud en beheer in de exploitatiefase. De exploitatiefase zijn de vooraf vastgestelde jaren waarbij de aannemer verantwoordelijk is voor het wegonderhoud. In de huidige DBFM-contracten (Design, Build, Finance & Maintenance) wordt uitgegaan van 20 onderhoudsjaren. Er wordt in dit kader uitgegaan dat de aanleg in jaar t=0 plaatsvindt. Gedurende de exploitatiefase wordt er rente betaald over de aangelegde wegverharding. Over de onderhoudsmaatregelen wordt rente betaald en daarnaast wordt een jaarlijkse inflatie meegerekend vanaf jaar 0 tot het tijdstip van uitvoeren.

Renten en inflatie op aanleg en onderhoud

\[
\text{Aanlegkosten}_r = \text{Aanlegkosten}_t + \text{rente}_t + \text{inflatie}_t
\]

\[
\text{Onderhoudsmaatregel}_i = \text{Onderhoudsmaatregel}_t + \text{rente}_t + \text{inflatie}_t
\]

Figuur 2-9: Rente- en inflatie op aanleg en onderhoud

2.4 Schadeontwikkeling en conditiegedrag verhardingstypen

2.4.1 Schadeontwikkeling

Schadeontwikkeling aan asfaltbeton wordt veroorzaakt door gebruik en verweuring. De schade door gebruik is afhankelijk van de verkeersintensiteit en verkeerssamenstelling. Verweuring is de conditievermindering veroorzaakt door klimatologische invloeden. Slijtage of schade van het asfaltbeton wordt uitgedrukt in schadeverschijnselen. De ontwikkeling van elk schadeverschijnsel geeft aanleiding tot het plegen van wegonderhoud. Afhankelijk van het schadebeeld wordt bepaald welke onderhoudsmaatregel in een planjaar effectief is.

Er worden twee typen schadecategorieën onderscheiden, namelijk:
- constructieve schade en
- niet-constructieve schade.
Constructieve schade ontstaat door vermoeiingseigenschappen van het asfaltbeton. Niet-constructie schade is vooral gekoppeld aan de functionele eigenschappen zoals rijcomfort en verkeersveiligheid van de wegoppervlakte van het asfaltbeton. Andere functionele eigenschappen die worden veroorzaakt door schadeverschijnselen zijn beschikbaarheid van de weg en het geluidsniveau van het wegdek.

SCHADECATEGORIEEN WEGVERHARDING

<table>
<thead>
<tr>
<th>Constructieve schade</th>
<th>Scheurvorming</th>
<th>Dwarscheuren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niet-constructieve schade</td>
<td>Rafeling</td>
<td>Craquelé</td>
</tr>
<tr>
<td></td>
<td>Spoorvorming / dwarsonvlakheid</td>
<td>Primaire spoorvorming</td>
</tr>
<tr>
<td></td>
<td>Onvoldoende stroefheid</td>
<td>Secundaire spoorvorming</td>
</tr>
<tr>
<td></td>
<td>Langsonvlakheid</td>
<td>Korte golfvorming</td>
</tr>
<tr>
<td></td>
<td>Onvoldoende dwarshelling</td>
<td>Lange golfvorming</td>
</tr>
</tbody>
</table>

Figuur 2-10: Schadecategorieën wegverharding

2.4.2 Classificatie schadebeelden

De schadegegevens worden beoordeeld en gekwalificeerd in termen van ernst en omvang van de schade. Per schadebeeld wordt de ernst ingedeeld in drie klassen; lichte, matige en ernstige schade. Voor elk individueel schadesoort zijn richtlijnen en richtwaarden gegeven door Rijkswaterstaat [DWW, 2002]. De overgang van ernstklasse 1 (lichte schade) naar ernstklasse 2 (matige schade) wordt gedefinieerd als waarschuwingsniveau. De overgang van ernstklasse 2 (matige schade) naar ernstklasse 3 (ernstige) wordt gedefinieerd als faalgrens.

Het uitgangspunt is dat ernstige schade op de wegverharding niet mag voorkomen. Als matige schade wordt geconstateerd wordt onderhoud gepland voor het hierop volgende planjaar. In de onderstaande grafiek zijn de 3 ernstklassen met kleur aangegeven.

- groen = ernstklasse 1;
- oranje = ernstklasse 2 en
- rood = ernstklasse 3.

CLASSIFICATIE SCHADENIVEAUS

Figuur 2-11: Classificatie schadeniveaus
2.4.3 Faalkans

In artikel [R. Dekker and R. Ph. Plasmeijer, 1997] wordt door experts van Rijkswaterstaat op basis van ervaring een schatting gemaakt van de kans dat een wegverharding faalt (ernstklasse 3). In het artikel wordt onderscheid gemaakt tussen dicht asfaltbeton en poreus asfaltbeton in Nederland.

Voor dit onderzoek wordt een onderhoudsstrategie uitgewerkt voor de hoofdrijbaan, daarom wordt er alleen gekeken naar poreus asfaltbeton. De faalkans van de maatgevende schadebeelden voor poreus asfaltbeton worden weergegeven in de onderstaande tabel.

<table>
<thead>
<tr>
<th>Schadebeeld</th>
<th>t=5 jaar</th>
<th>t=10 jaar</th>
<th>t=15 jaar</th>
<th>t=20 jaar</th>
<th>Gemiddelde levensduur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafeling</td>
<td>0,00</td>
<td>0,40</td>
<td>0,90</td>
<td>1,00</td>
<td>12 jaar</td>
</tr>
<tr>
<td>Craquelé</td>
<td>0,00</td>
<td>0,00</td>
<td>0,10</td>
<td>0,50</td>
<td>> 15 jaar</td>
</tr>
<tr>
<td>Dwarsonvlakheid</td>
<td>0,00</td>
<td>0,00</td>
<td>0,25</td>
<td>0,70</td>
<td>> 15 jaar</td>
</tr>
<tr>
<td>Langsonvlakheid</td>
<td>0,00</td>
<td>0,10</td>
<td>0,20</td>
<td>0,30</td>
<td>> 15 jaar</td>
</tr>
</tbody>
</table>

Tabel 2-6: Faalkans en gemiddelde levensduur wegdek

Tabel 2-6 geeft aan dat rafeling maatgevend is. De faalkans van rafeling is in jaar t groter dan de faalkans van de andere schadebeelden in ditzelfde jaar. Omdat voor het wegonderhoud wordt uitgegaan van de maatgevende factoren, wordt in dit onderzoek enkel gekeken naar het optredende schadebeeld; rafeling. Bij de onderhoudsmaatregelen wordt rekening gehouden dat éénmaal in exploitatie ook de fundering vernieuwd zal worden. Dit kan bij de randvoorwaarden worden vastgelegd.

2.4.4 Kwaliteitseisen Rijkswaterstaat

Rijkswaterstaat stelt dat het maximale rafelingspercentage per 100 meter strekkende rijstrook maximaal 25% mag zijn. Dit is een combinatiefactor van de omvang en de ernst van het schadebeeld.

Er wordt voor de classificatie aangenomen dat de conditie bij de faalgrens wordt gelijkgesteld aan het maximale rafelingspercentage van 3 %. Bij een matige schade geldt 15 tot 25 % van de oppervlakte.

2.4.5 Conditiefunctie

De combinatie van de faalkans en de schadeontwikkeling in de tijd leidt tot de opzet van het gedragsmodel. Uit Tabel 2-6 van Rijkswaterstaat kan worden aangenomen dat de kans op het optredende schadebeeld versneld in de tijd. Om dit gedrag te beschrijven wordt een machtsfunctie in de tijd toegepast. In werkelijkheid is niet reëel om een gedragsmodel met machtsfunctie toe te passen, omdat er veel fysische onzekerheden meespelen.

In dit onderzoek wordt daarom gekozen om de conditie probabilistisch te beschrijven. De spreiding van mogelijke conditieverlopen wordt met het probabilistische benaderen meer reëel benaderd. Per wegsegment wordt op basis van ervaring en verkeersprognose een uitspraak gedaan over de levensduur van de wegverharding totdat de waarschuwingsgrens wordt bereikt.

Per onderhoudsmaatregel wordt de levensduurverlenging vastgesteld.
In het gedragsmodel wordt het conditieniveau bij aanleg aangenomen als 100% en percentueel verminderd met het te verwachten schadeontwikkeling in de tijd.
De opzet van het gedragsmodel van conditieverloop en verouderingsgedrag is weergegeven in formulevorm (Tabel 2-7).

<table>
<thead>
<tr>
<th>Formule:</th>
<th>Toelichting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_t = C_{t-1} - \Delta C)</td>
<td>conditie in jaar t (in %)</td>
</tr>
<tr>
<td>(\Delta C = (C_0 - C_W) / L_1)</td>
<td>conditieverandering (in %)</td>
</tr>
<tr>
<td>(C_0)</td>
<td>beginconditie (in %)</td>
</tr>
<tr>
<td>(C_W)</td>
<td>waarschuwingsgrens (in %)</td>
</tr>
<tr>
<td>(L_1)</td>
<td>levensduurverwachting wegverharding 1 (in jaren)</td>
</tr>
</tbody>
</table>

Tabel 2-7: Formulering conditieverloop en verouderingsgedrag

Hierbij geldt dat de conditie in jaar t \((C_t)\) wordt gevonden door de conditievermindering van het afgelopen jaar \((\Delta C)\) af te trekken van het conditieniveau van het vorige jaar \((C_{t-1})\). De conditieverandering \((\Delta C)\) geldt hier als het verschil tussen de beginconditie en de waarschuwingsgrens gedeeld door het aantal levensduurjaren \((L_1)\).

Om de levensduurverwachting tijdens de exploitatie te controleren worden de inspecties en metingen gebruikt als input voor de restjaren van de exploitatiefase. Na de input kan een nieuwe onderhoudsstrategie worden opgezet. Hierbij is \(C_{t-1}\) het conditieniveau dat wordt vergeleken met de resultaten uit de inspecties en metingen. Dit geldt voor elk schadebeeld. Indien \(C_{t-1}\) niet overeenkomt met het waargenomen schadebeeld zal deze worden aangepast, zodat een nieuwe strategie ontwikkeld kan worden die aansluit bij de situatie op dat moment.

2.5 Onderhoudsmaatregelen

Voor het herstellen van schadebeelden tot een acceptabel niveau zijn onderhoudsmaatregelen nodig. Het moment van onderhoud is afhankelijk van het type deklaag, de ouderdom van de deklaag en de waargenomen schade uit de inspectie. In dit onderzoek wordt het bepaald aan de hand van een gedragsmodel en dynamisch gemaakt door input vanuit inspecties en metingen. Naast het moment van onderhoud wordt gekeken welke maatregel het beste genomen kan worden. De afweging wordt gebaseerd op enerzijds de kosten van de onderhoudsmaatregel en anderzijds het effect op de restlevensduur. De kosten van de maatregel zijn opgebouwd uit maatregelkosten, kosten voor voorbewerkingen en bijkomende kosten zoals verkeersmaatregelen. De restlevensduur na de maatregel wordt gedefinieerd als de tijd tussen ingebruikname van de verharding na de uitvoering van de maatregel en de volgende benodigde maatregel.

Voor de bepaling van de onderhoudsstrategie wordt onderzocht welke eigenschappen bepalend zijn voor de keuze van de onderhoudsmaatregel. Een belangrijke voorwaarde voor toepassing van de onderhoudsmaatregel is het effect op het schadebeeld. Dit wordt uitgedrukt in rendement waarbij de restlevensduur na de maatregel wordt gedeeld door de kosten van de maatregel. De maatregelkosten worden gebaseerd op het uitvoeringsproces, de productiesnelheid en uitvoeringsduur van de maatregel. Per type onderhoudsmaatregel wordt een schatting gemaakt van de productie, die realistisch gehaald kan worden binnen een zaterdagnacht 20:00 – 06:00 uur door één asfaltploeg per rijstrook. Deze uren vallen binnen de door Rijkswaterstaat gestelde werkbare uren.

Ter voorkoming dat er mogelijke hoogteverschillen in het dwarsprofiel optreden bij toepassing van een bepaalde maatregel wordt ook aangegeven of de maatregel rijstrookbreed of alleen rijbaanbreed uitgevoerd kan worden.

Voor de verharding is door Rijkswaterstaat een beschikbaarheidseis gesteld aan de waterafvoer door de verhardingsconstructie. Het cleanen van ZOAB gebeurt 2 keer per jaar met behulp van een ZOAB-cleaner. Hierbij wordt enkel de vluchtstrook meegenomen. De productiesnelheid van cleanen is ongeveer 9 km/ weekendnacht. Het schoonhouden van de vluchtstrook heeft een
positieve invloed op de levensduur van de ZOAB. De vluchtstrook en de redresseerstrook worden 4 keer per jaar geveegd om te voldoen aan de eis met betrekking tot waterdoorlatendheid. Dit kan tweemaal gecombineerd worden met maaiwerkzaamheden. Voor het vegen van de verharding wordt een veegauto ingezet. Per weekendnacht kan 30 km worden geveegd.

Werkzaamheden die onder andere kunnen worden uitgevoerd gelijktijdig met het vast onderhoud is het schoonmaken/ repareren/ vervangen van bewegwijzeren, het dynamisch verkeersmanagementsysteem, verlichting en de geleideconstructie.

In de volgende subparagrafen worden de onderhoudsmaatregelen voor wegonderhoud uitgewerkt. Het begrip wordt uitgelegd en het uitvoeringsproces wordt in kaart gebracht. Aan de hand hiervan worden de effectieve uren voor de maatregel bepaald. Uit ervaringscijfers over productiesnelheden kan een inschatting worden gemaakt over het aantal m² per werknacht. Het aantal m² wordt vertaald naar maatregelkosten per m² per werknacht.

Voor elke verhardingstypen worden onderhoudsmaatregelen toegepast. Sommige maatregelen worden toegepast bij meerdere verhardingstypen. In de onderstaande subparagraaf worden de onderhoudsmaatregelen behandeld met bijbehorende onderhoudskosten per verhardingstype.
2.5.1 Sealen deklaag

Het sealen van de deklaag is een oppervlaktebehandeling en heeft een levensduur verlengende eigenschap. Het wegoppervlak wordt behandeld met een emulsie waardoor de flexibiliteit van de bitumen herstelt. Het sealen kan worden toegepast op bij verhardingstype I, II en III. Het productieproces wordt weergegeven in Figuur 2-12.

De productie is afhankelijk van het aantal effectieve uren. De behandeling kan worden gestart na de rijstrookafsluiting. Nadat het brekerszand is aangebracht kan de rijstrook weer worden vrijgegeven. Aan de hand van de productie kan de prijs/ m² worden bepaald Tabel 2-8.

De conditieverbetering na sealen deklaag brengt het sealen van de deklaag een relatieve verbetering tot stand. Er geldt als beperking op de maatregel dat het eenmalig op één wegdek kan worden toegepast. Bij een volgende toepassing op hetzelfde wegdek zal het niet de gewenste werking hebben.

<table>
<thead>
<tr>
<th>ACTIVITEIT</th>
<th>HOEVEELHEID</th>
<th>EENHEID</th>
<th>PRIJS</th>
<th>BEDRAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaste kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aan- en afvoer / huur</td>
<td>1,00</td>
<td>segment</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Verkeersmaatregelen</td>
<td>1,00</td>
<td>segment</td>
<td></td>
<td>1500</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td>€ / segment</td>
<td>1800</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aanbrengen emulsie</td>
<td>1,00</td>
<td>m2</td>
<td></td>
<td>2,10</td>
</tr>
<tr>
<td>Aanbrengen markering</td>
<td>1,00</td>
<td>m2</td>
<td></td>
<td>0,20</td>
</tr>
<tr>
<td>Aanbrengen brekerszand</td>
<td>1,00</td>
<td>m2</td>
<td></td>
<td>0,10</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td>€ / m²</td>
<td>2,40</td>
</tr>
</tbody>
</table>

Tabel 2-8: Indicatie onderhoudskosten sealen deklaag

CONDITIEVERBETERING NA SEALEN DEKLAAG

Figuur 2-13: Conditieverbetering na sealen deklaag
2.5.2 Vervangen deklaag ZOAB+ (50 mm in / uit)

Nadat de bestaande deklaag middels frezen is verwijderd, wordt eenzelfde deklaag opnieuw aangebracht. Het vervangen van de deklaag kan worden toegepast op verhardingstype I en II. Het productieproces is weergegeven in Figuur 2-14.

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Tijdstip</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Afsluiten segment</td>
<td>19.00</td>
<td></td>
</tr>
<tr>
<td>Frezen 50 mm/ reinigen wegdek</td>
<td>20.00</td>
<td></td>
</tr>
<tr>
<td>Aanbrengen deklaag ZOAB+ 50mm</td>
<td>21.00</td>
<td></td>
</tr>
<tr>
<td>Aanbrengen marketing</td>
<td>22.00</td>
<td></td>
</tr>
<tr>
<td>Opstellen segment</td>
<td>23.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>05.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>06.00</td>
<td></td>
</tr>
</tbody>
</table>

Figuur 2-14: Productieproces vervangen deklaag

De productie is afhankelijk van het aantal effectieve uren. Het asfalteren wordt gestart nadat met kleven een begin is gemaakt en kan maximaal tot anderhalf uur voor het vrijgeven van de strook worden voortgezet. Aan de hand van de productie kan de prijs/ m² worden bepaald in Tabel 2-9.

<table>
<thead>
<tr>
<th>ACTIVITEIT</th>
<th>HOEVEELHEID</th>
<th>EENHEID</th>
<th>PRIJS</th>
<th>BEDRAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaste kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aan- en afvoer / huur</td>
<td>1,00</td>
<td>segment</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Verkeersmaatregelen</td>
<td>1,00</td>
<td>segment</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Totaal</td>
<td>1,00</td>
<td>€ / segment</td>
<td>2400</td>
<td></td>
</tr>
<tr>
<td>Variabele kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frezen (5 cm)</td>
<td>0,11</td>
<td>ton</td>
<td>11,00</td>
<td>1,18</td>
</tr>
<tr>
<td>Reinigen wegdek</td>
<td>1,00</td>
<td>m²</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>1,00</td>
<td>m²</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Levering ZOAB+ (5 cm)</td>
<td>0,11</td>
<td>ton</td>
<td>65,00</td>
<td>6,99</td>
</tr>
<tr>
<td>Transport ZOAB+</td>
<td>0,11</td>
<td>ton</td>
<td>15,00</td>
<td>1,61</td>
</tr>
<tr>
<td>Aanbrengen ZOAB+</td>
<td>0,11</td>
<td>ton</td>
<td>15,00</td>
<td>1,61</td>
</tr>
<tr>
<td>Aanbrengen markering</td>
<td>1,00</td>
<td>m²</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td>€ / m²</td>
<td>11,90</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 2-9: Indicatie onderhoudskosten vervangen deklaag

Het vervangen van de deklaag brengt een absolute verbetering tot stand. Er kan worden aangenomen dat de beginconditie wordt bereikt (Figuur 2-15).

Figuur 2-15: Conditieverbetering na vervangen deklaag
2.5.3 Vervangen tussenlaag STAB + en ZOAB+ (120 mm in / uit)

Voor deze onderhoudsmaatregel wordt eerst een tussenlaag en de deklaag gefreesd. Daarna wordt 70 mm STAB en een deklaag ZOAB+ aangebracht. Het vervangen van de tussenlaag en deklaag wordt toegepast op verhardingstype I. Het productieproces is weergegeven in Figuur 2-14.

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Tijdstip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afsluiten segment</td>
<td>19.00</td>
</tr>
<tr>
<td>Frezen 120 mm/ reinigen wegedek</td>
<td>20.00</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>21.00</td>
</tr>
<tr>
<td>Aanbrengen tussenlaag STAB 70mm</td>
<td>22.00</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>23.00</td>
</tr>
<tr>
<td>Aanbrengen deklaag ZOAB+ 50mm</td>
<td>00.00</td>
</tr>
<tr>
<td>Aanbrengen marketing</td>
<td>01.00</td>
</tr>
<tr>
<td>Opstellen segment</td>
<td>02.00</td>
</tr>
<tr>
<td></td>
<td>03.00</td>
</tr>
<tr>
<td></td>
<td>04.00</td>
</tr>
<tr>
<td></td>
<td>05.00</td>
</tr>
<tr>
<td></td>
<td>06.00</td>
</tr>
</tbody>
</table>

Figuur 2-16: Productieproces vervangen deklaag

De productie is afhankelijk van het aantal effectieve uren. Het asfalteren wordt gestart nadat met kleven een begin is gemaakt en kan maximaal tot anderhalf uur voor het vrijgeven van de strook worden voortgezet. Aan de hand van de productie kan de prijs/ m² worden bepaald in Tabel 2-10.

<table>
<thead>
<tr>
<th>ACTIVITEIT</th>
<th>HOEVEELHEID</th>
<th>EENHEID</th>
<th>PRIJS</th>
<th>BEDRAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaste kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aan- en afvoer / huur</td>
<td>1</td>
<td>segment</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>Verkeersmaatregelen</td>
<td>1</td>
<td>segment</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>4800</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frezen (12 cm)</td>
<td>0,28</td>
<td>ton</td>
<td>11,00</td>
<td>3,11</td>
</tr>
<tr>
<td>Reinigen wegedek</td>
<td>1,00</td>
<td>m2</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>1,00</td>
<td>m2</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Levering STAB (7 cm)</td>
<td>0,18</td>
<td>ton</td>
<td>30,00</td>
<td>5,25</td>
</tr>
<tr>
<td>Transport STAB</td>
<td>0,18</td>
<td>ton</td>
<td>15,00</td>
<td>2,63</td>
</tr>
<tr>
<td>Aanbrengen STAB</td>
<td>0,18</td>
<td>ton</td>
<td>10,00</td>
<td>1,75</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>1,00</td>
<td>m2</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Levering ZOAB+ (5 cm)</td>
<td>0,11</td>
<td>ton</td>
<td>65,00</td>
<td>6,99</td>
</tr>
<tr>
<td>Transport ZOAB+</td>
<td>0,11</td>
<td>ton</td>
<td>15,00</td>
<td>1,61</td>
</tr>
<tr>
<td>Aanbrengen ZOAB+</td>
<td>0,11</td>
<td>ton</td>
<td>15,00</td>
<td>1,61</td>
</tr>
<tr>
<td>Aanbrengen markering</td>
<td>1</td>
<td>m2</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>23,65</td>
</tr>
</tbody>
</table>

Tabel 2-10: Indicatie onderhoudskosten vervangen deklaag

Afhankelijk van de wegconditie brengt het vervangen van de tussenlaag en deklaag een absolute verbetering tot stand. Er kan worden aangenomen dat de beginconditie wordt bereikt (Figuur 2-15).

CONDITIESVERBETERING NA VERVANGEN TUSSENLAAG STAB + EN ZOAB+

Figuur 2-17: Conditiesverbetering na vervangen tussenlaag STAB + en ZOAB+
2.5.4 Vervangen toplaag ZSA (25 mm in / uit)

Het vervangen van de toplaag wordt enkel toegepast voor verhardingstype III en is vergelijkbaar met het vervangen van de deklaag ZOAB+. Het verschil is de te verwijderen en aan te brengen asfaldikte. Daarnaast zal er ook een ZOAB-cleaner ingezet moeten worden om de kwaliteit van de onderlaag te garanderen. Het uitvoeringsproces is weergegeven in (Figuur 2-18).

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Tijdstip</th>
<th>19.00</th>
<th>20.00</th>
<th>21.00</th>
<th>22.00</th>
<th>23.00</th>
<th>00.00</th>
<th>01.00</th>
<th>02.00</th>
<th>03.00</th>
<th>04.00</th>
<th>05.00</th>
<th>06.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afsluiten segment</td>
<td></td>
</tr>
<tr>
<td>Frezen 25 mm/ cleanen wegdek</td>
<td></td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td></td>
</tr>
<tr>
<td>Aanbrengen deklaag ZSA 25 mm</td>
<td></td>
</tr>
<tr>
<td>Aanbrengen markering</td>
<td></td>
</tr>
<tr>
<td>Opstellen segment</td>
<td></td>
</tr>
</tbody>
</table>

Figuur 2-18: Productieproces vervangen toplaag

De productie is afhankelijk van het aantal effectieve uren. Het asfalteren wordt gestart nadat met kleven een begin is gemaakt en kan maximaal tot anderhalf uur voor het vrijgeven van de strook worden voortgezet. Aan de hand van de productie kan de prijs/ m² worden bepaald in Tabel 2-11).

<table>
<thead>
<tr>
<th>ACTIVITEIT</th>
<th>HOEVEELHEID</th>
<th>EENHEID</th>
<th>PRIJS</th>
<th>BEDRAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaste kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aan- en alvoer / huur</td>
<td>1</td>
<td>segment</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Verkeersmaatregelen</td>
<td>1</td>
<td>segment</td>
<td>1500</td>
<td>1500</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>€ / segment 2400</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frezen (2,5 cm)</td>
<td>0,05</td>
<td>ton</td>
<td>11,00</td>
<td>0,59</td>
</tr>
<tr>
<td>Reinigen ZOAB-cleaner</td>
<td>1,00</td>
<td>m²</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>1,00</td>
<td>m²</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Levering ZSA (2,5 cm)</td>
<td>0,05</td>
<td>ton</td>
<td>80,00</td>
<td>4,30</td>
</tr>
<tr>
<td>Transport ZSA</td>
<td>0,05</td>
<td>ton</td>
<td>15,00</td>
<td>0,81</td>
</tr>
<tr>
<td>Aanbrengen ZSA</td>
<td>0,05</td>
<td>ton</td>
<td>10,00</td>
<td>0,54</td>
</tr>
<tr>
<td>Aanbrengen markering</td>
<td>1</td>
<td>m²</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>€ / m² 7,04</td>
</tr>
</tbody>
</table>

Tabel 2-11: Indicatie kosten vervangen toplaag per m² voor Dubbellaags ZOAB

Afhankelijk van de wegconditie brengt het aanbrengen van een toplaag een relatieve verbetering tot stand. Er geldt als beperking op de maatregel dat het eenmalig op één wegdek kan worden toegepast. Bij een volgende toepassing op hetzelfde wegdek zal het niet de gewenste werking hebben.

<table>
<thead>
<tr>
<th>CONDITIEVERBETERING NA VERVANGEN TOPLAAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_0</td>
</tr>
<tr>
<td>C_{t-1}</td>
</tr>
<tr>
<td>$C_{t-1} - \Delta C$</td>
</tr>
<tr>
<td>t</td>
</tr>
<tr>
<td>$t-1$</td>
</tr>
<tr>
<td>$V_0x, t: = \frac{(C_0 (t) - (C_0 (t - 1) - \frac{(C_n (t) - C_n (t - 1))}{\text{Levensduur nieuw - toplaag}}))}{\text{Levensduur, na - nieuw - toplaag}}$</td>
</tr>
</tbody>
</table>

Figuur 2-19: Conditieverbetering na vervangen toplaag
2.5.5 Vervangen tussenlaag STAB + Dubbellaags ZOAB (140 mm in / uit)

Het vervangen van top- en onderlaag wordt enkel toegepast voor Dubbellaags ZOAB. Nadat de bestaande deklaag middels frezen is verwijderd, wordt eenzelfde deklaag opnieuw aangebracht (Figuur 2-20).

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Tijdstip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afsluiten segment</td>
<td>19.00</td>
</tr>
<tr>
<td>Frezen 70 mm/ cleanen wegdek</td>
<td>20.00</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>21.00</td>
</tr>
<tr>
<td>Aanbrengen onderlaag ZOAB+ 45 mm</td>
<td>22.00</td>
</tr>
<tr>
<td>Nacht 2</td>
<td></td>
</tr>
<tr>
<td>Cleanen onderlaag</td>
<td>00.00</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>01.00</td>
</tr>
<tr>
<td>Aanbrengen toplaag ZOAB 25 mm</td>
<td>02.00</td>
</tr>
<tr>
<td>Aanbrengen marketing</td>
<td>03.00</td>
</tr>
<tr>
<td>Opsenstellen segment</td>
<td>04.00</td>
</tr>
</tbody>
</table>

De productie is afhankelijk van het aantal effectieve uren. Het asfalteren wordt gestart nadat met kleven een begin is gemaakt en kan maximaal tot anderhalf uur voor het vrijgeven van de strook worden voortgezet. Aan de hand van de productie kan de prijs/ m² worden bepaald in Tabel 2-12.

<table>
<thead>
<tr>
<th>ACTIVITEIT</th>
<th>HOEVEELHEID</th>
<th>EENHEID</th>
<th>PRIJS</th>
<th>BEDRAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaste kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aan- en afvoer / huur</td>
<td>1</td>
<td>segment</td>
<td>1800</td>
<td>1800</td>
</tr>
<tr>
<td>Verkeersmaatregelen</td>
<td>1</td>
<td>segment</td>
<td>3000</td>
<td>3000</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>4800</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frezen (14 cm)</td>
<td>0,33</td>
<td>ton</td>
<td>11,00</td>
<td>3,58</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>1,00</td>
<td>m²</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Levering STAB (7 cm)</td>
<td>0,18</td>
<td>ton</td>
<td>30,00</td>
<td>5,25</td>
</tr>
<tr>
<td>Transport STAB</td>
<td>0,18</td>
<td>ton</td>
<td>15,00</td>
<td>2,63</td>
</tr>
<tr>
<td>Aanbrengen STAB</td>
<td>0,18</td>
<td>ton</td>
<td>10,00</td>
<td>1,75</td>
</tr>
<tr>
<td>Reinigen wegdek</td>
<td>1,00</td>
<td>m²</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>1,00</td>
<td>m²</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Levering ZOAB (4,5 cm)</td>
<td>0,10</td>
<td>ton</td>
<td>62,00</td>
<td>6,00</td>
</tr>
<tr>
<td>Transport ZOAB</td>
<td>0,10</td>
<td>ton</td>
<td>15,00</td>
<td>1,45</td>
</tr>
<tr>
<td>Aanbrengen ZOAB</td>
<td>0,10</td>
<td>ton</td>
<td>10,00</td>
<td>0,97</td>
</tr>
<tr>
<td>Aanbrengen kleeflaag</td>
<td>1,00</td>
<td>m²</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Levering ZSA (2,5 cm)</td>
<td>0,05</td>
<td>ton</td>
<td>80,00</td>
<td>4,30</td>
</tr>
<tr>
<td>Transport ZSA</td>
<td>0,05</td>
<td>ton</td>
<td>15,00</td>
<td>0,81</td>
</tr>
<tr>
<td>Aanbrengen ZSA</td>
<td>0,05</td>
<td>ton</td>
<td>10,00</td>
<td>0,54</td>
</tr>
<tr>
<td>Aanbrengen markering</td>
<td>1</td>
<td>m²</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td></td>
<td>28,17</td>
</tr>
</tbody>
</table>

Het vervangen de top- en onderlaag brengt een absolute verbetering tot stand. Er kan worden aangenomen dat de beginconditie wordt bereikt.
CONDITIEVERBETERING NA VERVANGEN TOP- EN ONDERLAAG

Figuur 2-21: Conditieverbetering na vervangen top- en onderlaag
2.6 Segmentafsluiting en impact verkeershinder

Werkzaamheden op autosnelwegen dienen te allen tijden veilig worden uitgevoerd voor zowel de wegwerkers als de weggebruikers. Afzettingen worden ingezet bij werk in uitvoering. De richtlijnen voor het uitvoeren van werkzaamheden op en naast de rijbaan op autosnelwegen zijn beschreven in CROW publicatie 96a.

2.6.1 Statistische en dynamische werkzaamheden

Het plaatsen van een afzetting heeft consequenties voor de doorstroming van het verkeer. De keuze is afhankelijk van de karakteristieken van de werkzaamheden en de beschikbare werkruiumte. De benodigde gegevens is het soort werk, de omvang in aantal rijstroken en de tijdsduur van de werkzaamheden. Om de doorstroming per afzetting te bepalen zijn ook wegkarakteristieken nodig met betrekking tot de capaciteit, intensiteit, aandeel vrachtverkeer en discontinuïteiten van de weg. In CROW pub-96a is de categorisatie gemaakt van tijdsduur van werkzaamheden (Tabel 2-13).

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Tijdsduur</th>
<th>Toepassingsgebied in maatregelfiguren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeer kort</td>
<td>≤ 30 minuten</td>
<td>≤ 30 minuten</td>
</tr>
<tr>
<td>Kort</td>
<td>> 30 min. - ≤ 2 uur</td>
<td>≤ 2 uur</td>
</tr>
<tr>
<td>Lang</td>
<td>> 2 uur - ≤ 1 dag</td>
<td>≤ 1 dag</td>
</tr>
<tr>
<td>Zeer lang</td>
<td>> 1 dag</td>
<td>> 1 dag - ≤ 2 weken</td>
</tr>
<tr>
<td></td>
<td>> 2 weken</td>
<td>> 2 weken</td>
</tr>
</tbody>
</table>

Tabel 2-13: Categorisatie tijdsduur werkzaamheden

STATISCHE EN DYNAMISCHE WERKZAAMHEDEN

Figuur 2-22: Statistische en dynamische werkzaamheden
Bij rijstreekafsluitingen wordt gekeken of het mogelijk is of werkzaamheden plaats kunnen vinden binnen de gedefinieerde werkzame uren (WBU9 die Rijkswaterstaat per traject heeft geformuleerd. Indien werkzaamheden bij duisternis worden verricht, moet er rijbaanverlichting aanwezig zijn. De maximale lengte van een statische afzetting is gerelateerd aan de snelheid die op dat moment wordt gehanteerd voor het verkeer (snelheid bij werk in uitvoering). De lengte wordt gecategoriseerd naar maximale lengte zonder beperking van de verkeersruimte en maximale lengte met beperking van de verkeersruimte.

Er wordt bij de statische afzettingmethode onderscheid gemaakt tussen wisselende rijstreekafzetting (WRA) en een contra-flowsysteem (CF). Een wisselende rijstreekafzetting betekent een afzetting dat leidt tot een beperkte beschikbaarheid van de rijstroken op de rijbaan waar de werkzaamheden plaatsvinden. Bij het contra-flowsysteem wordt het verkeer van de rijbaan van de werkzaamheden geheel of gedeeltelijk verplaatst naar de andere rijbaan.

De onderhoudsmaatregelen in dit onderzoek zijn gericht op de wegverharding. Binnen de kaders van Rijkswaterstaat worden de onderhoudswerkzaamheden indien mogelijk gepleegd binnen de werkbare uren. Er wordt daarom aangenomen dat de alleen wisselende rijstreekafzettingen toegepast zullen worden.

2.6.2 Relatie locatie en hinder

Er bestaat een onderlinge relatie tussen segmenten in lengte- en breedterichting. De relatie is belangrijk bij de omvang van de wegaanzetting. Indien meerdere rijstroken worden afgezet heeft dit invloed op meerdere segmenten. Indien de afzetting meerdere tracés doorkruist heeft het ook in lengterichting invloed op meerdere tracés.

Per rijstreekafsluiting kan de verkeershinder worden bepaald door de relatie te leggen met de overige rijstroken. In Figuur 2-23 worden rijstreekafsluitingen weergegeven. Hierbij geldt dat het aantal beschikbare rijstroken het verschil is tussen het totale aantal rijstroken (inclusief vluchtstrook) en de niet-beschikbare rijstroken.

![Rijstreekafsluiting](image)

Figuur 2-23: Rijstreekafsluiting

2.6.3 Afzettingskosten

Voor het berekenen van de afzettingskosten wordt per type onderhoudsmaatregel onderzocht welke verkeersmaatregelen genomen moeten worden. Dit wordt meegenomen in het deel van de vaste kosten voor de onderhoudsmaatregel.

9 WBU: werkbare uren
3 Beschikbaarheidsprincipe op autosnelwegen

3.1 Introductie

Met het DBFM-contract is ook het beschikbaarheidsprincipe ingevoerd voor autosnelwegen. In dit geval gaat het om het maximaal beschikbaar houden van infrastructuur. De doelstelling van Rijkswaterstaat is om het verkeer tijdens de exploitatiefase en onderhoudsfase minimaal te hinderen.

Men heeft hiervoor een rekenmodel opgesteld die het hindereffect van wegwerkzaamheden omzet in een korting op de beschikbaarheid van de autosnelweg. Het zogenaamde beschikbaarheidsmodel. Aan het beschikbaarheidsmodel zit een betalingsmechanisme gekoppeld, waardoor de opdrachtnemer wordt gestimuleerd maximale beschikbaarheid van de wegsectie te behalen. In het kader van het meerjarig wegonderhoud is het daarom belangrijk om de beschikbaarheid op te nemen in de strategie. Er wordt in de strategie naast de aanleg- en onderhoudskosten dus ook het mechanisme van beschikbaarheid meegenomen in het kader van opbrengsten.

In dit hoofdstuk wordt eerst het begrip verkeershinder toegelicht en de manier waarop dit wordt gebruikt in dit onderzoek. Het betalingsmechanisme voor beschikbaarheid komt aan bod in § 3.3. In § 3.4 wordt de praktische uitwerking van het betalingsmechanisme besproken aan de hand van het beschikbaarheidsmodel. De laatste paragraaf (§ 3.5) gaat in op de relatie tussen beschikbaarheidskorting en de toepassing van onderhoudsmaatregelen.

De vraag die centraal staat bij dit hoofdstuk luidt als volgt:

PROBLEEMANALYSE MEERJARIG WEGONDERHOUD OP AUTOSNELWEGEN

3) Hoe kan het meerjarig wegonderhoud worden ingericht zodat maximale beschikbaarheidsvergoeding wordt ontvangen?

3.2 Definitie verkeershinder

3.2.1 Het begrip verkeershinder

Verkeershinder kan op meerdere manieren worden geïnterpreteerd. Er wordt onderscheid gemaakt tussen hinderbeleving en theoretische verkeershinder. Hinderbeleving is een subjectief begrip. Elke automobilist ervaart hinder namelijk op een andere manier.

In dit kader wordt ingegaan op de theoretische verkeershinder. Hieronder wordt verstaan de hinder die ontstaat door capaciteitsvermindering van de weg door rijstroomafsluiting ten behoeve van wegwerkzaamheden. Ten gevolge van de capaciteitsvermindering kan door een hoge verkeersintensiteit reistijdverlenging optreden. De reistijdverlenging maal het aantal gehinderden vormen samen de verkeershinder ook wel voertuigverliesuren (VVU) genoemd. Dit is de maat voor het geleden verlies door files. Deze voertuigverliesuren worden omgerekend naar kosten door ze te vermenigvuldigen met een vastgesteld bedrag dat een uur op de weg gemiddeld kost, de zogenaamde value-of-time.

VOERTUIGVERLIESUREN

$$\text{VVU} = \text{AANTAL GEHINDERDEN} \times \text{REISTIJDVERLENGING}$$

Figuur 3-1: Voertuigverliesuren
Verkeershinder kent ook verschillende gradaties, zogenaamde hinderklassen. Deze klassen worden gerangschikt naar mate van hinderduur en het aantal gehinderden. In de onderstaande tabel worden de hinderklassen gegeven.

<table>
<thead>
<tr>
<th>Hinderklasse</th>
<th>Vertraging / file / omrijden</th>
<th>Aantal gehinderen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><1.000</td>
<td><10.000</td>
</tr>
<tr>
<td>0 geen hinder</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1 kleine hinder</td>
<td><5 min. Geen file</td>
<td>E</td>
</tr>
<tr>
<td>2 matige hinder</td>
<td>5-10 min. file / omrijden</td>
<td>D</td>
</tr>
<tr>
<td>3 grote hinder</td>
<td>10-30 min. file / omrijden</td>
<td>C</td>
</tr>
<tr>
<td>zeer grote hinder</td>
<td>>30 min. file / omrijden</td>
<td>B / C</td>
</tr>
</tbody>
</table>

Categorieomschrijving:

A. Zeer grote werken
B. Grote werken, geen landelijke uitstraling
C. Middelgrote werken met regionale uitstraling
D. Kleine werken
E. Kleine afzettingen

Tabel 3-1: Samenhang hinderklassen en hindercategorie

De verlaging van de maximumsnelheid ter hoogte van het werkvak leidt voor het verkeer dat de wegwerkzaamheden passeert tot vertraging. Om deze vertraging te berekenen is de volgende input nodig:

- Lengte van het werkvak (m).
- Extra lengte waarop de snelheidslimiet van toepassing is (m).
- Reguliere limiet (m/uur).
- Limiet tijdens de werkzaamheden (m/uur).

Voor het berekenen van het reistijdverlies gedurende wegwerkzaamheden wordt gebruik gemaakt van een verkeerskundig wachtlijmodel. Eerst wordt een wachtlijmodel gemaakt voor een referentiesituatie. Dit maakt het mogelijk de effecten van de wegwerkzaamheden te zuiveren van dagelijks aanwezige files.

De volgende gegevens zijn hiervoor nodig:

- Het intensiteitsprofiel op het wegvak (voertuigen/uur over de tijd);
- De grootte van het knelpunt (capaciteit in voertuigen/uur).

Op basis van deze input kan een realistisch beeld worden gegeven van de verkeershinder op een bepaald werkvak.

3.3 Het betalingsmechanisme

3.3.1 Introductie DBFM-contracten

Het DBFM-contract is destijds geïntroduceerd door Rijkswaterstaat omdat de overheid een terugtrekkende rol wil vervullen. De slogan ‘de markt, tenzij’ wordt gebruikt om dit over te brengen. Het doel van het DBFM-contract is het volgende [Ministerie van Financiën, 2010]:

- Verbetering publieke dienstverlening;
- Efficiencywinst;
- Een optimale risicoverdeling;
- Optimaal balans tussen investeringskosten, onderhouds- en exploitatiekosten;
- Betere projectbeheersing.
Het uitgangspunt hierbij is dat de overheid wil gaan betalen voor een dienst in plaats dat zij zelf de verantwoordelijkheid dragen. De opdracht wordt in functionele eisen omschreven [Prorail en Rijkswaterstaat, 2009]. De overheid schrijft niet voor hoe het werk gedaan moet worden, maar omschrijft wat er bereikt moet worden. De overheid betaalt de aannemer voor de beschikbaarheid van de infrastructuur. De betaling vindt plaats als de dienst daadwerkelijk wordt geleverd op basis van gemeten beschikbaarheid.

De aannemer wordt bij een DBFM-contract verantwoordelijk gesteld voor het ontwerp, de financiering en het onderhoud. Voor het onderhouden van de weg wordt een onderhoudscontract afgesloten met een looptijd van 20 jaar.10 De aannemer zoekt in de voorbereiding daarom naar een optimale balans tussen het ontwerp, de aanleg en het onderhouden van de weg.

De verantwoordelijkheid draagt er aan bij dat ook de risico’s in beginsel worden gedragen door de aannemer. Risico’s waar de aannemer geen invloed op hebben blijven een verantwoordelijkheid voor de opdrachtgever. De risicoverdeling wordt in het contract opgemaakt.

De ambitie is om de verkeershinder tijdens de exploitatiefase te beperken. Door dat er kritieke succes factoren (verkeershinder in de realisatiefase en verkeershinder in de exploitatiefase) aan het DBFM-contract gekoppeld zijn, wordt de potentiële opdrachtnemer in de aanbestedingsfase al gestimuleerd om deze verkeershinder gedurende de contractduur daadwerkelijk te minimaliseren.

In dit onderzoekskader wordt alleen gekeken naar de verkeershinder tijdens de exploitatiefase. Per vast te stellen onderhoudsmaatregel moet dus inzichtelijk worden gemaakt hoe groot het hindereffect is op de doorstroming van verkeer. Het rekenmodel Verkeershinder exploitatiefase is een instrument waarmee de VVU en de hindercategorie per maatregel kan worden bepaald.

Het doel van dit model is om opdrachtnemers te toetsen op het hinderarm organiseren van wegonderhoud op autosnelwegen. Dit betekent uitgaan van maximale beschikbaarheid van infrastructuur en het uitvoeren van wegwerkzaamheden op de daarvoor geschikte tijdstippen.

3.3.2 Het betalingsmechanisme

De dienst wordt als niet volledig beschouwd als er niet (volledig) wordt voldaan aan de voorgeschreven eisen. In het geval van beschikbaarheid van infrastructuur worden beschikbaarheidscorrecties en prestatiekortingen berekend over de totale beschikbaarheidsvergoeding. De beschikbaarheidsvergoeding wordt periodiek uitgekeerd. De hoogte van de vergoeding is afhankelijk van het volstaan van de voorgeschreven eisen.

Het grootste verschil tussen de traditionele vorm en het nieuwe betalingsmechanisme is het feit dat de opdrachtnemer ook de financiering op zich neemt. Voor de opdrachtgever zijn de uitgaven voor het wegonderhoud inzichtelijk. De te ontvangen vergoeding wordt afhankelijk gemaakt van de beschikbaarheid en kwaliteit van de weg.

Het verschil tussen het traditionele betalingsmechanisme en het betalingsmechanisme bij een DBFM-overeenkomst wordt gegeven in Figuur 3-2.

10 Aanname onderhoudstermijn is gebaseerd op DBFM-contracten A15 Maasvlakte – Vaanplein en A12 Lunetten Veenendaal.
Het betalingsmechanisme gaat uit van een bruto beschikbaarheids-vergoeding (BBV) per kwartaal aan de opdrachtnemer. Deze vergoeding is afhankelijk van de prestatie-eisen tijdens de looptijd van de overeenkomst en kan op twee manieren worden gecorrigeerd.

- een beschikbaarheidscorrectie (BC);
 Deze gaat uit van een korting voor elk kwartier dat de prestatie-eisen van de opdrachtgever ten aanzien van (technische) beschikbaarheid van de weg worden onderschreden.

- een prestatiekorting (PK);
 Deze gaat uit boetepunten voor situaties waarin niet voldaan wordt aan overige eisen die door de opdrachtgever worden gesteld.

Figuur 3-3: Betalingsformule beschikbaarheidsvergoeding

\[
\text{Betalingsformule: } NBV = BBV - (BC + PK)
\]
De opbouw van het betalingsschema is weergegeven in het volgende betalingsschema.

De loop van het betalingsschema is weergegeven in het volgende betalingsschema.

FORMULE BESCHIKBAARHEIDSVERGOEDING

Voor dit onderzoek wordt uitgegaan dat de aanleg plaatsvindt in het jaar t=0. Het startpunt van het model is aan het einde van de realisatiefase op de beschikbaarheidsdatum (BC). Vanaf hier gaat de exploitatiefase van start. Tussentijds wordt per kwartaal een bedrag uitgekeerd aan de aannemer in de vorm van een beschikbaarheidsvergoeding.

3.4 Werking beschikbaarheidsmodel

De beschikbaarheid van de wegsectie wordt bepaald door niet-beschikbaarheid van tracédeelen en beschikbaarheid per verkeersrelatie. In Figuur 3-5: Beschikbaarheid wegsectie wordt de relatie gelegd tussen niet-beschikbaarheid van een tracédeel en niet-beschikbaarheid van een wegsectie.

Figuur 3-5: Beschikbaarheid wegsectie
3.4.1 Randvoorwaarden

De niet beschikbaarheid van een tracédeel hangt samen met rijstrokenafsluitingen in bepaalde tijdvensters. De tijdvensters zijn zo ingesteld dat wegwerkzaamheden mogen plaatsvinden tijdens bij een lage verkeersintensiteit, de zogenaamde werkbare uren (WBU's). Dit zijn nachtelijke tijdvensters die de opdrachtnemer ruimte bieden om onder voorwaarde werkzaamheden te verrichten.

Er gelden 4 verschillende tijdvensters.
- Tijdvenster 1: werkdag van 05:00u tot 23:00u
- Tijdvenster 2: werkdag van 23:00u tot 05:00u
- Tijdvenster 3: niet-werkdag van 06:00u tot 20:00u
- Tijdvenster 4: niet-werkdag van 20:00u tot 06:00u

Figuur 3-6: Werkbare uren ingedeeld in tijdvensters

Deze tijdvensters maakt het voor de aannemer interessant om tijdens de weekendnachten te werken. Het aantal effectieve uren buiten het afsluiten en openen van de rijstroom is hier hoger. Daar staat tegenover dat er in het weekend een toeslag geldt op arbeid- en machine-uren.

3.4.2 Verkeersroutes / verkeersrelaties

De impact wordt bepaald aan de hand van verkeersrelaties. De opgenomen verkeersrelaties zijn afgeleid van een herkomst- en bestemmingsmatrix en daar waar nodig aangevuld. De herkomst is hierbij de toerit en de bestemming de afrit. Via deze wijze kan de verkeersintensiteiten per tracédeel worden bepaald.

Elke verkeersrelatie of -routes bestaat dus uit een aaneenschakeling van tracégedelen. De beschikbaarheid per verkeersrelatie wordt bepaald door de beschikbaarheid van de onderliggende verkeersroutes.

Werkbare uren: door RWS vooraf bepaalde perioden (momenten/ tijdstippen) waarop tussen bepaalde begin- en eindpunten capaciteit aan het wegennet onttrokken kan worden waarbij maximaal hinderklasse 1 kan ontstaan.
4 Ontwerp beslissingsmodel

In dit onderzoek wordt een beslissingsmodel ontworpen voor de optimale planning van onderhoudsmaatregelen voor wegconstructies op een bepaalde sectie\(^{12}\) van een autosnelweg gedurende een langere periode. Met optimaal wordt bedoeld: het minimaliseren van aanleg en onderhoudskosten tegenover de opbrengst, waarbij rekening gehouden moet worden met kwaliteitseisen en uitvoeringsvoorwaarden.

De optimalisatie wordt uitgevoerd op basis van 3 verhardingsconstructies:
- combinatie beton- en asfaltconstructie o.b.v. betonverharding en ZOAB+ (5 cm deklaag)
- asfaltconstructie o.b.v. STAB en deklaag ZOAB+ (5 cm deklaag)
- asfaltconstructie o.b.v. STAB en dubbellaags ZOAB (2,5 cm onderlaag + 4,5 cm toplaag)

Uit de drie optimalisatieberekeningen kan worden opgemaakt welke verhardingsconstructie het meest geschikt is voor het aanleggen en onderhouden van een sectie.

In paragraaf 4.1 wordt de doelstellingsfunctie van het model opgesteld. Daarna worden in paragraaf 4.2 de bijbehorende voorwaarden geformuleerd. In de derde paragraaf wordt ingegaan op de toegepaste optimalisatie-algoritmes voor de onderhoudsstrategie. In paragraaf 4.4 wordt het invoerblad en output besproken en in paragraaf 4.5 de conclusies toegelicht.

4.1 Doelstellingsfunctie

Het optimalisatieprobleem bestaat uit het toekennen van onderhoudsmaatregelen (A) aan segmenten (S) over een planningshorizon (T) gelijk aan de contractduur voor het meerjarig wegonderhoud. De wiskundige formulering van de doelstellingsfunctie wordt als volgt weergegeven:

\[
\text{DOELSTELLINGSFUNCTIE} \\
\text{MIN } \sum_{s=1}^{S} \sum_{t=1}^{T} (1 + r)^{-t} \cdot K_{a,s} + \sum_{s=1}^{S} \sum_{t=1}^{T} X_{a,s,t} \cdot (1 + r)^{-t} \cdot (1 + i)^{-t} \cdot (K_{Oa,s} + (\sum_{s=1}^{S} \sum_{t=1}^{T} (1 + i)^{-t} \cdot O_{r,s,t} - (\sum_{s=1}^{S} \sum_{t=1}^{T} (1 + i)^{-t} \cdot O_{e,s,t})))
\]

Hierbij geldt: \(a = 1, \ldots, A; \ s = 1, \ldots, S; \ t = 1, \ldots, T\)

\(^{12}\) Een wegsectie is een deel van een rijbaan tussen twee opeenvolgende knooppunten en deze zijn weer opgebouwd uit aaneengeschakelde tracédeelden. Eén tracédeel heeft een lengte van 2000 meter en bestaat uit 3 rijstroken en 1 vluchtstrook. Een strook binnen een tracédeel wordt een segment genoemd.
Hierbij geldt dat er een minimum wordt gezocht voor de sommatie van aanlegkosten, kosten van onderhoudsmaatregelen van alle segmenten. De opbrengsten worden hierbij meegenomen. Deze optimalisatie levert een eindwaardeberekening op basis van kosten en opbrengsten.

4.1.1 Dynamische eindwaarde methode

Voor de optimalisatie wordt gebruik gemaakt van een dynamische eindwaarde methode. In tegenstelling tot de statische eindwaarde methode wordt met deze methode ook rekening gehouden met de inflatie. Bij de statische methode wordt de eindwaarde verkregen door het verrekenen van de kosten en de opbrengsten met opgeteld de rente die hierover wordt betaald. Deze eindwaarde kan worden terug herleid naar de startdatum. Men spreekt dan over NCW methode (Netto Contante Waarde).

Bij de dynamische eindwaarde methode wordt de inflatie meegerekend over de kosten en opbrengsten, vanaf het moment dat de berekening wordt gemaakt tot het moment dat de kosten daadwerkelijk worden gemaakt.

Bij de eindwaardeberekening worden daarom een tweetal startcondities aangenomen die worden gebruikt in de doelstellingsfunctie, te weten:
- rente (r); de verschuldigde rente voor de gemaakte investeringen.
- inflatie (i); index prijsstijging van de onderhoudsmaatregelen.

4.1.2 Aanlegkosten

Er wordt aangenomen dat de aanleg van de verhardingsconstructie plaatsvindt in het jaar \(t=0 \). Dit betekent dat er geen prijsstijging wordt berekend over de aanlegkosten. Zoals eerder aangegeven zullen er drie optimalisatieberekeningen worden gemaakt. Eén op basis van ZOAB+ op een constructie van STAB, één op basis van ZOAB+ op een betonconstructie en één op basis van dubbellaags ZOAB op een constructie van STAB. Nader te noemen als respectievelijk verhardingstype 1, verhardingstype 2 en verhardingstype 3.

De formule voor de aanlegkosten van drie verhardingstypen, met bijbehorende eenheden worden hieronder gegeven:

<table>
<thead>
<tr>
<th>AANLEGKOSTEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ka_{1s} = ka1 \times Opp_{s})</td>
</tr>
<tr>
<td>(Ka_{2s} = ka2 \times Opp_{s})</td>
</tr>
<tr>
<td>(Ka_{3s} = ka3 \times Opp_{s})</td>
</tr>
</tbody>
</table>

Figuur 4-2: Aanlegkosten

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Toelichting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ka_{1s}</td>
<td>Aanlegkosten verhardingstype 1 in segment s</td>
</tr>
<tr>
<td>ka1</td>
<td>Aanlegkosten verhardingstype 1 per m²</td>
</tr>
<tr>
<td>Ka_{2s}</td>
<td>Aanlegkosten verhardingstype 2 in segment s</td>
</tr>
<tr>
<td>ka2</td>
<td>Aanlegkosten verhardingstype 2 per m²</td>
</tr>
<tr>
<td>Ka_{3s}</td>
<td>Aanlegkosten verhardingstype 3 in segment s</td>
</tr>
<tr>
<td>ka3</td>
<td>Aanlegkosten verhardingstype 3 per m²</td>
</tr>
<tr>
<td>Opp_{s}</td>
<td>Oppervlakte van segment s</td>
</tr>
</tbody>
</table>

Tabel 4-2: Toelichting aanlegkosten

Hierbij geldt dat de aanlegkosten / m² worden vermenigvuldigd met de segment-opervlakte.
4.1.3 Onderhoudskosten

De onderhoudskosten zijn opgebouwd uit vaste en variabele kosten. De vaste kosten worden standaard meegenomen als een onderhoudsmaatregel wordt toegepast. De variabele kosten worden bepaald aan de hand van de oppervlakte van het segment. Ook hier wordt onderscheid gemaakt tussen de drie verhardingsconstructies.

Onderhoudskosten

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Beschrijving</th>
<th>Vaste kosten (per keer)</th>
<th>Variabele kosten (per m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ko1₁₄,a,s</td>
<td>Onderhoudskosten bij toepassing onderhoudsmaatregel a in segment s (verhardingstype 1)</td>
<td>€ 1.800</td>
<td>€ 2,40</td>
</tr>
<tr>
<td>Ko1var₁₄,a,s</td>
<td>Vaste kosten bij toepassing onderhoudsmaatregel a (verhardingstype 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ko1var₁₄,a</td>
<td>Variabele kosten bij toepassing onderhoudsmaatregel a per m² (verhardingstype 1)</td>
<td>€ 2,40</td>
<td></td>
</tr>
<tr>
<td>Ko2₁₄,a,s</td>
<td>Onderhoudskosten bij toepassing onderhoudsmaatregel a in segment s (verhardingstype 2)</td>
<td>€ 2.400</td>
<td>€ 11,90</td>
</tr>
<tr>
<td>Ko2var₁₄,a,s</td>
<td>Vaste kosten bij toepassing onderhoudsmaatregel a (verhardingstype 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ko2var₁₄,a</td>
<td>Variabele kosten bij toepassing onderhoudsmaatregel a per m² (verhardingstype 2)</td>
<td>€ 11,90</td>
<td></td>
</tr>
<tr>
<td>Ko3₁₄,a,s</td>
<td>Onderhoudskosten bij toepassing onderhoudsmaatregel a in segment s (verhardingstype 3)</td>
<td>€ 4.800</td>
<td>€ 23,65</td>
</tr>
<tr>
<td>Ko3var₁₄,a,s</td>
<td>Vaste kosten bij toepassing onderhoudsmaatregel a (verhardingstype 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ko3var₁₄,a</td>
<td>Variabele kosten bij toepassing onderhoudsmaatregel a per m² (verhardingstype 3)</td>
<td>€ 23,65</td>
<td></td>
</tr>
<tr>
<td>Ko₁₄,s</td>
<td>Oppervlakte van segment s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figuur 4-3: Onderhoudskosten

Aan elke type verhardingsconstructie worden mogelijke onderhoudsmaatregelen toegekend. In de onderstaande tabel worden de onderhoudsmaatregelen gegeven met bijbehorende vaste en variabele kosten.

Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 1

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Beschrijving</th>
<th>Vaste kosten (per keer)</th>
<th>Variabele kosten (per m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ko₁₃,a</td>
<td>Sealen deklaag</td>
<td>€ 100</td>
<td></td>
</tr>
<tr>
<td>Ko₂₃,a</td>
<td>Vervangen deklaag ZOAB+ (50 mm in / uit)</td>
<td>€ 100</td>
<td></td>
</tr>
<tr>
<td>Ko₃₃,a</td>
<td>Vervangen tussenlaag STAB + deklaag ZOAB+ (120 mm in / uit)</td>
<td>€ 100</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4-4: Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 1

Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 2

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Beschrijving</th>
<th>Vaste kosten (per keer)</th>
<th>Variabele kosten (per m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ko₁₂,a</td>
<td>Sealen deklaag</td>
<td>€ 100</td>
<td></td>
</tr>
<tr>
<td>Ko₂₂,a</td>
<td>Vervangen deklaag ZOAB+ (50 mm in / uit)</td>
<td>€ 100</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4-5: Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 2

Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 3

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Beschrijving</th>
<th>Vaste kosten (per keer)</th>
<th>Variabele kosten (per m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ko₁₃,a</td>
<td>Sealen deklaag</td>
<td>€ 100</td>
<td></td>
</tr>
<tr>
<td>Ko₂₃,a</td>
<td>Vervangen hoofdplaat SMA (25 mm in / uit)</td>
<td>€ 100</td>
<td></td>
</tr>
<tr>
<td>Ko₃₃,a</td>
<td>Vervangen tussen- en deklaag (140 mm in / uit)</td>
<td>€ 100</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4-6: Vaste en variabele kosten onderhoudsmaatregelen verhardingstype 3
4.1.4 Opbrengst

Voor de opbrengsten wordt onderscheid gemaakt tussen de opbrengst tijdens de realisatiefase en opbrengst tijdens de exploitatiefase.

De opbrengst van de realisatiefase vindt plaats in jaar t=0. De opbrengst van de exploitatiefase wordt verspreid over de resterende 19 jaar.

De formule voor de opbrengst wordt hieronder gegeven:

<table>
<thead>
<tr>
<th>Verhardingstype</th>
<th>Hoeveelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oppbrengst realisatiefase in jaar t₀</td>
<td>400.000,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Oppbrengst exploitatiefase in jaar t₁ t/m jaar t₂₀ (inflatie 2% wordt in de berekening opgenomen)</td>
<td>40.000,00</td>
<td>€ / segment / jaar</td>
</tr>
</tbody>
</table>

Tabel 4-7: Invoer opbrengsten

\[
O_{rs} = O_r * O_{ps} \\
O_{es} = O_e * O_{ps}
\]
Hierbij geldt: \(s=1,...,S \)

Figuur 4-4: Aanlegkosten

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Toelichting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_r)</td>
<td>Opbrengst realisatiefase in segment (s) in jaar t₀</td>
</tr>
<tr>
<td>(O_e)</td>
<td>Opbrengst realisatiefase in segment (s) in jaar t₁ t/m t₂₀</td>
</tr>
</tbody>
</table>

Tabel 4-8: Toelichting aanlegkosten

Hierbij geldt dat de opbrengsten / m² worden vermenigvuldigd met de segment-oppervlakte.
4.2 Randvoorwaarden

Om tot een doeltreffende onderhoudsstrategie te komen worden randvoorwaarden gesteld aan de doelstellingfunctie. De randvoorwaarden zijn te verdelen in 3 typen voorwaarden, te kennen:

- budgetvoorwaarden;
- uitvoeringsvoorwaarden;
- conditievoorwaarden.

4.2.1 Budgetvoorwaarden

De opbrengsten worden onafhankelijk van de onderhoudstijdstippen door de opdrachtgever uitbetaald. Ten einde van de realisatiefase wordt door de opdrachtgever een voltooiingsvergoeding uitgekeerd. In de exploitatiefase wordt per kwartaal een beschikbaarheidsvergoeding uitgekeerd aan de aannemer. Hierbij geldt een netto beschikbaarheidsvergoeding na aftrek van prestatie- en beschikbaarheidskorting.

De aannemer gebruikt de vergoeding om te kunnen voldoen aan de investeringsbehoeften met betrekking tot het onderhouden van de weg. Om tijdens de aanleg en exploitatie van de weg voldoende budget te houden wordt de berekening intracomptabel gemaakt. Dat wil zeggen dat er gekeken wordt naar het budget ten opzichte van de investeringsbehoeften per jaar.

Hieruit kan de volgende budgetvoorwaarde worden vastgesteld:

BUDGETVOORWAARDEN:

\[
\sum_{a=1}^{A} \sum_{s=1}^{S} \sum_{t=1}^{T} K_{o_a,s,t} \cdot X_{a,s,t} \leq B_{s,t}
\]

Hierbij geldt: \(a = 1, \ldots, A; \ s = 1, \ldots, S; \ t = 1, \ldots, T \)

Figuur 4-5: Budgetvoorwaarden

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Toelichting</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{s,t})</td>
<td>budget in segment (s) in jaar (t)</td>
</tr>
<tr>
<td>(X_{a,s,t})</td>
<td>binaire beslissingsvariabele (a) (\Rightarrow) (s) (\Rightarrow) (t)</td>
</tr>
<tr>
<td>(K_{o_a,s,t})</td>
<td>onderhoudskosten bij toepassing onderhoudsmaatregel (a) in segment (s) in jaar (t)</td>
</tr>
</tbody>
</table>

Tabel 4-9: Toelichting budgetvoorwaarden

4.2.2 Uitvoeringsvoorwaarden

Een uitvoeringsvoorwaarde is dat er maar één maatregel \(a \) in segment \(s \) in jaar \(t \) plaatsvindt. Hieronder in formulevorm weergegeven:

UITVOERINGSOORWAARDEN:

\[
\sum_{a=1}^{A} X_{a,s,t} = 1
\]

Hierbij geldt: \(a = 1, \ldots, A; \ s = 1, \ldots, S; \ t = 1, \ldots, T \)

Figuur 4-6: Uitvoeringsvoorwaarden
Een andere uitvoeringswaarde is de volgorde van onderhoudsmaatregelen ten opzichte van elkaar. Bijvoorbeeld na het sealen van de deklaag (a=1) kan enkel het vervangen van de deklaag (a=3) hierop volgen.

Er geldt:

<table>
<thead>
<tr>
<th>Verhardingstype 1</th>
<th>Verhardingstype 2</th>
<th>Verhardingstype 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a=1) -> (a=2)</td>
<td>(a=1) -> (a=2)</td>
<td>(a=1) -> (a=2)</td>
</tr>
<tr>
<td>(a=2) -> (a=1) v (a=3)</td>
<td>(a=2) -> (a=1) v (a=2)</td>
<td>(a=2) -> (a=1) v (a=3)</td>
</tr>
<tr>
<td>(a=3) -> (a=1) v (a=2) v (a=3)</td>
<td>(a=3) -> (a=1) v (a=2) v (a=3)</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 4-10: Volgorde onderhoudsmaatregelen t.o.v. elkaar

4.2.3 Conditievoorwaarden

De conditievoorwaarden houden verband met de kwaliteitseisen van het wegdek gesteld door Rijkswaterstaat. Als randvoorwaarden wordt gesteld dat er te allen tijde aan de kwaliteitsnorm voldaan dient te worden. Dit betekent dat het conditieniveau niet onder een bepaald percentage mag komen. Er wordt gesteld dat indien de waarschuwingsgrens wordt bereikt dat in het hierop volgende jaar onderhoud gepleegd dient te worden. Met behulp van de onderstaande formule wordt de voorwaarde ondervangen. Hierbij wordt uitgegaan van het schadebeeld rafeling die maatgevend is voor het plegen van wegonderhoud op autosnelwegen.

CONDITIEVOORWAARDEN:

\[C_{c,t} := C_{c,(t-1)} - \frac{(C_{c,0} - C_{c,w})}{L} + \sum_{a=1}^{A_s} \sum_{s=1}^{S} \sum_{t=1}^{T} X_{a,s,t} \cdot V_{o,a,s,t} \]

\[V_{o,a,s,t} = \frac{(C_{c,0} - (C_{c,(t-1)} - \frac{(C_{c,0} - C_{c,w})}{L_{v,levensduur_top & onderlaag}}))}{L_{v,levensduur_top & onderlaag}} \]

Hierbij geldt: \[C_{c,te} \geq C_{c,t} \geq C_{c,t} \]

\[a = 1, ..., A; \ s = 1, ..., S; \ t = 1, ..., T \]

Figuur 4-7: Conditievoorwaarden

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Toelichting</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{c,t}</td>
<td>wegconditie in segment s in jaar t</td>
</tr>
<tr>
<td>C_{c,0}</td>
<td>beginconditie in segment s in jaar t=0</td>
</tr>
<tr>
<td>X_{a,s,t}</td>
<td>binaire beslissingsvariabele is 1 als onderhoudsmaatregel a wordt toegepast in segment s in jaar t, is 0 in alle andere gevallen</td>
</tr>
<tr>
<td>V_{o,a,s,t}</td>
<td>conditieverbetering bij toepassing onderhoudsmaatregel a in segment s in jaar t</td>
</tr>
<tr>
<td>C_{c,te}</td>
<td>waarschuwingsgrens wegconditie voor segment s in jaar t</td>
</tr>
<tr>
<td>L</td>
<td>Levensduurverwachting verhardingstype 1, 2 of 3 (in jaren)</td>
</tr>
<tr>
<td>L_{v}</td>
<td>Levensduurverlenging na toepassing onderhoudsmaatregel a bij verhardingstype 1, 2 of 3 (in jaren)</td>
</tr>
</tbody>
</table>

Tabel 4-11: Toelichting conditievoorwaarden

De wegconditie wordt in percentages uitgedrukt. Er wordt uitgegaan van een beginconditie minus het optredende percentage rafeling van de totale segmentoppervlakte.

Er worden een vijftal startcondities aangenomen voor de conditiefunctie, te weten:
- beginconditie van de toegepaste wegverharding;
- verwachte levensduur van de toegepaste wegverharding;
- verwachte levensduurverlenging na onderhoudsmaatregel 1 (per verhardingstype);
- verwachte levensduurverlenging na onderhoudsmaatregel 2 (per verhardingstype);
- verwachte levensduurverlenging na onderhoudsmaatregel 3 (per verhardingstype).
Elke onderhoudsmaatregel heeft een ander effect op de restlevensduur van het segment. Daarom is het wenselijk om de meest kosteneffective maatregel te kiezen die een positieve invloed heeft op de wegconditie. Hieronder wordt per onderhoudsmaatregel de beoogde verbetering weergegeven.

Tabel 4-12: Toelichting verbetering na onderhoudsmaatregelen voor verhardingstype 2

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Onderhoudsmaatregelen ZOAB+</th>
<th>Verbeteringsformule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo2,1,3</td>
<td>Sealen deklaag</td>
<td>(Vo2,1,3 = \frac{(C_{oz} - (C_{z} - C_{o}) - (C_{z} - C_{w})/L1)}{L2})</td>
</tr>
<tr>
<td>Vo2,2,3</td>
<td>Vervangen deklaag ZOAB+ (50 mm in / uit)</td>
<td>(Vo2,2,3 = \frac{(C_{oz} - (C_{z} - C_{o}) - (C_{z} - C_{w})/L2)}{L2})</td>
</tr>
<tr>
<td>Vo2,3,3</td>
<td>Vervangen tussenlaag STAB + ZOAB+ (120 mm in / uit)</td>
<td>(Vo2,3,3 = \frac{(C_{oz} - (C_{z} - C_{o}) - (C_{z} - C_{w})/L3)}{L3})</td>
</tr>
</tbody>
</table>

Tabel 4-13: Toelichting verbetering na onderhoudsmaatregelen voor verhardingstype 1

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Onderhoudsmaatregelen ZOAB</th>
<th>Verbeteringsformule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo1,1,3</td>
<td>Sealen deklaag</td>
<td>(Vo1,1,3 = \frac{(C_{oz} - (C_{z} - C_{o}) - (C_{z} - C_{w})/L1)}{L1})</td>
</tr>
<tr>
<td>Vo1,2,3</td>
<td>Vervangen deklaag ZOAB+ (50 mm in / uit)</td>
<td>(Vo1,2,3 = \frac{(C_{oz} - (C_{z} - C_{o}) - (C_{z} - C_{w})/L1)}{L2})</td>
</tr>
</tbody>
</table>

Tabel 4-14: Toelichting verbetering na onderhoudsmaatregelen voor verhardingstype 3

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Onderhoudsmaatregelen Dubbellaags ZOAB</th>
<th>Verbeteringsformule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vo3,1,3</td>
<td>Sealen deklaag</td>
<td>(Vo3,1,3 = \frac{(C_{oz} - (C_{z} - C_{o}) - (C_{z} - C_{w})/L3)}{L3})</td>
</tr>
<tr>
<td>Vo3,2,3</td>
<td>Vervangen toplaag SMA (25 mm in / uit)</td>
<td>(Vo3,2,3 = \frac{(C_{oz} - (C_{z} - C_{o}) - (C_{z} - C_{w})/L3)}{L3})</td>
</tr>
<tr>
<td>Vo3,3,3</td>
<td>Vervangen tussenlaag STAB + Dubbellaags ZOAB (140 mm in / uit)</td>
<td>(Vo3,3,3 = \frac{(C_{oz} - (C_{z} - C_{o}) - (C_{z} - C_{w})/L3)}{L3})</td>
</tr>
</tbody>
</table>

4.3 Toepassing genetisch algoritme

Voor het discreet niet-lineaire optimalisatieprobleem wordt een genetisch algoritme toegepast. Dit algoritme heeft als eigenschap dat het snel goede oplossingen kan genereren. Ook als de oplossingsruimten groot en lastig zijn. Het algoritme wordt vaak toegepast bij binaire beslissingsvariabelen. Deze vormen de populatie, waaruit oplossingen worden gegenereerd. Het is de bedoeling dat met behulp van de binaire beslissingsvariabele \(X_{a,s,t} \) random 1-0 wordt gegenereerd. Hieruit volgen een aantal iteraties en met behulp van het genetisch algoritme wordt gewerkt naar een globaal optimum.

Werking genetisch algoritme

![Figuur 4-8: Werking genetisch algoritme](image)

De volgende stappen worden doorlopen:

Initialisatie:

Vorming populatie en fitnessfunctie. De populatie is in dit geval \(X_{a,s,t} \) en de fitnessfunctie staat voor de doelstellingsfunctie.
Selectie:
Voor elke oplossing wordt bepaald welke waarde de fitnessfunctie heeft. De vergelijking wordt gemaakt met alle mogelijke oplossingen om te kijken hoe die zich verhoud. De grootte van het aantal oplossingen wordt verkleind naarmate de selectie voortzet.

Reproductie:

Stopcondities
De stopconditie wordt vooraf bepaald om zo het aantal generaties vast te stellen. Voor het onderzoek worden de volgende stopcondities toegepast:

- Convergentie = 0,0000001
- Mutatiesnelheid = 0,5
- Populatiegrootte = 2000
- Willekeurige seed = 50.000
- Maximale tijd zonder verbetering = 30.000

4.4 Invoer Excel beslissingsmodel
Voor de berekening van de verhardingstypen worden startcondities ingevoerd. Hieronder is het invoerblad voor verhardingstype 1 gegeven. De opzet voor de andere verhardingsconstructies is hetzelfde.

4.4.1 Toelichting financieringsgegevens

![Financieringsgegevens ZOAB](image)

Figuur 4-9: Financieringsgegevens ZOAB

Toelichting aantal onderhoudsjaren
Het aantal onderhoudsjaren staat gelijk aan de exploitatiefase. De periode wordt omschreven als start beschikbaarheidsdatum tot aan einde contractduur.

Toelichting rente en inflatie
Er wordt aangenomen dat de aanleg plaatsvindt in het jaar t=0. Over de gemaakte investering wordt daarom geen inflatie gerekend. Wel wordt er voor de financiering rente gerekend tot einde contractduur T=20 jaar. Voor de onderhoudsmaatregelen geldt dat naast de rente over de resterende contractduur ook inflatie wordt gerekend. De inflatie wordt gerekend vanaf het jaar t=0 tot het moment dat de onderhoudsmaatregel daadwerkelijk wordt uitgevoerd.
4.4.2 Toelichting segmenteigenschappen

Segmenteigenschappen

<table>
<thead>
<tr>
<th>SEGMENTEIGENSCHAPPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengte: [m]</td>
</tr>
<tr>
<td>Breedte: [m]</td>
</tr>
<tr>
<td>Beginconditie: [%]</td>
</tr>
<tr>
<td>(100 % minus %-gerafeerde oppervlakte)</td>
</tr>
<tr>
<td>Waarschuwinggrens: [%]</td>
</tr>
<tr>
<td>Verhardingstype:</td>
</tr>
<tr>
<td>1) Asfaltridge + deklaag ZOAB+ (5cm)</td>
</tr>
<tr>
<td>2) Betonconstructie + deklaag ZOAB+ (5cm)</td>
</tr>
<tr>
<td>3) Asfaltridge + dubbellaag ZOAB (2,5 + 4,5 cm)</td>
</tr>
</tbody>
</table>

Figuur 4-10: Segmenteigenschappen

Toelichting afmeting segment
De lengte van het segment wordt bepaald door de maximaal te behandelen oppervlakte gedurende een weekendnacht. Het kritieke aspect voor de bepaling van de lengte is het aantal effectieve uren asfalteren gedurende een weekendnacht. Door een vermenigvuldiging van de productiesnelheid met het aantal effectieve uren volgt de lengte van het segment. Als invoervariabelen in het model wordt de lengte en breedte van het segment gekozen.

Toelichting beginconditie en waarschuwingsniveau
De beginconditie en waarschuwinggrens wordt uitgedrukt in procenten. Het aantal procent geeft het conditieniveau aan.

Toelichting verhardingstypen
Voor elke verhardingstypen gelden andere startcondities.

4.4.3 Toelichting aanleggegevens

Aanleg-gegevens per verhardingstype

<table>
<thead>
<tr>
<th>AANLEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanlegkosten: [€/m²]</td>
</tr>
<tr>
<td>Verwachte levensduur: [jaar]</td>
</tr>
</tbody>
</table>

Figuur 4-11: Aanleg-gegevens

Toelichting aanlegkosten
De aanlegkosten wordt uitgedrukt in variabele kosten per vierkante meter.

Toelichting verwachte levensduur
Per verhardingstype wordt een andere levensduurverwachting als invoervariabelen gegeven. De levensduurverwachting wordt uitgedrukt in jaren.
4.4.4 Toelichting onderhoudsmaatregelgegevens

Kosten onderhoudsmaatregel verhardingstype I

Toelichting onderhoudsmaatregel
Net zoals bij de aanleggegevens wordt per onderhoudsmaatregel de vaste kosten en variabele kosten ingevuld. Voor de onderhoudsmaatregel wordt de levensduurverlenging van de maatregel als invoervariabelen ingevuld. De levensduurverlenging wordt tevens uitgedrukt in jaren.

4.4.5 Toelichting opbrengst-gegevens

Opbrengstgegevens

Toelichting opbrengst-gegevens
Bij de opbrengst wordt onderscheid gemaakt tussen de realisatiefase en exploitatiefase. Na voltooiing van de realisatie wordt in jaar 0 per segment een opbrengst gerekend. Voor de exploitatiefase wordt jaarlijks een bedrag uitgekeerd in de vorm van een beschikbaarheidsvergoeding. Hierover wordt inflatie gerekend.
5 Invoer model

5.1 Segmenteigenschappen

Voor het onderzoek wordt een fictieve casestudie toegepast. Er wordt uitgegaan van één segment van een bepaald tracédeel. De invloed van gevoeligheid van startcondities worden getoetst. Elke strook kent een andere verkeersbelasting van het verkeer en elke strook kent daarom een andere levensduur. De strookeigenschappen zijn gebaseerd op de verkeersbelasting die invloed heeft op de levensduur van het wegdek. De lengte van destrook is gebaseerd op het uitvoeren van een onderhoudsmaatregel gedurende een weekendnacht. Er wordt uitgegaan van een reguliere rijstrook op een autosnelweg met een breedte van 3,5 meter. Hieronder worden de segmenteigenschappen gegeven. Hierbij wordt uitgegaan van een waarschuwingsgrens met een conditiegraad van 70%. Dit wil zeggen een rafelingspercentage van 30% over het totale wegoppervlak.

<table>
<thead>
<tr>
<th>Segmenteigenschappen</th>
<th>Hoewelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lengte</td>
<td>2000,00</td>
<td>meter</td>
</tr>
<tr>
<td>Breedte</td>
<td>3,50</td>
<td>meter</td>
</tr>
<tr>
<td>Beginconditie</td>
<td>100,00</td>
<td>% (100 % minus % -gerafelde oppervlakte)</td>
</tr>
<tr>
<td>Waarschuwingsgrens</td>
<td>70,00</td>
<td>% (100 % minus % -gerafelde oppervlakte)</td>
</tr>
</tbody>
</table>

Tabel 5-1: Invoer segmenteigenschappen

5.2 Financieringsgegevens

Voor de input van de financieringsgegevens wordt uitgegaan van een rentevoet van 4%. Voor de inflatie wordt uitgegaan van een stijging van 2% per jaar. Voor de onderhoudsperiode wordt uitgegaan van 20 jaren.

<table>
<thead>
<tr>
<th>Financieringsgegevens</th>
<th>Hoewelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aantal onderhoudsjaren</td>
<td>20,00</td>
<td>jaar</td>
</tr>
<tr>
<td>Rente</td>
<td>4,00</td>
<td>%</td>
</tr>
<tr>
<td>Inflatie</td>
<td>2,00</td>
<td>%</td>
</tr>
</tbody>
</table>

Tabel 5-2: Invoer financieringsgegevens

5.3 Aanlegkosten en levensduurverwachting

De aanlegkosten is afhankelijk van de oppervlakte. Hieronder wordt de prijs per vierkante meter weergegeven. De verwachte levensduur wordt per verhardingstype vastgesteld. De gegevens van de betreffende verhardingstypen worden hieronder gegeven. De hoeveelheden zijn overgenomen uit paragraaf 2.5.

<table>
<thead>
<tr>
<th>Verhardingstype</th>
<th>Hoewelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asfaltconstructie + deklaag ZOAB+ (5cm)</td>
<td>48,15</td>
<td>€ / m²</td>
</tr>
<tr>
<td>Betonconstructie + deklaag ZOAB+ (5cm)</td>
<td>61,88</td>
<td>€ / m²</td>
</tr>
<tr>
<td>Asfaltconstructie + dubbellaags ZOAB (2,5 + 4,5 cm)</td>
<td>53,35</td>
<td>€ / m²</td>
</tr>
</tbody>
</table>

Tabel 5-3: Invoer aanlegkosten

<table>
<thead>
<tr>
<th>Verhardingstype</th>
<th>Hoewelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asfaltconstructie + deklaag ZOAB+ (5cm)</td>
<td>7,50</td>
<td>jaar</td>
</tr>
<tr>
<td>Betonconstructie + deklaag ZOAB+ (5cm)</td>
<td>8,00</td>
<td>jaar</td>
</tr>
<tr>
<td>Asfaltconstructie + dubbellaags ZOAB (2,5 + 4,5 cm)</td>
<td>7,00</td>
<td>jaar</td>
</tr>
</tbody>
</table>

Tabel 5-4: Invoer verwachte levensduur
5.4 Onderhoudskosten

De onderhoudskosten worden verdeeld in vaste en variabele kosten.

5.4.1 Onderhoudskosten verhardingstype I

Hieronder worden onderhoudskosten voor verhardingstype I gegeven. Voor de verhardingsconstructie wordt uitgegaan van een 3 x 70 mm STAB + 50 mm deklaag ZOAB+.

<table>
<thead>
<tr>
<th>Onderhoudsmaatregelen</th>
<th>Hoeveelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealen deklaag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>1800,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>2,40</td>
<td>€ / m²</td>
</tr>
<tr>
<td>Vervangen deklaag ZOAB+ (50 mm in / uit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>2400,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>11,90</td>
<td>€ / m²</td>
</tr>
<tr>
<td>Vervangen tussenlaag STAB + ZOAB+ (120 mm in / uit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>4800,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>23,65</td>
<td>€ / m²</td>
</tr>
</tbody>
</table>

Tabel 5-5: Invoer onderhoudskosten verhardingstype I

5.4.2 Onderhoudskosten verhardingstype II

Hieronder worden onderhoudskosten voor verhardingstype II gegeven. Voor de verhardingsconstructie wordt uitgegaan van een 300 mm Beton + 50 mm deklaag ZOAB+.

<table>
<thead>
<tr>
<th>Onderhoudsmaatregelen</th>
<th>Hoeveelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealen deklaag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>1800,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>2,40</td>
<td>€ / m²</td>
</tr>
<tr>
<td>Vervangen deklaag ZOAB+ (50 mm in / uit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>2400,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>11,90</td>
<td>€ / m²</td>
</tr>
</tbody>
</table>

Tabel 5-6: Invoer onderhoudskosten verhardingstype II

5.4.3 Onderhoudskosten verhardingstype III

Hieronder worden onderhoudskosten voor verhardingstype III gegeven. Voor de verhardingsconstructie wordt uitgegaan van een 3 x 70 mm STAB + 45 mm onderlaag ZOAB en 25 mm toplaag SMA.

<table>
<thead>
<tr>
<th>Onderhoudsmaatregelen</th>
<th>Hoeveelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealen deklaag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>1800,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>2,40</td>
<td>€ / m²</td>
</tr>
<tr>
<td>Vervangen toplaag ZSA (25 mm in / uit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>2400,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>7,04</td>
<td>€ / m²</td>
</tr>
<tr>
<td>Vervangen tussenlaag STAB + Dubbellaags ZOAB (140 mm in / uit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>4800,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>28,17</td>
<td>€ / m²</td>
</tr>
</tbody>
</table>

Tabel 5-7: Invoer onderhoudskosten verhardingstype III
5.5 **Levensduurverlenging**

De levensduurverlenging wordt per onderhoudsmaatregel gegeven en uitgedrukt in jaren.

<table>
<thead>
<tr>
<th>Verhardingstype</th>
<th>Hoeveelheid</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asfaltconstructie + deklaag ZOAB+ (5cm)</td>
<td>2,50</td>
<td>jaar</td>
</tr>
<tr>
<td>Vervangen deklaag ZOAB+ (50 mm in / uit)</td>
<td>6,00</td>
<td>jaar</td>
</tr>
<tr>
<td>Vervangen tussenlaag STAB + ZOAB+ (120 mm in / uit)</td>
<td>7,50</td>
<td>jaar</td>
</tr>
<tr>
<td>Betonconstructie + deklaag ZOAB+ (5cm)</td>
<td>2,50</td>
<td>jaar</td>
</tr>
<tr>
<td>Vervangen deklaag ZOAB+ (50 mm in / uit)</td>
<td>6,00</td>
<td>jaar</td>
</tr>
<tr>
<td>Vervangen tussenlaag STAB + Dubbellaags ZOAB (140 mm in / uit)</td>
<td>7,00</td>
<td>jaar</td>
</tr>
</tbody>
</table>

Tabel 5-8: Invoer levensduurverlenging

5.6 **Opbrengsten**

Voor de opbrengsten wordt onderscheid gemaakt tussen de opbrengst tijdens de realisatiefase en opbrengst tijdens de exploitatiefase.

Voor de opbrengst tijdens de realisatiefase wordt het gemiddelde genomen van de aanlegkosten van drie verschillende verhardingstypen. Voor de opbrengst tijdens de exploitatiefase, de beschikbaarheidsvergoeding, wordt het gemiddelde genomen van alle onderhoudskosten. Bovenop het gemiddelde wordt een winstpercentage toegevoegd van 5 %.

Hieronder worden de opbrengsten in de tabel in kaart gebracht.

<table>
<thead>
<tr>
<th>Verhardingstype</th>
<th>Hoogte</th>
<th>Eenheid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opbrengst realisatiefase in jaar t_0</td>
<td>400.000,00</td>
<td>€ / segment</td>
</tr>
<tr>
<td>Opbrengst exploitatiefase in jaar t_1 t/m jaar t_0 (inflatie 2% wordt in de berekening opgenomen)</td>
<td>40.000,00</td>
<td>€ / segment / jaar</td>
</tr>
</tbody>
</table>

Tabel 5-9: Invoer opbrengsten

5.7 **Voorwaarden**

5.7.1 **Uitvoeringsvoorwaarden**

Voor het project gelden een aantal uitgangspunten met betrekking tot de uitvoeringsvoorwaarden.

Er mag pas onderhoud gepleegd worden vanaf $t = 4$ jaar. Er mag tijdens één weekendnacht gewerkt worden op maximaal één segment.

Verder geldt een volgorde van onderhoudsmaatregelen ten opzichte van elkaar. Deze volgorde is gegeven in de onderstaande tabel.

<table>
<thead>
<tr>
<th>Verhardingstype I</th>
<th>Verhardingstype II</th>
<th>Verhardingstype III</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(a=1) \rightarrow (a=2)$</td>
<td>$(a=1) \rightarrow (a=2)$</td>
<td>$(a=1) \rightarrow (a=2)$</td>
</tr>
<tr>
<td>$(a=2) \rightarrow (a=1) \lor (a=3)$</td>
<td>$(a=2) \rightarrow (a=1) \lor (a=2)$</td>
<td>$(a=2) \rightarrow (a=1) \lor (a=3)$</td>
</tr>
<tr>
<td>$(a=3) \rightarrow (a=1) \lor (a=2) \lor (a=3)$</td>
<td></td>
<td>$(a=3) \rightarrow (a=1) \lor (a=2) \lor (a=3)$</td>
</tr>
</tbody>
</table>
6 Resultaten

In dit hoofdstuk worden de resultaten beschreven. De resultaten zijn op basis van de invoervariabelen die in hoofdstuk 6 zijn vastgesteld. Achtereenvolgens wordt de onderhoudsstrategie voor verhardingstype I; asfaltconstructie + deklaag ZOAB+ (5cm), verhardingstype II; betonconstructie + deklaag ZOAB+ (5cm) en verhardingstype III; asfaltconstructie + dubbellaags ZOAB (4,5 + 2,5cm) beschreven.

Per onderhoudsstrategie worden de volgende aspecten belicht
- onderbouwing onderhoudsstrategie;
- totaal projectresultaat;
- totale onderhoudskosten;
- rentelasten en meegenomen inflatie;
- relatie tussen aanleg en onderhoudskosten;
- budgettering op jaarbasis;
- onderbouwing wegconditie;
- minimaal, gemiddeld en eindwaarde-conditie.

Tot slot wordt in paragraaf 6.4 de conclusies en vergelijking tussen de resultaten gegeven.
6.1 Resultaten onderhoudsstrategie op basis van Verhardingstype I

De eerste onderhoudsstrategie wordt bepaald op basis een asfaltconstructie + deklaag ZOAB+ (50 mm). De onderstaande grafiek laat zien dat in jaar 8 en jaar 14 onderhoud wordt gepleegd.

KOSTEN & OPBRENGSTEN AANLEG- EN ONDERHOUDSSTRATEGIE VERHARDINGSTYPE I

Figuur 6-1: Kosten & opbrengsten verhardingstype I

In jaar 0 wordt verhardingstype I aangelegd. Deze bestaat uit 1 onderlaag van 70 mm STAB en 2 tussenlagen van elk 70 mm STAB en een deklaag van 50 mm ZOAB+. In jaar 8 wordt onderhoudsmaatregel 2 toegepast. De deklaag ZOAB+ wordt vervangen (50mm in / uit). In jaar 14 wordt onderhoudsmaatregel 3 toegepast. Hierbij wordt een tussenlaag STAB en deklaag ZOAB+ vervangen (120 mm in / uit).

In Tabel 6-1 volgt een financiële toelichting op de onderhoudsstrategie.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>337.068</td>
<td>400.000.00</td>
<td>62.932,50</td>
<td>t11</td>
<td>25.101,59</td>
<td>49.734,97</td>
<td>223.145,56</td>
</tr>
<tr>
<td>t1</td>
<td>20.074</td>
<td>40.800,00</td>
<td>83.658,05</td>
<td>t12</td>
<td>25.101,59</td>
<td>50.729,67</td>
<td>248.773,65</td>
</tr>
<tr>
<td>t2</td>
<td>20.074</td>
<td>41.616,00</td>
<td>105.199,61</td>
<td>t13</td>
<td>25.101,59</td>
<td>51.744,27</td>
<td>275.416,32</td>
</tr>
<tr>
<td>t3</td>
<td>20.074</td>
<td>42.448,32</td>
<td>127.573,48</td>
<td>t14</td>
<td>249.828,61</td>
<td>52.779,15</td>
<td>78.366,86</td>
</tr>
<tr>
<td>t4</td>
<td>20.074</td>
<td>43.297,29</td>
<td>150.796,33</td>
<td>t15</td>
<td>35.038,98</td>
<td>53.834,73</td>
<td>97.162,61</td>
</tr>
<tr>
<td>t5</td>
<td>20.074</td>
<td>44.163,23</td>
<td>174.885,11</td>
<td>t16</td>
<td>35.038,98</td>
<td>54.911,43</td>
<td>117.035,06</td>
</tr>
<tr>
<td>t6</td>
<td>20.074</td>
<td>45.046,50</td>
<td>199.857,17</td>
<td>t17</td>
<td>35.038,98</td>
<td>56.009,66</td>
<td>138.005,73</td>
</tr>
<tr>
<td>t7</td>
<td>20.074</td>
<td>45.947,43</td>
<td>225.730,15</td>
<td>t18</td>
<td>35.038,98</td>
<td>57.129,85</td>
<td>160.096,60</td>
</tr>
<tr>
<td>t8</td>
<td>120.445</td>
<td>46.866,38</td>
<td>152.151,88</td>
<td>t19</td>
<td>35.038,98</td>
<td>58.272,45</td>
<td>183.330,07</td>
</tr>
<tr>
<td>t9</td>
<td>25.102</td>
<td>47.803,70</td>
<td>174.853,99</td>
<td>t20</td>
<td>35.038,98</td>
<td>59.437,90</td>
<td>207.728,98</td>
</tr>
<tr>
<td>t10</td>
<td>25.102</td>
<td>48.759,78</td>
<td>198.512,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 6-1: Financieel overzicht Verhardingstype I (kosten / opbrengst / jaarlijks budget)

De aanlegkosten voor de wegconstructie bedraagt € 337.068,-. Hier tegenover staat de opbrengst na voltooiingsdatum van de realisatiefase van € 400.000,-. De jaarlijkse rentelast bedraagt € 20.074,- over de resterende 19 jaar.
In jaar 8 wordt onderhoudsmaatregel 2 toegepast. Deze bedraagt € 100.370,-. Over dit bedrag wordt over de resterende 12 jaar een jaarlijkse rente gerekend te hoogte van € 5.027,-. In jaar 14 wordt onderhoudsmaatregel 3 toegepast. Deze bedraagt € 224.727,-. Over dit bedrag wordt over de resterende 6 jaar een jaarlijkse rente gerekend te hoogte van € 9.937,-.

Het totale projectresultaat (uitkomst doelstellingsfunctie) is € 207.728,-. De totale projectkosten komt uit op € 1.183.604,-. Gezien de huidige kostprijs bestaat dit bedrag voor 50,5 % uit de kosten voor aanleg en onderhoud, 44,1 % uit rentelasten en 5,4 % uit inflatie door prijswijzigingen. De relatie tussen aanleg- en onderhoudskosten (excl. rentelast en inflatie) is 56,4% voor aanlegkosten en 43,6 % voor onderhoudskosten. Dezelfde relatie inclusief rentelast en inflatie is 62,4 % voor aanlegkosten en 37,6 % voor onderhoudskosten.

Uit de resultaten blijkt dat er geen negatieve budgettering geldt. Het gemiddelde budget komt uit op € 161.201,-.

In Figuur 6-2 is het conditieverloop gegeven van de aanleg- en onderhoudsstrategie van verhardingstype I.

CONDITIEVERLOOP AANLEG- EN ONDERHOUDSSTRATEGIE VERHARDINGSTYPE I

Als invoervariabele voor de verwachte levensduur na aanleg van verhardingstype I wordt uitgegaan van 7,5 jaar. De waarschuwingssgrens wordt dan bereikt in jaar 7 en vervolgens wordt in jaar 8 de deklaag vervangen en bereikt een verhoogde conditie van %. De verwachte levensduur na onderhoudsmaatregel 2 bedraagt 6 jaar.

In jaar 14 wordt een tussenlaag en de deklaag vervangen. Hierbij bereikt het wegdek de beginconditie. De onderhoudsmaatregel heeft een verwachte levensduurverlenging van 7,5 jaar. In jaar 20 heeft het wegdek een conditieniveau van 76,0 %. Dit houdt in dat na einde contract het wegdek een verwachte restlevensduur heeft van 1,5 jaar.

Het gemiddelde conditieniveau volgens de gegevens uit de grafiek is 86,0 %.
6.2 Resultaten onderhoudsstrategie op basis van Verhardingstype II

De tweede onderhoudsstrategie wordt bepaald op basis een betonconstructie + deklaag ZOAB+ (50 mm). De onderstaande grafiek laat zien dat in jaar 9 en jaar 15 onderhoud wordt gepleegd.

Kosten & Opbrengsten Aanleg- en onderhoudsstrategie Verhardingstype II

![Diagram van kosten en opbrengsten]

Figuur 6-3: Kosten & opbrengsten verhardingstype II

In jaar 0 wordt verhardingstype II aangelegd. Deze bestaat uit 1 onderlaag van 300 mm betonconstructie en een deklaag van 50 mm ZOAB+. In jaar 9 wordt onderhoudsmaatregel 2 toegepast. De deklaag ZOAB+ wordt vervangen (50mm in / uit). In jaar 15 wordt onderhoudsmaatregel 2 nogmaals toegepast waarbij de deklaag ZOAB+ wordt vervangen.

In Tabel 6-2 volgt een financiële toelichting op de onderhoudsstrategie.

<table>
<thead>
<tr>
<th>Jaar</th>
<th>Kosten</th>
<th>Opbrengsten</th>
<th>Cumulatief budget op jaarbasis</th>
<th>Jaar</th>
<th>Kosten</th>
<th>Opbrengsten</th>
<th>Cumulatief budget op jaarbasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>433.142,50</td>
<td>400.000,00</td>
<td>-33.142,50</td>
<td>t11</td>
<td>30.817,03</td>
<td>49.734,97</td>
<td>67.162,70</td>
</tr>
<tr>
<td>t1</td>
<td>25.796,30</td>
<td>40.800,00</td>
<td>-18.138,80</td>
<td>t12</td>
<td>30.817,03</td>
<td>50.729,67</td>
<td>87.075,34</td>
</tr>
<tr>
<td>t2</td>
<td>25.796,30</td>
<td>41.616,00</td>
<td>-2.319,11</td>
<td>t13</td>
<td>30.817,03</td>
<td>51.744,27</td>
<td>108.002,57</td>
</tr>
<tr>
<td>t3</td>
<td>25.796,30</td>
<td>42.448,32</td>
<td>14.332,91</td>
<td>t14</td>
<td>30.817,03</td>
<td>52.779,15</td>
<td>129.964,69</td>
</tr>
<tr>
<td>t4</td>
<td>25.796,30</td>
<td>43.297,29</td>
<td>31.833,90</td>
<td>t15</td>
<td>146.110,84</td>
<td>53.834,73</td>
<td>187.949,58</td>
</tr>
<tr>
<td>t5</td>
<td>25.796,30</td>
<td>44.163,23</td>
<td>50.200,82</td>
<td>t16</td>
<td>35.812,78</td>
<td>54.911,43</td>
<td>87.724,23</td>
</tr>
<tr>
<td>t6</td>
<td>25.796,30</td>
<td>45.046,50</td>
<td>69.451,02</td>
<td>t17</td>
<td>35.812,78</td>
<td>56.009,66</td>
<td>125.460,83</td>
</tr>
<tr>
<td>t7</td>
<td>25.796,30</td>
<td>45.947,43</td>
<td>89.602,14</td>
<td>t18</td>
<td>35.812,78</td>
<td>57.129,85</td>
<td>186.532,09</td>
</tr>
<tr>
<td>t8</td>
<td>25.796,30</td>
<td>46.866,38</td>
<td>110.672,21</td>
<td>t19</td>
<td>35.812,78</td>
<td>58.272,45</td>
<td>244.804,74</td>
</tr>
<tr>
<td>t9</td>
<td>128.173,91</td>
<td>47.803,70</td>
<td>30.302,01</td>
<td>t20</td>
<td>35.812,78</td>
<td>59.437,90</td>
<td>304.242,62</td>
</tr>
<tr>
<td>t10</td>
<td>30.817,03</td>
<td>48.759,78</td>
<td>48.244,76</td>
<td></td>
<td></td>
<td></td>
<td>144.385,96</td>
</tr>
</tbody>
</table>

Tabel 6-2: Financieel overzicht Verhardingstype II (kosten / opbrengst / jaarlijks budget)

De aanlegkosten voor de wegconstructie bedraagt € 433.142,50. Hier tegenover staat de opbrengst na voltooiingsdatum van de realisatiefase van € 400.000,00. De jaarlijkse rentelast bedraagt € 25.796,30 over de resterende 19 jaar.
In jaar 9 wordt onderhoudsmaatregel 2 toegepast. Deze bedraagt € 102.378,-. Over dit bedrag wordt over de resterende 11 jaar een jaarlijkse rente gerekend te hoogte van € 5.021,-. In jaar 15 wordt onderhoudsmaatregel 2 nogmaals toegepast. Deze bedraagt € 115.294,-. Over dit bedrag wordt over de resterende 5 jaar een jaarlijkse rente gerekend te hoogte van € 4.996,-.

Het totale projectresultaat (uitkomst doelstellingfunctie) is € 144.386,-. De totale projectkosten komt uit op € 1.246.946,-. Gezien de huidige kostprijs bestaat dit bedrag voor 48,8 % uit de kosten voor aanleg en onderhoud, 47,8 % uit rentelasten en 3,4 % uit inflatie door prijsontwikkeling. De relatie tussen aanleg- en onderhoudskosten (excl. rentelast en inflatie) is 71,3 % voor aanlegkosten en 28,7 % voor onderhoudskosten. Dezelfde relatie inclusief rentelast en inflatie is 76,1 % voor aanlegkosten en 23,9 % voor onderhoudskosten.

Uit de resultaten blijkt dat er in jaar 0 tot en met jaar 2 een negatieve budgettering geldt. Het gemiddelde budget komt uit op € 62.769,-.

In Figuur 6-4 is het conditieverloop gegeven van de aanleg- en onderhoudsstrategie van verhardingstype II.

![CONDITIEVERLOOP AANLEG- EN ONDERHOUDSSTRATEGIE VERHARDINGSTYPE II](image)

Figuur 6-4: Conditieverloop aanleg- en onderhoudsstrategie verhardingstype II

Als invoervariabele voor de verwachte levensduur na aanleg van verhardingstype II wordt uitgegaan van 8 jaar. De waarschuwingsgrens wordt zodanig bereikt in jaar 8 en vervolgens wordt in jaar 9 de deklaag vervangen en bereikt een verhoogde conditie van %. De verwachte levensduur na onderhoudsmaatregel 2 bedraagt 6 jaar.

In jaar 15 wordt onderhoudsmaatregel 2 nogmaals uitgevoerd. Hierbij bereikt het wegdek de een conditie van %. De onderhoudsmaatregel heeft een verwachte levensduurverlenging van 6 jaar. In jaar 20 heeft het wegdek een conditieniveau van 73,5 %. Dit houdt in dat na einde contract het wegdek een verwachte restlevensduur van minder dan 1 jaar.

Het gemiddelde conditieniveau volgens de gegevens uit de grafiek is 83,6 %.
6.3 Resultaten onderhoudsstrategie op basis van Verhardingstype III

De derde onderhoudsstrategie wordt bepaald op basis een asfaltconstructie + dubbellag ZOAB (25 + 45 mm). De onderstaande grafiek laat zien dat in jaar 8, 10 en jaar 18 onderhoud wordt gepleegd.

KOSTEN & OPBRENGSTEN AANLEG- EN ONDERHOUDSSTRATEGIE VERHARDINGSTYPE III

![Diagram](image)

Figuur 6-5: Kosten & opbrengsten verhardingstype III

In jaar 0 wordt verhardingstype III aangelegd. Deze bestaat uit 1 onderlaag van 70 mm STAB en 2 tussenlagen van elk 70 mm STAB en dubbellaagse deklaag met onderlaag van 45 mm ZOAB en een toplaag van 25 mm ZSA. In jaar 8 wordt onderhoudsmaatregel 1 toegepast. De toplaag wordt geseald (aanbrengen emulsielaag) In jaar 10 wordt onderhoudsmaatregel 3 toegepast. Hierbij wordt een tussenlaag STAB en de dubbellaagse deklaag vervangen (140 mm in / uit). In jaar 18 wordt onderhoudsmaatregel 2 toegepast. Hierbij wordt de toplaag ZSA vervangen (25 mm in /uit).

In Tabel 6-3 volgt een financiële toelichting op de onderhoudsstrategie.

<table>
<thead>
<tr>
<th>Jaar</th>
<th>Kosten</th>
<th>Opbrengsten</th>
<th>Cumulatief budget op jaarbasis</th>
<th>Jaar</th>
<th>Kosten</th>
<th>Opbrengsten</th>
<th>Cumulatief budget op jaarbasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>373.429,00</td>
<td>400.000,00</td>
<td>26.571,00</td>
<td>t11</td>
<td>35.154,88</td>
<td>49.734,97</td>
<td>-4.670,97</td>
</tr>
<tr>
<td>t1</td>
<td>22.240,00</td>
<td>40.800,00</td>
<td>45.131,00</td>
<td>t12</td>
<td>35.154,88</td>
<td>50.729,67</td>
<td>10.903,82</td>
</tr>
<tr>
<td>t2</td>
<td>22.240,00</td>
<td>41.616,00</td>
<td>64.507,01</td>
<td>t13</td>
<td>35.154,88</td>
<td>51.744,27</td>
<td>27.493,21</td>
</tr>
<tr>
<td>t3</td>
<td>22.240,00</td>
<td>42.448,32</td>
<td>84.715,33</td>
<td>t14</td>
<td>35.154,88</td>
<td>52.779,15</td>
<td>45.117,48</td>
</tr>
<tr>
<td>t4</td>
<td>22.240,00</td>
<td>43.297,29</td>
<td>105.772,62</td>
<td>t15</td>
<td>35.154,88</td>
<td>53.834,73</td>
<td>63.797,33</td>
</tr>
<tr>
<td>t5</td>
<td>22.240,00</td>
<td>44.163,23</td>
<td>127.695,86</td>
<td>t16</td>
<td>35.154,88</td>
<td>54.911,43</td>
<td>83.553,88</td>
</tr>
<tr>
<td>t6</td>
<td>22.240,00</td>
<td>45.046,50</td>
<td>150.502,36</td>
<td>t17</td>
<td>35.154,88</td>
<td>56.009,66</td>
<td>104.408,66</td>
</tr>
<tr>
<td>t7</td>
<td>22.240,00</td>
<td>45.947,43</td>
<td>174.209,79</td>
<td>t18</td>
<td>108.916,66</td>
<td>57.729,35</td>
<td>152.612,85</td>
</tr>
<tr>
<td>t8</td>
<td>44.032,86</td>
<td>46.866,38</td>
<td>177.043,30</td>
<td>t19</td>
<td>38.164,36</td>
<td>58.272,45</td>
<td>215.279,44</td>
</tr>
<tr>
<td>t9</td>
<td>23.331,51</td>
<td>47.803,70</td>
<td>201.515,49</td>
<td>t20</td>
<td>38.164,36</td>
<td>59.437,90</td>
<td>274.753,39</td>
</tr>
<tr>
<td>t10</td>
<td>269.526,33</td>
<td>48.759,78</td>
<td>-19.251,06</td>
<td>T = 1.297.329,21</td>
<td>1.391.332,69</td>
<td>94.003,48</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 6-3: Financieel overzicht Verhardingstype III (kosten / opbrengst / jaarlijks budget)
De aanlegkosten voor de wegconstructie bedraagt € 373.429,−. Hier tegenover staat de opbrengst na voltooingsdatum van de realisatiefase van € 400.000,−. De jaarlijkse rentelast bedraagt € 22.240,− over de resterende 19 jaar.

Het totale projectresultaat (uitkomst doelstellingsfunctie) is € 94.003,−. De totale projectkosten komt uit op € 1.297.329,−. Gezien de huidige kostprijs bestaat dit bedrag voor 50,2 % uit de kosten voor aanleg en onderhoud, 44,9 % uit rentelasten en 4,9 % uit inflatie door prijsontwikkeling. De relatie tussen aanleg- en onderhoudskosten (excl. rentelast en inflatie) is 57,4% voor aanlegkosten en 42,6 % voor onderhoudskosten. Dezelfde relatie inclusief rentelast en inflatie is 63,1 % voor aanlegkosten en 30,8 % voor onderhoudskosten.

Uit de resultaten blijkt dat er in jaar 10 en jaar 11 een negatieve budgettering geldt. Het gemiddelde budget komt uit op € 80.399,−.

In Figuur 6-6 is het conditieverloop gegeven van de aanleg- en onderhoudsstrategie van verhardingstype III.

![CONDITIEVERLOOP AANLEG- EN ONDERHOUDSSTRATEGIE VERHARDINGSTYPE III](image)

Figuur 6-6: Conditieverloop aanleg- en onderhoudsstrategie verhardingstype III

Als invoervariabele voor de verwachte levensduur na aanleg van verhardingstype III wordt uitgegaan van 7 jaar. De waarschuwingsgrens wordt zodanig bereikt in jaar 7 en vervolgens wordt in jaar 8 de toplaag geseald en bereikt een verhoogde conditie van %. De verwachte levensduur na onderhoudsmaatregel 2 bedraagt 2,5 jaar.
In jaar 10 wordt een tussenlaag en de dubbellaagse deklaag vervangen. Hierbij bereikt het wegdek de beginconditie. De onderhoudsmaatregel heeft een verwachte levensduurverlenging van 7 jaar. In jaar 18 wordt alleen de toplaag vervangen. Hierbij wordt een verhoogde conditie bereikt van %. In jaar 20 heeft het wegdek een conditienniveau van 81,6 %. Dit houdt in dat na einde contract het wegdek een verwachte restlevensduur heeft van bijna 2 jaar.

Het gemiddelde conditienniveau volgens de gegevens uit de grafiek is 84,3 %.

6.4 Vergelijking resultaten

6.4.1 Vergelijking projectresultaat, kosten en budget

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verh. Type I (in €)</th>
<th>Verh. Type II (in €)</th>
<th>Verh. Type III (in €)</th>
<th>Type I (in %)</th>
<th>Type II (in %)</th>
<th>Type III (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totaal projectresultaat</td>
<td>€ 207.728,-</td>
<td>€ 144.386,-</td>
<td>€ 94.003,-</td>
<td>47%</td>
<td>32%</td>
<td>21%</td>
</tr>
<tr>
<td>Totaal aanleg- en onderhoudskosten</td>
<td>€ 1.183.603,-</td>
<td>€ 1.246.946,-</td>
<td>€ 1.297.329,-</td>
<td>32%</td>
<td>33%</td>
<td>35%</td>
</tr>
<tr>
<td>Gemiddeld jaarlijkse budget</td>
<td>€ 161.201,-</td>
<td>€ 62.769,-</td>
<td>€ 80.399,-</td>
<td>53%</td>
<td>21%</td>
<td>26%</td>
</tr>
</tbody>
</table>

Tabel 6-4: Vergelijking projectresultaat, kosten en budget

Het projectresultaat is het grootst bij verhardingstype I en het laagst bij verhardingstype III. Een opmerkelijk verschil tussen de 3 typen is het gemiddelde jaarlijkse budget. Deze is meer dan 2x zo groot ten opzichte van de andere verhardingstypes. Ook telt mee dat bij verhardingstype I geen negatief budget uit de optimalisatie kwam.

6.4.2 Vergelijking aanlegkosten

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verh. Type I (in €)</th>
<th>Verh. Type II (in €)</th>
<th>Verh. Type III (in €)</th>
<th>Type I (in %)</th>
<th>Type II (in %)</th>
<th>Type III (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanlegkosten (excl. rentelast)</td>
<td>€ 337.068,-</td>
<td>€ 433.142,-</td>
<td>€ 373.429,-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rentelast aanlegkosten</td>
<td>401.489,-</td>
<td>515.926,-</td>
<td>444.800,-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aanlegkosten (incl. rentelast)</td>
<td>€ 718.474,-</td>
<td>€ 923.266,-</td>
<td>€ 785.989,-</td>
<td>29%</td>
<td>36 %</td>
<td>33 %</td>
</tr>
</tbody>
</table>

Tabel 6-5: Vergelijking aanlegkosten

De aanlegkosten voor verhardingstype I is het laagst. Daarop volgt respectievelijk verhardingstype III en II. Uit de verhouding kun je opmaken dat de aanlegkosten voor verhardingstype II relatief hoog zijn.

6.4.3 Vergelijking onderhoudskosten

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verh. Type I (in €)</th>
<th>Verh. Type II (in €)</th>
<th>Verh. Type III (in €)</th>
<th>Type I (in %)</th>
<th>Type II (in %)</th>
<th>Type III (in %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderhoudskosten (excl. rentelast)</td>
<td>€ 325.097,-</td>
<td>€ 217.672,-</td>
<td>€ 341.750,-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rentelast onderhoudskosten</td>
<td>119.946,-</td>
<td>80.211,-</td>
<td>134.343,-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onderhoudskosten (incl. rentelast)</td>
<td>€ 445.043,-</td>
<td>€ 297.883,-</td>
<td>€ 476.093,-</td>
<td>37 %</td>
<td>24 %</td>
<td>39 %</td>
</tr>
</tbody>
</table>

Tabel 6-6: Vergelijking onderhoudskosten

In contrast tot de aanlegkosten zijn de onderhoudskosten voor verhardingstype II het laagst. De hoogste onderhoudskosten worden gemaakt bij toepassing van verhardingstype III.
6.4.4 Vergelijking verhouding aanleg- en onderhoudskosten

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verhouding</th>
<th>Onderlinge verhouding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verh. Type I (in %)</td>
<td>Verh. Type II (in %)</td>
</tr>
<tr>
<td>% aanlegkosten (excl. rente + inflatie)</td>
<td>62,4 %</td>
<td>56,4 %</td>
</tr>
<tr>
<td>% onderhoudskosten (excl. rente + inflatie)</td>
<td>43,6 %</td>
<td>42,6 %</td>
</tr>
<tr>
<td>100,0 %</td>
<td>100,0 %</td>
<td>100,0 %</td>
</tr>
<tr>
<td>% aanlegkosten (incl. rente + inflatie)</td>
<td>62,4 %</td>
<td>56,4 %</td>
</tr>
<tr>
<td>% onderhoudskosten (incl. rente + inflatie)</td>
<td>37,6 %</td>
<td>43,6 %</td>
</tr>
<tr>
<td>100,0 %</td>
<td>100,0 %</td>
<td>100,0 %</td>
</tr>
</tbody>
</table>

Tabel 6-7: Vergelijking verhouding aanleg- en onderhoudskosten

In de bovenstaande tabel worden de verhoudingen tussen de aanleg- en onderhoudskosten gegeven. Hierbij wordt onderscheid gemaakt tussen de kosten inclusief en exclusief de rentelast en inflatie. Er kan worden geconcludeerd dat de hoge investering bij aanleg in deze situatie niet opwegen tegen de lage onderhoudskosten, zoals bij verhardingstype II geldt. Het verschil in aanlegkosten tussen verhardingstype I en II is minimaal. Hoewel de onderhoudskosten voor verhardingstype I hoger zijn scoort het projectresultaat alsnog het beste voor verhardingstype I.

6.4.5 Vergelijking verhouding aanleg- en onderhoudskosten, rentelasten en inflatie

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verhouding</th>
<th>Onderlinge verhouding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verh. Type I (in %)</td>
<td>Verh. Type II (in %)</td>
</tr>
<tr>
<td>% kostprijs (huidig peil)</td>
<td>50,5 %</td>
<td>48,8 %</td>
</tr>
<tr>
<td>% rentelasten</td>
<td>44,1 %</td>
<td>47,8 %</td>
</tr>
<tr>
<td>% inflatie</td>
<td>5,4 %</td>
<td>3,4 %</td>
</tr>
<tr>
<td>100,0 %</td>
<td>100,0 %</td>
<td>100,0 %</td>
</tr>
</tbody>
</table>

Tabel 6-8: Vergelijking verhouding aanlag- en onderhoudskosten, rentelasten en inflatie

Uit het bovenstaande is op te maken dat de kostprijs volgens huidig peil elkaar niet veel ontloopt. Dus als de rente en inflatie niet worden meegerekend in de onderhoudsstrategie, dan zal zelfs verhardingstype II het beste scoren. Als het budget introcomptabel wordt gemaakt, zal dit een positief effect hebben op het projectresultaat van verhardingstype II ten opzichte van de andere types.

6.4.6 Vergelijking conditieniveau en restlevensduur

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verhouding</th>
<th>Onderlinge verhouding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verh. Type I (in %)</td>
<td>Verh. Type II (in %)</td>
</tr>
<tr>
<td>Minimaal conditieniveau</td>
<td>72,0 %</td>
<td>70,0 %</td>
</tr>
<tr>
<td>Gemiddeld conditieniveau</td>
<td>86,0 %</td>
<td>83,6 %</td>
</tr>
<tr>
<td>Conditieniveau einde</td>
<td>76,0 %</td>
<td>73,5 %</td>
</tr>
<tr>
<td>Restlevensduur</td>
<td>1,5 jaar</td>
<td>< 1 jaar</td>
</tr>
</tbody>
</table>

Tabel 6-9: Vergelijking conditieniveau en restlevensduur

Het minimale conditieniveau bij verhardingstype I is minimaal 72,0 %. De waarschuwingsgrens ligt bij 70 %, dus kan geconcludeerd worden dat in de onderhoudsstrategie een veilige marge is genomen. Het gemiddelde conditieniveau is bij verhardingstype I het hoogst. De restlevensduur na de exploitatiefase is voor verhardingstype III meer dan 2 jaar. Gezien het feit dat er in het doelstellingsfunctie geen waarde wordt gehecht aan de restlevensduur, is een zo laag mogelijke restlevensduur beter.
7 Gevoeligheidsanalyse met Monte-Carlosimulatie

Om de gevoeligheid van het model te meten wordt een Monte-Carlosimulatie toegepast. Het optimalisatieprobleem kent veel onzekere variabelen. De theoretische benadering van een variabele kan in werkelijkheid anders uitpakken.

Om de werkelijkheid in het model na te bootsen is het van belang om de spreiding van mogelijke startcondities mee te nemen in het onderzoek. De gevoeligheidsanalyse op basis van de Monte-Carlosimulatie geeft een duidelijk beeld van de kansverdeling van het eindresultaat.

Van de onzekere factoren zoals de aanlegkosten, de daarbij behorende verwachte levensduur, de onderhoudskosten in relatie tot de verwachte levensduurverlenging, wordt een kansverdeling opgesteld. Per startvariabele wordt in kaart gebracht wat het verwachte minimum, de verwachtingswaarde en het maximum is. Daarnaast wordt per startvariabele de curve bepaald door een keuze te maken voor de typen kansverdelingen. De vorm wordt geanalyseerd en beargumenteerd.

7.1 Monte-Carlosimulatie

Monte-Carlosimulatie is een simulatietechniek die de risicospreiding van het resultaat in beeld brengt. De reden dat in dit onderzoek wordt gekozen voor een Monte-Carlosimulatie is dat het vaak wordt toegepast als de startcondities grote mogelijke variatie of fysieke onzekerheid hebben, waardoor de uitkomst minder betrouwbaar en toepasbaar wordt.

Figuur 7-1: Principe Monte-Carlosimulatie

Met behulp van het programma Crystal Ball wordt de Monte-Carlosimulatie gedaan. Voor verschillende startcondities worden daarom vooraf kansverdelingen opgesteld. Met Crystal Ball wordt een stochastisch model toegepast. De kansberekeningen worden toegevoegd aan het bestaande model. De dynamische achtergrond van de startcondities worden op deze wijze realistisch in kaart gebracht. Door de verschillende mogelijke startcondities op het model toe te passen wordt voor de aannemer duidelijk waar de risico’s liggen voor het aangaan van een onderhoudsstrategie voor meerjarig wegonderhoud.

De gevoeligheid wordt toegepast op de drie verhardingstypen. De gevoeligheidsanalyse wordt toegepast op de startcondities van aanlegkosten, verwachte levensduur, onderhoudskosten en levensduurverlenging na toepassing van een bepaald type onderhoudsmaatregel. Deze startcondities dragen een bepaalde onzekerheid. Het effect van deze onzekerheid wordt getoetst en wordt aan de hand van de resultaten uit het model geanalyseerd.
7.1.1 Argumentatie type kansverdelingen

Er zijn voor dit onderzoek 3 typen kansverdelingen opgesteld;

Categorie 1: aanlegkosten, vaste onderhoudskosten
Categorie 2: variabele onderhoudskosten
Categorie 3: verwachte levensduur, verwachte levensduurverlenging

Categorie 1: aanlegkosten, vaste onderhoudskosten

Voor de aanlegkosten is gekozen voor een continu-kansverdeling die afwijkt van een normale verdeling. De spreiding naar het maximum is groter vanaf de verwachtingswaarde ten opzichte van naar het minimum. De reden hiervoor is het feit dat wordt verwacht dat de kans groter is de kosten zullen stijgen in de toekomst. Als een project voordelen biedt door bijvoorbeeld een korte afstand tot de asfaltcentrale of andere projectspecifieke voordelen wordt een minimum verwacht dat lager uitvalt dan de verwachtingswaarde.

Figuur 7-2: Principe kansverdeling categorie 1

Categorie 2: variabele onderhoudskosten

Voor de variabele onderhoudskosten wordt een driehoekskansverdeling toegepast, omdat de gegevens hierover beperkt zijn. Wel wordt verwacht dat de kans dat de variabele onderhoudskosten in de toekomst zullen stijgen groter zal zijn dan dat deze zullen dalen.

Figuur 7-3: Principe kansverdeling categorie 2
Categorie 3: verwachte levensduur, verwachte levensduurverlenging

De levensduur na aanleg en de verwachte levensduurverlenging na een onderhoudsmaatregel kent een fysieke onzekerheid. Er wordt een continu-kansverdeling toegepast. De verwachtingswaarde ligt in dit geval dichter bij de minimumwaarde. De minimumwaarde is op basis van ervaringscijfers goed te beredeneren. Hier wordt rekening gehouden dat de verhardingsconstructie te maken heeft met een zware verkeersbelasting en negatieve klimatologische weersinvloeden. De verdeling is begrensd. Dit wil zeggen dat het een bepaald minimum of maximum niet zal overschrijden. Voor het maximum wordt aangenomen dat in de meest gunstige situatie een verhardingsconstructie beduidend langer mee zal kunnen gaan dan de gemiddelde verwachtingswaarde.

Figuur 7-4: Principe kansverdeling categorie 3

Op basis van bovenstaande kansverdelingen wordt de minimum, de verwachtingswaarde en maximum per startvariabelen bepaald en de kansverdeling hierop afgestemd.

7.2 Verhardingstype I

7.2.1 Startcondities aanlegkosten en onderhoudsmaatregelen

Voor verhardingstype I zijn voor de aanlegkosten, onderhoudsmaatregelen, verwachte levensduur en verwachte levensduurverlengingen kansverdelingen opgesteld. Per startconditie wordt de verwachtingswaarde, minimum en maximum bepaald zoals hieronder in de tabel is weergegeven.

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verwachtingswaarde startconditie</th>
<th>Startcondities kosten</th>
<th>Maximale startconditie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanlegkosten (variabele kosten)</td>
<td>€ 48,15 / m²</td>
<td>€ 45,86 / m²</td>
<td>€ 57,78 / m²</td>
</tr>
<tr>
<td>Onderhoudsmaatregel 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>€ 1800,00</td>
<td>€ 1714,29</td>
<td>€ 2160,00</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>2,40 / m²</td>
<td>2,29 / m²</td>
<td>2,88 / m²</td>
</tr>
<tr>
<td>Onderhoudsmaatregel 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>€ 2400,00</td>
<td>€ 2285,71</td>
<td>€ 2880,00</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>11,90 / m²</td>
<td>11,33 / m²</td>
<td>14,27 / m²</td>
</tr>
<tr>
<td>Onderhoudsmaatregel 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>€ 4800,00</td>
<td>€ 4571,43</td>
<td>€ 5760,00</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>23,65 / m²</td>
<td>22,52 / m²</td>
<td>28,37 / m²</td>
</tr>
</tbody>
</table>

Tabel 7-1: Startcondities kosten Verhardingtype I

De kansverdeling van de mogelijke aanleg- en onderhoudskosten voor verhardingstype I wordt gegeven in bijlage I.
7.2.2 Startcondities verwachte levensduur en levensduurverlenging

De levensduuronzekerheid voor de verwachte levensduur en levensduurverlenging na toepassing van de onderhoudsmaatregelen wordt gegeven in de onderstaande tabel.

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verwachtingswaarde startconditie</th>
<th>Minimale startconditie</th>
<th>Maximale startconditie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwachte levensduur na aanleg</td>
<td>7,50 jaar</td>
<td>6,00 jaar</td>
<td>10,00 jaar</td>
</tr>
<tr>
<td>Levensduurverlenging (na maatregel 1)</td>
<td>2,50 jaar</td>
<td>2,00 jaar</td>
<td>3,50 jaar</td>
</tr>
<tr>
<td>Levensduurverlenging (na maatregel 2)</td>
<td>6,00 jaar</td>
<td>5,00 jaar</td>
<td>8,00 jaar</td>
</tr>
<tr>
<td>Levensduurverlenging (na maatregel 3)</td>
<td>7,50 jaar</td>
<td>6,00 jaar</td>
<td>10,00 jaar</td>
</tr>
</tbody>
</table>

Tabel 7-2: Startcondities levensduur Verhardingstype I

De kansverdeling van de mogelijke verwachte levensduur en levensduurverlenging voor verhardingstype I wordt gegeven in bijlage II.

7.2.3 Resultaat optimalisatie verhardingstype I m.b.v. Crystal Ball

Het resultaat van de Monte-Carlosimulatie voor verhardingstype I wordt hieronder gegeven.

De verwachtingswaarde van het projectresultaat is € 175.794,-. De spreiding van het projectresultaat loopt van minimale opbrengst van € 50.622,- tot een maximale opbrengst van € 254.590,-. De spreiding van het resultaat is € 203.967,-.
7.3 Verhardingstype II

7.3.1 Startcondities aanlegkosten en onderhoudsmaatregelen

Voor verhardingstype II zijn voor de aanlegkosten, onderhoudsmaatregelen, verwachte levensduur en verwachte levensduurverlengingen kansverdelingen opgesteld. Per startconditie wordt de verwachtingswaarde, minimum en maximum bepaald zoals hieronder in de tabel is weergegeven.

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verwachtingswaarde startconditie</th>
<th>Minimale startconditie</th>
<th>Maximale startconditie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanlegkosten (variabele kosten)</td>
<td>€ 61,88 / m²</td>
<td>€ 58,93 / m²</td>
<td>€ 74,25 / m²</td>
</tr>
<tr>
<td>Onderhoudsmaatregel 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>€ 1800,00</td>
<td>€ 1714,29</td>
<td>€ 2160,00</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>2,40 / m²</td>
<td>2,29 / m²</td>
<td>2,88 / m²</td>
</tr>
<tr>
<td>Onderhoudsmaatregel 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vaste kosten</td>
<td>€ 2400,00</td>
<td>€ 2285,71</td>
<td>€ 2880,00</td>
</tr>
<tr>
<td>Variabele kosten</td>
<td>11,90 / m²</td>
<td>11,33 / m²</td>
<td>14,27 / m²</td>
</tr>
</tbody>
</table>

Tabel 7-3: Startcondities kosten Verhardingstype II

De kansverdeling van de mogelijke aanleg- en onderhoudskosten voor verhardingstype II wordt gegeven in bijlage III.

7.3.2 Startcondities verwachte levensduur en levensduurverlenging

De levensduuronzekerheid voor de verwachte levensduur en levensduurverlenging na toepassing van de onderhoudsmaatregelen wordt gegeven in de onderstaande tabel.

<table>
<thead>
<tr>
<th>Omschrijving</th>
<th>Verwachtingswaarde startconditie</th>
<th>Minimale startconditie</th>
<th>Maximale startconditie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwachte levensduur na aanleg</td>
<td>8,00 jaar</td>
<td>6,50 jaar</td>
<td>10,50 jaar</td>
</tr>
<tr>
<td>Levensduurverlenging (na maatregel 1)</td>
<td>2,50 jaar</td>
<td>2,00 jaar</td>
<td>3,50 jaar</td>
</tr>
<tr>
<td>Levensduurverlenging (na maatregel 2)</td>
<td>6,00 jaar</td>
<td>5,00 jaar</td>
<td>8,00 jaar</td>
</tr>
</tbody>
</table>

Tabel 7-4: Startcondities levensduur Verhardingstype II

De kansverdeling van de mogelijke verwachte levensduur en levensduurverlenging voor verhardingstype I wordt gegeven in bijlage IV.

7.3.3 Resultaat optimalisatie verhardingstype II m.b.v. Crystal Ball

Het resultaat van de Monte-Carlosimulatie voor verhardingstype II wordt hieronder gegeven.
De verwachtingswaarde van het projectresultaat is € 87.196,-. De spreiding van het projectresultaat loopt van minimale opbrengst (verlies) van - € 59.795,- tot een maximale opbrengst van € 173.209,-. De spreiding van het resultaat is € 233.005,-.

7.4 Verhardingstype III

7.4.1 Startcondities aanlegkosten en onderhoudsmaatregelen

Voor verhardingstype III zijn voor de aanlegkosten, onderhoudsmaatregelen, verwachte levensduur en verwachte levensduurverlengingen kansverdelingen opgesteld. Per startconditie wordt de verwachtingswaarde, minimum en maximum bepaald zoals hieronder in de tabel is weergegeven.

<table>
<thead>
<tr>
<th>Startcondities kosten</th>
<th>Verwachtingswaarde startconditie</th>
<th>Minimale startconditie</th>
<th>Maximale startconditie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aanlegkosten (variabele kosten)</td>
<td>€ 53,35 / m²</td>
<td>€ 50,81 / m²</td>
<td>€ 64,02 / m²</td>
</tr>
<tr>
<td>Onderhoudsmaatregel 1</td>
<td>Vaste kosten</td>
<td>€ 1800,00</td>
<td>€ 1714,29</td>
</tr>
<tr>
<td></td>
<td>Variabele kosten</td>
<td>€ 2,40 / m²</td>
<td>€ 2,29 / m²</td>
</tr>
<tr>
<td>Onderhoudsmaatregel 2</td>
<td>Vaste kosten</td>
<td>€ 2400,00</td>
<td>€ 2285,71</td>
</tr>
<tr>
<td></td>
<td>Variabele kosten</td>
<td>€ 7,04 / m²</td>
<td>€ 6,70 / m²</td>
</tr>
<tr>
<td>Onderhoudsmaatregel 3</td>
<td>Vaste kosten</td>
<td>€ 4800,00</td>
<td>€ 4571,43</td>
</tr>
<tr>
<td></td>
<td>Variabele kosten</td>
<td>€ 28,17 / m²</td>
<td>€ 26,83 / m²</td>
</tr>
</tbody>
</table>

Tabel 7-5: Startcondities kosten Verhardingstype III

De kansverdeling van de mogelijke aanleg- en onderhoudskosten voor verhardingstype II wordt gegeven in bijlage V.

7.4.2 Startcondities verwachte levensduur en levensduurverlenging

De levensduuronzekerheid voor de verwachte levensduur en levensduurverlenging na toepassing van de onderhoudsmaatregelen wordt gegeven in de onderstaande tabel.

<table>
<thead>
<tr>
<th>Startcondities levensduur</th>
<th>Verwachtingswaarde startconditie</th>
<th>Minimale startconditie</th>
<th>Maximale startconditie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwachte levensduur na aanleg</td>
<td>7,00 jaar</td>
<td>5,50 jaar</td>
<td>9,50 jaar</td>
</tr>
<tr>
<td>Levensduurverlenging (na maatregel 1)</td>
<td>2,50 jaar</td>
<td>2,00 jaar</td>
<td>3,50 jaar</td>
</tr>
<tr>
<td>Levensduurverlenging (na maatregel 2)</td>
<td>5,00 jaar</td>
<td>4,50 jaar</td>
<td>7,00 jaar</td>
</tr>
<tr>
<td>Levensduurverlenging (na maatregel 3)</td>
<td>7,00 jaar</td>
<td>5,50 jaar</td>
<td>9,50 jaar</td>
</tr>
</tbody>
</table>

Tabel 7-6: Startcondities levensduur Verhardingstype III

De kansverdeling van de mogelijke verwachte levensduur en levensduurverlenging voor verhardingstype III wordt gegeven in bijlage VI.
7.4.3 Resultaat optimalisatie verhardingstype III m.b.v. Crystal Ball

Het resultaat van de Monte-Carlosimulatie voor verhardingstype III wordt hieronder gegeven.

De verwachtingswaarde van het projectresultaat is € 67.146,-. De spreiding van het projectresultaat loopt van minimale opbrengst (verlies) van -€ 69.706,- tot een maximale opbrengst van € 152.890,-. De spreiding van het resultaat is € 222.596,-.
8 Conclusies en aanbevelingen

In dit hoofdstuk worden de conclusies en aanbevelingen gegeven op dit afstudeeronderzoek. De conclusie geeft antwoord op deze vraagstelling, waarmee wordt voldaan aan de doelstelling.

8.1 Conclusies

Het antwoord op de centrale vraagstelling is dat verhardingstype I; asfaltconstructie op basis van STAB onderlaag en tussenlagen en deklaag ZOAB+ (5 cm deklaag) de meest gunstige strategie en de te kiezen wegconstructie voor meerjarig wegonderhoud is op basis van minimale kosten, maximale beschikbaarheidsvergoeding en handhaving van het gestelde kwaliteitsniveau.

Uit de resultaten blijkt dat de onderhoudsstrategie op basis van een asfaltconstructie met ZOAB+ deklaag de beste variant is. In vergelijking met Verhardingstype II en III heeft het de laagste aanlegkosten.

Hoewel de onderhoudskosten bij Verhardingstype I hoger zijn dan bij Verhardingstype II blijkt dat Verhardingstype I door de lage aanlegkosten de laagste projectkosten heeft. Daarbij komt dat de restlevensduur van Verhardingstype I hoger is dan bij Verhardingstype II. Verhardingstype III heeft de hoogste restlevensduur, maar is met de aanleg- onderhoudskosten hoger dan Verhardingstype I.

De waarde van deze uitkomsten zijn beperkt door de invoervariabelen een hoge onzekerheidsfactor hebben. Met behulp van de Monte-Carlosimulatie wordt duidelijk waar de spreiding ligt in mogelijke uitkomst door kansverdelingen te genereren van de invoervariabelen.

De resultaten van de Monte-Carlosimulatie zijn weergegeven in de onderstaande verdeling:

![RESULTATEN KANSVERDELING PROJECTKOSTEN M.B.V. MONTE-CARLOSIMULATIE](image)

Figuur 8-1: Resultaten kansverdeling projectkosten m.b.v. Monte-Carlosimulatie

Uit het grafiek valt op te maken dat Verhardingstype I het hoogste resultaat behaalt. De verwachtingswaarde is € 175.794,- ten opzichte van Verhardingstype II (€ 87.196,-) en Verhardingstype III (€ 67.146,-).

De minimale opbrengst voor Verhardingstype I is € 50.622,- ten opzichte van een verlies voor Verhardingstype II (- € 59.795,-) en Verhardingstype III (- € 69.706,-).

De maximale opbrengst voor Verhardingstype I is € 254.590,- ten opzichte van een verlies voor Verhardingstype II (€ 173.209,-) en Verhardingstype III (€ 152.890,-).
Op basis van de gegeven doelstelling en het beantwoorden van de centrale vraagstelling blijkt dat met Verhardingstype I de beste onderhoudsstrategie aangegaan wordt voor meerjarig wegonderhoud op basis van minimale kosten, maximale beschikbaarheid en handhaving van het gestelde kwaliteitsniveau. Ook na het testen van de gevoeligheid van de startcondities blijkt nogmaals dat Verhardingstype I de beste variant is.

8.2 Aanbevelingen

Er wordt aanbevolen om de tussentijdse opbrengsten mee te nemen in dit onderzoek. De onderhoudsstrategie wordt dan zo opgezet dat de onderhoudsmaatregelen worden uitgevoerd ten tijde van de uitkering van de beschikbaarheidsvergoeding. Het jaarlijks budget moet intracomptabel worden gemaakt met de kosten. Zo wordt een negatief budget voorkomen en behoudt de aannemer altijd een positieve liquiditeit.

Nu is het onderzoek uitgevoerd voor één segment. Voor nader onderzoek kan de verkeershinder worden meegenomen door onderlinge segmenten met elkaar in verband te brengen. Zo kan inzichtelijk worden gemaakt wat de invloed is op de verkeerssituatie.

In dit onderzoek wordt gekeken naar de wegconstructie. Voor het vervolg wordt aanbevolen een integraal pakket te optimaliseren. Dit houdt in dat naast de wegverharding ook de kunstwerken en onderhoud voor verkeersvoorzieningen worden meegenomen in het onderzoek.
Literatuurlijst

Bijlagen

Bijlage I. Gevoeligheidsanalyse kostenverwachting verhardingstype I

Kansverdeling verhardingstype I aanlegkosten

AANLEGKOSTEN

Verwachte waarde (most likely):	€ 48,15
Minimale waarde:	€ 45,86
Maximale waarde:	€ 61,88

Kansverdeling verhardingstype I onderhoudskosten maatregel 1

SEALEN DEKLAAG (VASTE KOSTEN)

Verwachte waarde (most likely):	€ 1800,00
Minimale waarde:	€ 1714,29
Maximale waarde:	€ 2160,60

SEALEN DEKLAAG (VARIABELE KOSTEN)

Verwachte waarde (most likely):	€ 2,40
Minimale waarde:	€ 2,29
Maximale waarde:	€ 2,88
Kansverdeling verhardingstype I onderhoudskosten maatregel 2

VERVANGEN DEKLAAG ZOAB+ (50MM IN/UIT) (VASTE KOSTEN)

Verwachte waarde (most likely):
€ 2400,00

Minimale waarde:
€ 2285,71

Maximale waarde:
€ 2880,00

VERVANGEN DEKLAAG ZOAB+ (50MM IN/UIT) (VARIABELE KOSTEN)

Verwachte waarde (most likely):
€ 11,90

Minimale waarde:
€ 11,33

Maximale waarde:
€ 14,27

Kansverdeling verhardingstype I onderhoudskosten maatregel 3

VERVangen T.LG. STAB + DEKLg. ZOAB+ (120MM IN/UIT) (VASTE KOSTEN)

Verwachte waarde (most likely):
€ 4800,00

Minimale waarde:
€ 4571,43

Maximale waarde:
€ 5760,00

VERVANGEN T.LG. STAB + DEKLg. ZOAB+ (120MM IN/UIT) (VARIABELE KOSTEN)

Verwachte waarde (most likely):
€ 23,65

Minimale waarde:
€ 22,52

Maximale waarde:
€ 28,37
Bijlage II. Gevoeligheidsanalyse levensduurverwachting verhardingstype I

Kansverdeling verhardingstype I verwachte levensduur na aanleg

VERWachte LEVENSDUUR NA AANLEG

<table>
<thead>
<tr>
<th></th>
<th>Verwachte waarde (most likely):</th>
<th>Minimale waarde:</th>
<th>Maximale waarde:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>€ 7,50</td>
<td>€ 6,00</td>
<td>€ 10,00</td>
</tr>
</tbody>
</table>

Kansverdeling verhardingstype I levensverlenging na toepassing maatregel 1

Sealen Deklaag (Levensduurverlenging)

<table>
<thead>
<tr>
<th></th>
<th>Verwachte waarde (most likely):</th>
<th>Minimale waarde:</th>
<th>Maximale waarde:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>€ 2,50</td>
<td>€ 2,00</td>
<td>€ 3,50</td>
</tr>
</tbody>
</table>

Kansverdeling verhardingstype I levensverlenging na toepassing maatregel 2

Vervangen Deklaag (50MM IN /UIT) (Levensduurverlenging)

<table>
<thead>
<tr>
<th></th>
<th>Verwachte waarde (most likely):</th>
<th>Minimale waarde:</th>
<th>Maximale waarde:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>€ 6,00</td>
<td>€ 5,00</td>
<td>€ 8,00</td>
</tr>
</tbody>
</table>
Kansverdeling verhardingstype I levensverlenging na toepassing maatregel 3

VERVANGEN T.LG. STAB + DEKLG. ZOAB+ (120MM IN/UIT) (LEVENS DUURVERL.):

<table>
<thead>
<tr>
<th>Probability</th>
<th>Maximal Levensduurverl. (in years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verwachte waarde (most likely):

€ 7,50

Minimale waarde:

€ 6,00

Maximale waarde:

€ 10,00
Bijlage III. Gevoeligheidsanalyse kostenverwachting verhardingstype II

Kansverdeling verhardingstype II aanlegkosten

<table>
<thead>
<tr>
<th></th>
<th>Verwachte waarde (most likely):</th>
<th>Minimale waarde:</th>
<th>Maximale waarde:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AANLEGKOSTEN</td>
<td>€ 61,88</td>
<td>€ 58,93</td>
<td>€ 74,25</td>
</tr>
</tbody>
</table>

Kansverdeling verhardingstype II onderhoudskosten maatregel 1

<table>
<thead>
<tr>
<th></th>
<th>Verwachte waarde (most likely):</th>
<th>Minimale waarde:</th>
<th>Maximale waarde:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEALEN DEKLAAG (VASTE KOSTEN)</td>
<td>€ 1800,00</td>
<td>€ 1714,29</td>
<td>€ 2160,60</td>
</tr>
<tr>
<td>SEALEN DEKLAAG (VARIABELE KOSTEN)</td>
<td>€ 2,40</td>
<td>€ 2,29</td>
<td>€ 2,88</td>
</tr>
</tbody>
</table>
Kansverdeling verhardingstype II onderhoudskosten maatregel 2

VERVANGEN DEKLAAG ZOA+ (50MM IN/UIT) (VASTE KOSTEN)

Verwachte waarde (most likely):
€ 2400,00

Minimale waarde:
€ 2285,71

Maximale waarde:
€ 2880,00

VERVANGEN DEKLAAG ZOA+ (50MM IN/UIT) (VARIABELE KOSTEN)

Verwachte waarde (most likely):
€ 11,90

Minimale waarde:
€ 11,33

Maximale waarde:
€ 14,27
Bijlage IV. Gevoeligheidsanalyse levensduur verhardingstype II

Kansverdeling verhardingstype II verwachte levensduur na aanleg

VERWACHTE LEVENSDUUR NA AANLEG

Verwachte waarde (most likely):
€ 8,00

Minimale waarde:
€ 6,50

Maximale waarde:
€ 10,50

Kansverdeling verhardingstype II levensverlenging na toepassing maatregel 1

SEALEN DEKLAAG (LEVENS DUURVERLENGING)

Verwachte waarde (most likely):
€ 2,50

Minimale waarde:
€ 2,00

Maximale waarde:
€ 3,50

Kansverdeling verhardingstype I levensverlenging na toepassing maatregel 2

VERVANGEN DEKLAAG (50MM IN /UIT) (LEVENS DUURVERLENGING)

Verwachte waarde (most likely):
€ 6,00

Minimale waarde:
€ 5,00

Maximale waarde:
€ 8,00
Bijlage III. Gevoeligheidsanalyse kostenverwachting verhardingstype III

Kansverdeling verhardingstype III aanlegkosten

AANLEGKOSTEN

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verwachte waarde (most likely):</td>
<td>Minimale waarde:</td>
<td>Maximale waarde:</td>
</tr>
<tr>
<td></td>
<td>€ 53,35</td>
<td>€ 50,81</td>
<td>€ 64,02</td>
</tr>
</tbody>
</table>

Kansverdeling verhardingstype III onderhoudskosten maatregel 1

SEALEN DEKLAAG (VASTE KOSTEN)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verwachte waarde (most likely):</td>
<td>Minimale waarde:</td>
<td>Maximale waarde:</td>
</tr>
<tr>
<td></td>
<td>€ 1800,00</td>
<td>€ 1714,29</td>
<td>€ 2160,60</td>
</tr>
</tbody>
</table>

SEALEN DEKLAAG (VARIABELE KOSTEN)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Verwachte waarde (most likely):</td>
<td>Minimale waarde:</td>
<td>Maximale waarde:</td>
</tr>
<tr>
<td></td>
<td>€ 2,40</td>
<td>€ 2,29</td>
<td>€ 2,88</td>
</tr>
</tbody>
</table>
Kansverdeling verhardingstype III onderhoudskosten maatregel 2

VERVANGEN TOPLAAG ZSA (25MM IN/UIT) (VASTE KOSTEN)

![Distribution Chart]

Verwachte waarde (most likely):
€ 2400,00

Minimale waarde:
€ 2285,71

Maximale waarde:
€ 2880,00

Kansverdeling verhardingstype III onderhoudskosten maatregel 3

VERVANGEN T.LG. STAB + DUBLGS. ZOAB+ (140MM IN/UIT) (VASTE KOSTEN)

![Distribution Chart]

Verwachte waarde (most likely):
€ 4800,00

Minimale waarde:
€ 4571,43

Maximale waarde:
€ 5760,00

VERVANGEN T.LG. STAB + DUBLGS. ZOAB+ (140MM IN/UIT) (VARIABELE KOSTEN)

![Distribution Chart]

Verwachte waarde (most likely):
€ 28,17

Minimale waarde:
€ 26,83

Maximale waarde:
€ 33,80
Bijlage VI. Gevoeligheidsanalyse levensduur verhardingstype III

Kansverdeling verhardingstype III verwachte levensduur na aanleg

VERWACHTE LEVENSDUUR NA AANLEG

<table>
<thead>
<tr>
<th>Verwachte waarde (most likely):</th>
<th>€ 7,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimale waarde:</td>
<td>€ 5,50</td>
</tr>
<tr>
<td>Maximale waarde:</td>
<td>€ 9,50</td>
</tr>
</tbody>
</table>

Kansverdeling verhardingstype III levensverlenging na toepassing maatregel 1

SEALEN DEKLAAG (LEVENSDUURVERLENING)

<table>
<thead>
<tr>
<th>Verwachte waarde (most likely):</th>
<th>€ 2,50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimale waarde:</td>
<td>€ 2,00</td>
</tr>
<tr>
<td>Maximale waarde:</td>
<td>€ 3,50</td>
</tr>
</tbody>
</table>

Kansverdeling verhardingstype III levensverlenging na toepassing maatregel 2

VERVANGEN TOPLAAG SMA (25MM IN /UIT) (LEVENSDUURVERLENING)

<table>
<thead>
<tr>
<th>Verwachte waarde (most likely):</th>
<th>€ 5,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimale waarde:</td>
<td>€ 4,50</td>
</tr>
<tr>
<td>Maximale waarde:</td>
<td>€ 7,00</td>
</tr>
</tbody>
</table>
Kansverdeling verhardingstype III levensverlenging na toepassing maatregel 3

<table>
<thead>
<tr>
<th>Vervangen T.L.G. STAB + Dublgs. ZOAB+ (140MM IN/UIT) (Levensduurverl.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verwachte waarde (most likely):</td>
</tr>
<tr>
<td>€ 7,00</td>
</tr>
<tr>
<td>Minimale waarde:</td>
</tr>
<tr>
<td>€ 4,50</td>
</tr>
<tr>
<td>Maximale waarde:</td>
</tr>
<tr>
<td>€ 7,00</td>
</tr>
</tbody>
</table>