Adaptive Large Neighborhood Search
for Rich and Real-World Vehicle Rout-
ing Problems

()
.9
o+
]
<
]
4=
4
]
=
°
@
o
a
<
b
o]
3
1]
[
=

Delft
e t University of
Technology

Challenge the future

Adaptive Large Neighborhood Search for
Rich and Real-World Vehicle Routing
Problems

by

Laura Michelle Simons

April, 2017

A thesis submitted to the
Delft University of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science

m
Applied Mathematics

Supervisor: Prof. dr. ir. K. Aardal

Thesis committee: Prof. dr. ir. K. Aardal, TU Delft
Dr.ir. M. van Gijzen, TU Delft
Drs. A. Rietveld, ORTEC B.V.

Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

%
TUDelft oo OoORrRT:=C

OPTIMIZE YOUR WORLD

Abstract

In optimization, many variants of the Vehicle Routing Problem exists with all sorts of re-
strictions and characteristics. Heuristics that find near-optimal solutions are known and
tested on in the literature, such as heuristics that escape local minima with the use of large
neighborhoods. An example is Adaptive Large Neighborhood Search, which can be used
to find near-optimal solutions for rich Vehicle Routing Problems. In order to understand
the differences between this heuristic and other heuristics that use large neighborhoods, an
overview of the most related minima-escaping heuristics is provided in this thesis. Unfor-
tunately, studies that involve real-world data are limited. Therefore, this thesis involves a
study on how to configure the components of Adaptive Large Neighborhood Search, such
that it can be used on real-world data. This study is carried out at ORTEC, a company
that provides optimization software and analytical solutions to all sorts of companies, and
customer cases are used for testing. Most of the time, an initial solution is required as input
for the minima-escaping heuristics and the importance of the quality of this solution is not
specified. Therefore, the influence of the construction method for an initial feasible solution
on the performance of Adaptive Large Neighborhood Search will be investigated as well.
It turns out that this influence is case and configuration specific. To intensify the search
and explore smaller neighborhoods as well, local search methods are added to Adaptive
Large Neighborhood Search, which will improve the solutions that are found. The research
concludes with an Adaptive Large Neighborhood Search that is tuned for the real-world
cases that are investigated at ORTEC. Because the computing time that is available for
real-world cases is usually limited, a simplified version of the heuristic will be provided as
well.

List of Abbreviations

ALNS

CI

CRR
CVRP
CVRS
CWR
FSM
HVRP
KPI

LNS
MDVRP
MVRPB
ORD
ORTEC
PDP
PCI

PRI

PI

R&R

RR

SR

TSP
TVRP
VNS
VRP
VRPB
VRPDP
VRPDDP
VRPMDP
VRPO
VRPSDP
VRPTW
WR
XML

Adaptive Large Neighborhood Search

Cheapest Insertion

Cluster Random Removal

Capacitated Vehicle Routing Problem

COMTEC Vehicle Routing Probem

Cluster Worst Removal

Fleet Size and Mix

Heterogeneous Vehicle Routing Problem

Key Performance Indicator

Large Neighborhood Search

Multi-Depot Vehicle Routing Problem

Mixed Vehicle Routing Problem with Backhauls
ORTEC Routing and Dispatch

Operations Research Technology

Pickup and Delivery Problem

Parallel Cheapest Insertion

Parallel Regret Insertion

Parallel Insertion

Ruin and Recreate

Random Removal

Related Removal (Shaw Removal)
Traveling-Salesman Problem

Time-Dependent Vehicle Routing Problem

Variable Neighborhood Search

Vehicle Routing Problem

Vehicle Routing Problem with Backhauls

Vehicle Routing Problem with Deliveries and Pickups
Vehicle Routing Problem with Divisible Deliveries and Pickups
Vehicle Routing Problem with Mixed Deliveries and Pickups
Vehicle Routing Problem ORTEC

Vehicle Routing Problem with Simultaneous Deliveries and Pickups
Vehicle Routing Problem with Time Windows

Worst Removal

Extensible Markup Language

Contents

1.1 Routing Problems and Algorithm Analysis.
1.2 Problem Description and Motivation

Large Neighborhoods

1.3 Research description
1.4 Outline e

Routing Problem

2.2 Capacitated Vehicle Routing Problem

2.3 Heterogeneous Vehicle Routing Problem

Routing Problem with Backhauls
Routing Problem with Time Windows

2.6 Multi-Depot Vehicle Routing Problem
2.7 Time-Dependent Vehicle Routing Problem

and Delivery Problem L.
Routing Problem with Deliveries and Pickups
Routing Problem ORTEC

3.2 Restrictions and Upper and Lower Bounds

3.3 Objective Function

1 Introduction
1.2.1
2 VRP Classification
2.1 Vehicle
2.4 Vehicle
2.5 Vehicle
2.8 Pickup
2.9 Vehicle
2.10 Vehicle
3 Mathematical Model
3.1 Models
4

Minima-escaping Heuristics

4.1 Local Search
4.2 Metaheuristics: Local Search Class

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6

Simulated Annealing L Lo
Tabu Search
Iterated Local Search
Variable Neighborhood Search
Large Neighborhood Search
Ruin and Recreate oL

4.3 Hybridization Methods L o

4.3.1

Adaptive Large Neighborhood Search

4.4 Problem Specific: Local Search Metaheuristics for VRPs

441
4.4.2
4.4.3
4.44

Large Neighborhood Search
Ruin and Recreate
Adaptive Large Neighborhood Search
ORTEC Adaptive Large Neighborhood Search

0w g o O

10

13
13
14
14
14
16
16
18
18
18
19

21
21
21
22

CONTENTS

5 Introduction ORTEC and their Software

5.1 Automated Planning Process
51.1 Imput for ORD
5.1.2 Congifurations for ORD
5.1.3 Output from ORD

6 Components of the Hybrid Method

6.1 Initial Solution
6.1.1 Literature Overview
6.1.2 Performance

6.2 Removal Methods
6.2.1 Literature Overview
6.2.2 Number of Removals
6.2.3 Performance

6.3 Recreate Methods
6.3.1 Literature Overview
6.3.2 Performance

6.4 Acceptance Criteria
6.4.1 Literature Overview
6.4.2 Performance

7 Testing Approach

7.1 Components of ORTEC ALNS
7.2 Solution Quality
7.3 Datafor Testing
8 Experiments

8.1 Customer Configurations.
8.2 Imitial Testing,
8.3 Inmitial Solution
8.4 Removal Methods.

8.4.1 Multiple Removal Methods

8.4.2 Single Removal Methods

8.4.3 Number of Removals
8.5 Recreate Methods

8.6 ORTEC Adaptive Large Neighborhood Search

9 Conclusion and Recommendations

9.1 Recommendations for further research
9.2 Recommendations for ORTEC

Appendix A ORTEC software

Appendix B Extended Literature Study

B.1 Initial Solution - Performance
B.2 Removal Methods.
B.3 Removal Methods - Performance
B.4 Number of Removals - Performance

Appendix C Additional Figures
Appendix D Tables

References

........... 98

Chapter 1

Introduction

Suppose you are the owner of a supermarket. Each day, you want your customers to
be able to choose from a rich assortment of products. It is not acceptable to let your
customers leave without all the products they wanted to purchase, because they were not
in stock. Therefore, it is necessary to have a good supply. It would be best to have new
products arriving within a certain part of the day, for example when the expected number
of customers is low. However, the supply should not arrive hours after closing time, because
your employees would have to wait for the supply to arrive in order to continue their work.
Therefore, you would want the supply to arrive within a certain time window.

Most supermarkets are part of a supermarket chain. Therefore, there is a whole group
of supermarket owners, who all want the best for their specific location. In case supermar-
kets are located in the same area, it would be beneficial to combine the supply of these
supermarkets when looking for example at the costs for the driving time. However, one has
to take into account several aspects, such as the time windows of these supermarkets, the
driving time between them, and the capacity of the vehicle that is used. If, for example,
supermarkets A and B need the supply to be delivered between 6 pm and 7 pm, but the
driving time between the two supermarkets is more than an hour, these supplies cannot
be combined in one vehicle. Besides the time window restrictions it may be impossible to
deliver the supply of several supermarkets with one vehicle, because the combined amount
of products will not fit in the vehicle. These aspects are just a small set of all restrictions
that come along with a planning to supply all supermarkets of a supermarket chain. This
raises the question on how to combine the supply to supermarkets, in such a way that there
are no violations and all the demands are met.

This is an example of an optimization problem where routes need to be constructed that
service the customer locations. Because all products are delivered at these customer lo-
cations, such as the supermarkets, this is a distribution planning of transports on routes.
ORTEC B.V. is a company that works with these kind of problems. An introduction of
this company is given in the next section.

ORTEC B.V.

ORTEC B.V. is short for Operations Research Technology, in this report referred to as
ORTEC. They provide optimization software and analytical solutions to all sorts of com-
panies, such as carriers for supermarkets. It has grown from a small business, founded by
Econometric students at Erasmus University Rotterdam in 1981, to a globally respected
company. ORTEC is, for example, able to provide a good planning for which supermarkets
need to be combined on a route for supply. Therefore, it is a perfect place to see in what
way the theoretical heuristics that are discussed during the master Applied Mathematics, at
the Delft University of Technology, are used in practice. In this thesis, data from customers
of ORTEC will be used. Therefore, there are many restrictions, such as a limited com-
puting time for finding a solution of good quality. Usually, real-world problems have more

6 CHAPTER 1. INTRODUCTION

restrictions than the ones that are considered in the literature. Therefore, configurations
of heuristics that are tested in the literature, may not provide solutions of good quality for
the data that is used at ORTEC. More information about ORTEC and its products is given
in Chapter 5.

1.1 Routing Problems and Algorithm Analysis

The problem that is described in the introduction of this chapter, is part of a class of
problems called linear integer problems. More details on this class will be given in Chapter
3. An example of an optimization problem that is in this class, is the Traveling Salesman
Problem (TSP). In a TSP, a network of nodes and edges is considered. Through all these
nodes, one shortest circuit needs to be determined that ends and starts at the same location,
and that visits all nodes exactly once. Because a shortest circuit is needed, the TSP is a
manimization problem. One could think of the nodes representing the supermarkets form
the introduction of this chapter and the start and end location as a depot where all the
products are stored. An example is given in Figure 1.1a, where the diamond-shaped figure is
the start and end point of the route. In this example, the nodes can be seen as supermarkets
and the diamond-shaped figure as the depot where all the products for the supermarkets
are stored, such as in the problem described in the introduction of this chapter. The reason
for mentioning this TSP, is that it is strongly related to another optimization problem,
called the Vehicle Routing Problem (VRP), which is one of the most studied problems in
optimization problems regarding plannings for visiting locations. However, this problem was
first proposed by Dantzig and Ramser (1959) under the name Truck Dispatching Problem.
Instead of constructing one tour in the TSP, for the VRP multiple routes can be constructed.
Because this problem is widely known under the name ‘Vehicle Routing Problem’, this
report will refer to the problem with VRP as well. In this problem, the nodes or locations
in the network have known demands and routes need to be determined such that the costs
are minimal, they start and end at the same location, and the demands on the nodes are
met. Figure 1.1b visualizes an example of a VRP. The supermarkets are supplied by two
vehicles that both drive a circuit, or one vehicle that drives two circuits. The main difference
between the TSP and VRP are the demands and possible multiple routes in the VRP. The

[]
[]
[
(a) An example of a TSP, where all nodes in (b) A solution to a VRP, including two routes
the network are visited exactly ones, within one that together visit all customers in the net-
circuit. work that have transportation request for the

diamond-shaped depot. Both routes start and
end at the depot, which results in two circuits.

Figure 1.1: Two examples are given: on the left a TSP, on the right a VRP.

VRP is part of a class of problems: linear integer programming problems. One can choose
to relax the problem into a linear programming problem. Solving this relaxation does not
imply that the original problem is solved as well. More about this is included in Chapter 3.
There is an algorithm for linear programming that will find an optimal solution in a number
of steps. This number of steps is known to grow as a polynomial in the size of the problem
instance that is looked into (Papadimitriou & Steiglitz, 1998). This size is measured as
an integer n. The kind of algorithms are called polynomial algorithms or polynomial-time
algorithms and are known for their not too fast increasing running time as the size of the

1.2. PROBLEM DESCRIPTION AND MOTIVATION 7

problem increases (Cook, Cunningham, Pulleyblank, & Schrijver, 1998). Note that the
TSP and VRP do not belong to the class of linear problems, and hence cannot be solved
with such an algorithm. The running time of these algorithms is presented as a polynomial

of the form
a-nk+(9(nl> =(9(nk),

where a,n, k,l € N and | < k. However, for large k, the polynomial algorithms may have a
long running time. All decision problems that can be solved in polynomial time are in the
complexity class that is denoted by P. There is another class of decision problems, which
is the NP class. This class contains all decision problems for which is known that they
can be verified in polynomial time. These problems are stated as questions, for which can
be verified, in polynomial time, that the answer to these questions is positive. For decision
problems that are in the AP complexity class, it is not necessary that the solution for these
problems can be found in polynomial time. From this definition follows that P C NP.
Whether P = NP is yet unknown and providing a proof whether this is indeed the case is
one of the well-known ‘Millennium Problems’. Furthermore, the class NP contains another
class: NP — complete class. A problem is in this class in case all other problems that are in
NP can be polynomially transformed to this problem. For more information on this subject
we refer to Garey and Johnson (1979), Papadimitriou and Steiglitz (1998) and Arora and
Barak (2009).

1.2 Problem Description and Motivation

When working with a more practical VRP using for example multiple depots, multiple
trips and time windows, the problem will be harder to solve than the original VRP that is
described in the previous section. A more complex VRP is called rich and heuristics need to
be used to find feasible solutions. Unfortunately, using heuristics will not guarantee finding
the optimal solution, but one can get very close to the optimum. Therefore, the quality
of the solution needs to be examined. There is always a trade-off between the quality of
the objective function value of a solution and the computing time. A short computing
time and high quality solution are desirable, but achieving both at the same time can be
difficult. Usually, when working with heuristics that are iterative, spending more time on
calculations will provide a better solution (Acharya, 2013). However, the available time
for calculations is limited in practical cases, so the quality of the solution is also typically
limited. Another difficulty that comes along with heuristics, besides this trade-off, is that
they are case-specific (Acharya, 2013). The behavior and effectiveness of heuristics depend
on the problem that is looked into. For example, a heuristic that works well for a VRP
with 10 locations and time window restrictions may not produce a good solution for a VRP
with 200 locations without time window restrictions. Therefore, heuristics should always be
tested on the problem that is looked into, especially when you are working with real-world
problems. This is mainly due to all the restrictions that are most of the time problem
specific for such real-world problems.

1.2.1 Large Neighborhoods

Most heuristics consist of two phases, sometimes expanded with more steps. The first phase
is called the construction phase and consists of the construction of a feasible initial solution.
This initial solution will be improved step by step during the improvement phase (Bréysy,
2003). During this phase the solution is iteratively modified with the help of local search
steps. Little alternations in the solution can already provide a new feasible solution that is
better than the initial solution. The main idea is to keep searching for new feasible solutions
in the neighborhood of the current solution, while improvements are found (Papadimitriou
& Steiglitz, 1998). A neighborhood of a solution s is usually defined as all the solutions that
lay within a certain area of s. To be more precise, the neighborhood of s is defined as

Ne(s) = {lly — s|| < e, given that y is a feasible solution} .

8 CHAPTER 1. INTRODUCTION

With the help of local search, these solutions y € N.(s) can be found. Usually, local
search includes small changes in the construction of the solution, such as interchanging
route segments. This usually leads to small changes in the value of the objective function
(Schneider & Kirkpatrick, 2006, p. 73). Hence, small € are required. In this way, when
the search reaches a local minimum, it can be hard to find a better solution during next
iterations. This idea is visualized in Figure 4.1. Especially when complex problems are
considered with many constraints, altering some parts of the solution may produce an
infeasible solution (Schrimpf, Schneider, Stamm-Wilbrandt, & Dueck, 2000).

A
costs

local minimum

global minimum

»

solutionspace

Figure 1.2: A figure to illustrate the principle of escaping a local minimum in the search for
a global minimum. Note that this figure is an example of varying one descision variable that

influences the costs. The costs in this case can be seen as the objective.

Besides the complexity of finding a new minimum, the quality of a local minimum is in
most cases not good enough, especially when the difference between this local minimum
and the global minimum is large. Therefore, it can be useful to search through larger
neighborhoods. This might require having a higher value for ¢, to escape local minima. In
our case, we define a large neighborhood of a solution s as solutions that can be found when
altering a large part of s. For example, by interchanging many segments of many routes at
once.

When investigating larger neighborhoods in the search for a better local minimum, one
can escape local minima. There are methods that are able to work with both small and
big changes in a solution, and thus use small and large neighborhoods. They are related to
methods called Ruin and Recreate (R&R) and Large Neighborhood Search (LNS), that both
rely on the same idea of using large neighborhoods to investigate the solution space. In each
iteration of these heuristics the current solution is partially ‘ruined’ or ‘removed’ and will
be ‘recreated’ to find a better solution. Another method that uses this strategy is called
Adaptive Large Neighborhood Search (ALNS). This method is based on R&R and LNS,
with some additions for better performance. In the literature this seems to be a promising
method of finding solutions for complex and case-specific VRPs. To ruin solutions, one has
to choose a ‘removal method’ to unplan a predefined number of transportation requests from
the current solution. This will lead to a partial solution, where the unplanned transportation
request needs to be inserted again, hopefully at a better position than in the previously
found solution. The reinsertion is done by an insertion method that is chosen from several
‘recreate methods’. For more information is referred to Golden, Raghavan, and Wasil
(2008).

1.3 Research description

As already described, a rich VRP is hard to solve. Therefore, smart heuristics are needed to
find near-optimal solutions. Large Neighborhood Search, and variants of this heuristic, are
known to find these near-optimal solutions. Therefore, the software of ORTEC incorporates

1.3. RESEARCH DESCRIPTION 9

Large Neighborhood Search as heuristic to improve the solutions that are constructed by
their software as well. To obtain more insight into how to configure the algorithm and
how to configure all of its components, this research is done. Unfortunately, most of the
test cases from the literature involve a VRP that is not rich. Therefore, this research also
includes tests to see whether the conclusions from the literature about Large Neighborhood
Search also apply to rich cases from ORTEC customers.

The heuristic that will be used during our tests will be based on Adaptive Large Neigh-
borhood Search (ALNS), introduced by Ropke and Pisinger (2006b), that involves removing
and reinserting transports from a solution to escape local minima. They use several removal
methods and several recreate methods within their algorithm, that are chosen with the help
of a roulette wheel. More details about their ALNS are included in Chapter 4. Our contri-
bution to this method are tests on the influence of the construction method for the initial
solution on ALNS, as Ropke and Pisinger take a feasible initial solution as input for their
heuristic. Furthermore, local search is incorporated in the heuristic as well, which is not
done by Ropke and Pisinger to the best of our knowledge. Because we will execute our
tests with software from ORTEC, the configuration of the components of the heuristic are
different as well and tests may produce different findings on our real-world cases than the
findings from the literature.

Furthermore, as already explained in Section 1.1, the computing time for a heuristic is
very important. Because of a wide range of possibilities within heuristics such as Large
Neighborhood Search, the computing time can increase very fast, especially for a rich VRP.
For example, it is not acceptable for a supply planning for supermarkets to take 20 hours
to create a planning. Most of the time, each day a new planning needs to be created, and
hence a computing time of less than an hour is more appreciated. However, there is not
one universal limit on the computing time for rich VRPs, this depends on the instance that
is looked into. Therefore, we must add a limited possible computing time, depending on
the instance that is considered, to the goal of using Adaptive Large Neighborhood Search
successfully on a rich VRP. Therefore, the main question for this research is the following.

In what way can the Adaptive Large Neighborhood Search heuristic be configured to find
near-optimal solutions for rich and real-world VRPs, such that the computing time needed
is acceptable for the instance that is looked into?

Note that the main goal is to gain information on how to configure the different components
of the ALNS, such that the combination of the components produces the best solutions.
‘The best solutions’ is defined as the solution that is ranked first in case the solutions that
are found during our research are ordered according to the KPIs and computing time. In
order to answer the main research question, we state subquestions that will be answered
during our research.

e Which construction method is needed to build an initial feasible solution, such that
Adaptive Large Neighborhood Search performs the best?

e Which removal methods and corresponding settings are needed, such that Adaptive
Large Neighborhood Search performs the best?

e Which recreate methods and corresponding settings are needed, such that Adaptive
Large Neighborhood Search performs the best?

e When and where are local search steps needed in the Adaptive Large Neighborhood
Search heuristic, such that Adaptive Large Neighborhood Search performs the best?

In these subquestions ‘performs the best’ asks for a definition. As an example we take
the first subquestion, regarding the construction method for the initial solution. We will
test several construction methods followed by a version of ALNS to improve the initial
solution. According to the value of the objective function for the solutions that are found,
the methods are ranked. The method with the best value for the objective function will be
defined as the ‘best performing construction method’ in combination with ALNS. However,
as already explained, the computing time plays a role in this ranking as well. We will need

10 CHAPTER 1. INTRODUCTION

to weigh the performance regarding the value for the objective function and the computing
time.

The subquestions are used as a tool to get more insight into the usage and influence of
the construction method for the initial solution, removal and recreate methods and local
search steps. For example a construction method that is very complex might produce a
good solution. However, when for example an intensive local search is used, a complex
construction of the initial solution may not be necessary.

1.4 Outline

To provide more information about the VRP, Chapter 2 contains details on the problem.
Many variants of the VRP exist due to all kinds of restrictions that can be included, such
as limited capacity for the vehicles or time window restrictions on the product deliveries.
The variants of the VRP that are relevant for ORTEC are described in Chapter 2 as well.
This includes the Capacitated VRP, Heterogeneous VRP, VRP with Backhauls, VRP with
Time Windows, Multi-Depot VRP, Time-Dependent VRP, Pickup and Delivery Problem
and the VRP with Deliveries and Pickups. The Chapter concludes with the restrictions
that are present in all customer instances from ORTEC that are used for testing.

The VRP that is used for ORTEC is a rich VRP with real-world restrictions. These
restrictions are hard to formulate in a way such that the model can be solved to optimality.
Information on how to model a VRP is described in Chapter 3. Multiple objectives are
used at ORTEC to formulate the objective function, which is included in this chapter as
well. The difficulty of formulating the restrictions into a model is described and the choice
for not constructing an explicit mathematical model is motivated as well.

The first three chapters are needed to understand the difficulty of testing on real-world
instances. Heuristics that may be used to find near-optimal solutions for VRPs involving
these instances are given in Chapter 4, including metaheuristics that belong to the local
search class: Tabu Search, Iterated Local Search, Variable Neighborhood Search, Large
Neighborhood Search and Ruin and Recreate. These metaheuristics are needed to place
the heuristic, that is used for testing, in the literature. The heuristic that is used for testing
is based on Adaptive Large Neighborhood Search, which is described in Chapter 4 as well.

More information about the software that is used for this research is included in Chapter
5. We elaborate on the input for this software, in what way the configurations are provided
as input (explained in detail with an example) and how to interpret the output.

After it is described in what way the ORTEC Adaptive Large Neighborhood Search
is related to the metaheuristics that are known in the literature, the components of this
heuristic are reviewed in Chapter 6. Per component a short introduction is given, followed
by definitions and the performance that is given in the literature. Four components are
included: the construction method for the initial solution, the removal methods, the recreate
methods and the acceptance criterion for accepting new found solutions during the search.
This literature review will provide a starting point for tests that are reported on in this
thesis.

Because many components are tested that are combined into one heuristic, details on
the testing approach are provided before the experiments are described and reported on.
The testing steps are described and motivated and information about in what way the
solution quality is measured is included as well. The chapter concludes with an overview
and description of the data that is used for our experiments.

The results from the tests that are executed for this research, are reported on in Chapter
8. The chapter starts with the planning that is made with the original customer config-
urations, in Section 8.1. Initial tests are performed and reported in Section 8.2 to have
initial frameworks for the hybrid method that will be tuned. This tuning will be done per
component of the hybrid method and the results are shown in Sections 8.3 up till 8.5. After
the tuning of the components, two configurations will be constructed in Section 8.6. One
configuration will be constructed with the components that resulted in the lowest KPIs,
and the other configuration will be recommended in case a simple heuristic is required that

1.4. OUTLINE 11

uses only one removal and one recreate method.

The subquestions and main research question will be answered in the conclusion in
Chapter 9. Recommendations for further research are included in as well, together with
recommendations for ORTEC.

12

CHAPTER 1. INTRODUCTION

Chapter 2

VRP Classification

From the introduction it is clear that this thesis considers finding a close-to-optimal solution
for real-world VRPs. However, as already explained, there are many restrictions that may
or may not be taken into account. These restrictions cause the class of VRPs to be divided
into sub-classes, that are not mutually exclusive. This is due to the fact that one class
of VRPs may or may not include some of the characteristics of another class of VRPs.
To give an idea of these classifications, an overview of the most relevant VRPs is given
in this chapter. They all have some properties that are included in VRPs from customers
at ORTEC. However, this list is not complete, but it gives an idea of the magnitude of
different restrictions and properties ORTEC is dealing with.

This chapter starts with the original VRP, in Section 2.1, and we define some termi-
nology to prevent misunderstandings. Next, an overview is given of eight different classes:
the capacitated vehicle routing problem, Section 2.2, the heterogeneous vehicle routing
problem, Section 2.3, the vehicle routing problem with backhauls, Section 2.4, the vehicle
routing problem with time windows, Section 2.5, several multi-depot vehicle routing prob-
lems, Section 2.6, the time-dependent vehicle routing problem, Section 2.7, the pickup and
delivery problem, Section 2.8 and the vehicle routing problem with deliveries and pickups
2.9. To conclude this chapter, we define a VRP that is used for this thesis in Section 2.10.

2.1 Vehicle Routing Problem

First of all, we recall that the goal for a VRP is to determine a set of routes to serve all
transportation requests at a minimum costs, so the VRP is a minimization problem. The
requests contain a transportation from a central depot to a location in the network. This
network consists of a depot, customer locations (nodes) and links between these locations
and the depot. For the routes there are two conditions: they must start and end at the
depot and all locations in the network must be visited exactly once. Recall that in Figure
1.1b an example of a VRP with two routes is given.

Terminology

There are some terms that need extra explanation. In the literature a lot of terminology
is used for the same objects, events and procedures. To avoid misunderstandings, the
terminology that is used in this thesis will be given.

All different locations in the network need to be specified. There are customers, depots
and home addresses for the drivers of the vehicles. It may happen that the distance or
driving time for a truck driver from his home address to the depot is taken into account for
the minimization problem as well. However, most of the time, this is not included, and we
assume that the driver is already located at the depot. In the VRP, there are transportation
requests with goods that need to be delivered or picked up. For these transportation
requests often different terms are used. Solomon (1987) is talking about delivery of goods
to customers, Toth and Vigo (2014) have transportation tasks, El-Sherbeny (2010) service

13

14 CHAPTER 2. VRP CLASSIFICATION

customers, Pisinger and Ropke (2007) just talk about requests and sometimes the term
orders are used. In this thesis, the transportation request are called transports and vehicles
serve customers. The transports always have a pickup location and deliver location, where
most of the time the pickup location is a depot and the deliver location is at a customer.
These visits at locations are called tasks. Hence, a transport consists of two tasks: a pickup
task and a deliver task. There may be other tasks for the driver as well, such as loading
and unloading of goods, waiting to be able to deliver or pick up goods or resting periods.
Furthermore, although the problem is called a vehicle routing problem, there are multiple
terms used for the routes that are constructed. Shaw (1997) refers to the routes with both
vehicle routes and tours, as they have the same start and end point (a depot), whereas
Pisinger and Ropke (2007) call them routes. Within this thesis report we use routes, where
a route starts and ends at the depot. However, in Chapter 8 we report on the experiments
that are done for this thesis and the routes are called trips. Within the software of ORTEC
it is possible to cut the routes into parts and assign these parts to different vehicles. These
smaller parts are called trips in the software, and a route may consist of several trips.
However, in this thesis, all routes consist of one trip and hence they are the same.

2.2 Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem (CVRP) is the variant of the VRP that is most
studied in the literature. In this CVRP customers have to be served using vehicles that have
limited capacity, which is the extra restriction compared to the original VRP. The demand of
the customers is, just as in the VRP, known. The fleet of vehicles is homogeneous, therefore
all vehicles are identical and have the same capacity. Just like the VRP, the CVRP is a
distribution problem and transports need to be planned from a depot to customers in a
network. An illustration of this CVRP is given in Figure 2.1a.

2.3 Heterogeneous Vehicle Routing Problem

So far, only a homogeneous fleet has been considered, but a VRP can also have a hetero-
geneous fleet. In the Heterogeneous Vehicle Routing Problem (HVRP), there are different
types of vehicles available in the network. This variant of the VRP has many versions,
because ‘different types of vehicles’ can be interpreted in several ways. The vehicle can
have different capacity limitations, (fixed) costs, travel times, time windows, serving areas
and other specifications. One could also have a limited or unlimited number of vehicles
that can be used. Usually, the HVRP includes a limited number of vehicles, and Fleet Size
and Miz (FSM) refers to the problem where an unlimited number of vehicles is available
(Golden et al., 2008). Figure 2.1b gives an example of a HVRP, which may be compared
to the CVRP in Figure 2.1a.

2.4 Vehicle Routing Problem with Backhauls

A logical extension of the VRP is the Vehicle Routing Problem with Backhauls (VRPB).
Besides distribution also collection is possible in this variant. For example, when products
are delivered in trays, these trays need to be transported back to the depot. This results in
transports with a pickup action at a customer location and a deliver action at the depot.
Figure 2.2 gives two examples of the extended VRP from Figure 1.1b, including the backhaul
customers, so the customers that require a pickup. First, consider Figure 2.2a. Deliveries
from the depot go to linechaul customers, the dark blue nodes, and all collections that have
to go back to the depot are transported from backhaul customers, the orange nodes. The
vehicle needs to be empty, so all transports are done, before visiting a backhaul customer.
Hence, delivery and pickup goods can not be transported at the same time. When this
last restriction is left out of scope, backhaul customers may be served before all linehaul
customers on the route are visited. In this case the problem is called a Mized Vehicle

2.4. VEHICLE ROUTING PROBLEM WITH BACKHAULS

LB
[

(a) A solution to a CVRP, including two routes
and two vehicles. Note that the only difference
between the VRP and CVRP is that the vehi-
cles have a limited capacity. It may happen that
the routes in the VRP exceed the capacity of
the vehicles, so it may happen that the optimal

(b) Two different types of vehicles, that both
have their own route. The green customers can
only be served by the green truck, the light blue
customers only by the light blue truck, and the
dark blue customers may be served by both the
green and the blue truck.

15

solution for the CVRP is different than for the
VRP.

Figure 2.1: Two different ways of extending the VRP: add capacity constraints to the vehicles
(a), resulting in a CVRP, and having different types of vehicles (b), a HVRP, coming with different

restrictions and constraints.

Routing Problem with Backhauls (MVRPB), see Figure 2.2b. Note that in Figure 2.2 the
connections between nodes have direction now, because all linehaul customers need to be
visited before all backhaul customers. From now on, backhaul customers will be referred to
as pickup customers, because products are picked up at the customer location, and linehaul
customers as delivery customers, because products are delivered at the customer location.

PR

(b) Another example of a VRPB, where it is
allowed to pickup transports from pickup cus-
tomers before all delivery customers are visited.
This is known as a MVRPB.

(a) An example of a VRPB, where pickup cus-
tomers (in orange) are included in the network.
Note that direction on the edges is included,
and thus the routes have a direction as well. A
dashed link between nodes in the network rep-
resents that the vehicle is empty. The vehicle
is empty after the last delivery customer in the
route and before the first pickup customer is vis-
ited.

Figure 2.2: Two examples of solution for a VRPB, the general version (a) and an extension: the

MVRPB (b). In the extended version it is allowed to pickup goods before the vehicle is empty.

16 CHAPTER 2. VRP CLASSIFICATION

2.5 Vehicle Routing Problem with Time Windows

Another extension of the VRP, is the Vehicle Routing Problem with Time Windows. This
problem includes time windows at the customer locations. The problem can include hard
time windows or soft time windows. The vehicles must visit the customers within the given
time interval, when the time windows are hard. On the other hand, when soft time windows
are used, the vehicle may visit the customer outside the time interval. In this case it is
common that vehicles can not arrive after the end of the interval, but they may arrive before
the start of the interval. The latter will usually cause a penalty in the objective function
or some wait time is added to make the planning feasible. An example of such a VRPTW
is given in Figure 2.3a. Note that not all customer locations necessarily need restrictions
on their time windows. It may happen that some customers have time windows that are
non-restrictive, such as soft time windows. However, this is not very common in real-life,
as locations usually have opening hours. Because there are no pickup customers in this
example, the vehicles return empty at the depot, which is visualized as a dashed line.

It may happen that the time windows are very tight. That means that the start and
end time of the time windows are very close, so there is only a short amount of time for the
transports to be delivered. It may happen, because of these tight time windows, that the
vehicles are forced to visit the customers in a specific order. This could increase the value
of the objective function a lot, for example when the quality is measured in distance. This
is illustrated in Figure 2.3b. Consider the blue route, where it would have been beneficial
to plan the first stop after the third stop. This would decrease the distance that needs to
be driven. However, due to the time window of the first stop, this is not possible.

-
-

, (D w

° & 0'4/.

(a) An example of a VRPTW, where the loca- (b) Another example of a VRPTW. The time
tions in the network with time window restric- windows in this case are very tight, which causes
tion are visualized with a clock. Note that not the routes to be different than in the figure on
all locations have time window restrictions. the left.

Figure 2.3: Two examples on how different time windows will influence the planning in the
VRPTW.

2.6 Multi-Depot Vehicle Routing Problem

In case there is not one depot in the network but several depots, the VRP turns into a Multi-
Depot Vehicle Routing Problem (MDVRP). There exist several versions of this MDVRP, so
‘multi-depot’ may be explained in multiple ways.

e Customers can be served by several depots or each depot serves its own region. A
region can for example be based on zipcodes, or certain customers that only can be
served by a certain depot. In the latter case, it may happen that these customers
are scattered all over the network. A consequence would be the overlap of regions
between different depots. This version of the MDVRP is visualized in Figures 2.4a

2.6. MULTI-DEPOT VEHICLE ROUTING PROBLEM 17

and 2.4b, where rectangular locations belong to the region of the depot on the left,
and the circular locations belong to the other depot. In case each depot has its own
region to serve, see Figure 2.4a, the MDVRP can be seen as a combination of several
VRPs. It may be solved by splitting the problem into as many VRPs as there are
depots, because the MDVRP can be solved per region. On the other hand, when
customers may be served by several depots, see Figure 2.4b, the problem can not be
split up into several VRPs. In this case, customers may have a preferred depot, but
they may be served by other depots. One can, for example, include penalties in case
customers are not served by their preferred depot.

e Vehicles may visit several depots. Note that the customers still need to be served
by a specific depot, which makes it a different version from the first item. Figure
2.4c¢ shows an example of this. Vehicles may start their routes at their home depot,
transport goods to the customers, visit another depot to load goods and transport
these goods to other customers. Finally, they return to their home depot.

e The number of vehicles that arrive at a depot must be the same as the number that
leave the depot. Note that in this case the vehicles may end up at a different depot
than where they started at, which makes it different from the second case. An example
is given in Figure 2.4d.

(a) An example of a MDVRP, with two depots
and three routes. Each depot has its own region
to serve, denoted by a rectangle or circle. So
the restriction of regions is on both depots and
vehicles.

(b) A MDVRP where customers may be served
by several depots. Hence, there are no restric-
tions on customers, depots and vehicles regard-
ing their service.

(C) In this MDVRP, depots have their own re-
gions, so their own customers, to serve. How-
ever, vehicles are allowed to load at other depots
than their home depot. Hence, the restriction of
regions is not on the vehicles, only on the depots.

(d) Another example of a MDVRP, where vehi-
cles may end their routes at another depot than
their home depot. The only condition is that the
number of vehicles leaving the depot is the same
as the number of vehicles that end their routes
at the depot.

Figure 2.4: Examples of MDVRP, all having different conditions and restrictions for both the

depot, the customers and the vehicles.

18 CHAPTER 2. VRP CLASSIFICATION

2.7 Time-Dependent Vehicle Routing Problem

In the original VRP the distance between two customers is used to compute the travel time.
For the Time-Dependent Vehicle Routing Problem (TVRP) the time of day is also taken into
account. For example, when a vehicle is driving to a location it will take more time during
rush hour than during night hours. Therefore, congestion needs to be taken into account,
which makes the problem more realistic. When working with congestion, predictions need
to be made. There are all sort of ways to include congestion. This could be done by simply
adding some extra time to the travel time during rush hour, or for example using more
complicated forecasting models and methods. Note that congestion does not only depend
on the time of day, but also on the locations and roads. Congestion on roads in small towns
has different behavior than congestion in main streets. Therefore, the road network can
have an influence on congestion as well.

2.8 Pickup and Delivery Problem

The Pickup and Delivery Problem (PDP) can be seen as a generalization of the VRPB,
where transports have even more possibilities. In the PDP transports are not only allowed
to go from or to a depot, but they also may be picked up from a customer and be delivered
at another customer (Sol & Savelsbergh, 1992). The planning of transports on routes will
be different than the planning in the VRP, because in the PDP vehicles may load goods at
customer locations, instead of only at the depot. Within the PDP, routes may have more
transports on average, because vehicles are now able to load after visiting a few customers.
In the PDP deliveries must be done before pickups. Note that this class of problems is not
the same as the next extension of the VRP (Nagy, Wassan, Speranza, & Archetti, 2015).

In the literature, VRP, VRPB and PDP are categorized in a different way as well. The
categories divide the nodes in the network into ‘many’-nodes and ‘one’-nodes, where ‘many’
represent the customers and ‘one’ refers to the depots. These categories for the problems
are many-to-many (PDP), one-to-one (from depot to depot), many-to-one (collection) and
one-to-many (distribution) problems.

2.9 Vehicle Routing Problem with Deliveries and Pick-
ups

In the Vehicle Routing Problem with Deliveries and Pickups (VRPDP) customers may
have transports to be delivered and to be picked up (Nagy et al., 2015). In this VRPDP a
customer can either be a pickup or delivery customer, or both. Note that for the VRPDP
it is not allowed to have goods being transported between customers directly, therefore it
is not a PDP. What makes this VRPDP special, and different from the VRPB, is that
customers may be visited twice when they have both a pickup and delivery transport. The
VRPDP has a few sub classes, which are visualized in Figure 2.5.

e In case all customers are either pickup or delivery customers, they fall into the class
of distribution or collection, and not both. Therefore, this version of the VRPDP
becomes a VRPB.

e When a customer has both a pickup and delivery demand and only one stop is allowed,
the VRPDP is called a Vehicle Routing Problem with Simultaneous Deliveries and
Pickups (VRPSDP). An example is given in Figure 2.5a. In case the pickup demand
is much larger than the delivery demand, this problem may become a very hard
planning problem. In this way it will be hard to plan transports on routes, because
of the vehicle capacity. There is only one stop allowed per customer, so the planning
needs to take into account the volume of the pickup transport, in order to be able to
visit the customer for the delivery goods.

2.10. VEHICLE ROUTING PROBLEM ORTEC 19

e For the Vehicle Routing Problem with Divisible Deliveries and Pickups (VRPDDP), a
customer with both a pickup and delivery transport may be visited twice, visualized
in Figure 2.5b. Note that in case a customer only has a pickup (or delivery) transport,
it is not allowed to visit this customer twice.

o The last class is the Vehicle Routing Problem with Mized Deliveries and Pickups
(VRPMDP), where pickups and deliveries may be done in any order on a route.
Therefore, it is not necessary to deliver all transports before pickups are done, in
contrast to most other problems that are described in this thesis. An example is
given in Figure 2.5c.

)
AN

J
AN

(a) An example of a VRPSDP, where two cus- (b) This figure gives an example of a VRPDDP.
tomers in the network are both pickup and deliv- In this problem, it is allowed to visit a customer
ery customers. This is denoted with a blue and twice, provided that it is both a pickup and de-
orange circle. These customers are only allowed liver location. All goods need to be delivered
to be visited once, and all deliveries have to be before any goods can be picked up.

done before the first pickup is possible.

(c) In the VRPMDP, it is allowed to visit a
pickup location before all deliveries are done in
a route.

Figure 2.5: Three examples of different VRPDPs: VRPSDP (a), VRPDDP (b) and VRPMDP
(©).

2.10 Vehicle Routing Problem ORTEC

In the previous sections many variants of the VRP are discussed. Most of them are relevant
for the problem that is tested in this thesis. Multiple instances are used for testing, so we
will not go into detail about specific restrictions or capabilities. However, all instances do
have the following in common.

e All vehicles have limited capacity for all the instances that are used during the ex-
periments. The number of vehicles that may be used is limited as well.

20 CHAPTER 2. VRP CLASSIFICATION

e There are different restrictions on the vehicles, which results in a heterogeneous fleet.
The vehicles have different capacity limitations and different capabilities. For exam-
ple, there are vehicles with and without tailboard, some vehicles may only be used
for specific goods, they have different capacities and they are able to cool or not. The
vehicle capabilities and restrictions are customer and case specific, hence we will not
go into detail.

e The locations in the network all have time windows in which vehicles may arrive,
related to opening hours, but also the transports have specific time windows in which
they must be picked up and delivered. In order to plan a transport on a route, it
is necessary that the opening hours for the customer locations, hence the customer
time windows, overlap with the delivery time window specified for the transport. The
time window restrictions on the customer locations are hard time windows, vehicles
must enter the locations one minute before the end of the time window. The time
window restrictions are also hard for the transports that need to be delivered. In
some cases appointments need to be made at the customer location, to reserve a dock
for unloading. These appointments cause tight time windows on the transports.

e All instances that are used for testing have one depot.

e The transports that need to be planned on routes all need to be picked up at a depot
and delivered at a customer location in the network. Therefore, all instances belong
to the distribution class, no collection at the customers takes place.

e The customers of ORTEC that use the planning software take into account congestion.
Hence, for the software that the customers of ORTEC use, congestion is configured.
However, because we test on a computer from ORTEC, not at the actual computer
that is located at the customer of ORTEC, congestion is not taken into account.
Therefore, our experiments exclude congestion.

The combination of all restrictions result for us in the so called Vehicle Routing Problem
ORTEC (VRPO), which is a complex and close to realistic problem. We refer to it as ‘close
to realistic’, because not all complications from real-world planning are taken into account.
For example, congestion is not included, so we do not have a time-dependent problem.

Chapter 3

Mathematical Model

In the previous chapter an overview was given of some of the variants of the VRP. To be
able to solve these variants of the VRP, mathematical models need to be formulated. This
can be done in many ways. However, when working with rich VRPs that have real-life
restrictions and characteristics, it is very hard to formulate a mathematical model.

This chapter starts with an introduction on linear and nonlinear programming problems
in Section 3.1. To include some information on restrictions of the model, and the difficul-
ties of them for a rich VRP, and the usage of upper and lower bounds when a model is
constructed, a short overview is given in Section 3.2. We also motivate our choice for not
including a model as well. Nevertheless, we do use an objective function. The way the
objective function is constructed for our VRPO is given in Section 3.3.

3.1 Models

A general form of a model for a programming problem, when the problem is to minimize,
is given by
minimize c¢Tx+dTy
(x,y)
subject to Ax + By % b,
xe€Z"y € RP,

where ¢ € 2", d € RP, A € Z™*", B € R™*P and b € R™ where m = max(n,p). In
case the model only consist of linear functions, the model is called a linear programming
problem, LP. In case the functions are general, not all linear, the problem is called a non-
linear programming problem. The function that includes ¢ and d is called the objective
function, which needs to be minimized with respect to the vectors x and y that consist
of decision variables. For the LP, all feasible solutions lay within the polyhedron that is
defined with the use of the linear inequalities. In case all decision variables are contained in
Z, and all functions are linear, the problem is called an Integer Linear Problem, ILP. Also
a combination of continuous and integer variables is possible, which is given as the general
form above, the problem is a Mized Integer Linear Problem, MILP. All parameters in A,
B, ¢ and d may vary per problem that is looked into.

3.2 Restrictions and Upper and Lower Bounds

There are many models known in the literature that are used to solve all the variants of the
VRP that are described in Chapter 2. For real-world cases, many constraints of all sorts of
variants of the VRP need to be combined. There will be many constraints that influence
each other, and hence it will be hard to combine all constraints in a model. Therefore, it
is possible to relax the restrictions if necessary. However, if such a model is constructed, it
might be hard to solve, even with software that is known for their good performance. In

21

22 CHAPTER 3. MATHEMATICAL MODEL

this case, one can relax the whole model. For example, when a problem is modeled as an
ILP, the restriction of having only integers can be relaxed. Then, the model becomes a LP.
Solving this model will provide an optimal solution xz,p, for which holds

f(xcp) < f(Xrp)-

because the LP is a relaxation of the ILP and we consider a minimization problem. More-
over, any feasible solution x for the minimization problem can be used as an upper bound.
Hence, this would conclude in

f(xrp) < f(xiLp) < f(x).

However, with many relaxations, one can question the profitability of having these bounds.
We can speculate that the gap between the upper and lower bound will be very large.
Therefore, one would have to provide an indication of quality of the bounds, especially the
lower bound as we are talking about minimization problems.

Constructing a model for real-world VRPs requires a lot of effort and could be a study
on its own. Furthermore, we do not need a mathematical model of the VRPO to be able to
use the software of ORTEC that will be used in our research. The goal of constructing such
a model is to find feasible solutions that lay within a polyhedron. However, the focus of
this research is rather on local search and different neighborhoods, that both do not require
a model. Therefore, we do not put effort in constructing a model, because we will not use
it in our research. Nevertheless, we do work with an objective function that has a special
hierarchy, which will be described in the next section.

3.3 Objective Function

There are many ways to formulate the objective function of a VRP, for example one single
objective can be minimized or multiple objectives can be combined in one function with
weights. This can be done in a linear or non-linear fashion.

For ORTEC, the objective function works with different layers. Multiple objectives
are used within the objective function, they are specified with an order of importance.
Maximizing the number of planned transports is a common choice for the main objective.
For example, usually the plan costs increase in case the number of planned transports
increases. Therefore, when the total plan costs is taken as main objective, the software will
not plan any transports, as the plan costs remain close to zero. Maximizing the number of
planned transports is seen as a setting that can be configured. From now on, we can refer
to our problem as a minimization problem. For our problem, the following objectives are
taken into account during the optimization process:

1. Plan costs. The total plan costs, in euros, are minimized and usually contain the
following three components:

e costs per used route,
e costs per hour that the route lasts,

e costs per kilometer that is driven in the route.

The plan costs are summed up over all routes and represent the total costs in the
network. FEach route, depending on the vehicle that is used, may have its own cost
set.

2. Hours. The hours are the sum of the time between the start and end time of the
routes, minus the wait time before the end of the routes. These hours are minimized
in the optimization process. The start time of a route is defined as the moment of
coupling a trailer to a truck and the end time of a route is the moment of decoupling.
It may happen that a wait time is included before the trailer is decoupled from the
truck, for example when the depot is closed. However, in practice, the decoupling

3.3. OBJECTIVE FUNCTION 23

will still take place before the opening of the depot. Therefore, possible wait times
before decoupling are excluded from the objective ‘hours’. Some of the actions that
are included are

e driving time,

e breaks, according to the drivers legislation,
e load and unload time of the vehicle,

e wait time,

e handling time.

Note that the hours are included in the plan costs as well. However, in plan costs
they are included with weights according to the costs that are configured.

3. Number of used trips. The total number of routes that are used is minimized.

4. Driving time. The actual time the vehicle is moving, in seconds, is minimized. Note
that the driving time is related to the distance and is therefore implicitly included in
the plan costs.

These multiple objectives have, as already said before, an order of importance. For example,
when two solutions are compared, they are first compared based on the number of planned
transports in the solution. When this number is not equal, the solution with the most
planned transports is chosen as starting point for the next iteration. In case the solutions
have the same amount of planned transports, the second objective is considered, in this
case the total plan costs. Again, the solutions are compared. In case the total plan costs
are not the same, the solution with the least plan costs is chosen as starting point for the
next iterations. In case they are not equal, the third objective is considered. This process
continues as long as the solutions remain equal for the objectives. In case all objectives are
the same, the best solution found in the previous iterations will be the starting point for
the next iteration.

Note that the order of objectives has a great influence on the performance of the opti-
mization process. The order can be determined in several ways. The customer, for whom
the planning is made, may have a strong preference. For example, in case the costs per
vehicle are very high, they need to minimize the number of used trips. Therefore, this
objective should be high in the ordering of objectives. On the other hand, when testing the
configurations, one may notice that there are many long wait times at customer locations
in the planning. In this case, it might be helpful to move the objective ‘total hours’ up in
the ordering.

For the experiments in this thesis, the order of the objectives remains fixed, as they
are stated above. They are based on the objectives of one of two customers that are used
during our tests. In future research, one might vary the order of the objectives as well.

24

CHAPTER 3. MATHEMATICAL MODEL

Chapter 4
Minima-escaping Heuristics

The VRP can be very challenging to solve, especially when many attributes are included,
such as multiple depots or heterogeneous fleet. Usually, the algorithms that are used consist
of two phases:

e a construction phase, to find an initial feasible solution,

e and an improvement phase, to improve the solution quality of the initial feasible
solution with respect to the objective in the model.

This chapter will mainly focus on the second part, the improvement phase. Most of the
algorithms that are described require an initial feasible solution as input.

As already explained in Chapter 1, heuristics are needed for problems that are hard to
solve. In case a heuristic is used, it is not guaranteed that the optimal solution will be found.
To make sure that the heuristic that is used provides a near-optimal solution, the parameters
of the heuristic need to be tuned for the instance that is solved. Because it can take a lot
of time to search through the solution space, metaheuristics are introduced, that combine
heuristics to efficiently search through the solution space. With metaheuristics, only a few
solutions are explored, from which structural information is gathered, to efficiently search
for near-optimal solutions. Therefore, metaheuristics aim to have a low computation time,
but find near-optimal solutions. They are known for their guidance in the search process
and are most of the time not problem- and case-specific (Blum & Roli, 2003). Because
metaheuristic are most of the time not problem-specific, less parameter and variable tuning
has to take place, compared to simple heuristics. Furthermore, in the metaheuristics there
has to be a balance between diversification and intensification. Diversification implies
exploring parts of the solution space that are unknown or not yet visited. On the other
hand, intensification implies searching for solutions near good solutions that are already
found in the previous steps of the search. Algorithms that combine the two make sure that
many parts of the solution space are explored in detail (Glover & Laguna, 1997). For more
information on intensification and diversification, we refer to Blum and Roli (2003), because
they give a clear overview which summarizes multiple articles that include intensification
and diversification.

Before the metaheuristics that are relevant for this research are described, we will dis-
cuss three local search methods in Section 4.1 that operate on small neighborhoods. The
metaheuristics that operate on larger neighborhoods, and that are relevant for this thesis,
will be discussed in Section 4.2. This section helps to understand the relation of the idea
behind heuristics that make use of ruining and recreating a solution with the idea behind
other metaheuristics, and is based on Chapter 4 of Toth and Vigo (2014). Next, in Section
4.3, a hybridization method is explored that combines several (meta)heuristics to create
an algorithm that benefits from all the advantages of these (meta)heuristics. So far, the
sections describe the metaheuristics purely theoretical and in general. Section 4.4 provides
problem specific details about the most relevant metaheuristics that are used in this thesis.
This section is used to provide insight into how to use and configure these metaheuristics

25

26 CHAPTER 4. MINIMA-ESCAPING HEURISTICS

for the VRP. Section 4.4 concludes with the heuristic that is used for the experiments that
are reported on in this thesis.

4.1 Local Search

There are several local search methods known that are used to improve a solution for a
VRP. We will refer to these methods as local search steps or simple local search, as the
methods that we use only involve small neighborhoods. We will describe three of these
local search methods, to be able to use them in our research.

2-Opt

The first method we will describe is an edge exchange method, called 2-Opt. With this
method, two edges are deleted from the solution, which results in a broken route or tour.
There is a unique way of reinserting the edges in a new place, such that a whole route or
tour is constructed again (Cook et al., 1998). Usually, improvements are found in case a
route crosses its own path.

CROSS-exchange

Another edge exchange method is CROSS-exchange. With this improvement method, two
times two crossing edges are exchanged. Usually, improvements are found when two routes
cross paths twice. This can be seen as executing 2-Opt twice, between two routes that cross
paths.

Move

The last local search method that is defined is move, or sometimes called relocate. This
method tries to find improvements by moving a group of tasks to another location in the
solution. Note that the tasks that can be moved in our VRPO are delivery tasks, as all
pickup tasks are located at the same depot. Hence, moving a delivery task to a different
location implies moving a transport.

4.2 Metaheuristics: Local Search Class

The metaheuristics that are studied in this thesis are from the class of local search methods.
The heuristics that belong to this class walk through the solution space by moving from
a solution to a solution in its neighborhood (Toth & Vigo, 2014). They vary by, for ex-
ample, having different definitions for the neighborhoods or when to accept new solutions.
The reasoning for having these metaheuristics of the local search class, is to escape local
optima and to avoid finding the same solutions over and over again (Toth & Vigo, 2014).
Another class of metaheuristics is the class of population-based algorithms. Because the
metaheuristics that are described in this thesis all belong to the local search class, we refer
to the book by Toth and Vigo (2014) for more information about the population-based al-
gorithms. Next, we give an overview of the most important meatheuristics, for this thesis,
that belong to the local search class. Note that we assume that the problem considered is
a minimization problem.

4.2.1 Simulated Annealing

Simulated annealing was first used by Kirkpatrick, Gelatt, and Vecchi (1983). Normally,
local search methods only allow moves towards the optimal solution. Hence, only solutions
with an improved objective value are accepted during the search. However, with simulated
annealing, also solutions are accepted that move away from the optimal solution. The idea
behind this method, is to get out of a local optimum and to search for the global optimum.

4.2. METAHEURISTICS: LOCAL SEARCH CLASS 27

\/f\

local minimum

A
costs

global minimum

>

>
solutionspace

Figure 4.1: A figure to illustrate the principle of escaping a local minimum in the search for
a global minimum. Normally, with local search only downward moves are accepted, in case a
minimization problem is considered. However, with Simulated Annealing, upward moves are also

accepted.

During the search, several solutions are found. We define a solution s; as the solution found
in the i*? iteration. Consider the solution s;,; that is found in the next iteration. In case
f(six1) < f(s;), where f is used as a notation for the objective function, s;y; will be the
starting point for the next iteration. Note that the problem considered is a minimization
problem. The other way around, in case f(s;1+1) > f(si), si+1 will be accepted as starting
point for the next iteration with probability

o (L) 2500, w

Note that f(s;11) — f(s;) is always bigger than zero in this case and thus the probability
of accepting a solution is always smaller than one. In (4.1), ¢ is a parameter, often called
‘temperature’, that decreases over time with a cooling parameter ¢. Most of the time
tir1 = t; - ¢ for the ™. Usually, this c is a fixed number within (0,1) and ¢, denotes the
initial temperature. Both parameters, ¢ and ¢y, have to be tuned for the instance that is
looked into. After a predefined number of iterations, the temperature will decrease, and the
process continues with the next set of iterations. Therefore, simulated annealing is used as
a framework with two levels: the outer and inner one. In the outer level, the temperature
is varied with the cooling parameter ¢, and in the inner level a few iterations with this
temperature are executed (Castro Martings & Sales Guerra Tsuzuki, 2014). Considering
(4.1), one could notice that a small difference between f(s;+1) and f(s;) implies a high
probability of accepting s;11, in case t is fixed. Therefore, only small steps away from the
local minimum are accepted. For f(s;4+1) — f(s;) fixed, a high temperature ¢ implies a high
probability of accepting s;y1 as a starting point for the next iteration. Therefore, at the
beginning of the search it is more likely to accept solutions that move away from the local
minimum. Simulated annealing can be seen as a metaheuristic that combines local search
with diversification, where the diversification is introduced with a probability for accepting
solutions that move away from local minima. For more information on simulated annealing
and applications of this method, we refer to Castro Martings and Sales Guerra Tsuzuki
(2014).

4.2.2 Tabu Search

Another metaheuristic that is in the class of local search methods, is tabu search. Within
this metaheuristic, local search is executed and solutions found during the search are stored
to avoid finding the same solutions over and over again. For a solution s;, the search for
a next solution s;1; will be in the neighborhood of s;. However, not all solutions in the
neighborhood are considered as candidates for s;;1, some of the solutions are on a tabu

28 CHAPTER 4. MINIMA-ESCAPING HEURISTICS

list. Candidate-solutions s;11 that have certain attributes are on this tabu list. This list
may be altered during the search, by taking an attribute that is forbidden off this list after
a certain criterium is met for this attribute. For example, in case a solution is accepted
as best solution so far with an attribute that is similar or related to a tabu attribute. An
example of such a tabu attribute can be high costs on arcs in the network. These arcs are
not likely to be part of the optimal solution. Therefore, all candidate-solutions s;,; that
are in the neighborhood of s; that contain such an arc with high costs, are not considered
(Toth & Vigo, 2003). Tabu search may be seen as a framework for influencing the direction
of the search for other solutions, just as simulated annealing.

4.2.3 TIterated Local Search

Whereas simulated annealing can be used as a local search framework for accepting solu-
tions that are found with any local search procedure, iterated local search is a local search
framework for accepting solutions that are found with any local search procedure after
perturbing the previously found solution (Toth & Vigo, 2014). Starting with an initial
solution, local search is applied till a stopping criterion is met, after which this solution is
perturbed. With this stopping criterion comes an acceptance criterion of the new found so-
lution. With this perturbation, a new starting point for local search is generated, provided
that the perturbation is strong enough. Local search is used to intensify the search and the
perturbation steps are executed to diversify the search.

The perturbation steps are very important: a strong perturbation will indicate an almost
random restart for the algorithm, whereas a weak perturbation will be undone by the local
search that follows. In the latter case, the perturbation step loses its effectiveness. The
choice between strong perturbation and soft perturbation can be seen as strong and soft
diversification in the search for the optimal solution.

4.2.4 Variable Neighborhood Search

A metaheuristic that is similar to iterated local search, is Variable Neighborhood Search
(VNS). To escape local minima, it follows the same idea of perturbing the neighborhood.
However, this perturbation step may be different for each iteration. For VNS the neighbor-
hoods that are considered are of increasing complexity and size (Toth & Vigo, 2014) and
form a family of neighborhoods (Pisinger & Ropke, 2007). The process starts with a feasi-
ble initial solution. A solution in the small neighborhood of this initial solution is chosen
at random. Local search is applied till some stopping criterion is met and it is assumed
that a local minimum is found. In case this local minimum is better than the best solution
found so far, this local minimum is used as a starting point for the next iterations with the
same neighborhood. In case the local minimum is not better than the best solution found
so far, the process goes back to the previously found solution. However, a larger neighbor-
hood is chosen until a better local minimum is found (Hansen & Mladenovic, 2001). For
VNS intensification and diversification is used in two ways: applying local search followed
by moving to a different neighborhood and by selecting different kinds of neighborhoods
during the search in a predefined order.

4.2.5 Large Neighborhood Search

Another metaheuristic that perturbes the solutions that are found during the search is
proposed by Shaw in 1997, called Large Neighborhood Search (LNS) (Shaw, 1997). This
method is based on relaxation and re-optimization of solutions, which implicitly defines the
neighborhood of this search. The search starts with a feasible initial solution. A part of
this solution is relaxed, hence a part is deleted, after which a feasible solution is constructed
again, to re-optimize the solution. This process continues, without using local search to
intensify the search, which is the main difference between the previous metaheuristics and
LNS. However, Shaw mentions in this paper that any search procedure can be used as
reinsertion method, including local search.

4.3. HYBRIDIZATION METHODS 29

In some way, LNS is related to VNS. In case reinserting the relaxed part of the solution
does not provide a new feasible solution within a predefined computing time, LNS continues
with a smaller neighborhood for relaxing during the next iteration. In case new solutions
are found for a predefined number of iterations in a row, and the quality of these solutions
is better than the best solution found so far, a larger neighborhood is used for the next
iterations. With this procedure, intensification and diversification is included. Note that
the method of relaxing the solution remains the same during the search, but the size of
the neighborhood is decreased and increased. Therefore, different neighborhoods are used
during the search, different regarding the size of the neighborhoods.

4.2.6 Ruin and Recreate

A local search method that is very similar to LNS proposed by Shaw (1997), is called Ruin
and Recreate (R&R), proposed by Schrimpf et al. (2000). The idea of this method is the
same as for LNS: a part of an initial or current solution is ruined, or relaxed as it is called
in LNS, and the partial solution is recreated, or re-optimized. The goal of Schrimpf et al.
(2000) is to use large neighborhoods to walk easily through the landscape of solutions in
search of a global minimum.

There are two main differences between R&R and LNS:

e the methods to ruin, or relax, and recreate, or re-optimize, the solution in each iter-
ation,

e when to accept a new found solution as starting point for the next iterations.

The first item implies that the neighborhoods that are searched through are different for
both methods. The second item provides information about the framework that is used.
R&R is also tested by Schrimpf et al. (2000) when all new found solutions are accepted
during the search. This can be seen as a framework that is similar to simulated annealing,
as solutions that have an objective function value that is worse than the current solution
are also accepted.

4.3 Hybridization Methods

Even more advanced methods are known that find near-optimal solutions for complex prob-
lems: hybrid methods. A hybrid method combines several (meta)heuristics to create an
algorithm that benefits from all the advantages of these (meta)heuristics. There are several
ways to combine (meta)heuristics, for example by replacing a part of one (meta)heuristic by
another (meta)heuristic. Another way to hybridize (meta)heuristics, is to use the output
of one (meta)heuristic as the input for another (meta)heuristic. For more details about
different hybrid methods, we refer to Toth and Vigo (2014) and Talbi (2013). The hybrid
methods that are used in this thesis work with large neighborhoods. They are hybridizations
of (meta)heuristics, mainly because structurally different neighborhoods are used during the
search for near-optimal solution. This concept of hybridization relies on the idea behind the
use of VNS, where the search alternates between neighborhoods to improve solutions. The
difference between the hybrid method and VNS, is that the neighborhoods of VNS often
increase (or decrease) in complexity, whereas the neighborhoods in the hybrid method are
structurally different. This is explained in more detail in the next section. Each neighbor-
hood would have a different distribution of final solutions, and therefore we talk about a
hybridization. There is one hybrid metaheuristic that is frequently used and referred to in
this thesis, called Adaptive Large Neighborhood Search. This method will be adapted and
used for testing on the real-life data from ORTEC.

4.3.1 Adaptive Large Neighborhood Search

After both the papers of Shaw (1997) and Schrimpf et al. (2000) appeared in 1997 and 2000
respectively, Ropke and Pisinger made adaptions to the method proposed by Shaw. In

30 CHAPTER 4. MINIMA-ESCAPING HEURISTICS

their method, called Adaptive Large Neighborhood Search (ALNS), they use several removal
and insertion heuristics during the same search (Ropke & Pisinger, 2006a). This is the
main difference compared to LNS and R&R, where only one single removal and insertion
method are chosen during a search. Therefore, ALNS can be seen as a hybrid method.
Performance differences between LNS and ALNS are only noticeable when large instances
are investigated, and in that case ALNS performs better than LNS (Ropke & Pisinger,
2006a). The strength of ALNS is that it is able to adapt to different problems and instances,
because of a possible learning layer. This layer is used to choose a removal and insertion
method, based on their effectiveness during previous iterations. Heuristics that have a
good performance will get a higher probability to get chosen in next iterations. In case
a new solution is accepted or after a certain amount of iterations, the performance of
the removal method is measured and updated. This method is known as roulette wheel
selection. With the use of the roulette wheel selection, the neighborhoods that are explored
are structurally different, as different removal and recreate methods are used. Whereas for
VNS the neighborhoods are usually embedded, with ALNS they are structurally different.
This is illustrated in Figure 4.2 (Pisinger & Ropke, 2007).

Because the performance of algorithms can be very problem specific, this learning layer
will make the algorithm more robust. This is due to the fact that several removal and
insertion heuristics can be used during one search, and the algorithm is adapting to the
problem that is looked into. More information and details on the removal and insertion
methods, is provided in Chapter 6. Ropke and Pisinger also found that a combination of
heuristics with a good performance and a less good performance works better than only
using heuristics with a good performance. This is probably due to the possibility to get
out of a local minimum when accepting a solution that is worse than the currently found

solution. When removing a part of this worse solution and rebuilding it, there is a possibility
to come close to annther mavhe hetter lacal minimnm

Figure 4.2: On the left the structure of neighborhoods is given for VNS, on the right for ALNS.
For VNS, the neighborhoods are usually embedded and one structure is used. For ALNS the
neighborhoods are structurally different defined by the corresponding search heuristics (Pisinger
& Ropke, 2007).

4.4 Problem Specific: Local Search Metaheuristics for
VRPs

Prior to this section, the local search metaheuristics are described in general, which allowed
us to find the similarities and differences between the methods. However, they can be used
for different optimization problems, for which the configurations may look different. There-
fore, this section is included to explain how to utilize three of the local search metaheuristics
that are most relevant for this thesis: LNS, R&R and ALNS. For each of these metaheuris-
tics a pseudocode is given to illustrate the differences in more detail for the VRP. Recall
that LNS, R&R and ALNS have in common that the solution is relaxed and re-optimized

4.4. PROBLEM SPECIFIC: LOCAL SEARCH METAHEURISTICS FOR VRPS 31

during each iteration. In terms of a VRP, this indicates that transports that are planned
in the solution are removed from the solution to be reinserted in a different place. In case
a customer is removed from the solution, this indicates that all transports that need to be
delivered at the customer location are removed from the solution.

4.4.1 Large Neighborhood Search

The first local search metaheuristic that we discuss in detail is LNS by Shaw (1997). An
initial solution is constructed and it is relaxed by choosing a set of customers and remove
them from the solution. This can be seen as a perturbation step to diversify the search. The
removed customers are reinserted in the solution such that the costs are less than the costs
of the initial solution. Which customers have to be removed from the solution is decided
with a so-called relatedness function. First a random customer is selected to be removed
from the solution, next a predefined number of customers that are most related to the first
customer are removed.

For more details is referred to Shaw (1997), and this relatedness function will be de-
scribed in more detail in Section 6.2. The method that is used to reinsert the removed
customers is branch and bound. We will not go into detail about this reinsertion method,
as we will not include it in our experiments. For more information we refer to Shaw (1997).
Shaw (1997) proposed the LNS as an alternative for the use of local search, to escape local
minima. The LNS is able to operate on large neighborhoods and Shaw (1997) states that
the technique is completely general, because the relatedness function can be adapted to
specific vehicle routing problems.

The pseudocode for LNS is given in Algorithm 1. After initializing the variables, a while
loop is started that runs for a predefined amount of time. A transport is chosen at random
and stored in the set of transports that will be removed, in line 3 and 4 respectively.
Another while loop is included that runs till the number of transports that need to be
removed is reached, line 5. The transports are chosen in the following way: a transport
is randomly chosen from the set of transports that will be removed, called v (line 6,) and
all other transports (not included in the set of transports that will be removed) are ranked
according to their relatedness to this transport v (line 7). To include some randomness, a
transport is added to the set of removals that is in a certain place in the ranking, influenced
by a randomness parameter p and a randomly chosen number r (line 8-10). In case p = 1
the relatedness is ignored and with high values for p the relatedness is incorporated in
the algorithm. With these » and p the LNS contains some diversification. When the
transports are removed and reinserted with branch-and-bound (line 12), the acceptance
criteria influences whether the new found solution will be the starting point of the next
iterations or not.

4.4.2 Ruin and Recreate

In 2000 an article by Schrimpf et al. (2000) appeared with a method that can handle complex
VRPs: R&R. Recall that LNS is comparable with R&R and that the main differences are
in the methods that are used for removing and reinserting transports. Whereas LNS uses
a relatedness function for removing transports, Schrimpf et al. (2000) propose three ruin
methods:

e selecting one customer at random and remove a predefined number of neighbor cus-
tomers,
e remove a predefined number of randomly selected customers,
e remove a predefined number of customers from a route that is selected at random.
Because the authors want to present the idea behind their R&R method, they use a simple
insertion method called cheapest insertion, which is explained in more detail in Section 6.1.

Another difference between LNS and R&R is when to accept a new found solution. Shaw
(1997) accepts new solutions only when they have lower costs than the previously found

32 CHAPTER 4. MINIMA-ESCAPING HEURISTICS

Algorithm 1: Large Neighborhood Search (VRP specific)

Input: An initial solution sg. T are all transports in the network, T, is the set of
transports that are removed, p controls the randomness in the algorithm.

Output: The solution s* with the best value for the objective function.

begin
s* +— g
Z <— So
T, +— 0
while Computing time does not reach its mazimum do
§:=z
randomly choose vg € T
T, = {vo}
while || < some number do
randomly choose v € T,
rank all T\ T, with respect to their relatedness to v
randomly choose r € [0, 1)
select transport w that is 7P of the way through the ranking
T, =T, Uw
end while
11 remove all transports in 7). from s
12 reinsert all unplanned transports in s with branch-and-bound
13 if f(s) < f(s*) then
14 s =35
15 z: =35
end if
end while

end

© 00 N O AW N =

fury
o

solution, whereas Schrimpf et al. (2000) also test their R&R method when all new found
solutions are accepted.

To see the difference with LNS, the pseudocode is included in Algorithm 2. As already
explained, the removal method is different than with LNS and the acceptance criterion
as well. Also, the stopping criterion is for R&R set to a maximum number of iterations,
whereas in LNS the algorithms stops after a predefined running time. In this Algorithm 2,
the first ruin method that is described above is included. For the other two methods, the
difference in pseudocode will be in line 5-7. With R&R a neighborhood N,, for transport v
need to specified and will be explored.

4.4.3 Adaptive Large Neighborhood Search

The previous two methaheuristics only include one removal and one reinsertion method for
the transports. However, in ALNS it is possible to choose a different removal and reinsertion
method in each iteration of the search with a roulette wheel. The different methods will be
described in detail in Chapter 6.

A pseudocode for ALNS is given in Algorithm 3. The main difference with LNS and
R&R is that the roulette wheel is included to keep scores for the removal and insertion
methods. First, a removal and insertion method are chosen (line 3) and the transports are
removed according to the removal method (line 4-7). Afterwards, the removed transports
are reinserted again according to the chosen method (line 8). The new found solution
is accepted or not, according to the acceptance criterion, and the scores for the roulette
wheel are updated. Note that the updating of the scores w in line 12 does not only include
updating the scores according to the performance of the removal and insertion methods.
After 100 iterations of removing and recreating the solutions, the scores are set to zero.

4.4. PROBLEM SPECIFIC: LOCAL SEARCH METAHEURISTICS FOR VRPS 33

Algorithm 2: Ruin and Recreate (VRP specific)

Input: An initial solution sg. T are all transports in the network, T, is the set of
transports that are removed, N, is the neighborhood of v € T.

Output: The solution s* with the best value for the objective function.

begin
s* +— g
Z <— So
T, +— 0
1 while The mazimum number of iterations is not reached do
2 §:=z
3 randomly choose vg € T
4 Tr = {’Uo}
5 while || < some number do
6 randomly choose v € N,
7 T, =1T,Uv
end while
8 remove all transports in 7). from s
9 reinsert all unplanned transports in s with cheapest insertion
10 if The acceptance criterion is met then
11 st =35
12 z:=35
end if
end while

end

This is needed to keep diversifying and intensifying the search. In case the scores are not
set to zero after a predefined number of iterations, the methods that perform very well
are chosen with an increasing probability. Further in the search, this means that the same
methods will be chosen over and over again. This may cause the hybrid method to get
stuck at a local minimum. This can be avoided by setting the scores to zero after a specific
number of iterations.

4.4.4 ORTEC Adaptive Large Neighborhood Search

The hybrid method that is used in our experiments is inspired by LNS, R&R and ALNS.
It can be seen as ALNS with some adjustments. Some parts will be left out of the hybrid
method and some new components will be added.

First of all, we will look at differences in the configuration between the ALNS of Ropke
and Pisinger and the one that is configured at ORTEC, before a pseudocode is given. To
clarify these differences, we will refer to this pseudocode during the explanation of the
differences.

e The first difference is about the objective function. In Ropke and Pisinger (2006b) the
objective function contains equal weights for distance and work time of the vehicles.
As already explained before, the objective function for ORTEC has an ordering in
the objectives.

e Another difference that we will discuss concerns the scores of the removal and recre-
ate methods. With the original ALNS the scores are updated separately for both the
removal and recreate methods. Within the software of ORTEC the scores are up-
dated according to a so-called ‘method’, which includes both a removal and a recreate
method. The performance is measured according to the quality of the new found
solution that is constructed with a recreate method after a removal method is used.
Either the solution has a better objective value than the currently best found solu-

34

CHAPTER 4. MINIMA-ESCAPING HEURISTICS

Algorithm 3: Adaptive Large Neighborhood Search (VRP specific)

N OOk W N R

®

10
11
12

13

Input: An initial solution sg. T are all transports in the network, T, is the set of

transports that are removed, w contains the weights for both choosing
removal and insertion methods, ¢,, is the number of transports that is

removed, [a,b] is an interval of possible numbers of transports that are
removed.

Output: The solution s* with the best value for the objective function.

begin

s* «+— 50
Z4<— So
T.+—— 0
while The mazimum number of iterations is not reached do
5=z
choose a random number nt from [a, b]
choose a removal and insertion method according to scores w
while |T,| < t,, do
remove transports according to the removal method
update T,
end while
remove all transports in 7). from s
reinsert all unplanned transports in s with the chosen insertion method
if The acceptance criterion is met then
s =35
z: =35
end if
update the scores w

end while

end

tion, which influences the score in a positive way, or the objective value is worse,
which decreases the score. Therefore, in case three removal methods and three recre-
ate methods are used, there are nine methods that obtain a score. Hence, instead of
two roulette wheels for both the removal and recreate method, we incorporate one
roulette wheel with all combinations of removal and recreate methods. Note that the
difference in Algorithm 4 are only in the definition of the scores w, which are updated
in line 19.

A consequence of the previous point will be that our roulette wheel needs more iter-
ations to ‘learn’, because more methods are included. Hence, the maximum number
of iterations in line 3 of Algorithm 4 will be higher.

Most of the removal and recreate methods are configured in a different way. For ex-
ample, Ropke and Pisinger (2006b) include more randomness in the removal methods
than is used in the software of ORTEC. Furthermore, insertion is done based on the
objective function for Ropke and Pisinger, whereas within the software of ORTEC it
is possible to specify the objective for each insertion method separately. More details
about the differences in removal and recreate methods will be described in Chapter
6.

The number of transports that are removed and reinserted during the search are
different. Pisinger and Ropke (2007) use an interval from which in each iteration a
random number is chosen. This number will be the number of transports that are
removed. Within the software of ORTEC, one needs to specify upfront the number
of transports that are removed. This is done for each removal method separately.
Therefore, no randomness is included in the number of transports that are removed.

4.4. PROBLEM SPECIFIC: LOCAL SEARCH METAHEURISTICS FOR VRPS 35

Algorithm 4: ORTEC Adaptive Large Neighborhood Search

ok WwoN

o

10
11
12
13

14
15
16
17
18

19

Input: T are all transports in the network, 7). is the set of transports that are

removed, w contains the combined weights for removal and insertion
methods, ¢, is the number of transports that is removed, P contains a few
numbers of transports that can be removed, ¢ is a threshold.

Output: The solution s* with the best value for the objective function.

begin

T. +— 0
Construct an initial solution sg
s* +— sg
Z < So
for All numbers t,, € P do
while The mazimum number of iterations is not reached do
§i=z
choose a method, including a removal and a insertion method, according
to the combined scores w
while |T}| < ¢, do
remove transports according to the removal method
update T;.
end while
remove all transports in 7). from s
reinsert all unplanned transports in s with the chosen insertion method
if f(s) < f(s*) then
s* =135
z:i=5
end if
else if f(s) <t- f(s*) then
run improvement iterations with local search
if f(s) < f(s*) then
s*i=s
z: =5
end if
end if
update the scores w
end while
end for

end

In Algorithm 4 this is incorporated with a for loop that starts in line 2. For example,
each of the numbers in P = {30,45,60} represents a number of transports that needs
to be removed. The algorithm starts with 30 transports that are removed, and a
roulette wheel with a specific number of iterations is executed. When this maximum
number of iterations is reached, the algorithm continues with the next number of
transports that needs to be removed: 45 transports.

Also the acceptance criteria is different. A simulated annealing acceptance framework
is used by (Ropke & Pisinger, 2006b) where at the beginning of the search, besides
solutions with a better objective value, also solutions with a worse objective value are
accepted as a starting point for the next iterations. Within the software of ORTEC
we can only temporarily accept solutions with a worse objective value, with the use
of a threshold, which can be seen in Algorithm 4 line 11-18. For example, when this
threshold ¢ is set to 1.05 and the solution is at most 5% worse than the best solution
found so far after reinserting the removed transports, an improvement phase starts

36

CHAPTER 4. MINIMA-ESCAPING HEURISTICS

which takes this solution as starting point, see line 14-18. In case the solution is still
worse than the best found solution after the improvement phase, the solution is not
accepted. However, in case improvements are found and the solution has a better
objective value than the best solution found so far, the solution is accepted and used
as starting point for next iterations, line 16-18.

As explained in the previous point, an improvement phase can be included with the
help of a threshold in the software of ORTEC. For example, local search heuristic can
be executed for a few iterations to explore the neighborhood of worse solutions than
the best solution found so far. This helps to diversify and intensify the search. Local
search heuristics are an addition to the original ALNS from Ropke and Pisinger.

The last difference between the original ALNS and the one that is implemented at
ORTEC, is that we need to specify the construction for the initial solution as well,
see line 1 in Algorithm 4. The initial solution is not an input for our method, as is
the case for the original ALNS. Ropke and Pisinger (2006b) do note that they use a
regret insertion method for the construction of the initial solution, more about this is
included in Chapter 6. However, they do not incorporate the influence of the initial
solution on the performance of their ALNS. We will test this influence and therefore
the initial solution is not used as an input for our heuristic, but it is a component of
the heuristic.

To summarize, there are difference regarding the configuration of the objective function,
removal and recreate methods, the roulette wheel an the acceptance criteria. A consequence
is that we are not able to remove transports in the same way Rope and Pisinger do in their
ALNS. However, additions to the ALNS are the incorporation of the construction method
for the initial solution and local search methods to intensify the search after removing and
reinserting transports.

Chapter 5

Introduction ORTEC and their
Software

The research for this thesis is carried out at the company ORTEC, short for Operations
Research Technology. They provide optimization software and analytical solutions to all
sorts of companies. One of the software programs that ORTEC provides is called ORTEC
Routing and Dispatch (ORD), which is used for this research. Several customers use this
software, including retailers, shippers and logistic service providers. Two unique features
of ORD are real-time event management with alerts for violated planning restrictions and
the possibility for multiple planners to work at the same planning, at the same time. A
more detailed description of ORD and its features is given in the next paragraph, followed
by an overview of the structure for the configuration of the algorithms that are used.

5.1 Automated Planning Process

ORD has the functionality of a two step optimization process: route planning and resource
planning. For the automated process for route planning, a planner usually wants to select
a couple of routes and transports. In this way, the solver for this process finds the planning
that provides the lowest KPIs for the selected routes and transport. To plan automatically,
transports and routes are selected in their grids and the function for the automated process
is started by a click on the automated planning button in ORD. The solver has been
created by ORTEC and is called CVRS (COMTEC Vehicle Routing Service). The second
optimization step would be to assign resources, hence drivers, to these constructed routes.
Another solver is implemented at ORTEC to do so. However, the focus of this thesis is on
route planning only and therefore we will not provide more information about the resource
planning process.

5.1.1 Input for ORD

As already mentioned in the introduction of this chapter, it is possible in ORD to plan
transports manually on routes. This is done with a drag-and-drop functionality, where
transports are selected and dragged to the right route. The planner chooses in what order
each task is executed, for example in what way the transports are loaded in the vehicle. In
this thesis we will only focus on the automated planning process and we will not go into
detail about the manual planning process. However, to provide extra information on the
features and to get an idea of how planners use ORD, Appendix A is included.

To be able to plan transports on routes, manually or with the automated process, a
database including all information about the data set is needed. This includes addresses
of the depots and customers, the drivers and vehicles that can be used in the planning,
restrictions on the vehicles and drivers, opening hours and restrictions of the depots and

37

38 CHAPTER 5. INTRODUCTION ORTEC AND THEIR SOFTWARE

customer locations and a lot more. The automated planning process will take into account
the restrictions when searching for the best planning.

In what way the automated planning process is executed needs to be configured by
consultants of ORTEC. Along with settings that contain information about the restrictions
that are taken into account, such as congestion, a configuration of the algorithm that is
executed needs to be provided as input as well. This configuration of the algorithm is known
at ORTEC under many names, including a ‘script’” and ‘template’. In this thesis, we will
refer to it as a ‘configuration’, which implies that it contains information on the algorithm
that is executed. However, this should not be confused with the actual configuration of
all the heuristics and functions that are implemented at ORTEC. To clarify this, the next
section is included.

5.1.2 Congifurations for ORD

What heuristics need to be executed and in what way, configurations are used as an input
for ORD. In these configurations the objectives of the model are defined, followed by all
the different algorithms that need to be executed and the corresponding settings of these
algorithms. The configurations are XML files that follow a specific structure using different
templates that consist of several algorithms. In the configuration, there are no algorithms
described, they are only executed. One can see this as functions that are executed, with
parameters and variables as input.

As already mentioned, the configuration that runs to construct the planning automat-
ically follows a specific structure. This structure is not included for technical reasons, the
XML file can be read perfectly by the solver when there is no structure at all. The struc-
ture is rather used for the planners to be able to read and compare different configurations.
To illustrate the idea, an example of a configuration is provided in Listing 5.1. Note that
the configuration starts with defining the objectives, in which the order is important as
is described in Chapter 3. After the objectives, several templates are defined, which are
executed in a specific order. An overview with more details about the structure is given
next, as we will walk through the lines of the example configuration in Listing 5.1.

1. Define the Objectives.
The configuration starts with defining the global settings at line 4, including all ob-
jectives that are considered for the optimization process. Several objectives could be
defined that follow an order of importance, as described in Chapter 3. Hence, when
there are more solutions with the same value for the first objective, the second ob-
jective is considered to determine the best solution etc. In Lising 5.1, the number of
planned tasks is maximized, and the distance, plan costs and hours are minimized.

2. Determine the Planning Process.
Right after the global settings an InsertTasksIntoTrips strategy is used where
the actual planning procedure is described. This template will be executed by the
process that runs for the automatic planning. All templates that are executed have
to be written down in this main template.

Most common is to start with the construction of an initial solution, line 14, and
improve it with local search, line 15. It may happen that not all the transports are
planned during the construction phase, and that the local search phase will create
extra space for new transports to be inserted, line 16. In that case, a second con-
struction part is needed after the local search. All these algorithms are described in
templates with the same strategy name. These templates are defined right below the
main template, from line 19 till line 42.

3. Templates.
Templates make sure that the algorithms are used in a proper way during the plan-
ning process. There is for example a template for the construction, line 19-22. This
construction part contains all insertions of transports in routes, as far as this is possi-
ble. The construction is built with several algorithms. For example, one could think

5.1. AUTOMATED PLANNING PROCESS 39

of sorting transports and insert the ones that are hard to assign first. One could build
this template for the construction with other sub-templates, one for each step in the
construction. In this way, when proper names are given to the sub-templates, the
steps for constructing the initial solution will be clear in just one quick look at the
script.

To clarify the structure and the usage of sub-templates, the example configuration in Listing
5.1 is looked into in more detail. As said before, the planning process is defined in lines
13-17. The template for the construction phase is executed in line 14, and the template
is given in lines 19-22. This construction starts with the planning of seed tasks with sub-
template PlanSeedTasks, lines 24-33. In here the transports, or tasks, are sorted in groups.
Because we want to insert one seed per route, each group will only include one task. Note
that one transport consists of two tasks: a pickup and a delivery task. The first group
contains the task that is furthest away from the depot, and the last group contains the task
that is closest to the depot. In this way, all routes get assigned one transport as a seed
transport, with transports that are far away from the depot. They are inserted into the
routes with parallel cheapest insertion, cheapest when calculating the extra distance that
needs to be driven. This attribute EstimateWith in line 30 is used to specify the estimator
that is used to estimate the extra costs for inserting a transport. Because only empty trips
are considered, OnlyEmptyTrips is set true, all routes get assigned one transport.

After the planning of the seed transports, the construction phase continues with the
planning of the remaining transports, line 21, in the PlanRemainingTasks sub-template.
This sub-template is defined after the PlanSeedTasks sub-template, lines 35-37. Here the
routes are filled with transports, using parallel cheapest insertion, while taking distance
into consideration for inserting.

Now that the construction phase is finished, the planning process continues with a local
search phase in line 15. The template for this phase is given in lines 39-42. For the local
search 2-Opt and CROSS exchange are used, as described in Section 4.1. This template
is finished, hence the planning process continues with the planning of transports that re-
mained unplanned, line 16. For this, the same sub-template is used as for the construction
phase, given in lines 35-37.

In case more sophisticated methods are used to construct and improve an initial solu-
tion, these configurations can become very long. It is necessary to cut the configuration in
many templates and sub-templates, to give the configuration the structure that it needs to
be read.

5.1.3 Output from ORD

After an automated planning process is started and a stopping criterion is met, ORD will
provide output. Whereas before the planning the selected routes were empty, now they
will be filled with transports that are planned on the routes. The KPIs, Key Performance
Indicators, can be seen for the planning as well. Some of them are optional and differ per
customer.

However, for this thesis we will not work with the outer framework that is used by
planners. We will use the XML files that are produced by the software. These files contain
information about the settings that were configured, the transports and routes (with their
ID’s) that are used as input, which transports are planned on which routes after the planning
is made and the procedure of finding the final planning. However, as this information is
stored in XML files, for plannings that have a long computing time the XML files are
very big. Therefore, they can be hard to read. Nevertheless, we prefer these XML files
over the outer framework that is used by the planners, because much more information is
stored in these files. For example, when the transports are divided in groups and they are
inserted group by group, the XML files store which transports are in the groups and in
what order they are inserted. Furthermore, the objectives are given as KPIs to keep track
of the solution quality.

40

CHAPTER 5. INTRODUCTION ORTEC AND THEIR SOFTWARE

Listing 5.1: An example of a configuration that is used in CVRS to plan transports on

routes.

1 [<?xml version="1.0" encoding="UTF-8" 7>

2 |<RootTag>

3

4 <GlobalSettings>

5 <0Objective>

6 <Element direction="maximize" name="#TA"/>

7 <Element direction="minimize" name="d"/>

8 <Element direction="minimize" name="$p"/>

9 <Element direction="minimize" name="h"/>

10 </0bjective>

11 </GlobalSettings>

12

13 <Template Strategy="InsertTasksIntoTrips" Part="toInsertInBase"
command="CAlgBuildCombinedStrategy">

14 <CAlgBuildStrategyFromSetting Strategy="Construction"/>

15 <CAlgBuildStrategyFromSetting Strategy="LocalSearch"/>

16 <CAlgBuildStrategyFromSetting Strategy="PlanRemainingTasks"/>

17 </Template>

18

19 <Template Strategy="Construction" command="CAlgBuildStrategyFromSetting">

20 <CAlgBuildStrategyFromSetting Strategy="PlanSeedTasks"/>

21 <CAlgBuildStrategyFromSetting Strategy="PlanRemainingTasks"/>

22 </Template>

23

24 <Template Strategy="PlanSeedTasks" command="CAlgBuildStrategyFromSetting">

25 <CAlgDivideTasksInBatches MaxBatchSize="1">

26 <SortingCriteria>

27 <Criterion direction="decreasing"

name="DistanceClosestDepotToTask"/>

28 </SortingCriteria>

29 <Template Part="Construction">

30 <CAlgParallelCheapestInsertion EstimateWith="Distance"

OnlyEmptyTrips="true"/>

31 </Template>

32 </CAlgDivideTasksInBatches>

33 </Template>

34

35 <Template Strategy="PlanRemainingTasks"
command="CAlgBuildStrategyFromSetting">

36 <CAlgParallelCheapestInsertion EstimateWith="Distance"/>

37 </Template>

38

39 <Template Strategy="LocalSearch" command="CAlgBuildStrategyFromSetting">

40 <CAlg20ptInCurrentSolution/>

41 <CAlgCROSSExchangeInCurrentSolution/>

42 </Template>

43

44 |</RootTag>

Chapter 6

Components of the Hybrid
Method

In Section 4.4.4 we have introduced the framework of the hybrid method that is tested on
in this thesis report. It can be seen as a variant of the ALNS (Ropke & Pisinger, 2006a)
where the component of the initial solution is tested in addition as well. Furthermore, local
search is included to improve the solutions that are found during the ruining and recreate
phases of the hybrid method. Recall Algorithm 4 and the different components that can be
configured

e initial solution, Section 6.1,
e removal methods, Section 6.2,
e recreate methods, Section 6.3,

e acceptance criteria, Section 6.4.

The structure of this chapter is as follows: each component is discussed in a different section
where first an overview of the literature is given, related to the component, followed by an
overview of the performance as described in the literature. These performance overviews
only include the performance within a framework such as our hybrid method. It is used as
an overview of the usage of each component in the literature, rather than, for example, the
performance of construction methods for the initial solution in general.

6.1 Initial Solution

Before we can remove and reinsert certain transports, an initial solution needs to be con-
structed. Because there are many insertion heuristics, there are many ways of finding an
initial solution. For example, simple heuristics can be used, such as a random approach,
or one can choose a more sophisticated heuristic, such as regret insertion. The quality of
the initial solution depends heavily on the choice of the insertion heuristic. However, with
the hybrid method that is used in this thesis, this initial solution will be partially ruined
and recreate after it is created. Therefore, one can question the need of having an initial
solution of good quality. In this section, an overview of insertion methods that are used in
the literature, when using metaheuristics such as LNS and ALNS, is given in Section 6.1.1.
The performance of these methods that is described in the literature, is given in Section
6.1.2.

6.1.1 Literature Overview

In most articles that review (a variant of) metaheuristics that use removal and recreate
methods, the construction of the initial solution does not get much attention. They mainly
focus on which ruin and recreate methods to choose. Some articles do not even mention how

41

42 CHAPTER 6. COMPONENTS OF THE HYBRID METHOD

to construct the initial solution, such as Ropke and Pisinger (2006b) and Ahuja, Ergun,
Orlin, and Punnen (2002). They only provide the metaheuristic itself, where a feasible
initial solution is required as input.

There are two categories for insertion methods: sequential and parallel insertion meth-
ods. The categories describe in what way the routes are built. Besides these categories,
methods for the construction of the initial solution may be categorized in a different way:
the ones that use a single insertion heuristic, or that use additional heuristics as well, such
as local search.

e Sequential insertion. For sequential insertion, a route starts with a seed customer
and other customers are added to the route until the maximum capacity is reached
or the route has a scheduled time horizon. The seed customer can be chosen based
on several objectives. Most common is to choose a customer that is farthest away
from the depot, or that has the first deadline of service. For the other customers
that need to be inserted, one may sort the customers on distance that needs to be
driven from the seed customer. Solomon states that this method is stable and will
perform well on practical problems, mainly with tight time windows (Solomon, 1987).
This may be explained by the fact that one could insert seed customers based on
the tightness of the time windows. Unfortunately, there is also a disadvantage when
using sequential insertion. At the end of the insertion process, it is very likely that
the unrouted customers are scattered all over the network. Therefore, the distances
between these customers may be very large and the resulting routes may be very
inefficient, both regarding the time schedule and distance. For more details and
methods about sequential insertion, we refer to Solomon (1987).

e Parallel insertion. To overcome this problem, Potvin and Rousseau (1993) create a
method where routes are not built in sequence, so one by one, but rather in parallel.
Therefore, this method is called parallel insertion. A predefined number of routes get
a seed customer. For all unrouted customers it is calculated what the cost will be
for inserting them in each one of these seeded routes. The minimum cost for each
customer is derived from this, and the customer which causes the least extra costs
will be inserted first. Potvin and Rousseau (1993) state that for instances where
the customers are clustered, sequential insertion performs best, and for instances
with some randomness in the distribution of customers, parallel insertion outperforms
sequential insertion. The reason behind this, is that for clustered instances sequential
insertion chooses a seed customer within a cluster, joins all customers in this cluster,
and starts a new route with a seed customer in another cluster.

Now that the two categories of insertion methods are explained, we can look into some
of the insertion methods. There are simple insertion methods, such as cheapest insertion,
but also insertion methods that include some way of sorting the transports before they are
inserted, such as regret insertion.

Cheapest Insertion

The first insertion method that is looked into is called cheapest insertion. In the literature
this insertion method is also known as best insertion (Schrimpf et al., 2000), (basic) greedy
insertion (Pisinger & Ropke, 2007) or least-cost insertion (Azi, Gendreau, & Potvin, 2010).

Cheapest insertion may be used as a sequential insertion method as well as a parallel
insertion method. Cheapest, in this case, can be measured in many ways. For example,
one could take into account the additional distance that needs to be driven, the additional
driving time, the additional working hours, or for example a combination of the previous
measurements. Note that, in case all routes have the same initial properties, such as starting
time or starting location of the route, all costs for inserting transports will be the same.
Therefore, routes need to be initialized with some seed transport, or the first transport that
is inserted will be chosen at random.

6.1. INITIAL SOLUTION 43

Regret Insertion

Another, more sophisticated method is called regret insertion. It uses a ‘look-ahead’ strategy
to be able to see whether a transport needs to be inserted or not (Potvin & Rousseau, 1993).
This is done by considering the extra costs when a transport is inserted in the second best
place compared to its best place. When this cost is large and the transport is not inserted
in the best place, because another transport is planned on this position, you regret that
you did not insert it. Hence, when the ‘regret’ is large, the transport needs to be inserted
first.

Let AfZ be the change in the objective function f for inserting transport v at the
best place in the ¢*® cheapest route. For example, a regret-2 implies the difference in the
objective value for inserting a transport in its second best place instead of the best place.
Hence, the regret-2 value for a transport v will be

AfS = Afy.

In each iteration, only one route will be modified. Therefore, only the costs for transports
for which the best or second-best place is in this modified route, need to be recalculated.
This insertion method belongs to the parallel category of insertion methods, because all
routes are considered for new insertion at each iteration.

6.1.2 Performance

In most metaheuristics that are studied in this thesis, a simple heuristic is used for the
construction of the initial solution, such as random insertion or cheapest (parallel or se-
quential) insertion. Shaw (1997) chose to plan all customers on a different route, which
results in 100 routes for 100 customers. He tested his metaheuristic on Solomon instances,
but for more realistic VRPs it is common to have a limited number of vehicles. Therefore,
it may not be possible to insert each customer in a different route.

Another simple construction method, is to randomly insert the transports in routes. Lin
(1965) and Jaszkiewicz and Kominek (2003) use a randomly created initial solution. This
method finds an initial solution very fast, because no calculations need to be made for the
choice of inserting a certain transport. However, it might be hard to find a feasible initial
solution when, for example, many transports need to be inserted on a limited number of
routes.

Cheapest insertion is used by, for example, Azi et al. (2010), Hall and Peterson (2013)
and Schrimpf et al. (2000). Most of the time, cheapest is measured with additional detour
distance for inserting a transport. Schrimpf et al. (2000) state that cheapest insertion
provides an initial solution of better quality, and therefore their metaheuristic converges
faster than when random insertion is used.

Pisinger and Ropke (2007) use the more sophisticated insertion heuristic regret inser-
tion. This method performs well on problems with hard to plan transports, because these
transports are inserted at the beginning of the construction.

Besides these single insertion heuristics, there is also a method provided to minimize the
number of vehicles that is used, before using a metaheuristic to improve the initial solution.
This method is proposed by Ropke and Pisinger (2006a). For more details on this method,
we refer to Appendix B.

Only a few articles mention how to cope with infeasible solutions. Schrimpf et al. (2000)
use an additional vehicle in case a transport can not be inserted, due to capacity or time
window constraints. In case the number of vehicles that may be used is limited, Azi et
al. (2010) propose to insert the unplanned transports using a recreate method that is used
during the recreate stage of the metaheuristics that are described in this thesis.

More about the performance of the construction method for the initial solution, and
information on how to cope with infeasible solutions, can be found in Appendix B.

The results of the metaheuristics, that are explored in the literature, regarding the
choice for the construction of the initial solution, are not mentioned. However, we think
that the choice for the construction of the initial solution is of great importance regarding

44 CHAPTER 6. COMPONENTS OF THE HYBRID METHOD

the performance of the ruin and recreate iterations. Quick and simple insertion heuristics
do not provide an initial solution of good quality, but is this needed in the metaheuristics
that are considered in this thesis? The initial solution gets ruined soon after it has been
created, so using a complex and time consuming insertion heuristic may be seen as a waste
of time. However, when working with realistic VRP, it can be hard to find a feasible initial
solution. When working with a simple heuristic, you may not be able to plan all transports.
Therefore, it may happen that you are forced to use a time consuming insertion method,
in case a feasible initial solution is needed.

6.2 Removal Methods

After an initial solution is constructed, the next step is to ruin this solution by applying a
removal method. As described in Chapter 4, for the LNS heuristic only one removal method
is chosen to be executed, whereas for the ALNS heuristic multiple removal methods can
be chosen. Before the performance of the removal methods is discussed in Section 6.2.3, a
description of the methods is given in Section 6.2.1.

6.2.1 Literature Overview

There are many ways to remove transports from a solution. This section gives an overview
and description for eight removal methods.

Related Removal

When transports need to be removed from a solution, it would be wise to remove trans-
ports that are similar. Because, if transports are removed that are very different, the new
solution may be of the same quality as the current solution, as it is hard to shuffle the
transports around. However, transports that are somehow related to each other, may be
easy to interchange, which may lead to a better solution. ‘Similar transports’ can refer to
multiple measures, such as transports being geographically close to each other or having
the same time windows. Shaw (1997) proposed to use a method to remove transports where
the relation between transports in measured with a relatedness function. This provides a
number between 0 and 1 that indicates the relatedness between two transports. The func-
tion consists of four variables that contribute to a relatedness, and four parameters that
indicate the importance of each relatedness variable. The relatedness variables that are
used by Shaw are based on

the costs of getting from one customer to the other, weighted with «,

the similarity of the time windows for both transports, weighted with 3,

whether the customers are served by the same vehicle or not, weighted with ~,

e whether two transports have similar load weights, weighted with §.

The relatedness variables need to be normalized and the parameters «, 3, 7 and § need to
be chosen between 0 and 1. The closer these parameters are chosen to 1, the more they
affect the relatedness function. Combining all relatedness variables with their weights in a
function results in a relatedness function, R (4,), between two transports ¢ and 7,

R(:,]) :Ozdij-f—ﬁ’ti—t”+’)/Tij+5‘qi—q_7-|. (6.1)
Note that the relatedness function is a fraction, because all variables and parameters have
values between 0 and 1. Hence, a lower value of 1/R;;, indicated a higher relatedness. In
case a VRPTW is considered, d;; represents the travel distance from the delivery location
of transport j to the delivery location of transport j, |ti — t]‘| is the absolute difference in
start time of service between delivering transport ¢ and j, 1;; is a boolean that equals 1

6.2. REMOVAL METHODS 45

in case transport ¢ and j are scheduled on the same vehicle, and |qi — qj| is the absolute
difference of quantity of goods between transport ¢ and j.

Shaw used o = 0.75, 8 = 0.1, v = 1, § = 0.1 in his test. Hence, the geographical
closeness and whether the transports are scheduled on the same vehicle contribute most to
the relatedness between the transports.

A pseudo-code for how to use the relatedness function when removing transports is
included in Appendix B. Shaw (1997) is not the only one that used this related removal,
also Ropke and Pisinger (2006a) and Azi et al. (2010) use the relatedness function with
some adjustments. More information is included in Appendix B as well.

The configuration at ORTEC is done in a different way for related removal. To decrease
the computing time for related removal, only the distance between transports is taken into
account in the relatedness function.

Random Removal

Another removal method that is frequently used in the literature, is random remouval, pro-
posed by Schrimpf et al. (2000). For this removal method, a predefined number of transports
is selected at random and they are removed from the solution. This method can be seen
as a global method, because the whole solution can be affected. This is mainly due to the
random choice for the removals (Schneider & Kirkpatrick, 2006). The random removal is
used in Schrimpf et al. (2000), Ropke and Pisinger (2006a), Ropke and Pisinger (2006b),
Pisinger and Ropke (2007) and Azi et al. (2010).

Worst Removal

When a worst removal method is used, transports are removed that come with, for example,
very high costs. One could consider the difference between the solution cost with and
without the transports that is considered to be removed, proposed by Ropke and Pisinger
(2006a). Hence, define the cost of a transport ¢ as

cost(i, s) = f(s) — f_i(s),

where s is the solution that is considered and f(s) represents the cost of the solution. This
f(s) can for example be chosen as the solution quality, the objective value, or simply the
total distance that is driven. In the latter case, cost(i, s) can be seen as the detour that is
needed to visit the location for transport ¢. These costs are now ordered in a descending
way, such that the worst removals can be chosen from the top of the ordering. To make sure
that not the same transports are chosen over and over again, a randomization parameter
is included as well. For more details is referred to Ropke and Pisinger (2006a). Using the
worst removal method, transports that are very expensive in the current solution are placed
at cheaper positions, as if they were planned in the wrong position. This method can be
seen as a global method as well as a local method. It can be the case that in a certain
arca there are many transports with high costs. Therefore, the worst removal will remove
transports that are in the same area, and thus worst removal operates on a local level.
On the other hand, the worst placed transports may be scattered all over the network and
removing them will result in more global changes.

Historical-based Removal

So far, the removals look at the solution at its current state, none of the methods take
historical information into account. Therefore, Ropke and Pisinger (2006b) propose two
versions of a historical-based removal: neighbor graph removal and request graph removal.
Historical information is used, for example, by storing scores for each transport. An example
is to store how many times a transport is in the same route as an other transport, in all
best found solutions so far. When a new solution is found, a transport that has a low score
may be placed in an unsuitable route. Improvements may be found when this transport
is removed form the solution and reinserted in some other place. More information about

46 CHAPTER 6. COMPONENTS OF THE HYBRID METHOD

these removal methods is included in Appendix B. However, Ropke and Pisinger found that
this method does not perform well, because of the lack of diversification. The changes are
based on the best found solutions so far, which may result in small changes only. Therefore,
they propose to use these methods for the relatedness of two request in related removal.
This removal method is not available in the software of ORTEC.

Cluster Removal

The cluster removal method is proposed by Ropke and Pisinger (2006b). First a route is
selected at random and the transports on this route are divided into two clusters, based
on distance. One of the clusters is chosen at random and the transports in this cluster are
removed from the solution. In case the number of removed transports is less than is desired,
another route is chosen at random and the process starts again. This removal method can
be seen as a subclass of the related removal that is stated above, because transports that
are related, via a route and distance, are removed.

In the software of ORTEC, two versions of cluster removal can be used: cluster random
removal and cluster worst removal. For cluster random removal, a transport is randomly
chosen as the first one that will be removed. Next, all transports that are in its direct
neighborhood will be removed as well. For cluster worst removal, the initial transport that
is removed will be the most expensive on, instead of a randomly chosen transports. A
predefined number of transports that need to be removed is given as input, along with
the number of clusters. This defines how many transports are removed per cluster, which
indicates the definition of the direct neighborhood. Hence, the clusters are not components
of one route, as is the case for Ropke and Pisinger.

Sequential Removal

The removal method proposed by Schrimpf et al. (2000) is very similar to cluster removal
and is called sequential removal. In this removal method, a route is chosen at random and
a predefined number of transports is removed from this route. The transports have to be in
sequence. Cluster removal can be seen as several sequential removals executed at the same
iteration.

In the software that is used for this research, it is not possible to remove a sequence
of transports from a route. However, another removal method is included that removes all
the transports on a route, called trip removal. As input, this method requires the number
of trips, or routes, that need to be removed. Almost empty trips are preferred above full
trips when selecting candidates to be removed.

Time-oriented Removal

A version of the related removal is mentioned by Shaw (1997) and executed by Pisinger
and Ropke (2007). Shaw uses the absolute difference in start time of service between to
transports, the variable with parameter 3, as an element of a relatedness function, whereas
Pisinger and Ropke use this single element as a whole new removal method. They call it
the time-oriented removal and takes into account the difference between the pickup time
and delivery time of two transports. The time-oriented distance between two transports is
defined as
Atij =|tp, = tp, | +|ta, — ta,]

where t,, and tg, represent the pickup and delivery time for transports 4, respectively. A
transport is chosen at random and removed, and a predefined number of related transports,
according to the measure At;;, is removed as well. To be able to find improvements with the
use of this removal method, Pisinger and Ropke state that is useful to first select a subset
of transports that are geographically close to the randomly chosen transport, before using
time-oriented removal. This will make it easier for the algorithm to find feasible changes
when working with larger problems. The time-oriented removal method is not included in
the software of ORTEC.

6.2. REMOVAL METHODS 47

Radial Removal

A removal method that is proposed by Schrimpf et al. (2000) is called radial ruin. This
removal method simply chooses a transport at random, and removes a predefined number
of transport that are geographically close to the randomly chosen transport. Just like
time-oriented removal takes a single element from the relatedness function from Shaw, this
radial removal solely looks at the first element of the relatedness function, d;;. This removal
method is known in the ORTEC software under the name related removal.

6.2.2 Number of Removals

Besides the choice of which removal method to use, also choices need to be made about
the number of transports that need to be removed. When a small number of transports is
removed a large number of solutions can be explored in a short amount of time. However,
as stated before in Chapter 4 it is hard to move from one good area of solutions to another
only using small changes. Therefore, large moves are needed that can be accomplished by
a large amount of removals in each iteration. The disadvantage of this is the increase of
computing time, because the number of solutions that is investigated per time unit will
decrease [Ropke & Pisinger (2006 nov) or Shaw (1997) or Schrimpf et al (2000)]. In the
literature most articles investigate how many transports to remove and whether it suits the
problems they look into.

To provide a clear overview on how many transports to remove, Table 6.1 is given.
Note that these numbers are found with different test instances. Therefore, one needs to
tune the number of removals for the instance that is used. More about these instances
in combination with the number of removals is given in Appendix B. It is possible to let

Table 6.1: Number of Removed Transports in Literature

Article Number of removed transports
Shaw (1997) around 25%

Schrimpf et al. (2000) 1%, 2%, 5%, 10%, 20%, 50%
Ropke and Pisinger (2006a) 4, min {100,0.4n}|

Ropke and Pisinger (2006b) min{0.1n, 30}, min{0.4n, 60}
Azi et al. (2010) 5%, 35%

The first column in this table shows the articles that is studied from the literature. In
these articles, methods like LNS and ALNS are used to find near-optimal solutions for
variants of the VRP. Schrimpf et al. (2000) test several numbers of transports that need to
be removed, whereas Ropke and Pisinger (2006a), Ropke and Pisinger (2006b) and Azi et
al. (2010) choose a random number in the given interval during each iteration. Note that n
is the total number of transports in the network that need to be planned on routes.

the number of transports to be removed vary during the search. Shaw (1997) proposes to
increase the number of removals, hence, to start with a small number, and to end with many
removals. His reasoning behind this, is the fact that he uses a simple construction method
for the initial solution, and therefore it should be relatively easy to find improvements at the
beginning of the search. However, Ropke and Pisinger state that at the end of the search,
their metaheuristic is not accepting many large moves. Hence, they propose to decrease
the number of transports that need to be removed, during the search. Note that they use a
more complex construction of the initial solution. More about the tests that are performed
in the literature on the number of transports that need to be removed, can be found in
Appendix B.

6.2.3 Performance

Ropke and Pisinger (2006a) tested related, random and worst removal. They state that for
their instances the related removal provided the best solutions, worst removal second best

48 CHAPTER 6. COMPONENTS OF THE HYBRID METHOD

and random removal provided the worst solutions. From this may be concluded that the
two slightly more complicated removal methods perform best. Note that these conclusions
are drawn based on the comparison of average gaps between the solutions and the best
solutions found during all tests. Unfortunately, Ropke and Pisinger (2006a) do not state
the reason for the behavior of the removal methods on their test instances.

Ropke and Pisinger (2006a) also proposed the ALNS, and therefore they are able to use
different methods during the same search using a roulette wheel principle, which is explained
in Section 4.3. In Ropke and Pisinger (2006b) there are three different configuration that
are tested:

e related, worst and random removal with roulette wheel selection,

e related, worst, random, cluster and historical-based removal with roulette wheel se-
lection,

e related, worst, random, cluster and historical-based removal without roulette wheel
selection.

The configuration with three removal methods performs worse than the two configurations
with more removal methods and the search benefits from the roulette wheel.

Furthermore, Azi et al. (2010) use removal on three different levels: customer level, route
level and workday level. They first remove on workday level, random and related removal,
followed by removals on route level, random and related removal, and last removals on
customer level, only random removal. For each level, the removals are used for a few
iterations, before continuing with the next level. Unfortunately, Azi et al. (2010) do not
give an explanation why this method performs well on their test instances.

To conclude, which removal method is most suitable will depend on the problem that is
considered. It depends on many characteristics, for example the number of transports that
needs to be planned and whether there is a restriction on the number of routes that can be
made or vehicles that can be used. It will also depend on the method that is used to find
the initial solution and on the acceptance criteria that is chosen. For example when a high
quality initial solution is used, it would be a waste of this solution to remove a big part
of the planned transports. Overall, the heuristic seems to be robust when working with a
roulette wheel selection where a few removal methods may be chosen. This method helps
to diversify and intensify the search, because some of the removal methods operate on a
local level, and others operate on a global level.

6.3 Recreate Methods

A solution is ruined, so when transports are removed, it needs to be recreated by rein-
serting the removed transports. The number of removal methods is already quite large,
but there are even more recreate methods. All algorithms that are known to build solu-
tions can be used as recreate method as well. There are simple insertion methods, such as
(parallel) cheapest insertion and parallel regret insertion, but one can also sort the trans-
ports before applying the simple reinsertion methods. Examples of these sorting criteria
are transportation amount, time window duration and the distance between the pickup and
deliver location. With these sorting criteria, one is able to plan the difficult, regarding for
example a very tight time window for delivering, transports first.

This section gives an overview of the recreate methods that are used in literature, within
the metaheuristics that are studied in this thesis. Note that insertion heuristics in this
section are used to schedule unplanned transports on solutions that are already partially
constructed. Therefore, the performance of the heuristics may be different than in the case
they are used to construct a solution from scratch.

6.3.1 Literature Overview

In the literature, three different recreate methods are used, after removing some of the
planned transports. These methods are

6.4. ACCEPTANCE CRITERIA 49

e cheapest insertion,
e regret insertion,

e branch-and-bound.

Unfortunately, not all articles elaborate on the reasoning behind choosing a certain recreate
method, especially not in the case only one insertion method is used in the metaheuristic.
These articles pay more attention to the performance of the removal methods. Moreover,
most of the articles studied in this thesis, do not provide the reasoning behind why methods
perform well or why they do not.

6.3.2 Performance

Shaw (1997) proposed LNS with the use of branch-and-bound as recreate method. When
branch-and-bound is used to reinsert transports, it is able to find a better solution or prove
that there is no better solution in a few seconds. This method performs very well for
instances with many constraints. The reason Shaw gives is that more constraints imply
more constraint propagation, whereby the branch-and-bound procedure can narrow the
solution space better. For problems that are very large, and a large number of removals is
chosen, it may take branch-and-bound a long time to solve a problem. Shaw noted that
the performance of his LNS could be improved by using another recreate method, or even
using local search to improve the performance.

Cheapest insertion is used in many experiments, such as in Schrimpf et al. (2000). The
reason for Schrimpf et al. (2000) to use this simple recreate method, is to show in what way
the metaheuristic works in it most simple form.

Ropke and Pisinger (2006a, 2006b, 2007) test cheapest insertion, regret-2, regret-3,
regret-4 and regret-m, where m is the amount of vehicles used in the instance. They
tested these recreate methods within the LNS framework, where only one removal and
one recreate method is used, and within the ALNS framework, where several removal and
recreate methods may be used. The LNS and ALNS heuristics they tested have almost the
same performance, when varying the recreate method for LNS. However, the ALNS heuristic
is able to adapt to the problem that is looked into, because of the roulette wheel selection,
which provides a learning mechanism within the metaheuristic. Therefore, according to
Ropke and Pisinger, ALNS should be able to adapt to the instance that is considered, and
will therefore be more robust than LNS. Moreover, Ropke and Pisinger state that cheapest
insertion, as recreate method, performs worse within their ALNS framework than regret
insertion. The quality of the solution is higher with a more complex reinsertion method.
However, this comes with the price of a longer computing time.!

Azi et al. (2010) use two insertion heuristics, cheapest insertion and regret insertion.
Unfortunately, they do not mention the performance of the insertion heuristics within their
ALNS framework.

6.4 Acceptance Criteria

In case metaheuristics are used that ruin and recreate a feasible solution, a new feasible
solution and the current solution are compared. This newly found solution could be worse
or better than the current solution. It could be beneficial to accept the newly found solution
in both cases. Up to which criterion a new feasible solution is accepted, is determined by
the choice of an acceptance criterion. In case a simple acceptance criterion is chosen, it can
be very difficult to get away from a local minimum.

To make sure the definitions are understood, we elaborate on the different solutions that
arc mentioned in this chapter. In the literature, there are three kinds of solutions:

INote that cheapest insertion, when used as a construction method for the initial solution, performs
worse than regret insertion, see Chapter 6.1. In case cheapest insertion and regret insertion are used to
reinsert transports in an already constructed network of planned transports, the difference in performance
is very small.

50 CHAPTER 6. COMPONENTS OF THE HYBRID METHOD

e the best solution found so far, we refer to it as s*,
e the current (accepted) solution, referred to as z,

e the new found feasible solution, referred to as s.

Furthermore, we define s; as the solution found in the i*" iteration. Note that f(s) denotes
the objective value for solution s, and that we consider a minimization problem. For the
best solution so far, found in the i*" iteration, the following holds

f(s7) < f(s5), Y0O<j<i.

Furthermore, we may accept solutions that are worse than the best solution found so far,
hence we may have f(z) > f(s*) at some point in the search. So, it is important to note
that the current solution may be worse than the best solution found so far.

Because there are several methods for accepting a newly found solution, an overview is
given next, followed by the performance of the accepting criteria that are discussed in the
literature. For all acceptance criteria, we included the probability of accepting a new found
solution, so that it will provide a way to see the differences and similarities between the
acceptance criteria.

6.4.1 Literature Overview

Schrimpf et al. (2000) mention several acceptance criteria, or decision rules as they call
them. They do not elaborate on these criteria, they just mention how to use them. In
this section, first an overview of these acceptance criteria is given. To show in what way
the acceptance criteria are related, we give for each criterion the probability of accepting
a newly found solution. As far as the authors knowledge goes, this is not included in
the literature, but it will help to understand the differences and similarities between all
acceptance criteria. To do so, we use the indicator function 14(x), where A is an event
that depends on variable z. Furthermore,

1, z€A,
Ta(x) = {

0, otherwise.

e The first criterion that is mentioned by Schrimpf et al. (2000) is random walk accep-
tance. With this acceptance criterion all newly found solutions are accepted, even the
ones that are worse than the best solution found so far. Therefore, the probability of
accepting a newly found solution is equal to 1.

e The second acceptance criterion that looks at worse solutions, besides all solutions
that are better, is threshold acceptance. Here, a threshold or benchmark T is chosen
and solutions with an objective value that lies above this threshold are not accepted.
Therefore, solutions are only accepted up to a certain level. Remember that the
VRP is a minimization problem, and hence the threshold gives an upper bound for
accepting solutions. With this threshold acceptance, only solutions that are ‘not much
worse’ than the current solution are accepted. Therefore, we can define

P(z = s) = Lp(s)<Ts(2)}(5)-

e For greedy acceptance, a threshold is set to the current solution, hence only solutions
that are better are accepted. Hence,

P(z = s) = Lis(s)< ()} (5)-

e Another criterion that also accepts worse solutions than the best solution found so
far, is simulated annealing acceptance. Recall the details on simulated annealing from
Section 4.2. The solutions that have a lower value for the objective function than the
value for the current solution, are always accepted. However, solutions that are worse

6.4. ACCEPTANCE CRITERIA 51

than the current solution, are only accepted with a certain probability that uses a
temperature ¢. This probability is defined by

exp (<1 (f(5) = 1(2))) - F() > £(2),

1 , otherwise,

—exp (~Ls-r0(6)- () - 1)),

P(z:=s)=

e The last criterion mentioned by Schrimpf et al. (2000) is the great deluge algorithm.
This criterion rejects solutions that are above a certain level, just as in threshold
acceptance. However, for this criterion it is more common to set the level in such a
way that only solutions that have a very low objective value are accepted.

From this we can conclude that for random walk, greedy en threshold acceptance, the
probability of accepting a newly found solution s may be written as

P(z == s) = Lips)<Tf(2)}(5), (6.2)

with T sufficiently large for random walk acceptance, T' = 1 for greedy acceptance and T > 1
for threshold acceptance. We can also include the great deluge algorithm, as described
before, by having 7" < 1 in (6.2).

6.4.2 Performance

Schrimpf et al. (2000) compare random walk acceptance with greedy acceptance. They
conclude that in nearly all cases with greedy acceptance, the final solution is better than
in case a random walk acceptance is used. For a small number of removals, the difference
between greedy and random walk acceptance is very small. This is due to the fact that
in case only a few transports are removed, the cheapest insertion method will find good
solutions rather easily. The removal method does not have a big influence on the perfor-
mance of random walk and greedy acceptance. They also let the algorithm run for more
than 1,000,000 iterations, for both greedy and random walk acceptance. From here can be
concluded that for greedy acceptance, the value of the objective function decreases with the
increase of the number of iterations, whereas for random walk acceptance, this may not be
the case.

Besides the comparison between random walk and greedy acceptance, Schrimpf et al.
(2000) also provide tests with threshold acceptance. They use two different cooling sched-
ules, which integrates the idea behind simulated annealing with threshold acceptance. The
first is a linear decay for the threshold, and the second one uses a exponential decay. The
deviation from the solution and the optimal solution, which is known in this case, decrease
for all configurations over time. Moreover, the solutions produced with threshold accep-
tance are of better quality than the solutions produced with greedy acceptance. Overall,
threshold acceptance with exponential decay for the threshold performed best.

Shaw (1997) uses the greedy acceptance criterion. He only accepts new solutions in case
they are better than the current solution. Because only one acceptance criterion is used, he
does not elaborate on the performance of the algorithm regarding accepting new solutions.

Ropke and Pisinger (2006a) state that simple decision rules have the disadvantage of
getting trapped at local minima very often. Worse solutions need to be accepted as well,
this makes it easier to get out of these local minima. This is also what Schrimpf et al. (2000)
discover with their tests, although they do not state this in their conclusions. Ropke and
Pisinger (2006a) propose to use simulated annealing acceptance. With this criterion, they
are able to accept many worse solutions at the beginning of the search, and towards the end
only accept better solutions. The reason for them to use simulated annealing acceptance, is
because at the beginning of the search they want to see whether they can end up at better
local minima. Towards the end of the search they hope to be in a good neighborhood where
the solutions are very good. Randomization is needed to diversify the search, as is stated

52 CHAPTER 6. COMPONENTS OF THE HYBRID METHOD

before, but in the ALNS heuristic they propose, this is already covered by the removal and
recreate choices. Therefore, randomization is not needed in the acceptance criteria.

Ropke and Pisinger also tried other acceptance criteria, including tabu search algo-
rithms, but this could not provide the same quality for the solutions as simulated annealing
acceptance.

Chapter 7

Testing Approach

Recall the ORTEC ALNS that we will test in this thesis from Algorithm 4. As explained
in the introduction of this thesis, given in Chapter 1, the focus of this thesis is on how
to configure ALNS and its components such that it can find near-optimal solutions for a
rich and real-world VRP. Moreover, in Chapter 3 it is explained that we do not know the
optimal solutions for the instances that are tested on, because we work with real-world
data. Therefore, it is hard to know whether the solutions that are found by our ALNS
configuration are near-optimal.

This chapter is included to explain our testing approach. In Section 7.1 we elaborate on
the approach for tests that are executed on the components of our hybrid method ALNS.
Furthermore, Section 7.2 describes in what way the solutions will be compared. The tests
are performed on two cases, which we will elaborate on in Section 7.3. We chose to include
the data in this chapter, to be able to have one chapter, Chapter 8, that only focuses on
the experiments that are executed and the results.

7.1 Components of ORTEC ALNS

Chapter 6 provided an overview of the components that are tested. When these components
are put together into one heuristic, this gives our ORTEC ALNS. The performance of each
component depends on the performance of the other components. All components have
several options and parameter settings that need to be tuned. Testing every combination
that is possible for all components, including all parameters, would take a very long time.
Therefore, we need to make choices about the testing approach.

e First, initial tests are executed. These tests are included to see in what way the
instances react to the hybrid method. For example, the computing time for removing
and recreating solutions will influence the possible number of iterations. The initial
tests will be based on the findings from the literature and combined will form several
initial configurations. What local search methods and which acceptance criterion
need to be used are tested as well. These components of the hybrid method are
not tested separately, but we recommend to include tests in further research. What
configurations are chosen from these initial tests, will be based on the best values for
the objective function.

e The second step is the tuning of each component of the hybrid method, while the
other components remain fixed. The following tests will be executed.

1. Construction methods for the initial solution. Several construction meth-
ods are tested, including simple heuristics such as parallel regret insertion, but
also several versions of sequential and parallel insertion. These tests are first
executed without the ALNS framework, to see what method is able to plan all
transports. Tests including the ALNS will follow next. The most promising

53

54 CHAPTER 7. TESTING APPROACH

construction methods for the initial solution will be used in further experiments
for the other components.

2. Removal methods. The experiments that are performed on the removal meth-
ods are split into two categories: multiple removal methods, with and without
roulette wheel, and single removal methods. The removal method that provided
the best results is used for tests that are performed on the number of transports
that need to be removed. These tests are executed to see the influence of one
percentage of transports that is removed during the search.

3. Recreate Methods. To see the effect of the recreate method as component of
the hybrid method, several recreate methods will be included as single method for
reinserting removed transports. That is, so far several recreate methods are used
with a roulette wheel, but now we also test the configuration with one recreate
method. Tests are executed on configurations with two methods for constructing
the initial solution and with one removal strategy from both categories (multiple
and single removal methods).

e From the configurations that are tested in the second phase, two configurations are
chosen to perform final tests on. One will be the configuration with the best objective
function value, this will be our hybrid ALNS configuration. A second configuration
will be chosen that is more simple, with only one removal and one recreate method
that are used during the search. Final tuning on the number of transports that need
to be removed during each iteration will be done.

Recall from the previous chapter that the acceptance criterion is also seen as a component.
We will only test on this component in the initial tests, but further research can be done
according to this acceptance criterion.

7.2 Solution Quality

We will elaborate on the method that is used to measure the solution quality and in what
way the solutions that are found with different configurations are compared.

As explained in Chapter 3, the objective function in the software of ORTEC has a
certain hierarchy. Therefore, the solution will not provide one objective function value, but
there are several key performance indicators, KPIs, that can be compared. The plan costs
are the first main objective and therefore the solutions will be compared based on this KPI.
However, the other KPIs are mentioned as well during the tests, especially when the plan
costs of solutions are very close or in case some KPIs are very low or high.

For all methods that are tested in the components, the average KPIs over all instances
will be given in tables. The computing time for the configurations is also included, because
usually good performing methods come with the price of a long computing time. Next to
tables, also figures are included as a visualization method for comparing the plan costs.
For all components we also split the average KPIs into averages for the two construction
methods for the initial solution. Tables can be found in Appendix D and figures are included
in the next chapter. These are included to see whether the construction method for the
initial solution has influence on the performance of the components of the hybrid method.
This is not yet included in the literature that is studied for this thesis.

Furthermore, the final configurations of our ALNS can be compared with the original
customer configurations. These configurations are the ones that are used at the customer
to plan the transports on the routes.

7.3 Data for Testing

For the tuning of the hybrid method, three different instances are used from one customer
of ORTEC. These instances are referred to as training instances. Furthermore, 14 instances
from another customer are used to verify the conclusions that are drawn based on the

7.3. DATA FOR TESTING 55

training instances. We refer to them as test instances. The training instances are referred
to as B1, B3 and B4 and the test instances are named C36 up till C49 The instances are
named based on files that were obtained from the customers. Because the customers did
not provide data from consecutive days, the instances do not have consecutive numbers. In
order to prevent misunderstandings and lost data, we chose to keep the naming of the data
as it is provided by the customer.

Table 7.1: Data used for testing

Instance Number of
addresses transports tasks routes transports
per route

B1 156 397 794 49 8.10
B3 124 397 794 56 7.09
B4 91 128 256 41 3.12
B total 371 922 1844 146 6.32
C36 - 221 442 137 1.61
C37 - 389 778 188 2.07
C38 - 245 490 105 2.33
C39 - 346 692 163 2.12
C40 - 209 418 140 1.49
C41 - 384 768 190 2.02
C42 - 238 476 100 2.38
C43 - 344 688 187 1.84
C44 - 211 422 139 1.52
C45 - 387 e 200 1.94
C46 - 233 466 109 2.14
C47 - 359 718 188 1.91
C48 - 214 428 144 1.49
C49 - 368 736 195 1.89
C total - 4148 8296 2185 1.90

An overview of some of the characteristics from the data that is used for testing.
The first column gives the name of the instance, for two sets of testing: B for the
training instances, C for the test instances. The other five columns show the number of
addresses, transports, tasks (twice the number of transports), routes and the transports
per route. The addresses are the customer locations for delivery, which are not stated
for the test instances C due to customer protection. The routes that are stated are the
number of vehicles that can be used for planning, where the vehicles have empty initial
routes.

Because there are many configurations tested, it would be time consuming to test them all
on both the training and test set. Most of these configurations run for hours. Therefore, the
training set is small, to perform many tests with different configurations. The initial tests
are not performed on the test set, but only the configurations per component are executed
on the test set. The number of iterations is less than for the training set, to speed up the
process of testing.

An overview of some of the variables for the instances is given in Table 7.1. The main
difference between the two sets of instances, that can be seen in this table, are the number
of transports that are planned per route. For the instances B this is a little over six, on
average, and for the instances C almost two.

Furthermore, note that the transports per route vary more for the instances B than
for the instances C. The difference between the instances B is caused by the size of the
transports, hence the number of pallets that are needed per transport. For B4, the amount

56 CHAPTER 7. TESTING APPROACH

of pallets is on average higher per transport than for the other two instances. This can be
seen from the number of transports per route, as the vehicles can load less transports per
vehicle for instance B4. Moreover, the transports per address are less for B4 than for the
other two instances of B.

All instances have one depot and multiple products are transported that come with their
own restrictions. Some products can not be transported together, other products need to
be delivered with a certain type of vehicle. Therefore, also several types of vehicles can
be used in the planning, with different capacity and characteristics. Hence, the fleet is
heterogeneous. All transports have time window restrictions for delivery.

Chapter 8

Experiments

This chapter describes the results of our experiments, according to the testing approach
described in the previous chapter. First of all, the original customer configurations are
reported on, to see whether all the transports are planned on the routes. An overview
is given in Section 8.1. Next, initial tests are performed and reported on in Section 8.2,
which will result in three initial configurations that will be used in the experiments per
component. Recall from the previous chapter the components that will be tuned:

e Initial Solution, Section 8.3,
e Removal Methods, Section 8.4,
e Recreate Methods, Section 8.5.

Each component that is tested on is reported in the same way: first the results of the
training instances B are given and discussed, followed by the results of the test instances
C. To avoid confusion, the colors in the figures for instances C are different than the colors
of instances B. A conclusion, based on both the training and test instances, is provided at
the end of each section that will help answering the subquestions of this thesis.

After the experiments on all the components are discussed, two configurations will be
constructed based on the results of the tests per component, in Section 8.6. Some additional
tests will be reported on, including tuning the number of transports that need to be removed.

Furthermore, recall from the previous chapter that the instances are not all consecu-
tively numbered, but the configurations are. Not all these configurations are mentioned
in this thesis, as they did not all provide useful outcomes. Therefore, the numbering of
configurations in tables might skip a few numbers. The configurations in this report and
the research are kept the same, to prevent confusion and to be able to re-use configurations
after reading this report.

All experiments were performed on a Windows 7 based PC, equipped with 4GB RAM
and two 2.60GHz processors.

8.1 Customer Configurations

As already explained in Chapter 7, we are not able to compare our results with the optimal
solution, because we do not know the optimal solution for these real customer cases. To
have an idea of the performance of the hybrid method that we test, the solutions constructed
with the original configuration from the customer are seen as upper bounds. That is, at
least we want to have lower KPIs than with this configuration, given in Table 8.1. In
previous versions of the ORTEC software, a different cost set was used at the customer.
The costs per hour, a KPI that is used for optimization, was set 100 times the real value, in
order to reduce the wait time in the solution found during optimization runs. The wait time
is included in the KPI hour, along with, for example, driving time and handling times at
the depot and location. In case the costs per hour are set higher, it will be more expensive

o7

58 CHAPTER 8. EXPERIMENTS

to wait, for example, at a location till a time window of delivering opens. With these
extra costs per hour, one can steer the optimization process in a direction where the wait
time is lower. However, we also test with the real costs per hour, included in Table 8.1,
to see whether the new version of the ORTEC software is able to decrease the wait time,
without altering the real costs. Furthermore, as the instances C are used as test instances,
and the main goal is to see whether the components behave in the same way for these
instances, we do not include the customer configurations for case C. From Table 8.1 can

Table 8.1: Original Customer Configuration (Average)

Configuration Case Trips Tasks Plan Distance Hours Driving Run
Costs (km) (h) Time Time
(€) (sec) (min:sec)
Original B1, 41 794 937,161 5576 185.50 340,510 02:47
Original B1 40 794 18,842 5476 187.32 337,600 04:20
Original B3. 52 790 1,054,746 6793 208.17 390,189 03:53
Original B3 50 790 23,612 6836 197.53 396,963 02:57
Original B4. 32 256 606,054 4155 119.49 248,476 00:32
Original B4 31 256 14,287 4073 117.49 247,793 00:28
Original All, 125 1840 865,987 5508 171.05 326,392 02:24
Original All 121 1840 18,914 5462 167.45 327,452 02:35

The small ¢ in the column ‘case’ is used as an indication of different configured cost sets. For cases with
the small ¢, the costs per hour are set 100 times the real costs per hour, in order to decrease the wait time
in the solution. The columns trips and tasks give the number of trips and tasks that are used and planned.
The plan costs, in euros, distance, in kilometers, hours and driving time, in seconds, are KPIs to indicate the
performance of the configuration. The last row shows the sum of all trips and tasks from the previous rows
and the average of all other KPIs.

be seen that the number of tasks, so twice the number of transports, that is planned with
a new cost set is the same as with the original configuration from the customer, denoted
with a small ¢ for the column ‘case’. Therefore, we are able to compare the solutions in a
fair way. With the new version of the software of ORTEC, we see that it no longer seems
to be useful to alther the cost set in order to reduce the wait time. When comparing the
different cost configurations for case B3, we see that the driving time increased, but the
total hours decreased. Hence, the wait time in the solution did decrease. For case B4, the
driving time decreased with around 11 minutes when the costs are set equal to the real
costs. However, the hours decreased by two. Therefore, we may conclude that the wait
time in this solution did decrease compared to the configuration with the higher cost set.
However, for Bl the hours did increase, whereas the driving time decreased. So indeed, we
may conclude that for this case, the wait time increases in case the costs per hour are set to
the real costs. Moreover, for all cases we see that the number of trips is less with the real
cost set. Therefore, we will continue to work with the real cost set instead of the original
cost set used for the customer.

8.2 Initial Testing

As mentioned in Chapter 7, initial tests are performed to see in what way the instances
react to the hybrid method. These initial tests are performed on instance B1. Note that
the results for the initial tests can not be used to draw conclusions on the methods and
numbers that are tested. Testing on one instance will not provide enough information
about the performance of the method. However, as explained in Chapter 7, these initial
tests are executed to have a starting point for our hybrid method that is not solely based on
intuition and the literature. After all initial tests are executed on B1, the most promising

8.2. INITIAL TESTING 59

configurations will also be tested on B3 and B4. With the conclusions that are drawn from
these tests, three configurations will be chosen that serve as starting points for our tuning
per component of the hybrid method. A few steps are followed to come up with an initial
configuration:

e Plan all transports. To be able to compare the configurations, the number of
transports that is planned per case needs to be the same. Otherwise, it is not ‘fair’
to compare the KPIs. For example, the total distance that is driven in the network
usually increases with the number of transports that are planned. To do so, we tested
three insertion methods: parallel cheapest insertion (PCI), parallel regret insertion
(PRI) and cheapest insertion (CI). For all insertion methods, four different estimators
are tested: driving time, wait time and costs, plan costs and distance. Initially, these
simple insertion methods were not able to plan the same number of transports as the
original customer configurations. Therefore, 100 iterations of local search, a 20pt,
are executed and the remaining transports are planned. The only methods that
eventually were able to plan the same number of transports as the original customer
configurations are PRI and PCI based on distance.

¢ Removal Methods. For the initial tests, five different removal methods are used:
related, random, worst, cluster random and cluster worst removal. These methods
remain fixed during the initial tests and are tuned during the tests per component.
These five methods are used with a roulette wheel selection. This choice is based on
the literature, a learning layer and multiple removal methods seems to provide good
configurations (Ropke & Pisinger, 2006Db).

e Recreate objective. The recreate methods are the same as with the construction
for the initial solution: PCI, PRI and CI. Again, four different estimators are tested:
driving time, wait time and costs, plan costs and distance. We found that reinserting
transports based on distance results in the lowest plan costs for the overall solution
for B1.

e Number of iterations. To get an idea on how many iterations may be used for
the hybrid method, several tests are performed. For a total of 12,000 iterations, the
software of ORTEC still performs good. The calculation time does not exceed 20
hours and the maximal physical memory is not exceeded. These 12,000 iterations
are split up into three parts, according to Ropke and Pisinger’s number of removals
(Pisinger & Ropke, 2007). They advise to remove a number of transports that lays
within [min{0.1n, 30}, min{0.4n, 60}, where n is the total number of transports in
the network. Because B1 has 397 transports to plan, we have a minimum of 30 and
a maximum of 60 transports that need to be removed. In the software that we use,
we are not able to take a random number within an interval and remove this random
number of transports. The number is a parameter that needs to be specified upfront.
Therefore, we start our tests with 30, 45 and 60 transports that need to be removed
during one run of the hybrid method. Each number is used for a predefined number
of iterations before the next amount is used. Because 12,000 iterations are required
in total, we test 16 x 250, 8 x 500, 4 x 1000 and 2 x 2000 iterations. For example,
with 16 x 250, the hybrid method removes 250 times 30 transports, followed by 250
times 45 and 250 times 60 transports. This results in 750 iterations for one loop over
the outer framework. A recursion of 16 over these 750 iterations results in a total of
12,000 iterations. From these tests, 2 x 2000 iterations came out as best option, with
the lowest plan costs for B1.

e Number of removals. Because Shaw (1997) advocates decreasing the number of
removals, opposed to Ropke and Pisinger (2006a), we also test 60, 45 and 30 transports
to be removed. However, this did not provide us with a solution with lower KPIs.
Furthermore, within ORD, the software of ORTEC, the number to be removed is
specified as the number of tasks. Therefore, to remove one transport, two tasks need
to be removed. Hence, we also test the double amount: 60, 90, 120 and 120, 90, 60.
The solutions found with both methods had higher KPIs than the one with 30, 45

60 CHAPTER 8. EXPERIMENTS

and 60 transports that had to be removed. Furthermore, the initial tests included a
wider range of removal iterations, namely: 30, 50, 70, 90, 110, 130 (and in reverse
order). The solution found with 30, ---, 130 was very close to the solution found
with 30, 45 and 60 transports to be removed.

e Local Search. After each step of removing transports and recreating the solution,
local search is included to improve the newly found solution. However, we only execute
the local search in case the newly found solution is at most 5% worse than the best
solution found so far. Hence, we set the threshold to 1.05 for executing the local
search. This local search involves 100 iterations of two local search methods: 20pt
and Move. Recall their definition from Chapter 5. We also tested with more local
search methods during each iteration. The results regarding the plan costs improved,
but the calculation time significantly increased (around a factor of six). Because
the configuration is tested thoroughly, we choose to only use the quick local search
methods 20pt and Move to control the running time.

Furthermore, tests were executed with a threshold of 1.01. However, the solutions
that were found with this threshold had higher KPIs, and thus a worse quality. More
diversification, with temporarily accepting new solutions, is included with a threshold
of 1.05, which helps the heuristic in the search for near-optimal solutions.

e Alternative Local Search. Instead of using local search to improve the newly
found solution, in case it is at most 5% worse than the best found solution so far, we
also tested with another round of removing and recreating the new found solution.
Hence, in case the newly found solution is within the threshold that is specified, 10
iterations of removing 30 tasks and recreating the solution takes place. This includes
a roulette wheel, where three removal methods are used (related, random and worst
removal) and the removed transports are reinserted with cheapest insertion (based on
distance). In case the newly found solution is within 1% of the best found solution
so far, local search is included (20pt, move).

The solution found with this method has slightly lower KPIs than the one that was
found with ‘normal’ local search. Especially the hours did decrease.

These initial tests are only performed on one case. The most promising and interesting
configurations are tested on the other two cases as well. The choice for this subset of
configurations is based on the literature and on conclusions from the tests performed on
instance B1. These tests are executed to see whether all transports are planned, and to
get an idea of the performance of these configurations on other instances. An overview of
which components are included in these configurations is given in Table 8.2. Table 8.3
gives an overview of the results of the configurations that are tested on the three training
instances. First of all, note that the routes and tasks are summed up over all instances, all
other KPIs are averages. We can motivate summing up the routes and tasks by the fact
that averages may result in fractional routes or tasks. This is the result of having several
instances.

From the first three rows in the table can be seen that only PRI based on distance is able
to plan the same number of transports as the original customer configurations. Furthermore,
adding local search to improve the new found solution after one removal and one recreate
step improves all KPIs. To see this, compare configuration 78, with all configurations up
to 109,. It is striking that the total number of routes that is used for the three cases does
not decrease when local search is used. This indicates that the planning is more effective
when it comes to which orders are planned on which routes. Especially the decrease in
hours stands out, which is more than 7.5% for all other configurations compared to the
configuration without local search.

Furthermore, we tested with several numbers of transports that need to be removed,
which can be seen in the third column of Table 8.2. Not only the amount to be removed
varies, but also whether more or less number of transports are removed during the search.
For our research, we want to use two different configurations when it comes to the amount to
remove, but also whether this is in a increasing or decreasing fashion. Considering the results

8.2. INITIAL TESTING 61

Table 8.2: Configurations of Initial Tests

Configuration Initial Solution =~ Removals Local Search Acceptance
Criterion

69 PCI (d) 30, 45, 60 - -

72 PRI (d) 30, 45, 60 - -

73 CI (d) 30, 45, 60 - -

78a PRI (d) 30, 45, 60 - -

86a. PRI (d) 60, 90, 120 20pt/Move Th 1.05

86a, PRI (d) 120, 90, 60 20pt/Move Th 1.05

93a PRI (d) 30, 45, 60 20pt/Move Th 1.05

93a, PRI (d) 60, 45, 30 20pt/Move Th 1.05

97a PRI (d) 30, 50, 70, 90, 20pt/Move Th 1.05
110, 130

109a PRI (d) 130, 110, 90, 20pt/Move Th 1.05
70, 50, 30

117a PRI (d) 30, 45, 60 Alternative Th 1.05

122a PRI (d) 30, 45, 60 Alternative Th 1.01

An overview of the configurations that are executed for the initial tests. From left to right: the configu-

ration name, the construction for the initial method with the objective to insert the transports (distance):
parallel cheapest insertion (PCI), parallel regret insertion (PRI) or cheapest insertion (CI), the number
of transports that are removed, the local search method and the threshold that is used for either local
search or the alternative local search as explained in the initial tests. Furthermore, between brackets in
the column ‘Initial Solution’ is the estimator that is used to insert transports. For these configurations,
distance (d) is used. Also, in the column ‘Local Search’, alternative is explained in the initial testing
steps.

in Table 8.3, we see that configuration 109a found on average the solution with the lowest
plan costs, distance and driving time. The hours are slightly higher than with configuration
86a. This can be explained by the diversification in the search. This configuration has less
iterations per fixed number of transports that are removed, before moving on to the next
number. Therefore, more diversification is included than for example with 30, 40 and 60
removals. Hence, 109a will be the configuration that is chosen for the tests per component
where the number of transports that are removed are of decreasing order.

We also need a configuration that has an increasing order of transports that are removed
during the search, to keep the results of the next experiments general. Therefore, we can
either choose configuration 86a or 93a for the tests that will follow. To make sure the tests
that are performed per component are as general as possible, we chose to work with the
configuration that results in slightly higher KPIs. Hence, we will use configuration 93a as
initial framework, as the combination of the components that are chosen at the end of this
research need to fit in configurations that produce slightly higher KPIs as well.

The last configuration that is included as starting point for the experiments per com-
ponent of the hybrid method, will be 122a from the last row of Table 8.3. We chose to
use this configuration, because of the alternative way of local search. Instead of simple im-
provement heuristics such as 20pt and Move, we include extra diversification by applying
an extra set of fast ruin and recreate iterations. As already explained, 30 iterations are
used: 10 iterations per three removal methods, where only 30 tasks are removed. As ex-
pected, the computing time for this configuration almost doubled with respect to the other
configurations that include local search. To summarize, the configurations that are used as
starting point for the tests per component are 93a, 109a and 122a. From now on, we will
refer to them as configurations 93, 109 and 122 respectively. Note that the upcoming tests
show results that are averages over these three configurations. As explained in Chapter
7, the performance of the components can be influenced by the rest of the configuration.
Therefore, the performance of the components is measured and evaluated as average over

62 CHAPTER 8. EXPERIMENTS

Table 8.3: Results Configurations of Initial Testing (Average)

Configuration Trips Tasks Plan Distance Hours Driving Run
Costs (km) (h) Time Time
(€) (sec) (h:min)
69 117 1814 19,493 5562 178.83 337,297 4:48
72 121 1840 19,559 5644 176.04 338,997 5:35
73 119 1826 19,752 5697 179.74 344,925 4:18
78a 122 1840 19,534 5520 177.42 331,900 2:29
86a 122 1840 18,372 5213 161.03 313,833 3:17
86a, 123 1840 18,484 5160 163.54 313,013 2:31
93a 123 1840 18,567 5194 164.26 313,582 2:09
93a, 123 1840 18,481 5163 163.43 313,540 2:26
97a 122 1840 18,398 5218 161.48 314,842 2:20
109a 122 1840 18,313 5134 161.26 311,244 2:34
117a 122 1840 18,393 5164 162.18 311,662 4:18
122a 122 1840 18,340 5138 161.57 310,333 4:30

The first column contains the number of the configuration, or template, that is executed. These
names correspond to the configurations in Table 8.2. Furthermore, the trips and tasks are summed
up over all three training instances, which in total should lead to 1840 tasks that are planned.
The other columns contain KPI values to indicate the performance of the configurations, which
are averages over all training instances. There are three different components in this table, divided
by horizontal lines. From top to bottom: three configurations for initial tests on the construction
method for the initial solution, seven configurations for tests on the number of tasks that need to
be removed and the local search method, and two configurations with an alternative local search
method.

the three different configurations of ALNS.

8.3 Initial Solution

The first component of our hybrid method that is tested, is the construction of the initial
solution. From the initial tests that were described in the previous section, we found that for
a simple construction method, parallel regret insertion based on distance plans the same
number of transports are with the original customer configuration, with the lowest plan
costs. However, we have more influence on the construction of the routes with sequential
and parallel insertion, where we can order the transports for insertion. These commonly
known insertion methods from the literature, have many variants. For example, seeds
may be chosen in different ways, so the initialization of the routes can be done in several
ways. Therefore, we tested three different sequential insertion methods and two parallel
insertion methods. Examples of one sequential insertion algorithm and one parallel insertion
algorithm are given in Algorithms 5 and 6 respectively. The three sequential insertion
algorithms only vary in line 3, where the sorting keys are used, and the two parallel insertion
algorithms vary in line 5. The delivery tasks are sorted in different ways, with the help of
sorting keys, to guide the planning. For the five algorithms, the following sorting is used
for the tasks

o farthest away from the depot with the largest quantity for pickup and delivery (145),

e farthest away from the depot with the latest delivery time window possibility and the
biggest quantity for pickup and delivery (145a),

e the latest delivery time window possibility for the task that is farthest away from the
depot with the biggest quantity for pickup and delivery (145b),

e closest to the already planned addresses with the biggest quantity for pickup and
delivery (146), and

8.3. INITIAL SOLUTION 63

o closest to the already planned addresses (146a).

Algorithm 5: Sequential Insertion (VRPO specific)

begin

1 Sort all routes (vehicles) based on the capacity, in decreasing order

2 for All routes (vehicles) do

3 Order the delivery tasks based on the sorting keys, construct a list .S

4 Plan a seed tasks, with cheapest insertion, that is the first entry in S

5 Order the delivery tasks based on the smallest distance to the address of the
seed task, construct a list L

6 Plan tasks, with cheapest insertion, starting with the first entry in L, till the
route is full

end for
7 Perform local search to improve the solution
8 Try to insert unplanned tasks

end

Algorithm 6: Parallel Insertion (VRPO specific)

begin
Sort all routes (vehicles) based on the capacity, in decreasing order
2 Sort all delivery tasks based on the latest delivery time window possibility for the
transport with the biggest quantity for pickup and delivery, construct a list .S
3 for All routes (vehicles) do
Plan a seed tasks, with cheapest insertion, that is the first entry in S
end for
5 Order the delivery tasks based on the sorting keys, construct a list L
for All tasks in L do
7 Plan tasks with parallel regret insertion
end for
Perform local search to improve the solution
9 Try to insert unplanned tasks
end

From these tests with several construction methods, we choose one sequential and one

parallel insertion method to test with in the next components. The average results over all
cases is given in Table 8.4.
Looking at the results of tests on the construction method for the initial solution in Table
8.4, we see that the number of transports that is planned is more than what was planned
with the original customer configurations. Furthermore, with PRI, based on distance, we
are not able to plan more transports, as we have seen in the results in Table 8.3. Hence,
constructing the routes where we influence the order in which the transports are inserted
is needed to plan all transports that are given in the network.

For further testing, we will choose one sequential and one parallel insertion method.
First consider the parallel insertion methods, for which the results are shown in the last
two rows of Table 8.4. Unfortunately, not all transports are planned with configuration
146, hence 146a will be used for further testing. The seeds for the routes are the same
for both configurations, hence the difference is in what way the remaining transports are
planned. When the transports that have the biggest quantity for pickup and delivery are
planned first, after the seeds, the routes will become full due to the capacity constraints of
the vehicles quickly. It may happen that smaller transports that are very close to the seed

64

CHAPTER 8. EXPERIMENTS

Table 8.4: Results Initial Solution, without ALNS (Average)

Configuration Initial Trips Tasks Plan Distance Hours Driving Run

Solution Costs (km) (h) Time Time

(€) (sec) (min:sec)

145 ST 120 1844 21,295 5968 204.22 354,467 05:17
145a ST 122 1844 20,706 5816 194.26 345,338 06:38
145b SI 120 1844 21,325 5972 204.18 355,772 07:14
146 PI 133 1842 20,090 5570 179.93 330,672 03:50
146a PI 133 1844 20,236 5541 183.08 331,159 02:28

Each row represents the results of a configuration that is tested for the construction of the initial solution,
without any removing and recreating of the solution. Tests are executed on three training instances, the average
results per configuration are shown. From left to right: the configuration that is used to obtain the result; the
method for the initial solution, either sequential insertion (SI) or parallel insertion (PI); the sum of the trips
that are used; the sum of the tasks that are planned; the average of other KPIs that are used to indicate the

performance of the configuration.

of the routes are kept unplanned till the end of the search. In that case, detours are needed
to plan these transports with smaller delivery quantities, which might lead to transports
that are left unplanned.

Next, consider the sequential insertion methods that are reported on in Table 8.4. All
KPIs for configuration 145a are the lowest, expect for the number of routes that are used.
For this configuration, the routes are built backwards, hence the transports that have a
delivery that is farthest away from the depot with the latest delivery time window possibility
are inserted first. However, we want to test whether the quality of the initial solution is
important for the quality of the other components, as this is not mentioned in the literature
that is studied for this research. Therefore, we choose to use a sequential insertion method
with KPIs that are further from the KPIs of the parallel insertion configuration we chose,
which results in using configuration 145 for further testing. Configuration 145 produces a
solution with slightly better KPIs than configuration 145b.

Furthermore, note that the KPIs for the solution that is produced with PI are lower
than the solutions that are produced with SI. The hours decreased the most, with 5.6% with
respect to the best configuration for SI. This is caused by the extra routes that are used,
around 9% more with respect to configuration 145a. Because the number of transports that
are planned is the same, the routes have, on average, less transports to deliver. Therefore,
the routes are built more efficient.

To summarize, further testing will be done with two construction methods for the initial
solution:

e SI, where the transports that are farthest away from the depot with the largest quan-
tity for delivery are planned as seed, followed by the transports that are closest to the
already planned address.

e PI, where the transports that have the latest delivery time window possibility with
the biggest quantity for delivering are planned as seeds, followed by the transports
that are closest to the already planned address.

Training Instances B

The previous section provided us with two different configurations for constructing an ini-
tial solution: sequential insertion (SI) and parallel insertion (PI). To provide a complete
overview, the results of tests that use parallel regret insertion (PRI) are also included. The
average results over all training instances, instances B, is given in Table 8.5. Note that the
average is taken over three instances and three different configurations (93, 109 and 122),

8.3. INITIAL SOLUTION 65

hence this is the average over nine different configuration and instance combinations. The
routes, or trips, and tasks are summations over all these cases.

Table 8.5: Results Initial Solution, with ALNS (Average)

Initial Trips Tasks Plan Distance Hours Driving Run
Solution Costs (km) (h) Time Time
(€) (sec) (h:min)
SI 363 5532 18,452 5193 163.16 314,578 3:27
PI 372 5532 18,399 5165 160.72 311,563 3:37
PRI 367 5520 18,407 5155 162.36 311,720 3:04

The average results for the tests on the construction for the initial solution, executed on the
training instances B. The average is taken over three training instances in combination with
three different configurations. This results in nine cases, where the maximum number of tasks
to plan is equal to (3x 794)+(3x 794)+ (3 x256) = 5532. The first column contains information
about the method used for constructing the initial solution: sequential insertion (SI), parallel
insertion (PI) and parallel regret insertion (PRI). The columns trips and tasks show the sum
of all trips and tasks of the nine cases. The last five columns represent all other KPIs that are
used to indicate the performance of the configurations.

We see that not all transports are planned with PRI as construction method for the initial
solution, what was already mentioned in the previous section. This might be the result of
the simplicity of the insertion method. Furthermore, because there is not a seed transport
inserted in each route, the regret value will be equal for inserting a transport in any empty
route. Therefore, randomness is involved with initializing the routes. However, when
looking at Figure 8.1 we see that the plan costs for PRI are not even the smallest. Hence,
with less transports being planned, PRI is not the best performing construction method for
the initial solution, based on plan costs only.

Furthermore, we notice that all KPIs for SI are slightly worse than for PI, even though
PI uses more routes in its solution. Using more routes may imply less detours, which might
explain the decrease in distance, hour and driving time. For PI all routes are initialized with
a seed transport, after which the transports may be moved to a better route. This can be
an explanation for the increase in routes compared to SI, where the routes are constructed
one by one.

Although there are some differences in performance when using different construction
methods for the initial solution, these differences are very small. The decrease of the plan
costs of PI with respect to SI is around 0.28%. However, when considering the other KPTs,
especially the hours decreased for PI with respect to SI, namely around 1.49%. This comes
with the price of an increase of used routes with 2.48%. Recall that for SI and PI without
removing and recreating parts of the solution the differences were bigger: the plan costs for
ST were almost 5% higher than the plan costs for PI. This might indicate that removing
and recreating parts of the solution will partly make up for the transports that were not
inserted in the cheapest place for the initial solution.

Recall that in the literature, the construction of an initial feasible solution is not dis-
cussed, as far as we have observed. Most articles assume that such a solution is already
known and can be used as input for their algorithms. The minor differences in KPIs when
using different construction methods may be the reason for this.

Test Instances C

Tests on the initial solution are executed for the test instances as well. The results are shown
in Table 8.6 for the construction method for the initial solution, and in Table 8.7 including
ALNS. Note that all transports are planned, because all tasks are planned, with all three
initial solution. Regarding the plan costs only, we see in Table 8.6 that SI performs best,
followed by PI and PRI. The gap between the plan costs for SI and PI is small, whereas the
plan costs for PRI are higher. Considering the other KPIs as well, we notice that SI and

66 CHAPTER 8. EXPERIMENTS

.103

18.4

18.3

Average Plan Costs (€)

SI PI PRI
Initial Solution Method

Figure 8.1: The average plan costs, over three configurations and three
instances, for three configurations with a different construction method for the
initial solution: sequential insertion (SI), parallel insertion (PI) and parallel
regret insertion (PRI). The construction of the initial solution is followed by
12,000 iterations of removing and recreating the solution. Note that the y axis

is in thousands (euros) and the axis value does not start at zero.

PI have similar values, where SI performs slightly better. PRI produces by far the worst
initial solution, although the number of routes that is used for PRI is the same as for PIL.
This shows the strength of PI as initial solution, because the routes are built in a more
clever way than with PRI.

However, when ALNS is included, the results are remarkable. Table 8.7 shows that,
regarding the plan costs, constructing the initial solution with PRI and applying ALNS
performs the best. Although the gaps for the plan costs between the different initial solution
methods, with ALNS, are small, we can notice an influence of the method for constructing
the initial solution. Comparing the tables with and without ALNS applied after the initial
solution is built, we see that an initial solution with the highest plan costs, PRI, has the
lowest plan costs after ALNS is executed. The decrease for all KPIs when including ALNS
is around 2% for SI and PI and around 19% for PRI. From this we can conclude that
ALNS is able to find more improvements in case the initial solution is further away from
the optimal solution.

Furthermore, we see that PRI uses less routes to plan all transports and the total
distance is less than for SI and PI. Nevertheless, the total hours are slightly higher with
PRI than ST and PI, from which we can conclude that the wait time is higher for PRI. This
can be explained by the fact that with less routes, and the same number of transports, the
number of transports per route is higher for PRI. The wait time can be explained with the
time window restrictions on the transports. For example, route A starts at 6 am and has
its first delivery at 06:30. Including an extra transport with a time window delivery from
4 till 5 am, causes the start time of the route to be scheduled earlier. The first delivery
will move to be the second delivery in the route. After delivering the first transport, a wait
time will be included till the time window of the second delivery opens.

Conclusion

Taking all performance results into account, PRI will no longer be included in the upcoming
tests for the other components of the hybrid method. This is a consequence of the transports
that were left unplanned for some of the test instances. We will include both SI and PI
as construction method for the initial solution, resulting in six different configurations for
the next components that are tested in combination with the configurations 93, 109 and
122. Regarding all KPIs, PI performs best as construction method for the initial solution in
combination with ALNS. Note that the difference in performance between SI and PI is very
small, although the difference in performance was bigger without removing and recreating
parts of the solution for some of the KPIs. Furthermore, for the test instances, we can

8.4. REMOVAL METHODS 67

Table 8.6: Results Initial Solution C, without ALNS (Average)

Initial Trips Tasks Plan Distance Hours Driving Run
Solution Costs (miles) (h) Time Time

(©) (sec) (min:sec)
SI 2226 8296 5,669,225 52,360 2007.13 3,759,494 01:42
PI 2231 8296 5,678,027 52,436 2012.96 3,763,333 01:05
PRI 2231 8296 6,895,190 63,879 2377.02 4,570,004 00:42

The average results for the tests on the construction method for the initial solution, without
removing and reinserting transports, for the test instances C. The averages are taken over all 14
instances, which results in a total sum of maximum to plan tasks of 8296. Each row represents
the results for one construction methods: sequential insertion (SI), parallel insertion (PI) and
parallel regret insertion (PRI).

Table 8.7: Results Initial Solution C, with ALNS (Average)

Initial Trips Tasks Plan Distance Hours Driving Run
Solution Costs (miles) (h) Time Time

(€) (sec) (min:sec)
SI 6561 24,888 5,558,084 51,344 1962.10 3,692,100 48:36
PI 6556 24,888 5,557,866 51,327 1969.87 3,690,645 49:07
PRI 6548 24,888 5,552,740 51,276 1970.00 3,686,559 52:38

Each row shows the average results of a construction method that is used for the initial solution,

followed by removing and reinserting transports, for the test instances C. The average is taken
over 14 instances and three initial frameworks for ALNS, which results in a total of 3 x 8296 =
24,888 tasks that need to be planned. Note that these configurations included a total of 1200
iterations of ruining and recreating the solution.

conclude that an initial solution that is of poor quality can produce high quality solutions
after ALNS is applied. Although this is not seen in the training instances, it is worth
mentioning.

8.4 Removal Methods

The second component of the hybrid method that will be tested is the removal method.
From the literature we have seen that there are several ways of removing a part of a
feasible solution, after which it is reconstructed again. Shaw (1997) uses only related
removal, whereas Ropke and Pisinger (2006b) use multiple removal methods within their
ALNS method. For ORTEC, there are six different removal methods that can be executed:
related (SR), random (RR), worst (WR), cluster random (CRR), cluster worst (CWR) and
trip removal (TR), as described in Section 6.2. There are many configurations that can
be tested, because there are many combinations of the removal methods. Furthermore,
inspired by Ropke and Pisinger (2006b), the learning layer is tested as well in the form of
a roulette wheel, as described in Section 4.3. Hence, the following configurations will be
tested

e three removal methods (related, random and worst removal) with and without roulette
wheel, denoted by 3RW and 3noRW,

e five removal methods (cluster random and cluster worst removal are added) with and
without roulette wheel, denoted by 5RW and 5noRW,

e six removal methods (trip removal is added) with roulette wheel, denoted by 6RW,

o five single removal methods (related, random, worst, cluster random and cluster worst
removal) are tested.

68 CHAPTER 8. EXPERIMENTS

As already mentioned, six configurations are used as starting point for the tests on the
removal methods, three configurations from the initial tests, combined with two different
construction methods for the initial solution. Note that this will result in six different
configurations for one removal method that is tested. Therefore, when the average KPIs
are reported for a removal method, this is the average taken over 18 configurations: six
different configurations for three instances.

8.4.1 Multiple Removal Methods

First of all, the combination of several removal methods is tested, the first three bullets
that are described in the introduction. As already mentioned, this can be done with and
without a learning layer, or roulette wheel. Recall from Section 6.2, that Ropke and Pisinger
(2006b) state that the search benefits from the roulette wheel and the configurations with
more removal methods in the roulette wheel find solutions with lower objective function
values.

Training Instances B

The average results over all six configurations and three training instances are given in
Table 8.8. For comparison between methods, the plan costs are taken as main objective,
these are visualized in Figure 8.2, for all cases individually and for the average over all
cases. Note that the trips, or routes, and tasks are the summation of all trips and tasks of
18 configuration and case combinations.

Table 8.8: Results Multiple Removal Methods (Average)

Removal Trips Tasks Plan Distance Hours Driving Run
Method Costs (km) (h) Time Time
(€) (sec) (h:min)
3RW 735 11,064 18,442 5202 161.91 314,047 3:24
3noRW 741 11,064 18,749 5251 166.14 318,506 2:35
SRW 735 11,064 18,426 5179 161.94 313,070 3:32
5noRW 739 11,064 18,517 5202 162.84 315,881 2:39
6RW 731 11,064 18,558 5200 164.68 313,987 3:07

This table shows the results of tests on five different removal methods, for the training instances
B. All methods combine a number of single removal methods, three, five or six, with or without a
learning layer (or roulette wheel). Hence, three methods with a learning layer (3RW), three methods
without a learning layer (3noRW), five methods with a learning layer (5RW), five methods withouth
a learning layer (5n0RW) and six methods with a learning layer (6RW). The method that is used in
the configuration is stored in the first column. The second and third column are the sum of the trips
that are used and the tasks that are planned, respectively. The maximum number of tasks to plan is
(6 x 794) + (6 x 794) + (6 x 256) = 11,064. The other five columns show results of the other KPIs.

Note that the number of transports, which is the number of tasks divided by two, is the
same for all configurations, hence the solutions for the configurations can be compared.
Pisinger and Ropke (2007) already concluded that for their test instances, more removal
methods combined performs better than having less removal methods combined. This is in
line with our results when comparing plan costs, as can be seen in Figure 8.2d. However, the
difference between 3RW and 5RW is very small, which can also be seen in Table 8.8. Ropke
and Pisinger also mention that the configuration with more removal methods benefits from
the roulette wheel that is included. Again, this is in line with the results of our experiments.
However, the difference in plan costs is very small for 5RW and 5noRW, less than 0.5%.
From Table 8.8 can be seen that all KPIs are around 0.5% better when using a roulette
wheel. Only the difference in driving time is slightly bigger, namely 0.9%.

Looking at Figure 8.2d it stands out that the difference between 3RW and 3noRW is
quite large. Unfortunately, Ropke and Pisinger do not test a combination of less removal

8.4. REMOVAL METHODS 69

methods without a learning layer, hence we can not compare this with their results. When
looking at Table 8.8, one can see that the large difference in plan costs is mainly caused
by the difference in hours, which is around 2.5%. The bigger difference between 3RW and
3noRW, with respect to 5RW and 5noRW, might be explained by the fact that with five re-
moval methods more diversification is included. The solutions found without roulette wheel
are already closer to the optimal solution than with 3noRW, hence finding improvements
with a roulette wheel will be harder.

103 103
/QE 18«6 1 ’QIB\ 236 -
{% 18.4 - E
o) S 23.4 -
< 182- <
= o
A~ 18.0 A 23.2 A
3RW 3noRW 5RW 5noRW 6RW 3RW 3noRW 5RW 5noRW 6RW
Removal Method Removal Method
(a) The average plan costs (in euros) per removal (b) The average plan costs (in euros) per removal
method for instance B1. method for instance B3.
102 102
) 18.8)
¥ 140 ¥
n v 18.6 -
% %
o) o)
< < 18.4
5 138 g
Al A
18.2 ~
3RW 3noRW 5RW 5noRW 6RW 3RW 3noRW 5RW 5noRW 6RW
Removal Method Removal Method
(C) The average plan costs (in euros) per removal (d) The average plan costs (in euros) per removal
method for instance B4. method.

Figure 8.2: Four plots of the average plan costs (in euros) per removal method that is tested.
The tests are executed on instance B1, B3 and B4. The average over all instances is also plotted.
Five removal methods are shown: three removal methods with and without learning layer, 3RW
and 3noRW respectively; five removal methods with and without learning layer, 5RW and 5noRW
respectively; six removal methods, 6RW. Note that the y axis is in thousands (euros) and the values

do not start at zero.

To have more information about the removal methods, graphs are plotted for each training
instance in Figure 8.2 a, b and c. As for B1 and B3, they show the same results as mentioned
for the average values. Considering Figure 8.2c, the performance of the removal methods
is different. It appears to be that for this smaller case with less transports to plan, the
influence of the removal method is less than for the larger cases B1 and B3. The differences
in plan costs are very small and especially the minor difference between methods with and
without learning layer stands out. Ropke and Pisinger (2006b) mention that for smaller
cases the difference between using configurations with several removal methods and with
only one removal method, is very small. This might also explain the minor differences in
what removal strategy is used in our results. For smaller instances, it might be the case
that improvements are found no matter what method is used for removing and recreating,
as there are less options for moving transports around in the planning. However, it might
also be the case that the solutions that are found are already close to the optimal solution
and that it is hard for this instance to find more improvements. Unfortunately, we can not
compare the gaps between the solutions found with the removal strategies and the optimal
solution, as this solution is not known. It would be interesting to tests more on small and

70 CHAPTER 8. EXPERIMENTS

103 103

0) 18.6 P 23.6

£ 184+ &

<} S 234 -

< 182 ©

2 2

A 18.0 A 23.24

3RW 3noRW 5RW 5noRW 6RW 3RW 3noRW 5RW 5noRW 6RW
Removal Method Removal Method
(a) The average plan costs (in euros) per removal (b) The average plan costs (in euros) per removal
method for instance B1. method for instance B3.
103 103

—~ N —~ 18.8

9 14.0 ®

Z £ 18.6 1

Q 13.8 Q

o © 184

= =

= =

A, 13.6 A 18.2

3RW 3noRW 5RW 5noRW 6RW 3RW 3noRW 5RW 5noRW 6RW
Removal Method Removal Method

(C) The average plan costs (in euros) per removal (d) The average plan costs (in euros) per removal
method for instance B4. method.

Figure 8.3: The average plan costs (in euros) for three instances and the average over all
instances. The average is taken over three configurations and is split up for two construction
methods for the initial solution: sequential insertion (SI) and parallel insertion (PI). Note that the

y axis is in thousands (euros) and the values do not start at zero.

large instances to see the difference in performance.

Furthermore, not much can be concluded on 6RW. It seems that for these instances the
difference between using five removal methods and six removal methods is not very big.
Although the number of routes that are used with 6RW are less than with 5RW, the KPIs
are slightly higher. This indicates that the planning found with 5RW is more efficient.

Note that Table 8.8 and Figures 8.2 show averages that include SI and PI as construction
method for the initial solution. When we split this average, it may be concluded that the
performance of certain removal methods are depending on the construction method for the
initial solution. Consider Figure 8.3. This Figure includes plots for all instances individually,
but also the average over all instances are shown in Figure 8.3d. The largest difference can
be seen for 5noRW and 6RW, they seem to perform differently in case another construction
method for the initial solution is used. With 6RW also all transports on randomly chosen
routes are removed with trip removal. It seems to be case specific, whether the way the
routs are constructed influence this 6RW removal strategy.

Test Instances C

The tests regarding removal methods are also executed on the training instances C. Looking
at Figure 8.4a we see that more removal methods in a roulette wheel provides solutions
with slightly lower plan costs than less removal methods in a roulette wheel. Although the
differences are very small, the plan costs for 5RW are 0.05% better than for 3RW, this is in
line with the findings of Ropke and Pisinger. Furthermore, the gap in plan costs between
removal methods with and without a roulette wheel seems remarkable. The differences are
again very small: using a roulette wheel with three removal methods decreases the plan

8.4. REMOVAL METHODS 71

costs with 0.30%, for five removal methods the decrease is 0.43%. Considering the other
KPIs in Table 8.9, we see roughly the same decrease in percentages. Even though the gaps
are small, this is in line with the results for our training instances B.

Recall from Section 6.2 that Azi et al. (2010) use removals on three levels, including on
route level. This is also included in 6RW, where trip removal is included as well. Although
the training instances B did not seem to benefit from this extra removal method, 6RW
performs slightly better than 5RW for the test instances C. From this we can conclude that
the influence of adding an extra removal method in a roulette wheel can be case specific.

Furthermore, note that the computing time for methods with roulette wheel is longer
than for the methods without roulette wheel, more than a factor 2. The only difference
is keeping track of the scores and choosing a removal method in the next iteration based
on these scores. Further research on this is needed, because it seems odd that the extra
computing time is this long.

We also split the results into methods with different constructions for the initial solu-
tion in Figure 8.4b. However, the initial solutions does not have a big influence on the
performance of these methods.

Table 8.9: Results Multiple Removal Methods C (Average)

Removal Trips Tasks Plan Distance Hours Driving Run
Method Costs (miles) (h) Time Time
(€) (sec) (min:sec)

3RW 13,108 49,776 5,559,884 51,353 1966.81 3,692,631 51:49
3noRW 13,150 49,776 5,576,714 51,508 1973.22 3,703,380 22:44

5RW 13,117 49,776 5,657,974 51,335 1965.99 3,691,372 48:51
5noRW 13,151 49,776 5,581,700 51,560 1972.14 3,706,623 22:04
6RW 13,107 49,776 5,557,212 51,323 1968.51 3,690,669 47:35

Each row shows the results of removal strategies with multiple removal methods, with and
without roulette wheel, for the test instances C. The average is taken over all 14 instances in
combination with six configurations: two different construction methods for the initial solution
(ST and PI) and three initial frameworks (93, 109 and 122). Therefore, the total number of tasks
that need to be planned is equal to 6 x 8296 = 49, 776.

106 -108

—~ 5.58 — 5.58 1 Basilp1

¥ ¥

n 2

% 7

3 S

o 5.56 ~ 5.56 -

= =

Ay A

3RW 3noRW 5RW 5noRW 6RW 3RW 3noRW 5RW 5n1oRW 6RW
Removal Method Removal Method

(a) The average plan costs (in euros), on the y (b) The average plan costs (in euros) per removal
axis, per removal method for instances C, which method, split into the two construction methods
are show on the x axis. for the initial solution, for instances C.

Figure 8.4: The average plan costs (in euros) for the removal strategies with multiple removal
methods, with and without learning layer (or roulette wheel), for the instances C. Note that the y

axis is in millions and the values do not start at zero.

72 CHAPTER 8. EXPERIMENTS

Conclusion

From the tests that are performed on the training and test instances, we can conclude that
the ALNS configuration benefits from a roulette wheel. This is in line with the results of
Ropke and Pisinger. Although the difference in KPIs are very small, we can conclude that
adding more removal methods in a roulette wheel causes more diversification, which makes
it possible to find better local minima during the search. Overall, 5RW can be recommended
as removal strategy, where the construction method that is used for the initial solution does
not seem to have a big influence on the final solution quality. There are some differences
for the two construction methods that are used, but they are small and instance specific.

8.4.2 Single Removal Methods

Besides using several removal methods in one search, with or without roulette wheel, we
also test the ALNS with a single removal method. To do so, we still include three different
recreate methods, which implies that the metaheuristic still is a ALNS metaheuristic. The
experiments with single removal methods are included in this research, to test the added
value of using more removal methods during the search. Most of all, it is tested to be
able to provide recommendations on what removal method to use in case a configuration
is required that is easy to implement and understand. Therefore, we chose the use less
iterations for the tests on this component.

Training Instances B

There are articles in the literature that only use one removal method for a predefined
number of iterations, such as Shaw (1997). Ropke and Pisinger also test SR, RR and WR
as single removal methods. Recall from Section 6.2 that SR provided the best solutions for
their test instances, followed by WR and RR. Considering Figure 8.5, we indeed see that SR
performs best when looking at the plan costs. Note that, again, these are the average plan
costs over three training instances in combination with three different configurations for the
rest of the framework. Looking at Table 8.10, the gap between SR and the other methods
is big when considering the KPI hour. The difference in hour ranges between 1.4% and
10.4%. Furthermore, the number of routes, or trips, that is needed to plan all transports is
around 2% less than the routes that are needed for the other removal methods.

The second and third best removal methods, when considering the average plan costs,
are CRR and RR respectively. Removing transports with the use of clusters seems to
be beneficial. The difference in plan costs between CRR and SR is small, which may be
explained by the configuration of the two methods. For SR, a random seed is chosen to
be removed, followed by a predefined number of transports in the neighborhood, where
neighborhood is defined with distance. Within CRR, a predefined number of transports is
randomly chosen as seed, equal to the number of clusters, followed by a predefined number
of transports in the neighborhood, again based on distance. Therefore, CRR can be seen as
multiple SRs executed at the same time. It would be interesting to plot the improvements
that are found against the number of iterations, to see whether RR performs better when
the number of removals is higher.

Furthermore, WR and CWR have the highest plan costs and perform worse than all
other removal methods. However, this may be the result of the configuration of these
methods. For both methods, the most expensive transports are removed from the solution,
where ‘most expensive’ can be specified within the configuration. However, there is no
randomness included. Therefore, it may happen that the same transports remain the ‘most
expensive’ transports in the solution and the same transports will be removed over and
over again. Because local search is included, it may happen that at some point this loop
of removing the same transports is broken, but local search is only performed when the
solution is below a certain threshold. Note that the computing time for WR and CWR is
less than for the other methods. This is due to the fact that solutions that are found during
the search are stored in the software of ORTEC. Therefore, in case the same transports

8.4. REMOVAL METHODS

73

are removed, the system recognizes the solution and it will not try to reinsert the removed
transports. To obtain more information about the importance of the construction method

Table 8.10: Results Single Removal Methods (Average)

Removal Trips Tasks Plan Distance Hours Driving Run
Method Costs (km) (h) Time Time
(€) (sec) (h:min)
SR 737 11,064 18,845 5284 167.81 319,696 2:51
RR 756 11,064 19,671 5452 178.59 327,739 2:28
WR 753 11,064 20,183 5542 187.28 331,374 1:44
CRR 750 11,064 19,054 5306 170.19 319,846 2:31
CWR 754 11,064 20,158 5532 186.89 330,500 1:43

The first column stores the single removal method that is used, for the training instances B: related
removal (SR), random removal (RR), worst removal (WR), cluster random removal (CRR) and cluster
worst removal (CWR). The second and third column show the number of trips that is needed to plan
the number of tasks. The maximum number of tasks to plan is (6 X 794)+ (6 X 794)+ (6 X 256) = 11, 064.
The other five columns show results of the other KPIs that are used to measure the performance of the
configurations. Note that for these tests only 4000 iterations of removing and recreating the solution
are executed, instead of the 12,000 iterations for other configurations. Therefore, we are not able to
comparing these results to other configurations.

—~

Average Plan Costs (€

103
20.2 10

20.0
19.8 A
19.6
19.4
19.2
19.0
18.8
18.6 -
18.4

SR RR WR CRR CWR

Removal Method (Single)

Figure 8.5: The average plan costs (in euros) for configurations that have

a fixed removal method: related removal (SR), random removal (RR), worst

removal (WR), cluster random removal (CRR) or cluster worst removal (CWR).

The average is taken over three instances, two construction methods for the

initial solution and three configurations, resulting in nine cases per removal

method. The results are from 4000 iterations of removing and recreating the

solution. Note that the y axis is in thousands and the values do not start at

Z€ro.

for the initial solution, the average plan costs are split into plan costs for SI and PI in Figure
8.6. Recall that using PI as construction for the initial solution resulted in a better solution
than in case SI was used, Table 8.5. From Figure 8.6d we may conclude that a better initial
solution will result in a better final solution when only single removal method is used. We
can speculate that the use of a single removal method is not strong enough to decrease
the gap in performance of the construction methods for the initial solutions. This may be
explained by the fact that diversification for neighborhoods is needed and diversification in
the number of removals is not enough. However, this may be case specific.

74 CHAPTER 8. EXPERIMENTS

103 103
W 20.5) 26.0
% 20.0 % 25.5
25.0 -
S 195 g 250
=) = 24.5 -
= 19.0 A =
A A 24.0
18.5 -
SR RR WR CRR CWR SR RR WR CRR CWR
Removal Method (Single) Removal Method (Single)
(a) The average plan costs (in euros) for instance (b) The average plan costs (in euros) for instance
B1. Note that the scale on the y axis, steps of 500 B3. Note that the scale on the y axis, steps of 500
euros, differs from the other scales, steps of 200 curos, differs from the other scales, steps of 200
euros. euros.
103 103
—~ 14.4 204
P P 20.2
Z 14.2 & %8% -
S 14o- S 194
g = 19.2 4
g 20
13.8 -
38 18.6 -
SR RR WR CRR CWR SR RR WR CRR CWR
Removal Method (Single) Removal Method (Single)
(¢) The average plan costs (in euros) for instance (d) The average plan costs (in euros) per (single)
B4. removal method.

Figure 8.6: The average plan costs (in euros) for three instances and the average over all
instances. The average plan costs are taken over three configurations and are split up into two
construction methods for the initial solution: sequential insertion (SI) and parallel insertion (PI).
The results are from 4000 iterations of removing and recreating the solution. Note that the y axis

is in thousands (euros) and the values do not start at zero.

At last, we want to compare the configurations that require multiple removal methods
with the ones with a single removal method. To do so, consider Tables 8.8 and 8.10. Recall
that the configuration where SR is used as removal method performs best, compared to the
other single removal methods. All KPIs of the solution found with SR are higher than the
KPIs of all configurations that use multiple removal methods. The increase in KPIs from
5RW to SR, both the best performing methods in case multiple removal methods are used
and a single removal method is used, is more than 2%. For the total hours the increase is
even higher, around 3.63%. This implies that diversification through the use of structurally
different neighborhoods helps the search for finding local minima.

Test Instances C

Considering Table 8.11, we see that using CRR as removal method results in a solution
with the lowest plan costs in comparison with the other removal methods. However, the
differences in KPIs are very small between CRR and SR. The number of routes that are
needed for the planning are even lower for SR. This indicates that the routes that are
constructed with SR have more transports on average. It appears that using more routes
decreases all KPIs and hence less detours are needed. Although the number of transports
that are removed are the same for CRR and SR, the number of transports that are clustered
are different. With SR one big cluster is removed, whereas for CRR multiple clusters are
removed at once. It might be easier for the software to find improvements when only a few

8.4. REMOVAL METHODS (0]

transports are in a cluster, because there are less options to reinsert the removed transports.
However, this can be case specific, as the results are the other way around for instances B:
SR performs better than CRR. It might be the case that for the instances C the customer
locations are more clustered and hence removing several clusters at once helps the search.

Furthermore, we see in Figure 8.7 that the average plan costs for RR are very close to
the average plan costs for SR and CRR. Again, we see that WR and CWR perform by far
the worst, when it comes to the average plan costs. The average plan costs increase around
1.4% and 1.5% in comparison with CRR, for WR and CWR respectively. Note that this is
due to the configuration of the two methods as is explained above.

We also split the performance of the single removal methods for the two different con-
struction methods SI and PI. Note that SI provided a solution with lower KPIs than PI for
the test instances. Apart from RR, we also see this in the single removal methods, although
the difference are very small. The increase for using PI as construction method for the
initial solution, or decrease for RR, is for all single removal methods less than 0.5%.

At last, we compare the single removal methods with the multiple removal methods
that are used during the search. To do so, we compare the two methods from both classes
that have the lowest values for the KPIs, hence the best performing methods. Recall that
these are 5RW in case multiple removal methods are used during the search, and CRR in
case only a single removal method is used. The increase in KPIs from 6RW to CRR is
around 0.4%, for all KPIs. Furthermore, the KPIs for CRR are close to the KPIs of the
method that performs worst in case multiple removal methods are used during the search,
which was 5noRW. Although the differences in KPIs are very small, using multiple removal
methods during the search is beneficial for the quality of the solutions.

Table 8.11: Results Single Removal Methods C (Average)

Removal Trips Tasks Plan Distance Hours Driving Run
Method Costs (miles) (h) Time Time

(€) (sec) (min:sec)
SR 13,127 49,776 5,584,564 51,581 1976.26 3,707,492 46:38
RR 13,193 49,776 5,590,085 51,635 1976.11 3,712,170 31:56
WR 13,337 49,776 5,659,790 52,276 2002.34 3,753,283 16:46

CRR 13,153 49,776 5,580,903 51,546 1975.02 3,705,721 44:15
CWR 13,336 49,776 5,662,871 52,303 2004.02 3,755,258 19:19

The results for tests regarding single removal methods, for the test instances C: related removal
(SR), random removal (RR), worst removal (WR), cluster random removal (CRR) and cluster
worst removal (CWR). The maximum number of tasks to plan is 6 x 8296 = 49, 776. Note that
for these tests include 1200 iterations of removing and reinserting transports.

Conclusion

Overall, we can conclude that when using a single removal method, SR and CRR perform
best, hence they find solutions with the lowest KPIs. Note that which of the two is best
overall, depends on the case that is considered. RR may also be used as single removal
method, but the KPIs may be higher, and thus worse, for this method. Note that the
performance of CRR as single removal method is not mentioned in the literature. WR, and
CWR are by far the worst performing single removal methods, but this might be due to the
lack of randomness in the configurations of the methods. Furthermore, we speculate that
the quality of the construction of the initial solution has a small influence on the quality
after using a single removal method, which might be case specific. This is not yet included
in the literature that is studied for this research, and needs further research. Nevertheless,
Pisinger and Ropke (2007) mention that ALNS performs slightly better than LNS, where
the main difference is the use of multiple removal (and recreate) methods during the search
with ALNS. This is in line with our results, where the multiple removal methods have lower

76 CHAPTER 8. EXPERIMENTS

.108 -106
5.68

—~ 5.66 — fusilupr

® W 5.66

2 564 % 5.64

oo} 5]

S 562 S 5.62

& 9560 & 5.60

* 558 g g

SR RR WR CRR CWR SR RR WR CRR CWR
Removal Method Removal Method

(a) The average plan costs (in euros) for config- (b) The average plan costs (in euros) for con-
urations that have a fixed removal method during figurations with a fixed removal method, split up
the search. The average is taken over 14 instances into the construction methods for the initial solu-
and six configurations per instance: two initial so- tion: sequential insertion (SI) and parallel inser-
lutions and three ALNS frameworks. tion (PI).

Figure 8.7: The results of the average plan costs (in euros), for instances C, for a fixed removal
method followed by removing and reinserting transports. The removal methods are related removal
(SR), random removal (RR), worst removal (WR), cluster random removal (CRR) and cluster worst

removal (CWR). Note that they y axis are in millions (euros) and the values do not start at zero.

KPIs than the single removal methods. However, the differences are very small for test
instances C, smaller than 0.4%, whereas the differences are larger for the training instances
B, around 2%. Ropke and Pisinger mention that with an increase in problem size, ALNS
performs better than LNS, hence the objective function value is lower. This can be an
explanation for the smaller differences for test instancesC, as more smaller instances are
included than for the training instances B.

8.4.3 Number of Removals

Not only the kind of removal method is important, but also the number of transports that
are removed may influence the performance of the hybrid method. A combination of several
values for removing transports will diversify the method, it will help the method to converge
to a solution with low KPIs for a minimization problem. However, to understand and test
the need for this diversification, it is useful to test with one amount to remove as well. In
this section, the number of transports that needs to be removed during each iteration is
set to a fixed value. Because these configurations will show differences in the early state of
the search already, the total number of iterations is reduced to 250 in the roulette wheel.
There is a recursion of two over this roulette wheel, which results in 500 iterations in total.

Training Instances B

Table 8.12 shows the results for seven different percentages of removing transports. Note
that, again, these results are averages over three different instances in combination with two
different instances (one for SI and one for PI). The number of transports to remove is based
on the literature. Ropke and Pisinger (2006b) remove between 10% and 40%, but for larger
cases they have a maximum number of transports to remove (Pisinger & Ropke, 2007).
Shaw (1997) starts with the removal of 25% of the planned transports. In his method, the
number decreases and increases, depending on the performance of the method at that point
during the search. For more information, we refer to Appendix B. Furthermore, Schrimpf
et al. (2000) also test smaller and larger numbers, ranging from 1% to 50%.

We would expect that the run time increases with the number of removals, so the number
of transports that are removed. Removing more transports from the solution, implies having
more transports to reinsert, hence a longer run time. This is confirmed by the last column
in Table 8.12.

8.4. REMOVAL METHODS (i

Table 8.12: Results Number of Removals (Average)

Percentage Trips Tasks Plan Distance Hours Driving Run
Costs (km) (h) Time Time
(€) (sec) (min)

1 249 3688 19,471 5363 177 322217 6

5 248 3688 18,602 5203 164 314,430 11

10 248 3688 18,667 5213 165 315,128 16

20 249 3688 19,094 5259 172 318,032 29

30 253 3688 18,915 5197 169 313,829 42

40 250 3688 19,214 5283 174 318,467 56

50 251 3688 19,417 5304 177 320,182 73

The percentage of tasks that is removed is given in column one, for the training instances B.
The number of iterations is two times 250, so twice a roulette wheel of 250 iterations. Note that
due to less iterations we can not compare the results with the other configurations. The second
column shows the sum of all trips that are used for the planning. The third column shows all
the tasks that are planned, with a maximum number of (2 x 794) + (2 x 794) + (2 x 256) = 3688.
The last five columns show results for the other KPIs.

103
19.4

19.2 -
19.0
18.8

18.6

Average Plan Costs (€)

18.4

1 5 10 20 30 40 50
Percentage of tasks to remove

Figure 8.8: The average plan costs (in euros) over three instances and two
methods for the construction of the initial solution, per percentage of tasks that
are removed during each iteration of removing and recreating the solution. The
results are from 500 iterations in total, where a roulette wheel is reset after 250
iterations. Note that the y axis does not start at zero and that the amount of

euros is in thousands.

The results regarding the main objective, plan costs, are visualized in Figure 8.8 as well.
One can immediately notice that removing 1% of the transports from the solution is not
enough. Removing only 1% of the transports will in most cases not lead to an improvement.
For example, with RR it is likely that these 1% are scattered all over the network. They
will probably be reinserted at the same position they were before they were removed from
the solution. Furthermore, it seems to be the case that removing 40% and 50% of the
transports is too much. With a high number of transports that are removed, it may be
hard to reinsert them all. This may be caused by poor reinsertion methods. Most of the
reinsertion methods used for this test, do not include any form of ordering the transports
before they are reinserted. PRI has some influence in what transport is reinserted first by

78 CHAPTER 8. EXPERIMENTS

the regret value of not inserting the transport in its best position. The ones with a high
regret value will be inserted first. However, because only a little over half of the solution
is kept, the regret values may be high for many transports. Therefore, a more intelligent
method for reinsertion is needed.

Moreover, 5% and 10% are the numbers that result in the best solutions for these
instances. However, looking at Figure 8.9 this seems to be case-specific. Overall, 5% and
10% still belong to the best solutions, regarding the average plan costs, but the difference
with higher percentages is not always that big. For example, in Figures 8.9b and 8.9c, 40%
seems to be a good number of transports to remove as well, in case PI is used as the method
for constructing the initial solution. These figures also show that the construction method
for the initial solution has influence on the total performance as well. Especially for B3, the
pattern of performance when the percentage of removals is increased is different for SI and
PI as construction methods for the initial solution. For SI it seems that a higher percentage
to remove increases the KPIs, whereas for PI there is a dip for 30% and 40%.

103 103
10 25.4 10
_19.6 4 —~ 25.2
) 19.4 P 25.0
» 19.2 4 w 24.8
Z 19.0 z 2407
O 18.8 © 9249 -
= 18.6 g 24.0
= 184 = 238
18.2 934
1 5 10 20 30 40 50 1 5 10 20 30 40 50
Percentage Percentage
(a) The average plan costs (in euros) per percent- (b) The average plan costs (in euros) per percent-
age of tasks that need to be removed, for instance age of tasks that need to be removed, for instance
B1. B3.
103
w 14.2 194+
2 w i
- < 19.2
2 3 -
8 14.0 Z 19.0
o O 188 1
< o
A 13.8 4 < 18.6
~ 184

1 5 10 20 30 40 50

1 5 10 20 30 40 50
Percentage

Percentage
(c) The average plan costs (in curos) per percent-

age of tasks that need to be removed, for instance
B4.

(d) The average plan costs (in euros) per percent-
age of tasks that need to be removed.

Figure 8.9: The average plan costs, in euros, per percentage of tasks that need to be removed,
split up into two configurations with different construction methods for the initial solution: se-
quential insertion (SI) and parallel insertion (PI). The results are from 500 iterations of removing
and recreating the solution, where the number of tasks that is removed is equal to the percentage
that is given on the x axis. Note that the values on the y axis are in thousands and that the values

do not start at zero.

Test Instances C

We also executed tests with a single percentage of transports that needs to be removed
from the solution during the search on the test instances C. From Figure 8.10a it is clear
that removing 1% of the transports in the network is not enough for the search to find

8.4. REMOVAL METHODS 79

improvements. When only a few transports are removed, it is likely that they will be
reinserted in the same place from before they where removed. Interchanging the removed
transports is in most cases not feasible and if they can be interchanged, it it likely that the
objective function value will not decrease much as only small moves are possible.

Increasing the percentage of removals to 5% results in a decrease of the average plan
costs of around 1.07%, which can be seen in Table 8.13. All other KPIs also decrease with
a little more over 1%. However, the computing time increases with a factor around 3.2.
This is as expected, because the higher the percentage of transports that are removed, the
higher will be the number of insertion possibilities per transports. That indicates that the
computing time will increase with the number of transports that are removed. The average
plan costs decrease slightly between removing 5% and 10% of the transports. From there
on, an increase in the percentage of transports that is removed implies an increase of the
average plan costs as well. This pattern was already shown for the training instances B, but
is more clear for the test instances C as we have more instances in this case and extremes
will be evened out. Nevertheless, the computing time for removing 10%, 20% and 30% of
the transports is roughly the same and increases only for 40% and 50%.

Furthermore, to see the influence of the construction method for the initial solution, we
included Figure 8.10b. From this figure, we see that the construction method that provided
a solution with lower plan costs, SI, also performs best when we test on the percentage of
transports that need to be removed. Because we do not vary the number of transports that
is removed during the search in these tests, we take away a part of the diversification that is
included in ALNS. We see in Figure 8.10b that this slightly influences the ability of ALNS
to find improvements for initial solutions that have slightly higher plan costs. Note that
the increase in plan costs between using SI and PI as construction method for the initial
solution is less than 1%.

Table 8.13: Results Number of Removals C (Average)

Percentage Trips Tasks Plan Distance Hours Driving Run
Costs (miles) (h) Time Time
(€) (sec) (min:sec)

1 4441 16,592 5,654,368 52,221 2002.79 3,751,480 02:53

5 4396 16,592 5,594,088 51,664 1981.61 3,714,134 09:14

10 4379 16,592 5,587,938 51,607 1979.66 3,709,634 11:05

20 4390 16,592 5,595,558 51,684 1979.10 3,714,226 11:00

30 4394 16,592 5,608,332 51,803 1983.48 3,722,696 11:08

40 4403 16,592 5,613,670 51,849 1986.65 3,725,276 13:57

50 4419 16,592 5,625,734 51,950 1995.94 3,732,174 16:17

The results of using a fixed number of transports that are removed during each iteration of the
search, for the test instances C. A roulette wheel of 250 iterations is used twice, hence a total of
500 ruin and recreate iterations are executed. The percentage of transports that is removed from
the solution during each iteration is given in the first column. The results are averages over 14
instances in combination with two initial solutions, which results in the sum of total transports
of 2 x 8296 = 16, 592.

Conclusion

We can conclude that having only 1% of the transports removed is not enough for the hybrid
method to find improvements. The same holds for 50%, which is too much to remove from
the solution. The higher percentages of transports that are removed may perform better
with a reinsertion method that takes into account the characteristics of the transports. For
example, reinserting them with the use of the reinsertion methods that are used for SI or
PI may lead to better solutions.

From 5% of the transports that are removed till 50%, the plan costs generally increase.
The decrease in plan costs from removing 1% to 5% is in line with the findings of Schrimpf

80 CHAPTER 8. EXPERIMENTS

109 5.66 e
5.66 - . IosilepI

@ 5.64 - @ 5.64

~ w

2 6o Z 5.62

S < 5601

= 5.60 - E

R 5rg A 558 -

1 5 10 20 30 40 50

1 5 10 20 30 40 50
Percentage

Percentage

(b) Results of the average plan costs (in euros) per
percentage of transports that need to be removed,
split up for two construction methods for the initial
solution.

(a) The average plan costs (in euros), on the y
axis, per percentage of transports that need to be
removed. The x axis show the percentages.

Figure 8.10: The average plan costs (in euros), for instances C, for a fixed percentage of
transports that are removed in each iteration during the search. Note that the values on the y axis

are in millions (euros) and that the values do not start at zero.

et al. (2000). In case only one number is used for removing transports, we recommend to
use a percentage between 5% and 10%, as these two numbers seem to produce solutions of
good quality for all cases. Combining several percentages, for example with an interval, we
recommend a minimum of 5% and a maximum of 20%.

8.5 Recreate Methods

The third component of the hybrid method is the recreate method. The configurations
that are tested have many iterations and in each iteration the recreate method is executed.
Therefore, we choose to only test with simple recreate methods: PCI, PRI and CI. As
already explained in Section 8.4.3, it may be beneficial to have a more sophisticated recreate
method when the number of transports that is removed is large. Within the configurations
that are tested for the recreate method, the maximum percentage of transports that are
removed is around 20%. Therefore, simple recreate methods should be sufficient.

For the recreate method configurations, we test with two construction methods for
the initial solution (SI and PI) and one removal strategy: 5RW. This results in 18 different
configurations per recreate method: two methods for constructing the initial solution, three
configurations (93, 109 and 122) for three different training instances. We also executed
tests with removal strategy SR for the instances B. The results were not different from the
ones with strategy 5RW and therefore the figures and table are included in Appendix C.

Training Instances B

Table 8.14 shows the results of the tests performed on the recreate methods PCI, PRI and
CI, with 5RW as removal strategy. Considering the plan costs, that are also visualized in
Figure 8.11, there are only minor differences. It stands out that the plan costs for PCI
and CI are on average the same. However, this is misleading. Consider Figure 8.12 and
compare PCI and CI for each instance. The two recreate methods do perform differently
and it is case specific which performs best. Although there are some differences, also for SI
and PI as construction method for the initial solution, these differences are very small.
Returning to Table 8.14 and Figure 8.11, we see that PRI performs slightly better when
it comes to the plan costs. The distance that is driven in the network is slightly more
than with PCI and CI, but the hours are slightly less. Furthermore, the number of trips,
or routes, that are used are less for PRI as well. Therefore, we may conclude that PRI
performs best as recreate method when considering the KPIs. Unfortunately, this method
comes with the price of a run time that is longer than the run time for the other two recreate

8.5. RECREATE METHODS 81

Table 8.14: Results Recreate Method on 5RW (Average)

Recreate Trips Tasks Plan Distance Hours Driving Run
Method Costs (km) (h) Time Time
(€) (sec) (h:min)
PCI 742 11,064 18,533 5188 163.19 313,074 3:05
PRI 740 11,064 18,482 5194 162.30 313,301 3:39
CI 741 11,064 18,533 5187 163.34 313,082 2:07

This table shows the results of having a fixed method for the recreate method, where five methods
with a learning layer are used to remove transports, for the training instances B. The different recreate
methods are: parallel cheapest insertion (PCI), parallel regret insertion (PRI) and cheapest insertion
(CI). The second and third column show the sum of the total number of trips that are used and tasks
that are planned, respectively. The maximum number of tasks to plan is (6 x794)+(6x794)+(6x256) =
11,064. The last five columns contain information about the other KPIs that are used to indicate the
performance of the configurations.

methods. These are the results of PRI being a more complicated recreate method, because
it takes into account the additional costs of inserting a transport in its second best place.
These results are in line with the results of Ropke and Pisinger (2006a), who state that
simple recreate methods perform worse.

Recall the KPIs from Table 8.9 for 5RW. This strategy includes three recreate methods
in the roulette wheel as well. The KPIs of the solution when only PRI is used as recreate
method are only slightly higher. Hence, the diversification of the search when it comes to
the recreate method benefits the search, although the differences between using multiple
recreate methods or just one are very small.

Unfortunately, the literature does not state the influence of the construction method for
the initial solution on the performance of the recreate method, as far as the authors knowl-
edge goes. However, considering Figure 8.12d, we speculate that there is some influence
noticeable. Figure 8.12d shows that SI contributes to lower plan costs than PI.

103
v
~ 185
‘fg
(@]
2184
Ay
(]
an
<
€ 183
<
PCI PRI 1

Recreate Method

Figure 8.11: The average plan costs, in euros, for three different fixed recre-
ate methods: parallel cheapest insertion (PCI), parallel regret insertion (PRI)
and cheapest insertion (CI). The average is taken over three instances, two
methods for constructing the initial solution and three configurations, result-
ing in 18 different cases per recreate method. For the removal component, five
removal methods are used with a roulette wheel (SRW). Note that the values

on the y axis do not start at zero and the scale is in thousands.

82 CHAPTER 8. EXPERIMENTS

103 103
18.4 0 23.6 0

® @

e g 23.4

2 18.2 2

o) S

@) O 23.2

g E

& 18.0 4 A 23.0

PCI PRI CI PCI PRI CI
Recreate Method Recreate Method
(a) The average plan costs (in euros) per recreate (b) The average plan costs (in euros) per recreate
method for the instance B1. method for the instance B3.
103 103
14.0 - 18.6 -

¥ ¥

wn w

? 13.9 g 18.5 -

@) ’ &) ’

= a

= =

Al A

13.8 18.4 -
PCI PRI CI PCI PRI CI
Recreate Method Recreate Method

(c) The average plan costs (in euros) per recreate (d) The average plan costs (in euros) per recreate
method for the instance B4. Note that the scale method. Note that the scale on the y axis, steps
on the y axis, steps of 100 euros, differs from the of 100 euros, differs from the other scales, steps of
other scales, steps of 200 euros. 200 euros.

Figure 8.12: The average plan costs (in euros) for three instances and the average over all
instances per recreate methods, split up into two configurations for the construction of the initial
solution: sequential insertion (SI) and parallel insertion (PI). For the removal component, five
removal methods are used with a roulette wheel. Note that the y axis are in thousands and the

values do not start at zero.

Test Instances C

The test on the recreate method are also executed on the test instances C. Considering Table
8.15, we see that the plan costs vary very little when it comes to the recreate methods. The
increase in KPIs from PCI to PRI is smaller than 0.1%. From this we can conclude that
the influence of the single recreate method that is used is not big. Comparing the KPIs
distance and hours, we see that PCI is slightly better: the distance is less than with the
other recreate methods. The hours for PCI and CI are almost the same, but because of
the difference in distance, we see that the wait time when using PCI is less. Hence, as we
would expect, parallel insertion is a better method for insertion, comparing PCI and CI.

Furthermore, when we split the results for the two construction methods that are used
for the initial solution, only minor differences can be seen. Looking at Figure 8.13b, we
needed up to thousands of the plan costs, that are in millions in this graph, to see the minor
differences.

Recall the values for the 5RW removal strategy, from Table 8.9, where the three recreate
methods are chosen in each iteration based on the scores in a roulette wheel. Although the
differences are minor, we can conclude that the use of three recreate methods in the roulette
wheel improves the solution. The improvement is only around 0.1%, but the diversification
helps the search a bit.

8.6. ORTEC ADAPTIVE LARGE NEIGHBORHOOD SEARCH 83

Table 8.15: Results Recreate Methods C on 5RW (Average)

Recreate Trips Tasks Plan Distance Hours Driving Run
Method Costs (miles) (h) Time Time

(©) (sec) (min:sec)
PCI 13,103 49,776 5,560,449 51,357 1967.81 3,692,894 49:25
PRI 13,119 49,776 5,564,562 51,393 1970.14 3,695,635 45:51
CI 13,115 49,776 5,563,134 51,385 1967.21 3,694,816 44:24

The results of a fixed recreate method, where five removal methods with a learning layer, or
roulette wheel, are used as removal strategy, for the test instances C. Each row represents a fixed
recreate method: parallel cheapest insertion (PCI), parallel regret insertion (PRI) and cheapest
insertion (CI). The total number of tasks that need to be planned is 6 x 8296 = 49,776, as the
average is taken over all 14 instances in combination with six ALNS frameworks.

-106 -106
0 5.566 0

_5.564 — BosilnpI

P WH.564

299627 £5.562

$5.560 - S £

o ©5.560

55.558 £5.558 -

P5.556 - 5,556

PCI PRI CI PCI PRI CI
Recreate Method Recreate Method

(a) The results of the average plan costs (in euros) (b) The average plan costs (in euros) for a fixed
on the y axis per fixed recreate method during the recreate method during the search, split up for the
search, on the x axis. two construction methods for the initial solution.

Figure 8.13: The average plan costs (in euros), where the recreate method is fixed during the
search. Three different recreate methods are used: parallel cheapest insertion (PCI), parallel regret
insertion (PRI) and parallel cheapest insertion (CI). Note that the y axis is in millions (euros) and
the values do not start at zero. Also note that we needed three digits to show the different values

on the y axis. This indicates that the differences between the methods are very small.

Conclusion

Overall, we can conclude that including three recreate methods in a roulette wheel helps
the search in finding improvements. Although the differences are very small, when only
one recreate method is used the KPIs are slightly higher. In case only one recreate method
can be used, we advise to use either PCI or PRI. CI seems to be a reinsertion method that
contains to much randomness and less improvements are found. Whether PCI or PRI needs
to be used as recreate method is case specific. Furthermore, we speculate that when a large
number of transports is removed from the solution, more sophisticated reinsertion methods
might be useful to find more improvements.

8.6 ORTEC Adaptive Large Neighborhood Search

From the tests that are reported on in the previous sections, we can construct a hybrid
method where the components are configured with the methods that resulted in solutions
with the best KPIs. As mentioned in Chapter 7, we will provide two configurations. The
first one will be the configuration with the best objective function value, based on the KPIs,
which will be our hybrid ALNS. The second configuration is a more simple heuristic, where
only one removal and one recreate method are used in the search. Therefore, this more
simple configuration can be seen as a variant of LNS.

84 CHAPTER 8. EXPERIMENTS

Based on the conclusions per component that are given in previous sections, the follow-
ing configurations are chosen as the configurations with the best performing components.

e Five removal methods with a roulette wheel (5SRW) in combination with three recreate
methods in the same roulette wheel (3RW), for a total of 1200 iterations.

e Related removal (SR) in combination with parallel cheapest insertion (PCI), for a
total of 500 iterations.

Recall the different frameworks that came out of the initial testing, 93, 109 and 122. In
many cases 122, recall that this configuration uses an alternative local search, provided the
solution with the lowest KPIs. However, the computing time was longer than for the other
two configurations. Therefore, we do not include this configuration in further testing. So
far, we only tested with two methods for the number of transports that are removed during
the search: 30, 45, 60 transports and 130, 110, 90, 70, 50, 30 transports. Now that the
final configurations are known, additional tests regarding the number of transports can be
executed. To do so, we will first test on the hybrid method with percentages of transports
that need to be removed and we will test both a decreasing and increasing order:

o 5%, 12% and 20% (and reversed),
o 5%, 8%, 12%, 15%, 18%, 22% (and reversed).

These percentages are based on the results reported on in Section 8.4.3. Consider Table
8.16, where the average results over both percentage methods, that are described above, are
given. Here, the results are shown for increasing/decreasing the number of transports that
are removed during the search. Note that these configurations have a total of 1200 iterations,
which consist of two times 600 iterations. For example, 200 iterations are executed for all
percentage levels 5%, 12% and 20%, which results in a total of 600 iterations, followed by
another round of 5%, 12% and 20% iterations, which results in a total of 1200 iterations.

Table 8.16: Results Number of Transports to Remove (Average)

Case Trips Tasks Plan Distance Hour Driving Run
Costs (km/ (h) Time Time
(€) miles) (sec) (min:sec)
Increasing B 490 7376 18,333 5161 160.42 311,944 30:57
Decreasing B 497 7376 18,548 5164 163.61 311,560 30:31
Increasing C 8750 33,184 5,563,516 51,388 1967.22 3,695,042 23:34
Decreasing C 8747 33,184 5,568,163 51,428 1970.75 3,697,908 25:07

The average results for the hybrid method with five removal methods and three recreate methods, with
roulette wheel, when the number of transports that is removed is increased or decreased during the search.
The results are given for both the training instances B and test instances C. Note that the average is taken
over four configurations: two construction methods for the initial solution and two percentage strategies.
The total number of transports to plan is thus 4 x 1844 = 7376 for the case B, and 4 x 8296 = 33, 184 for W.

Looking at the results in Table 8.16, we see that for both the training instances B and the
test instances C the KPIs increase when the number of transports that are removed are
decreased during the search, compared to when the number of transports that are removed
are increased during the search. This implies that increasing the number of transports
that are removed during the search results in solutions of better quality. The differences
are bigger for the training instances B, than for the test instances C. The results can be
explained by the fact that at the beginning of the search improvements can be found rather
casy, hence not many transports need to be removed and reinserted. However, further in
the search, larger neighborhoods need to be explored as well, to escape local minima. This
is in line with Shaw (1997). However, Ropke and Pisinger (2006a) mention that at the

8.6. ORTEC ADAPTIVE LARGE NEIGHBORHOOD SEARCH 85

Table 8.17: Results Percentage to Remove (Average)

Percentage Case Trips Tasks Plan Distance Hour Driving Run
Costs (km/ (h) Time Time
(€) miles) (sec) (min:sec)
5,12,20 B 244 3688 18,339 5171 160.63 312,354 25:17
5,--,22 B 246 3688 18,327 5151 160.21 311,534 36:38
20,12,5 B 248 3688 18,664 5177 165.90 312,305 24:59
22,---,5 B 249 3688 18,432 5151 161.32 310,816 36:03
5,12,20 C 4377 16,592 5,566,631 51,412 1970.85 3,696,084 21:05
5,---,22 C 4373 16,592 5,560,402 51,364 1963.60 3,693,999 26:04
20,12,5 C 4376 16,592 5,567,435 51,419 1971.64 3,697,430 22:50
22,---,5 C 4371 16,592 5,568,891 51,437 1969.86 3,698,386 27:24

The average results for the hybrid method for percentage strategies that can be used. There are four options

for the percentage of transports that are removed during the search: 5%, 12% and 20%, and reversed, or 5%,
8%, 12%, 15%, 18%, 22%, and reversed. The total number of transports to plan is 2 x 1844 = 3688 for the
case B, and 2 x 8296 = 16,592 for W, as the average is taking over two configurations with different initial
solutions.

end of the search not many improvements are found, and thus the number of transports
that are removed need to be of decreasing order. Therefore, in the middle of the search,
we start with the smallest number of transports that need to be removed and increase the
number again during the next iterations. With this method, we combine smaller and larger
neighborhoods that are explored during the search.

Furthermore, considering Table 8.17, we split up the increasing and decreasing order in
the actual percentages that are used. In all cases, except for decreasing order for instances C,
it seems to be beneficial to enlarge or reduce the neighborhoods sooner in the search. With
less percentage variation, more iterations are performed with the same number of transports
that are removed, with respect to more variation in the percentages. Diversification with
respect to the size of the neighborhoods improves the search for near-optimal solution,
which is in line with the literature. However, the computing time seems to increase when
more variation is used in the percentages, especially for the instances B. The only difference
is the number of roulette wheels that are used, as we configured for each percentage a new
roulette wheel. The start of such roulette wheel seems to take up a lot of time. However,
with the instances C the difference in computing time is less. Nevertheless, this needs some
further investigation.

Moreover, we split up the results for the two initial solutions: sequential insertion and
parallel insertion. For these additional tests and instances, the differences in KPIs are mi-
nor. What construction method for the initial solution found slightly better solutions with
removing and reinserting transports, depends on the cases. The table with the results can
be found in Appendix D.

We did not only execute additional tests on the hybrid method, but also on the more
simple variant with large neighborhood search. From the tests that are reported on in
Section 8.4.3, we found that the configuration with removing 10% of the transports in each
iteration, and reinserting them again, was able to find the lowest KPIs for the instances.
Therefore, we use 10% as a fixed percentage of transports that need to be removed during
the search for the more simple heuristic. However, to see the influence of searching through
larger neighborhoods and adding diversification in the size of the neighborhoods, we also
test with altering between 10% and 20%. For each percentage we include 125 iterations
and after 20% we reduce the neighborhood again to 10%. Therefore, we have a total of
4 x 125 = 500 iterations. We did not include tests with a decreasing order of number of
transports that need to be removed, due to the results of the tests that were executed with

86 CHAPTER 8. EXPERIMENTS

the hybrid method. The results are shown in Table 8.18. We would expect that adding

Table 8.18: Results Percentage to Remove Simple LNS (Average)

Percentage Case Trips Tasks Plan Distance Hour Driving Run
Costs (km/ (h) Time Time
(€) miles) (sec) (min:sec)

10 B 242 3688 18,810 5240 169.24 316,176 16:51

10, 20 B 245 3688 19,027 5275 171.91 318,547 23:55

10 C 4381 16592 5,589,004 51628 1974.37 3,710,076 11:50

10, 20 C 4381 16592 5,585,009 51584 1976.36 3,708,395 14:16

The results of different percentages of transports that are removed during the search, for a simple LNS
with related removal and parallel cheapest insertion. The rows show averages over all instances per case and
over two construction methods for the initial solution. Hence, the total number of transports that needs to
be planned is 2 x 1844 = 3688 for the instances B and 2 x 8296 = 16, 592 for the instances C.

another level of percentage would decrease the KPIs, as larger neighborhoods help escape
local minima. Indeed this is the case for instances C, although the differences are very small.
However, this is not the case for instances B. This might be explained by the number of
iterations that is less for this simple heuristic. We can speculate that we move to a larger
neighborhood to soon in the search, and more improvements can be found with the smaller
neighborhood. However, this seems to be case specific. Because this configuration is used
as a simple variant of LNS, we advise to use 10% as fixed number of transports that needs
to be removed.

Moreover, we split the results up for the two insertion methods. However, just as with
the hybrid method, the results are very close. What construction method for the initial
solution contributes to a better solution after removing and reinserting transports is case
specific. Further research needs to be done to see whether the cases have characteristics that
influence the behavior of the search. The table with the results are included in Appendix
D.

Furthermore, as we would expect, the results with this simple heuristic are worse than
with the hybrid methods from the previous tables in this section. Diversification in both
the neighborhood size and methods that are used for the components is needed to find
improvements.

To conclude this chapter, two configurations are advised to use, one hybrid method that we
call ORTEC Adaptive Large Neighborhood Search, and one simple variant of LNS; called
ORTEC Large Neighborhood Search.

e Five removal methods with a roulette wheel (5 RW: related removal, random removal,
worst removal, cluster random removal, cluster worst removal) in combination with
three recreate methods in the same roulette wheel (3RW: parallel cheapest insertion,
parallel regret insertion, cheapest insertion), for a total of 1200 iterations, where the
number of transports that is removed increases as follows: 5%, 8%, 12%, 15%, 18%,
22%.

e Related removal (SR) in combination with parallel cheapest insertion (PCI), for a
total of 500 iterations, where the number of transports that is removed is 10%.

An overview of the KPIs for the construction method for the initial solution, ORTEC ALNS
and ORTEC LNS is given in Table 8.19 for instances B and in Table 8.22 for instances C.
Note that the KPIs for the original customer configuration is also included for the instances
B. The improvements, in percentages, that are found with ORTEC ALNS and ORTEC LNS,
with respect to the original customer configuration for instances B is given in Table 8.20.
To see the improvements compared to the initial solution that is constructed, an overview

8.6. ORTEC ADAPTIVE LARGE NEIGHBORHOOD SEARCH 87

is given in Table 8.21. Compared to the original customer configuration, we can find great
improvements with ORTEC ALNS. The computing time is a little over 36 minutes, which
is acceptable for the customer. With a more simple improvement heuristic, ORTEC LNS,
the improvements regarding the distance and driving time are still big. However, the KPI
hour did increase. Note that we took the original customer configuration, but adjusted the
cost set in the input data. When we compare it with the original data from Table 8.1, the
hours did decrease with ORTEC LNS.

Table 8.19: Results comparison for instances B

Configuration Trips ~ Tasks Plan Distance Hour ~ Driving Run
Costs (km) (h) Time Time
(€) (sec) (min:sec)
Original 121 1840 18,914 5462 167.45 327,452 02:35
Initial Solu- 126.5 1844 20,766 5755 193.65 342,813 03:32
tion
ORTEC 123 1844 18,327 5151 160.21 311,534 36:38
ALNS
ORTEC 123 1844 18,810 5240 169.24 316,176 16:51
LNS

The KPIs for the original customer configuration are provided in the first row. The second row
shows the KPIs for the initial solution without large neighborhood search. Note that the average is
taken over SI and PI. The third and fourth row show results for ORTEC ALNS and ORTEC LNS,
respectively, as averages for two construction methods for the initial solution: SI and PI.

Table 8.20: Results for instances B w.r.t. Original
Configuration (in percentage)

Configuration Plan Distance Hour Driving
Costs (km) (h) Time
(€) (sec)

ORTEC -3.10% -5.69% -4.32% -4.86%

ALNS

ORTEC -0.55% -4.06% 1.07% -3.44%

LNS

The improvements, in percentages, for instances B when ORTEC
ALNS and ORTEC LNS are used, compared to the original customer
configuration.

Consider Tables 8.22 and 8.23. The improvements that were found with ORTEC ALNS
and ORTEC LNS, compared to the initial solution, are between 1.36% and 2.00% for all
KPIs. For these instances, the difference between a simple improvement heuristic and more
sophisticated heuristic is smaller. However, the improvement is still 0.5%, which implies
saving a lot of money for big companies.

88

CHAPTER 8. EXPERIMENTS

Table 8.21: Results for instances B w.r.t. Initial
Solution (in percentage)

Configuration Plan Distance Hour Driving
Costs (km) (h) Time
(€) (sec)

ORTEC -11.74% -1049% -17.20% -9.12%

ALNS

ORTEC -9.42% -894% -12.54% -7.77%

LNS

The improvements, in percentages, for instances B when ORTEC
ALNS and ORTEC LNS are used, compared to the initial solution
without removing and reinserting transports.

Table 8.22: Results comparison for instances C

Configuration Trips ~ Tasks Plan Distance Hour ~ Driving Run
Costs (miles) (h) Time Time
€) (sec) (min:sec)

Initial Solu- 2228.5 8296 5,673,626 52,398 2010.05 3,761,414 01:23
tion

ORTEC 2186.5 8296 9,560,402 51,364 1963.60 3,693,999 26:04
ALNS
ORTEC 2190.5 8296 5,689,004 51,628 1974.37 3,710,076 11:50
LNS

The first row shows the KPIs for the initial solution without large neighborhood search. Note that
the average is taken over SI and PI. The second and third row show results for ORTEC ALNS and
ORTEC LNS, respectively, as averages for two construction methods for the initial solution: SI and
PL

Table 8.23: Results for instances C w.r.t. Initial
Solution (in percentage)

Configuration Plan Distance Hour Driving
Costs (miles) (h) Time
(€) (sec)

ORTEC -2.00% -1.97% -2.31% -1.79%

ALNS

ORTEC -1.49% -1.47% -1.77% -1.36%

LNS

The improvements, in percentages, for instances C when ORTEC
ALNS and ORTEC LNS are used, compared to the initial solution
without removing and reinserting transports.

Chapter 9

Conclusion and
Recommendations

This chapter includes a recap of the results that are found in our research on how the com-
ponents of the Adaptive Large Neighborhood Search need to be configured for real-world
cases of a VRP. We will answer the subquestions in order to answer the main question of
this thesis report. Recommendations for further research and for ORTEC are provided as
well.

We have seen many variants of the VRP in Chapter 2 that are all related to the VRP
that we reported on in this thesis. Usually, these VRPs are solved with mathematical mod-
els, or these models provide bounds for the optimal solution, as explained in Chapter 3.
For the software of ORTEC that is used for this research, such a model was not required
and therefore we did not provide it. To be able to find near-optimal solutions for the real-
world cases, minima-escaping heuristics of the local search class were used. We have seen
examples in Chapter 4 such as Simulated Annealing, Tabu Search, Iterated Local Search
and Variable Neighborhood Search. These heuristics are all used to search the solution
space in a clever way and to be able to escape local minima. This is done by variations in
the solutions that are accepted and all kinds of perturbations in the solution at some point
during the search. We have seen three examples in Section 4.4, for rich VRPs, for which
transports are removed from an initial solution and reinserted to find improvements. These
methods use large neighborhoods, in case a large part of the solution is altered. The first
one was Large Neighborhood Search by Shaw (1997), where one removal, related removal,
and one recreate method were used to find improvements. Schrimpf et al. (2000) presented
a similar heuristic, Ruin and Recreate, where the removal and recreate method are differ-
ent. The third one is based on Large Neighborhood Search, reported on by Ropke and
Pisinger (2006a, 2006b, 2007), called Adaptive Large Neighborhood Search. As multiple
removal and recreate methods are used, with the help of a learning layer, they state that
their heuristic is able to adapt to the problem that is looked into. Therefore, this thesis
reported on how to configure such an Adaptive Large Neighborhood Search, with one of
the software for optimization of ORTEC, for real-world cases with a limited computing time.

Several components of the Adaptive Large Neighborhood Search (ALNS) were tested and
reported on, including the construction method for the initial solution, removal methods
for removing transports from the solution, recreate methods to reinsert them, and how to
incorporate local search to intensify the search. We will answer the subquestions in the
next sections.

Initial Solution

Which construction method is needed to build an initial feasible solution, such that Adaptive
Large Neighborhood Search performs the best?

89

90 CHAPTER 9. CONCLUSION AND RECOMMENDATIONS

From the literature study in Section 6.1 we have seen that an initial solution with a low
objective function value should converge faster to a near-optimal solution (Schrimpf et al.,
2000). However, the results of the ALNS regarding the choice for the construction method
for the initial solution are not mentioned. We have seen that most studies use a simple
insertion heuristic, such as cheapest insertion, or they assume that an initial solution is
provided as input for the heuristic. In our study, the construction of the initial solution is
a component in the heuristic itself.

We saw in Section 8.3 that the simple insertion methods were not able to plan all the
transports for our instances. Therefore, we tested with an ordering of transports that
needed to be inserted with sequential and parallel insertion. Our results showed that using
parallel insertion as construction method for the initial solution, with ALNS, resulted in
average solutions with the lowest KPIs. However, parallel insertion did not result in the
best initial solution without ALNS for all instances. Hence, we cannot conclude whether
an initial solution with low KPIs also contributes to a solution with low KPIs in case the
solution is ruined and recreated. The influence of the quality of the initial solution on the
quality of the solutions found with ALNS seems to be case specific.

Removal Methods

Which removal methods and corresponding settings are needed, such that Adaptive Large
Neighborhood Search performs the best?

The second component of ALNS that was tested on, was which removal method needs
to be chosen. We concluded from the tests, that were reported on in Section 8.4, that in
case a single removal method is used, related removal and cluster random removal provided
solutions with the lowest KPIs. That related removal performs best is in line with the
literature that was provided in Section 6.2, but cluster random removal is not reported on.
Which one of the two methods provided solutions with the lowest KPIs was case specific.
Furthermore, we speculated that the construction method for the initial solution has some
influence on ALNS: initial solutions with low KPIs also resulted in solutions with low KPIs
after removing and reinserting transports.

In case multiple removal methods can be used during the search, we found that a
combination of five removal methods in a roulette wheel resulted in solutions with the
lowest KPIs. However, the differences with more and less removal methods in a roulette
wheel were small. We concluded that the heuristic benefits from the roulette wheel, which is
in line with the literature. Furthermore, we found that the quality of the initial solution did
not seem to have an effect on the performance of the roulette wheel. Only minor differences
could be found, which were both case and instance specific.

Regarding the number of transports that need to be removed, we found that using 5%
or 10% as fixed number resulted in solutions with the lowest KPIs. On average, the KPIs
increased in case the percentage of removals increased from 10% to 50%. In case multiple
numbers of transports that need to be removed is used, we recommend numbers between
5% and 20% to increase the size of the neighborhoods that are searched through. These
numbers are slightly less than the numbers that were found in the literature, they got up
to 40%, which might be a result of the real-world cases that we used in our research.

Recreate Methods

Which recreate methods and corresponding settings are needed, such that Adaptive Large
Neighborhood Search performs the best?

The tests in Section 8.5 showed that using three recreate methods in a roulette wheel
benefits the search. The solutions that were found had lower KPIs than in case only one
recreate method was used. In case one recreate method was used, cheapest insertion found
less improvements than parallel cheapest insertion and parallel regret insertion. However,

91

the differences in KPIs were small, and the recreate method did not seem to have a big
influence on the quality of the solutions. This is in line with the results from the literature.
Note that in case very large neighborhoods are used, the recreate method is expected to
have influence, because reinserting the removed transports and finding improvements will
be difficult.

Local Search

When and where are local search steps needed in the Adaptive Large Neighborhood Search
heuristic, such that Adaptive Large Neighborhood Search performs the best?

Section 8.2 showed that local search steps were needed to plan all the transports for some of
the instances. Therefore, local search was included in the construction phase of the heuris-
tic. Furthermore, local search was used to intensify the search by temporarily accepting
solutions for which the KPIs were at most 5% higher than the KPIs for the best solution
that was found so far. Adding local search to intensify the search did decrease all KPIs at
the cost of the computing time.

Main research question

To conclude, we answer the main research question. In what way can the Adaptive Large
Neighborhood Search heuristic be configured to find a near-optimal solution for a rich and
real-world VRP, such that the computing time needed is acceptable for the instance that is
looked into?

The findings that were reported on in Section 8.2 up to, and including, Section 8.5 re-
sulted in two configurations that needed extra tuning for the number of transports that
were removed during the search. The results of these additional tests, that were reported
on in Section 8.6, contributed to the two final configurations that are used to answer the
main question.

The components that together form a hybrid method, called ORTEC Adaptive Large
Neighborhood Search, that found solutions with the lowest KPIs, consist of five removal
methods (related removal, random removal, worst removal, cluster random removal and
cluster worst removal) and three recreate methods (cheapest insertion, parallel cheapest
insertion and parallel regret insertion) combined in a roulette wheel, for a total of 1200
iterations, where the number of transports that is removed increases as follows: 5%, 8%,
12%, 15%, 18% and 22%. For instances B, the KPIs improved with percentages between
3.10% and 5.69%, compared to the original customer configuration. The solutions were
found within 37 minutes, which is an acceptable computing time for the customer. For
the instances C, the KPIs improved with percentages between 1.79% and 2.00% and the
solutions was found within 27 minutes, compared to the initial solution.

In order to reduce the computing time, we provide a heuristic, called ORTEC Large
Neighborhood Search, that found solutions with the lowest KPIs in case only one removal
and one create method are used. This heuristic consist of related removal as removal method
in combination with parallel cheapest insertion to recreate the solution, for a total of 500
iterations, where the fixed number of transports that is removed is equal to 10%. The KPIs
improved with percentages between 0.55% and 4.06% for the instances B, compared to the
original customer configuration, and the solution was found within 17 minutes. The hours
did increase with 1.07%, however this is the result after the cost set that is used as input
is adjusted. Comparing the results with the cost set that is used by the customer, all KPIs
improved. For the instances C, the KPIs improved with percentages between 1.36% and
1.77%, compared to the initial solution, and the solutions were found within 12 minutes.

92 CHAPTER 9. CONCLUSION AND RECOMMENDATIONS

9.1 Recommendations for further research

In order to proceed this research, the following recommendations are provided for further
research.

Our research included tests regarding the construction of the initial solution and the influ-
ence of it during the search. We speculated that the quality of the initial solution influenced
the quality of the solution found with removing and reinserting transports, especially in case
only one removal and one recreate method are used. Further research needs to be done, to
conclude whether solutions of good quality are needed for LNS. It seems to be the case that
the LNS search process converges faster to a near-optimal solution with an initial solution
of good quality.

Furthermore, minor differences are found in case a different solution is used as starting
point for removing and reinserting transports with ALNS. For some instances, the ALNS
with a roulette wheel that was reported on in this thesis, was able to find the lowest KPIs
with simple insertion methods, such as parallel regret insertion, that found initial solutions
with the highest KPIs. It would be interesting to see whether initial solutions that do not
already have a tight planning, result in solutions that are closer to the optimal solutions,
when ALNS is used, than the case were an initial solution of good quality is used. We were
not able to investigate this, because the simple insertion methods were not able to plan all
transports for our instances. This could be avoided by using insertion methods during the
search for improvements, in order to plan transports that were left unplanned during the
construction of the initial solution.

Related removal (SR) and cluster random removal (CRR) are removal methods that have
a good performance within the LNS we investigated. In the literature that we studied for
this research, the performance of CRR is not mentioned in combination with LNS. Because
which one of the two removal methods resulted in the lowest KPIs was case specific in our
research, we recommend to investigate this.

We did not include comparison of the results with respect to the size and characteristics
of the cases. Our results show that for smaller cases, the removal strategy has less impact
on the performance of ALNS. The difference in KPIs for the number of removals that is
used, and whether a roulette wheel is included is small. This might be explained with the
fact that the number of possibilities of moving transports around is usually less for smaller
cases. Less diversification might be needed to find improvements.

In what way the local search methods are used to intensify the search, should be investi-
gated more. Including local search methods in the ALNS framework, did improve all KPIs
for our cases. There are many local search methods known in the literature, and hence
many variants can be investigated. Furthermore, the computing time might decrease by
having other local search methods, or different configurations for the local search methods
that we included. We work with an intensification phase of 100 iterations. However, it
can be the case that improvements are already found after less iterations, and this number
could be reduced.

Unfortunately, we were not able to provide figures that show the improvements that
are found over time. Reducing the computing time may be easy, for example in case the
last iterations do not provide improvements. Therefore, we recommend to investigate the
performance of the heuristic over time.

At last, we want to recommend further research on the number of transports that are
removed, compared with different removal methods. One can imagine that random removal
needs more transports that are removed to find improvements, otherwise the removed trans-
ports are scattered over the network and will be reinserted in the same place. However,
with for example related removal, also a smaller amount of transports that are removed
and reinserted could provide improvements.

9.2. RECOMMENDATIONS FOR ORTEC 93

9.2 Recommendations for ORTEC

The recommendations given in the previous section are relevant for all studies that involve
large neighborhoods and real-world cases. We also provide recommendations for further
research that is related to ORTEC.

The method for temporarily accepting solutions that have at most p% higher KPIs,
needs further research. Our tests included 1 and 5 as values for p. Increasing this number
increases the computing time, because more solutions will be temporarily accepted and thus
local search steps are more often executed. However, this might lead to solutions that can
not be found with lower values for p, provided that the intensify method is strong enough to
find improvements. Tuning this parameter p in combination with tests including different
local search methods, may lead to a faster convergence to a near-optimal solution.

Furthermore, we advise to include some randomization in two removal methods: worst
removal and cluster worst removal. In case these methods do not find improvements, and
the removal methods are executed several times in a row, the same transports will be
removed. The transports are already ordered based on the additional costs of including
the transport in the solution. We recommend to include randomness in choosing which
transport is seen as worst inserted transport and is removed from the solution.

To conclude, further research needs to be done with respect to the computing time of
the roulette wheel that is included in our ALNS. Including a learning layer with the use of
a roulette wheel, instead of a recursion of the removal and reinsertion methods, results in
extra computing time.

94

CHAPTER 9. CONCLUSION AND RECOMMENDATIONS

Appendix A

ORTEC software

The research that is reported on in this thesis uses software that is developed by ORTEC,
called ORTEC Routing and Dispatch (ORD). The software is used to plan transports into
routes and to assign possible resources to these routes. To provide more information on
how the users see and use this software, this appendix is included.

One can choose to plan the transport on routes manually, but there is also a possibility to
use the automated planning process.

To illustrate the usage of ORD, a screen shot of the software is included in Figure A.1.
Transports and routes are shown in grids. It is possible to give different colors to, for
example, transports that are planned or not, and routes that are empty or have transports
planned on them. In this way, it is easy to read the grids and select transports and routes
for the automated planning. In Figure A.1 also another grid can be seen on the right. When
clicking on a route, this grid will be filled with information of this route. The information
differs per customer, but it always shows the actions in that route. Actions include couple
and decouple of the truck to the trailer, pickup and delivery tasks, stops and travels. In
case time windows are included, and a vehicle arrives before the start of the time interval,
a wait task is shown in this grid as well. Furthermore, if the drivers legislation is taken into
account, also breaks are scheduled and shown in this grid. All actions can be customized
with colors and icons that are shown in the grid as well. For example, in the action grid on
the right in Figure A.1, a time violation is visualized. The warning of a violation, of any
kind, is represented with a triangle and exclamation mark. The type of violation is given
next to it with an icon. For the time violation in this case, a small clock is used.

As for the transports and routes, the grids where they are shown can be customized as
well. Several columns can be added, when the data allows it. Without the right information
in the data, the column will be left empty. For the transport grid, one can add for example
the columns with the transport number, volume, the time of possible pickup and delivery,
the distance between pickup and delivery and the transport date. The grid for the routes
contains columns as well. For example, where the route starts and ends, the start time, the
number of stops, the name of the driver, total volume and whether the route is finished or
not.

Furthermore, in ORD it is possible to use filters in the grid which can be adapted to
the needs of the planner. One can filter based on (multiple) columns that are visualized
in the grid. For both the transports and routes there is a comment column available to
make short notes involving the transports and routes. Also a map is available where all
the locations in the network can be plotted. It is even possible to visualize the routes, or a
couple of routes, and include the stops as well. This makes the planning process easier for
the planners, as they are able to visualize the routes they are creating.

95

96 APPENDIX A. ORTEC SOFTWARE

Route planning,

RoUtEs) Tempia ‘Actions] _Map
Shifts
AllRoutes = Noexpression f + Shifts Routeplars No filter - Distribution
| Type Start End [# [coz_ - |Profit - |Cost ' |] Loy Action [N~ [StartTime - EndTme - |Duration
L.None 27521 2004 1604 06:24 1804 22:15 6 - — stop 16:10 22-1216:10 000
1.None 27522 2005 18-04 05:00 18-04 05:00 0 1
1.None 27523 2006 16-04 05:00 1804 05:00 o> 1 893772 Ospel travel 2-1217:59 149
LNone 27524 2007 1804 05:00 1804 17:07 2 — | — 893770 Ospel deliver 22-1218:19 020
1.None 27525 2008 18-04 05:00 18-04 05:00 0 > 1 895793 Antwerpen travel 22-1219:41 121
1.None 27526 2009 1804 05:00 1804 05:00 o> 1 895790 Antwerpen deliver 23-1206:20 020
1.None 27527 2010 1604 05:00 1804 05:00 = 1 895854 Amsterdam travel 06:20 23-1208:04 144
1.None 27528 2011 18-04 05:00 18-04 05:00 0 1
1.None 27529 2012 16-04 05:00 1804 05:00 o> 1 8959% Dordrecht
1.None 27530 2013 18-04 05:00 18-04 05:00 Ly 2 1 B ol
1.None 27531 2014 18-04 05:00 18-04 05:00 0 > 1
1.None 27532 18-04 05:00 18-0423:53 2 _— - —
1.None 27533 1804 05:01 1804 18:34 6 o
1. None 27550 2000 18040551 1804 17:06 4 o
Charter ¥iep|22-12 16:10 FiZi0:i0 € T
TU_Trailer [01-05 04:53 0105 07:55 =
27619 2 01-0507:22 ‘> u
27620 01-0500:00 o>
1439 17219
[i, »

Alltransports « % No filter applied ~ & Route optimization (&

Code Department Pickup Location -~ Deliver Address | Loading meters M3~ DelverFrom - [DeiverTd - |Distance - |Status
156639 BeNeLux Katwitk NB 402305 | . 13.60 22-12 06:00 22-1223:59 120.06 normal order
1566981 o Oudenaarde Depot Munchen 4 . 13.60 21-12 00:00 21-1223:59 255.00 normal order
1567065 BeNeLux Nevele 402597 - . 0.40 22-1208:00 22-1209:30 220.17 normal order
1567066 BeNeLux ERMELO - 0.80 21-12 00:00 22-1223:59 87.77 normal order
1567066 BeNelux WADDINXVEEN 402433 - . 0.80 2:1206:00 22122359 131,19 normal order
1567178 oL Nordhorn . 10.00 21-12 00:00 21-1223:59 96.18 normal order
1567179 oL Nordhorn X . 10.00 22-12 06:00 22-1223:59 96.18 normal order
1567185 BeNeLux ALPHEN AAN DEN ... Eerbeek 402775 X . 13.60 22-1215:00 22-1216:00 107.37 normal order
1567195 oL Munchen . 1.00 22-12 06:00 23-1223:59 12.74 normal order
1567195 BeNeLux Linne 403067 X . 1.00 23-1208:00 23-1210:00 118.45 normal order
156719 DD Munchen X . 170 2120600 23122359 12,74 normal order
1567198 BeNelux Doetinchem 403149 X . 17023121230 23121330 0.00 normal order
1567200 oL Munchen X . 1.00 22-12 06:00 23-1223:59 12.74 normal order
1567200 BeNelux Wel 402931 X . 100 231200:00 23122359 57,52 normal order
1567201 DD Munchen - 6,60 2212 06:00 23122359 12,74 normal order
1567201 BeNelux ‘s-Heerenberg 402045 —— 6.60 23-12 00:00 23-1223:59 11.24 normal order
1567204 ol Mertert X . 0.40 23-1200:00 24-1223:59 320.00 normal order
1567204 BeNelux Doetinchem 402555 X . 0.40 241200:00 24122359 11,50 normal order
1567220 DD Emmerch Terschuur 402603 X . 0.40 2-1206:00 2122359 72,78 normal order
1994 4107.32| 46...| 274...

Figure A.1: An example of a layout for route planning in ORD. There are three grids shown in
this figure: top left is the route grid, top right the action grid and at the bottom is the transport
grid.

Appendix B

Extended Literature Study

B.1 Initial Solution - Performance

There are various construction methods for an initial solution described in the literature.
From simple heuristics to more sophisticated ones. Random insertion is a method that is
very simple and does not need a lot of configuration. Jaszkiewicz and Kominek (2003) and
Lin (1965) use this method to construct an initial solution that is used as input for their
heuristic. However, when small neighborhoods are searched, a random initial solution can
slow down the process of finding solutions of good quality. Therefore, one could advocate
starting with an initial solution of good quality. Jaszkiewicz and Kominek (2003) mention
that the efficiency of their heuristic could be increased when the initial solution would be
of higher quality. They propose to use a simple, but specialized heuristic.

An insertion method that takes into account the characteristics of the transports and
the routes, is cheapest insertion. Azi et al. (2010) extend the cheapest insertion heuristic
by allowing a route to be split into two routes, when a transport can not be planned on
any of the routes. They are able to do this, because vehicles are allowed to drive several
routes in the VRP with Multiple Routes, which they investigate. Schrimpf et al. (2000)
use an additional vehicle in case a transport can not be inserted, due to capacity or time
window constraints. To show the power of this insertion method, compared to random
insertion, they made 100,000 solutions with both random insertion and cheapest insertion.
This resulted in two distributions, where the average solution length of solutions produced
with cheapest insertion was much lower than the average length of the solutions created
with random insertion. The length of the solution being defined as the sum of all driving
distances in the network. For cheapest insertion, the average length was only 15% above the
optimal solution, and the average length was only 8% of the average length of the solutions
created by random insertion. Schrimpf et al. (2000) stat that because of these good initial
solutions, their method converges faster than when random insertion is used.

There is also a method provided to minimize the number of vehicles that is used, before
using an ALNS framework. This method is proposed by Ropke and Pisinger (2006a). They
first build an initial feasible solution, using sequential insertion. After that, they try to
minimize the number of vehicles that are used, by removing one route at a time. The
transports on that route are reinserted, using a LNS heuristic. In case all transports are
inserted, they stop the LNS heuristic and move on to another route that is removed from
the solution. In case the LNS heuristic is not able to find a solution where all transports are
planned again, the search for a better solution with less vehicles is stopped. The resulting
solution will be used as the initial solution for the ALNS framework. One can imagine that
this can increase the computation time by a lot, and therefore they use a maximum number
of iterations that can be used for the vehicle minimization part. They also propose another
method to keep the computing time limited. For this second method, the LNS heuristic
is stopped in case five or more transports are unplanned and there are no improvements
found in the last 2,000 iterations.

97

98 APPENDIX B. EXTENDED LITERATURE STUDY

Azi et al. (2010) are the only one, as far as the author’s knowledge goes, that mention
a method that copes with an infeasible initial solution. The unplanned transports, that
make the initial solution infeasible, may be planned using a recreate method. Therefore,
the recreate method will not only insert removed transports, but all transports that are not
planned at the moment of executing the recreate method. In this way, the transports that
were not planned during the construction of the initial solution, may be planned during
this recreate stage.

B.2 Removal Methods

Several removal methods are used in metaheuristics that use the idea of removing and
reinserting transports. This appendix is included to elaborate on some of the removal
methods that can be included in ALNS.

Related Removal

Shaw (1997) proposed to use a method to remove transports that are similar, where the
similarity is measured with a relatedness function. This function includes measures for the
distance between the delivery locations of transports, the similarity of the time windows on
the transports, whether they are scheduled on the same route and whether the transports
have similar load weights. A pseudo-code on how to configure the use of this relatedness
function is included in Algorithm 7.

Algorithm 7: Related Removal (SR)

Input: An initial solution s. 1" are all transports in the network, 7). is the set of
transports that are removed, t, is the number of transports that need to be
removed, L contains all transports that are not in 7., p controls the
randomness in the algorithm.

begin
1 Select a transport ¢ from the solution s at random
2 T,={t}
3 while |T,| < t,, do
4 Select ¢t € T, at random
5 Sort L according to their similarity to ¢
6 Choose a random number r € [0,1)
7 Select transport j that is at location 7?|L| in L
8 T, =T, U{j}
end while
9 Remove the transports that are in T, from the solution s
end

From this pseudo-code can be seen that a randomization is included. In case an initial
transport is chosen several times during the search, this randomization will prevent that
the same related transports are chosen to be removed. As can be seen in the pseudo-
code, during each iteration of choosing transports to be removed, a transport ¢ is chosen
at random from the already removed set of transports. Then, a random number r between
0 and 1 is chosen and all transports that are not yet removed are ordered on similarity to
transport t. At last, a transport from this ordering is chosen to be removed, based on the
randomization number r and a diversification parameter p. In case this p is 0, the next
transport to be removed is chosen at random from the ordering. In case p equals oo, the
most related transport is chosen from the ordering.

Ropke and Pisinger (2006a) extend the relatedness function in such a way, that both
pickup and delivery locations and times are included. This is needed in case there are
multiple depots for example. They also change the boolean variable that indicates whether

B.3. REMOVAL METHODS - PERFORMANCE 99

two transports are scheduled on the same vehicle or not. In their relatedness function it is
ensured that two transports only obtain a high value for relatedness in case they can only
be scheduled on a few vehicles. For more details on this relatedness variant is referred to
Ropke and Pisinger (2006a). This relatedness function is also used by Ropke and Pisinger
(2006b) and Pisinger and Ropke (2007).

Another related removal method that is based on Shaw (1997), comes from Azi et
al. (2010). They only account for the geographical distance, d;; in (6.1), and the absolute
difference between the time of beginning of service at both locations, [t; — ¢;| in (6.1). These
two measures are weighted with parameters that need to be specified. Also the parameter
p is used to control the degree of relatedness, the same way it is used by Shaw. Azi et
al. (2010) used a value of 6, instead of 4 that Shaw used for his test. The relatedness is
considered on a customer or transport level, but they also describe the relatedness on route
level. To do so, they propose two different measures for the relatedness between routes. One
measure takes into account the distance between the gravity centers of two routes, which is
the distance between the average location over all customer locations in both routes. The
other measure looks at the smallest distance between any pair of customers taken from
the two routes that are considered. Azi et al. (2010) tested these measures separately, but
a combination with weight parameters is tested as well. Based on tests on the Solomon
instances, 11 instances for R2, 8 instances for C2 and 8 instances for RC2, they found that
the minimal distance measure performs better than the gravity center-based measure for
route level. Besides that, they also found that on route level using one measure performs
better than weighing two measures.

Historical-based Removal

Ropke and Pisinger (2006b) propose two versions of a historical-based removal method.
The first method is called neighbor graph removal. This method uses a complete, directed,
weighted graph: the neighbor graph. All visits in the network have a node in this neighbor
graph and all arcs have an initial weight of infinity. After each new found best solution, the
weights of the arcs in the neighbor graph are updated and the cost of the best solution is
stored. The second method is called request graph removal and the historical information
is stored in the request graph. This graph is complete and undirected, contrary to the
directed neighbor graph, and consist of nodes that represent the request, or transports.
The weight on an edge between two transports is the number of times they are served with
the same vehicle, regarding a specific number of best unique solutions. In the tests done
by Ropke and Pisinger, this number was set to 100, and the initial weight on the edges was
set to 0. A transport i obtains a score based on the sum of the weights on the edges to
the transports that are in the same route, at that moment, as the transport 7. In case the
score is low, this transport ¢ has not been planned many times with the transports that are
currently in the route with ¢, according to previously found best solutions. Therefore, good
solutions that are already found, indicate that this transport ¢ is not placed in a suitable
route. Improvements may be found when this transport is removed from the solution and
reinserted in some other place. However, Ropke and Pisinger found that this method does
not perform well, because of the lack of diversification. The changes are based on the best
found solutions so far, which may result in small changes only. Therefore, they propose to
use this request graph for the relatedness of two request.

B.3 Removal Methods - Performance

There are some articles that tested several removal methods, which are summarized in
Section 6.2. More information on the tests that are performed in the literature is given
in this section. However, for most of the ALNS heuristics, the performance of the single
removal methods is not given, but is rather looked at the performance of the heuristic itself.

Ropke and Pisinger (2006a) tested related, random and worst removal. The tests were
performed on four of Li and Lim’s benchmark problems and 12 randomly generated in-

100 APPENDIX B. EXTENDED LITERATURE STUDY

stances. These 12 instances contain both single depot and multi depot problems, and
problems where some tasks may only be scheduled on certain vehicle types, hence there is a
heterogeneous fleet. The four instances from Li and Lim contain between 50 and 100 tasks
and the randomly generated instances contain 50 tasks. Ropke and Pisinger state that for
their instances the related removal provided the best solutions, worst removal second best
and random removal provided the worst solutions. From this may be concluded that the
two slightly more complicated removal methods perform best. Note that these conclusions
are drawn based on the comparison of average gaps between the solutions and the best
solutions found during all tests.

Ropke and Pisinger (2006a) also proposed the ALNS, and therefore they are able to use
different methods during the same search. To do so, they use the roulette wheel principle,
where weights are assigned to the removal methods based on their successes in previous
iterations in the search. They give the progress of the weights for the removal methods, as
they change during the search, for a randomly chosen instance. For that specific instance,
worst removal obtained the lowest weights, whereas the weights for related and random
removal followed quite the same progress during the search and obtained higher weights than
worst removal. Note that there can not be drawn any conclusions from this, because this
is only based on one instance. When the average progress over all instances is formulated,
conclusions can be drawn. Furthermore, they state that some removals can be used to
diversify the search and other can be used to intensify the search, as is explained in Chapter
4. Random removals may for example contribute to the diversification of the search, as they
can contribute to large changes in the solution. However, when one wants to intensify the
search, more critical tasks can be removed using worst and historical-based removal.

In Ropke and Pisinger (2006b) there are three different configuration that are tested:

e related, worst and random removal with roulette wheel selection,

e related, worst, random, cluster and historical-based removal with roulette wheel se-
lection,

e related, worst, random, cluster and historical-based removal without roulette wheel
selection.

They tested these three configurations on several problems. They mainly chose problems
with backhauls and problems with multiple depots and mixed vehicles and had a total of
338 instances for 16 problems. On these instances, the configuration with three removal
methods performs worse than the two configurations with more removal methods. The
average gap, in percentage, for the three removal methods configuration is 0.81, with 201
best found solutions, whereas the average gap for more removal methods without and with
roulette wheel selection is 0.62 (234 best solutions found) and 0.50 (248 best solutions
found) respectively. As for the computation time, the time increases in case the number
of backhaul customers increases. They explain this by the fact that routes are longer,
thus there are many possibilities in the order of scheduling the tasks. Furthermore, the
computation time increases with the problem size.

Furthermore, Azi et al. (2010) use removal on three different levels: customer level, route
level and workday level. They first remove on workday level, random and related removal,
followed by removals on route level, random and related removal, and last removals on
customer level, only random removal. For each level, the removals are used for a few
iterations, before continuing with the next level. They tested on Solomon instances with
long horizons, as already mentioned in this thesis, and were able to improve the number of
unplanned customers with 7.81%, 8.22% and 6.92% for classes RC2, R2 and C2, respectively.

B.4 Number of Removals - Performance

Besides the removal method itself, also the number of transports that are removed are
needed as input for the metaheuristics that remove and reinsert transports.

B.4. NUMBER OF REMOVALS - PERFORMANCE 101

For the number of tasks to be removed, Shaw (1997) starts initially with 25 tasks.
For each recreate iteration that was not able to find improvements, the number to be
removed decreased by one. On the other hand, in case the recreate method was able to
find improvements for 20 consecutive iterations, the number was increased by one. He
tested this procedure on the Solomon instances with a short scheduling horizon. For the
C1 class, the heuristic found the best solution at the first output moment, which was after
7.5 minutes. From this Shaw concludes that the C1 class is rather easy to solve. However,
for R1 and RC1, the convergence is much slower.

Schrimpf et al. (2000) test radial, random and sequential removal for 100 iterations on
the TSP PCB442. For 442 transports, they test removals of 1%, 2%, 5%, 10%, 20% and
50% of the total number of nodes that are visited by in the TSP. From the graphs and tables
they state, a few conclusions may be drawn. When the percentage of tasks to be removed
is increased from 1% to 5%, the length of the solution decreases for all removal methods.
The length of the solution is, in this case, the total distance of the circuit in the TSP. When
the percentage of tasks to be removed is increased from 10% to 50%, whether the length
of the solution decreases or increases, depends on the acceptance criteria that is used. For
random walk acceptance, the solution length decreases for random removal, increases a bit
for radial removal and a lot for sequential removal. For greedy acceptance, the behavior of
the removal methods is different, because the length of the solution decreases for radial and
random removal, and increases for sequential removal. For the test instance of Schrimpf
et al. (2000) can be concluded that radial removal performs best with 5% and 20% for a
random walk acceptance and greedy acceptance, respectively. However, the difference in
solution quality between 1%, 2% and 5% is within 0.5%, and the same holds for 10%, 20%
and 50%. For sequential removal similar behavior can be discovered: 2% works best for
random walk acceptance and 20% for greedy acceptance. Again, the difference between 1%,
2% and 5% is within 0.5%, and the same holds for 10% and 20%. For random removal can
be concluded that the highest percentage works best, so 50%, for both acceptance criteria.
From this can be concluded that the number of removals, a small or high percentage, is
heavily depending on both the removal method and acceptance criteria.

A few years after Schrimpf et al. (2000), Ropke and Pisinger (2006a) use a completely
different method. They propose to use a method that randomly chooses a ‘degree of de-
struction’ in each iteration. This could be beneficial, because in this way still a lot of
solutions can be explored and also a large range over the solution space can be visited.
The choice for the number of removals is depending on the instance size. As instance size,
Ropke and Pisinger take the number of requests n, so the number of transports that are
in the network. They choose a random number in the interval [4, min(100, {n)], where £ is
a parameter that needs to be specified and control how many tasks are removed. For this
&, Ropke and Pisinger tested values from 0.05 up to 0.5 with steps of 0.05. They conclude
that with a low value of €, there are not many tasks removed and there is a higher chance
of getting trapped at local minima. However, in case £ is relatively large, it is hard for
the insertion heuristics to find a good solution. A disadvantage that comes along with a
high number of removals, is that each iteration will take longer, because more tasks are
removed. Ropke and Pisinger found that & = 0.4 works best for their test instances, and
therefore they choose a random number of tasks to be removed from [4,0.4n]. From the
test instances they used, four have a maximum of 100 tasks and 12 a maximum of 50 tasks.

In their next research, Ropke and Pisinger use the same amount of removals (Ropke &
Pisinger, 2006b). However, the number of tasks to be inserted is in Ropke and Pisinger
(2006b) for some instances higher than the maximum of 100 in Ropke and Pisinger (2006a).
They conclude afterwards, that in case 100 tasks are removed this is too much (Pisinger
& Ropke, 2007). They discovered that with many removals, the insertion techniques they
used, cheapest and regret insertion, were too weak. That is why they changed the lower
and upper bound for the interval they proposed in Ropke and Pisinger (2006a). The new
interval is [min{0.1n, 30}, min{0.4n, 60}], so for large n this will mean the interval [30, 60]
is used. Therefore, the choice for the number of tasks that need to be removed lays between
30 and 60 for large instances.

Azi et al. (2010) use three levels for the removals, see Section 6.2.3. They test how many

102 APPENDIX B. EXTENDED LITERATURE STUDY

iterations the heuristic has to stay at each level and what number of removals have to be
chosen. They test this on Solomon’s RC2 intance with 100, 400 and 800 customer locations.
They tested 100, 200 and 400 iterations for each level and three different intervals for the
degree of destruction, [5%, 35%], [35%, 65%)] and [65%, 95%)]. They use the same method
as Ropke and Pisinger propose, hence they select a uniformly random number from the
interval and use that as the percentage of tasks that need to be removed at the level that
is considered. As others already concluded, in Azi et al. (2010) is also concluded that the
computation time increases when the number of removals increases. Furthermore, they state
that the solution quality, based on unplanned customers, total distance and computation
time, decreases when considering higher lower and upper bounds for the interval for the
degree of destruction. They conclude that for RC2 with 100, 400 and 800 customers, the
performance of their heuristic is best when the number of removals is chosen from the
interval [5%, 35%] and each level has 200 iterations of removals.

Appendix C

Additional Figures

Not only the construction method for the initial solution may influence the performance
of the recreate method, but also the removal method that is used before the transports
are reinserted. Therefore, the tests with different recreate methods are also executed with
configurations that use SR as single removal method. The results are stated in Table C.1.

Table C.1: Results Recreate Method on SR (Average)

Recreate Trips Tasks Plan Distance Hours Driving Run
Method Costs (km) (h) Time Time

(€) (sec) (h:min)
PCI 739 11,064 18,968 5304 169.57 320,984 2:03
PRI 737 11,064 18,978 5329 169.50 321,983 3:49
CI 741 11,064 19,035 5336 170.07 322,849 3:20

This table shows the results of having a fixed method for the recreate method, where related removal
(SR) is used to remove transports. The different recreate methods are: parallel cheapest insertion
(PCI), parallel regret insertion (PRI) and cheapest insertion (CI). The second and third column show
the sum of the total amount of trips that are used and tasks that are planned, respectively. The
maximum number of tasks to plan is (6 x 794) + (6 x 794) + (6 x 256) = 11,064. The last five
columns contain information about the other KPIs that are used to indicate the performance of the

configurations.

103

104 APPENDIX C. ADDITIONAL FIGURES

.103
19141
®

@wn
Z 19.0
O
=
<
T 189 -
<)
a0
g
S 18.8
<
PCI PRI CI

Recreate Method

Figure C.1: The average plan costs, in euros, for three different fixed recreate
methods: parallel cheapest insertion (PCI), parallel regret insertion (PRI) and
cheapest insertion (CI). The average is taken over three instances, two meth-
ods for constructing the initial solution and three configurations, resulting in
18 different cases per recreate method. For the removal component, related
removal (SR) is used as a single removal method. Note that the values on the

y axis do not start at zero and the scale is in thousands.

19.0 - 10 21.2 110
© ©
2 Z 240
n 7] .0
QQ 18.8 8
g g
= <
A A 23.8
18.6 -
PCI PRI CI PCI PRI CI
Recreate Method Recreate Method
(a) The average plan costs (in euros) per recreate (b) The average plan costs (in euros) per recreate
method for instance B1. method for instance B3.
103 103
14.2 19.2
0 v
5 3
2 14.0 z 19.0 -
@) @)
g g
= <
A 13.8 A 18.8
PCI PRI CI PCI PRI CI
Recreate Method Recreate Method
(C) The average plan costs (in euros) per recreate (d) The average plan costs (in euros) per recreate
method for instance B4. method.

Figure C.2: The average plan costs (in euros) for three instances and the average over all
instances per recreate methods, split up into two configurations for the construction of the initial
solution: sequential insertion (SI) and parallel insertion (PI). For the removal component, related
removal (SR) is used as a single removal method. Note that the y axis are in thousands and the

values do not start at zero.

Appendix D

Tables

The results that are used in figures in Chapter 8 are represented in tables in this appendix.
For the instances B, we included figures per instance and initial solution, hence the tables
show results per instance. The tables for instances C are split into two initial solutions: SI
and PI, and the trips and tasks are summed over all instances C. The other KPIs show the
average results over the instances C.

Table D.1: Results initial solution per case B

Configuration Case Trips Tasks Plan Distance Hour Driving Run

Costs (km) (h) Time Time

(€) (sec) (h)
145 B1 121 2382 18134 5218 177.66 323754 2.56
145a B1 122 2382 18068 5290 174.21 323795 291
145b B1 121 2382 17986 5228 174.49 322048 2.32
146 B1 122 2382 18025 5286 173.46 323559 2.75
1465 B1 124 2382 18028 5256 172.76 322138 4.05
145 B3 153 2382 23311 6451 196.06 380752 6.72
145a B3 157 2382 23179 6310 194.45 370241 6.48
145b B3 156 2382 23252 6349 195.25 373362 7.60
146 B3 155 2382 23347 6353 197.82 374463 7.48
1464 B3 156 2382 23297 6396 194.95 376092 6.00
145 B4 89 768 13912 3911 115.76 239228 1.10
145a B4 90 768 13841 3858 114.94 235997 1.15
145b B4 91 768 13882 3847 115.03 235611 1.06
146 B4 89 762 13759 3847 114.58 237007 1.01
146, B4 92 768 13873 3844 114.45 236458 0.84

105

106

APPENDIX D. TABLES

Table D.2: Results multiple removal methods per initial solution, per instance

B
Removal Initial Case Trips Tasks Plan Distance Hour Driving Run
Method Solution Costs (km) (h) Time Time
(€) (sec) (h)
3RW SI B1 121 2382 18178 5269 177.51 324194 2.94
3RW PI B1 121 2382 18074 5314 174.53 326298 2.84
3RW SI B3 155 2382 23300 6444 194.93 379191 7.06
3RW PI B3 156 2382 23283 6415 194.51 378122 6.64
3RW SI B4 90 768 13985 3952 115.92 241350 0.57
3RW PI B4 92 768 13831 3821 114.08 235124 0.40
3noRW SI B1 122 2382 18704 5368 185.39 334149 2.23
3noRW PI B1 126 2382 18584 5338 180.92 331644 1.93
3noRW SI B3 155 2382 23602 6522 198.94 384178 5.71
3noRW SI B3 157 2382 23673 6480 199.80 382232 4.63
3noRW PI B4 87 768 13949 3946 116.86 241604 0.57
3noRW SI B4 94 768 13984 3855 114.92 237232 0.45
5RW PI B1 121 2382 18134 5218 177.66 323754 2.56
5RW SI B1 124 2382 18028 5256 172.76 322138 4.05
5RW PI B3 153 2382 23311 6451 196.06 380752 6.72
5RW SI B3 156 2382 23297 6396 194.95 376092 6.00
5RW PI B4 89 768 13912 3911 115.76 239228 1.10
5RW SI B4 92 768 13873 3844 114.45 236458 0.84
5noRW SI B1 121 2382 18354 5405 178.32 334396 2.51
5noRW PI B1 125 2382 18225 5259 175.98 327303 2.05
5noRW SI B3 155 2382 23304 6440 194.87 379264 5.21
5noRW PI B3 156 2382 23503 6416 198.34 380856 5.17
5noRW SI B4 89 768 13770 3840 114.54 235801 0.56
5noRW PI B4 93 768 13947 3851 114.97 237663 0.46
6RW PRI Bl 120 2382 17891 5251 172.81 324850 2.37
6RW SI B1 119 2382 18611 5310 186.67 326642 2.65
6RW PI B1 122 2382 18175 5273 176.72 324048 2.54
6RW PRI B3 154 2362 23225 6433 194.58 378308 6.74
6RW SI B3 155 2382 23404 6444 196.93 379455 6.57
6RW PI B3 157 2382 23431 6412 196.58 377633 5.79
6RW PRI B4 88 758 13907 4028 114.78 244005 0.56
6RW SI B4 89 768 14017 3958 117.12 241842 0.67
6RW PI B4 89 768 13711 3802 114.04 234303 0.49

107

Table D.3: Results multiple removal methods per initial solution, instances C

Removal Initial Trips Tasks Plan Distance Hour Driving Run
Method Solution Costs (miles) (h) Time Time
(€) (sec) (min:sec)

3RW SI 6552 24888 5559515 51358 1962.61 3693285 49:10
3RW PI 6556 24888 5560253 51348 1971.01 3691978 54:29
3noRW SI 6577 24888 5576038 51502 1972.74 3703325 22:54
3noRW PI 6573 24888 5577392 51513 1973.69 3703435 22:35
5RW ST 6561 24888 5558084 51344 1962.10 3692100 48:36
5RW PI 6556 24888 5557866 51327 1969.87 3690645 49:07
5noRW SI 6576 24888 5581196 51558 1970.39 3706558 22:35
5noRW PI 6575 24888 5582205 51561 1973.89 3706688 21:33
6RW SI 6544 24888 5552683 51278 1968.43 3687302 48:14
6RW PI 6563 24888 5561741 51368 1968.59 3694036 46:56

Table D.4: Results single removal methods per initial solution, per instance B

Removal Case Initial Trips Tasks Plan Distance Hour Driving True
Method Solu- Costs (km) (h) Time Time
tion (€) (sec) (h)
SR B1 SI 120 2382 18904 5541 187.26 342225 2.18
SR B1 PI 123 2382 18516 5349 181.35 331887 1.59
SR B3 SI 155 2382 23909 6492 205.13 381885 5.98
SR B3 PI 156 2382 23787 6526 201.75 383529 6.42
SR B4 SI 90 768 14029 3941 116.75 241689 0.56
SR B4 PI 93 768 13927 3854 114.59 236963 0.45
RR B1 SI 121 2382 20321 5829 209.17 357050 2.78
RR B1 PI 131 2382 19576 5547 193.24 341060 1.75
RR B3 SI 156 2382 24885 6732 218.73 392792 4.77
RR B3 PI 162 2382 24789 6598 216.10 385795 4.56
RR B4 SI 90 768 14220 4069 117.83 247612 0.44
RR B4 PI 96 768 14235 3940 116.44 242123 0.50
WR B1 SI 118 2382 20951 5955 221.25 363470 2.98
WR B1 PI 131 2382 19940 5686 197.74 346250 1.86
WR B3 SI 156 2382 26105 6889 239.72 400922 0.59
WR B3 PI 160 2382 25216 6538 227.18 384130 3.85
WR B4 SI 90 768 14453 4142 120.95 249327 0.58
WR B4 PI 98 768 14433 4044 116.85 244142 0.57
CRR B1 SI 121 2382 19511 5657 196.41 347327 2.46
CRR B1 PI 127 2382 18809 5406 183.39 332373 1.77
CRR B3 SI 159 2382 24035 6550 204.56 383272 5.02
CRR B3 PI 158 2382 23984 6449 205.95 378279 4.81
CRR B4 SI 91 768 13937 3897 115.35 239210 0.56
CRR B4 PI 94 768 14047 3874 115.45 238614 0.48
CWR B1 SI 120 2382 20806 5950 217.13 360461 2.25
CWR B1 PI 131 2382 19867 5615 197.71 344679 1.66
CWR B3 SI 155 2382 26278 6916 243.16 402110 1.35
CWR B3 PI 160 2382 25119 6541 225.30 382833 4.10
CWR B4 SI 90 768 14452 4141 120.96 249346 0.52
CWR B4 PI 98 768 14425 4026 117.05 243568 0.50

108

APPENDIX D. TABLES

Table D.5: Results single removal methods per initial solution, instances C

Removal Initial Trips Tasks Plan Distance Hour Driving Run
Method Solution Costs (miles) (h) Time Time
(€) (sec) (min:sec)
SR SI 6563 24888 5581116 51547 1975.84 3705648 46:32
SR PI 6564 24888 5588012 51614 1976.68 3709335 46:44
RR SI 6600 24888 5592129 51656 1975.33 3713787 32:13
RR PI 6593 24888 5588041 51613 1976.89 3710553 31:38
WR SI 6661 24888 5651391 52202 1997.58 3749178 17:10
WR PI 6676 24888 5668190 52350 2007.10 3757388 16:22
CRR SI 6571 24888 5579371 51534 1973.28 3704834 45:21
CRR PI 6582 24888 5582436 51557 1976.76 3706609 43:09
CWR SI 6660 24888 5655537 52238 2000.17 3751290 19:39
CWR PI 6676 24888 5670206 52368 2007.86 3759226 18:59

109

Table D.6: Results number of removals per initial solution, per instance B

Percentage Initial Case Trips Tasks Plan Distance Hour Driving Run
Solution Costs (km) (h) Time Time
(€) (sec) (min)
1 SI Bl 41 794 19687 5513 201.47 340620 6
1 PI B1 42 794 19106 5480 188.53 337191 4
5 SI B1 41 794 18277 5349 176.56 329227 12
5 PI B1 41 794 18155 5346 174.19 328012 10
10 SI B1 41 794 18153 5271 175.65 324663 15
10 PI B1 43 794 18434 5248 177.73 323110 12
20 SI B1 41 794 19418 5452 197.32 338425 28
20 PI B1 42 794 18847 5343 186.08 328118 21
30 SI B1 42 794 18511 5317 179.88 326852 43
30 PI B1 41 794 18513 5335 181.56 330373 30
40 SI B1 43 794 19496 5541 193.10 337551 61
40 PI B1 41 794 19366 5566 193.99 342757 58
50 SI B1 42 794 18704 5293 184.21 328618 76
50 PI B1 42 794 19223 5416 192.12 333843 78
1 SI B3 51 794 24617 6640 217.54 387466 12
1 PI B3 53 794 24975 6514 223.61 381063 9
) SI B3 52 794 23493 6483 197.59 380970 23
5 PI B3 52 794 23786 6319 206.56 373160 19
10 SI B3 53 794 23897 6538 201.59 384953 32
10 PI B3 52 794 23915 6471 206.07 381947 30
20 SI B3 52 794 24281 6468 212.67 383428 57
20 PI B3 53 794 24144 6526 206.36 382704 60
30 SI B3 55 794 24523 6468 211.69 377424 77
30 PI B3 53 794 24088 6386 208.45 375583 94
40 SI B3 53 794 24771 6453 221.37 378817 89
40 PI B3 53 794 23776 6348 203.57 372906 113
50 SI B3 53 794 24950 6659 220.42 390175 136
50 PI B3 53 794 25396 6556 231.01 384731 132
1 SI B4 30 256 14193 4070 117.26 245553 1
1 PI B4 32 256 14247 3963 116.09 241411 1
5 SI B4 31 256 13884 3834 114.20 235425 2
5 PI B4 31 256 14017 3887 115.60 239787 2
10 SI B4 29 256 13872 3944 115.94 241279 3
10 PI B4 30 256 13729 3805 113.89 234817 3
20 SI B4 30 256 14042 3961 116.62 241570 5
20 PI B4 31 256 13832 3803 113.78 233949 4
30 SI B4 31 256 13860 3818 114.02 235575 5
30 PI B4 31 256 13996 3859 115.54 237166 5
40 SI B4 30 256 14064 3939 117.31 242541 8
40 PI B4 30 256 13813 3850 114.46 236231 7
50 SI B4 31 256 14128 3949 116.78 240933 8
50 PI B4 30 256 14103 3950 118.24 242790 9

110

APPENDIX D. TABLES

Table D.7: Results number of removals per initial solution, instances C

Percentage Initial Trips Tasks Plan Distance Hour Driving Run
Solution Costs (miles) (h) Time Time
€) (sec) (min:sec)
1 SI 2218 8296 5650128 52187 1999 3749653 03:06
1 PI 2223 8296 5658608 52255 2007 3753307 02:39
) SI 2198 8296 5587354 51601 1979 3710049 09:12
5 PI 2198 8296 5600823 51727 1984 3718219 09:16
10 SI 2190 8296 5580211 51536 1976 3704560 11:07
10 PI 2189 8296 5595666 51678 1983 3714708 11:02
20 SI 2193 8296 5593082 51672 1973 3713835 11:32
20 PI 2197 8296 5598034 51695 1986 3714617 10:28
30 SI 2192 8296 5604483 51775 1978 3720752 11:36
30 PI 2202 8296 5612182 51830 1989 3724640 10:40
40 SI 2196 8296 5610652 51832 1980 3724503 14:24
40 PI 2207 8296 5616688 51866 1993 3726050 13:29
50 SI 2207 8296 5624718 51942 1995 3732201 16:37
50 PI 2212 8296 5626750 51957 1997 3732147 15:56
Table D.8: Results recreate method per initial solution, per instance B
Recreate Initial Case Trips Tasks Plan Distance Hour Driving Run
Method Solution Costs (km) (h) Time Time
(€) (sec) (min)
PCI SI B1 124 2382 18159 5234 175.83 322956 5:32
PCI PI B1 126 2382 18271 5259 176.25 322444 4:17
PCI SI B3 155 2382 23314 6412 195.77 377740 3:58
PCI PI B3 157 2382 23573 6410 199.86 376881 3:10
PCI SI B4 87 768 13943 3955 116.75 241505 1:02
PCI PI B4 93 768 13940 3859 114.69 236916 0:32
PRI SI B1 123 2382 18229 5275 177.08 324802 6:16
PRI PI B1 124 2382 18316 5341 176.84 327758 4:51
PRI SI B3 155 2382 23128 6369 192.99 375009 4:25
PRI PI B3 156 2382 23343 6388 196.04 375889 4:47
PRI SI B4 89 768 13924 3924 115.93 239145 0:57
PRI PI B4 93 768 13954 3865 114.91 237202 0:40
CI SI B1 123 2382 18258 5268 177.81 323791 1:54
CI PI B1 123 2382 18389 5279 180.19 325460 1:35
CI SI B3 156 2382 23328 6437 194.82 378262 4:02
CI PI B3 157 2382 23466 6409 197.46 376743 3:09
CI SI B4 91 768 13905 3882 115.13 237443 1:01
CI PI B4 91 768 13854 3847 114.66 236790 1:01

111

Table D.9: Results recreate methods per initial solution, instances C

Recreate Initial Trips Tasks Plan Distance Hour Driving Run
Method Solution Costs (miles) (h) Time Time
(€) (sec) (min:sec)
PCI SI 6550 24888 556060351361 1966.37 3693778 49:20
PCI PI 6553 24888 556029451352 1969.26 3692008 49:30
PRI SI 6563 24888 556389851396 1965.36 3695762 46:56
PRI PI 6556 24888 556522751390 1974.91 3695506 44:45
CI SI 6555 24888 556164351376 1964.21 3694437 42:47
CI PI 6560 24888 556462551394 1970.21 3695193 46:00
Table D.10: Results Percentage to Remove (Average)
Percentage Initial Case Trips Tasks Plan Distance Hour Driving Run
Solution Costs (km/ (h) Time Time
(€) miles) (sec) (min:sec)
5,12,20 SI B 121 1844 18472 5215 163.07 314569 26:45
5,...,22 Sl B 123 1844 18336 5147 160.51 310450 34:16
5,12,20 PI B 123 1844 18206 5127 158.19 310140 23:49
5,...,22 PI B 123 1844 18317 5155 159.91 312618 39:00
20,12,5 ST B 123 1844 18655 5152 166.95 311449 25:24
22,....,5 SI B 124 1844 18405 5141 161.33 310228 38:20
20,125 PI B 125 1844 18672 5203 164.85 313161 24:34
22,...5 PI B 125 1844 18459 5161 161.31 311403 33:45
5,12,20 SI C 2188 8296 5565472 51408 1966.90 3695836 21:37
5,...,22 Sl C 2189 8296 5558667 51360 1956.85 3693667 26:52
512,20 PI C 2189 8296 5567790 51416 1974.80 3696332 20:32
5,...,22 PI C 2184 8296 5562136 51369 1970.34 3694332 25:17
20,12,5 SI C 2189 8296 5562039 51377 1965.30 3694634 23:25
22,....,5 SI C 2187 8296 5565041 51409 1964.61 3696065 28:13
20,125 PI C 2187 8296 5572830 51460 1977.97 3700227 22:15
22,....5 PI C 2184 8296 5572742 51465 1975.12 3700707 26:36
Table D.11: Results Percentage to Remove Simple LNS (Average)
Percentage Initial Case Trips Tasks Plan Distance Hour Driving Run
Solution Costs (km/ (h) Time Time
(€) miles) (sec) (min:sec)
10 SI B 120 1844 18798 5287 168.62 318160 18:01
10 PI B 122 1844 18822 5192 169.86 314193 15:41
10,20 SI B 121 1844 19074 5304 173.26 320167 25:10
10,20 PI B 124 1844 18981 5246 170.56 316927 22:39
10 SI C 2195 8296 5585804 51600 1972.45 3709103 12:20
10 PI C 2186 8296 5592203 51657 1976.29 3711048 11:19
10,20 SI C 2193 8296 5581721 51559 1972.41 3707215 14:39
10,20 PI C 2188 8296 5588297 51610 1980.31 3709575 13:53

112 APPENDIX D. TABLES

References

Acharya, S. (2013). Vehicle Routing and Scheduling Problems with Time Window Con-
straints - Optimization Based Models. Int Jr. of Mathematical Sciences & Applica-
tions, 3(1).

Ahuja, R., Ergun, O., Orlin, J. B., & Punnen, A. P. (2002). A Survey of Very Large-Scale
Neighborhood Search Techniques. Discrete Applied Mathematics, 123, 75-102.

Arora, S., & Barak, B. (2009). Computational Complezity. Cambridge University Press. Re-
trieved from https://ebookcentral-proquest-com.tudelft.idm.oclc.org/lib/
delft/detail.action?docID=433029.

Azi, N., Gendreau, M., & Potvin, J.-Y. (2010). An Adaptive Large Neighborhood Search
for a Vehicle Routing Problem with Multiple Trips. CIRRELT .

Blum, C., & Roli, A. (2003). Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys, 35(3), 268-308.

Braysy, O. (2003). A Reactive Variable Neighborhood Search for the Vehicle Routing
Problem with Time Windows. INFORMS Journal on Computing, 15(4), 347-368.

Castro Martings, T. d., & Sales Guerra Tsuzuki, M. d. (2014). Simulated Annealing:
Strategies, Potential Uses and Advantages. Hauppauge, NY: Nova Science Publishers,
Inc.

Cook, J. W., Cunningham, W. H., Pulleyblank, W. R., & Schrijver, A. (1998). Combina-
torial Optimization. New York, NY: John Wiley & Sons, Inc.

Dantzig, G. B., & Ramser, J. H. (1959). The Truck Dispatching Problem. Management
Science, 6(1), 80-91.

El-Sherbeny, N. (2010). Vehicle Routing with Time Windows: An Overview of Exact,
Heuristic and Metaheuristic Methods. Journal of King Saud University, 22, 123—
131.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: a guide to the theory
of NP-completeness. New York, NY: Freeman.

Glover, F.; & Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers.

Golden, B., Raghavan, S., & Wasil, E. (2008). The Vehicle Routing Problem: Latest
Advances and New Challenges. New York, NY: Springer Science+Business Media.

Hansen, P., & Mladenovic, N. (2001). Variable Neighborhood Search: Principles and
Applications. European Journal of Operational Research, 180(4), 449-467.

Hall, C., & Peterson, A. (2013). Improving Paratransit Scheduling using Ruin and Recreate
Methods. Transportation Planning and Technology, 36(4), 377-393.

Jaszkiewicz, A., & Kominek, P. (2003). Genetic Local Search with Distance Preserving

113

114 References

Recombination Operator for a Vehicle Routing Problem. Furopean Journal of Oper-
ational Research, 151, 352-364.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Anneal-
ing. Science, 220(4598), 671-680.

Lin, S. (1965). Computer Solutions of the Traveling Salesman Problem. BSTJ, 44(10).

Nagy, G., Wassan, N., Speranza, G., & Archetti, C. (2015). The Vehicle Routing Problem
with Devisible Deliveries and Pickups. Transportation Science, 49, 271-294.

Papadimitriou, C. H., & Steiglitz, S. (1998). Combinatorial Optimization: Algorithms and
Complezity. Mineola, NY: Dover Publications, Inc.

Pisinger, D., & Ropke, S. (2007). A General Heuristic for Vehicle Routing Problems.
Computers € Operations Research, 34, 2403-2435.

Potvin, J.-Y., & Rousseau, J-M. (1993). A Parallel Route Building Algorithm for the
Vehicle Routing and Scheduling Problem with Time Windows. FEuropean Journal of
Operational Research, 66, 331-340.

Ropke, S., & Pisinger, D. (2006a). An Adaptive Large Neighborhood Search Heuristic
for the Pickup and Delivery Problem with Time Windows. Transportation Science,
40(4), 455-472.

Ropke, S., & Pisinger, D. (2006b). A Unified Heuristic for a Large Class of Vehicle Routing
Problems with Backhauls. Furopean Journal of Operational Research, 171, 750-775.

Schneider, J., & Kirkpatrick, S. (2006). Stochastic Optimization. Germany: Springer-Verlag
Berlin Heidelberg.

Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., & Dueck, G. (2000). Record Breaking
Optimization Results Using the Ruin and Recreate Principle. Journal of Computa-
tional Physics, 159, 139-171.

Shaw, P. (1997). A New Local Search Algorithm Providing High Quality Solutions to Vehicle
Routing Problems (Tech. Rep.). Glasgow: University of Strathclyde.

Sol, M., & Savelsbergh, M. W. P. (1992). The General Pickup and Delivery Problem.
Retrieved from https://pure.tue.nl/ws/files/2234894/389349.pdf

Solomon, M. M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with
Time Window Constraints. Operations Research, 35(2), 2564-265.

Talbi, E.-G. (2013). Hybrid Metaheuristics. Berlin: Springer.

Toth, P., & Vigo, D. (2003). The Granular Tabu Search andd Its Application to the
Vehicle-Routing Problem. INFORMS Journal on Computing, 15(4), 333-346.

Toth, P., & Vigo, D. (2014). Vehicle Routing: Problems, Methods and Applications (2nd
ed.). Philadelphia, PA: Society for Industrial and Applied Mathematics.

