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skeletal bonds for PDMS or polymethylene chains). Although 
PS is much stiffer than PM or PDMS the chain lengths of the 
present polymers are too long for showing this effect. 

The ring fraction is further decreased if the excluded volume 
is taken into account, because excluded volume disturbs Gaussian 
statistics. To reach the Mw(c) measured by LS it was necessary 
to counterbalance that by a further reduction of the effective bond 
length. The measured Mw(c) were obtained in the fit with be, = 
0.156 nm for PS BI1 and B12 and b, = 0.17 nm for sample B13, 
which is smaller than be, = 0.34 nm in toluene. In contrast to 
the original JS treatment, the effective bond length is now no more 
that strongly molecular weight dependent, since the effect of 
excluded volume is taken into account. Slight deviations are still 
present, since throughout relations were used which are only valid 
in the asymptotic region of very high molecular weights. The 
molecular weights of the samples investigated here are below that 
limit, but they are too high for showing striking features of chain 
stiffness. The value of the effective bond length be, found from 
the modified JS treatment be, = 0.16 f 0.01 nm is considerably 
smaller than the corresponding value for the open chains with b, 
= 0.34 nm. At present we are not able to give a conclusive 
explanation. One possibility may be that the effect of excluded 
volume is overestimated for rings if the same asymptotic behavior?' 
as = 1 . 5 3 ~ * / ~ ,  with the same prefactor is taken for the rings and 
open chains. 

Comparison of our results with those obtained by synthesis of 
covalent polystyrene ring  polymer^^^^^^*-^^ is quite difficult. Al- 
though the two systems seem to be very similar there are some 
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essential differences which complicate a direct comparison. First, 
in the present system the extent of reaction depends on the con- 
centration of functional groups, while in the synthesis of poly- 
styrene rings a = 1 may be assumed. Second, according to the 
method the covalent ring polymers are prepared, the ratio r of 
the functional groups is not r = 1, as in our case, but is increasing 
with the cyclization since the coupling reagent is added slowly 
to a carbanionic PS solution. Third, the most interesting point 
is the difference in reaction mechanism. Treatment of ring closure 
reaction for irreversible systems is much more complicated and 
to our knowledge this problem has been solved only approxi- 
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Scaling theory hypothesizes a stepfunction profile for the segment density of polymer chains terminally attached to a planar 
wall. Using a self-consistent-field theory we give a perturbation analysis of the first-order correction to the step-function 
profile in order to gauge the impact of a possible tail. The new profile decays smoothly to zero without a discontinuity in 
the derivative (except near the wall). The segment density profile as scaled by the amplitude of the step-function profile 
has a tail that decays essentially as ~ / B Z * ~ ,  with B a dimensionless parameter and z* the distance from the wall scaled by 
the step length of the step-function profile. A scaling analysis would yield z* - " /~ .  

Introduction 
We consider long and monodisperse, flexible polymer chains 

in a good solvent, which are chemically attached by one end to 
a (planar) wall. We assume that the density of grafts at  the 
surface is high enough, so that the chains tend to stretch away 
from the surface. Our concern is to investigate the density profile 
4 2 )  of the segments as a function of the distance z from the wall. 
This problem has been addressed by several authors. Scaling 
arguments of Alexander' and de Gennes* hypothesize a step- 
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function profile for the segment density. The theory of Milner, 
Witten, and who use the analogy of a strongly stretched 
chain to the trajectory of a classical particle, predicts a parabolic 
profile. An identical result was also found independently by 
Zhulina et al? by a " i z a t i o n  of the conformational free energy 
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of a polymer chain in the brush. 
Although the scaling theory and the mean-field theories differ 

with respect to the predicted segment profiles, it so happens that 
they give identical scaling behavior for the thickness h of the brush. 
This scales as h N [2/3u1/3w1/3N with 1 the segment length, u the 
grafting density, w the excluded-volume between the segments, 
and N the total number of segments in the chain. The N de- 
pendence seems well established in view of the experimental work 
of Auroy et al.5 The proportionality of h with the number (N) 
of segments in both types of theory signifies an in the main linear 
propagation of each chain away from the wall. In the scaling 
picture this comes about because each macromolecule is viewed 
as a sequence of impenetrable blobs;2 transverse fluctuations are 
weak.2 In the mean-field theories the propagation of a chain from 
the wall to the brush tip is implicit either in the “classical 
trajectoryn3 or in the chain “stretching f ~ n c t i o n ” . ~  

Both scaling and mean-field theories suffer from drawbacks. 
Although the correlations between all segments are correctly 
accounted for in the scaling analysis,1,2 at  least in principle, the 
blobs are all assumed to have the same density despite the in- 
homogeneity of a grafted chain. In the mean-field approaches3v4 
which are formulated at fairly low segment densities, the corre- 
lations between widely separated segments of a chain are quite 
adequately taken into account because the problem reduces to a 
chain propagating in one dimension. In that case, mean-field 
arguments become valid again. But local segment correlations 
pose a threedimensional problem and are described rather poorly. 
At the chain extremities none of the theories behave as they should. 
Near the wall there should be a depletion layer, whereas, far from 
it, the segment profile ought to bear a tail decaying to zero 
monotonically without a discontinuity in its derivative. A reso- 
lution of all these problems is beyond the scope of this paper. 
Rather, our modest purpose is to investigate one of these items: 
the occurrence of tails. 

In the first version of this paper we were led to suspect the 
viability of the parabolic profile3v4 for it often did not agree with 
numerical work. However, we recently became aware of careful 
self-consistent lattice calculations by Wijmans, Zhulina, and 
Scheutjed showing that the parabola does result but only when 
N becomes extremely large. Moreover, there are significant tails 
even for relatively large values of N. It is impossible for us to 
develop a complete self-consistent-field theory for the tails in view 
of the publishing schedule of this special issue. However, in section 
I1 we do sketch a possible WKB approach to the problem. 

A second analytical line of attack is to regard the uniform 
scaling profile of Alexander and de Gennes as a zero-order theory. 
The first-order correction to it decays smoothly to zero far away 
from the wall and will be calculated within the context of a 
self-consistent-field theory in section 111. We emphasize that we 
are not claiming to present a complete analysis of the whole profie 
but merely a semiquantitative perturbation theory for the tail. 

WKB Approximation to the Self-Consistent-Field Theory 
The self-consistent-field theory of Edwards’ connects the seg- 

ment profile d7) with the Green function G(7,7’,n) denoting the 
unnormalized probability of finding segment n at point 7, when 
one end of the test chain starts at 7’. For grafted chains the 
problem of finding G is assumed to reduce to a one-dimensional 
one involving the distance z from the wall. At fairly low densities 
G(z,z’,n) satisfies an equation of the diffusion type 

with lim(n-4) G(z,z’,n) = ~ ( z - z ?  and segment d e n ~ i t y : ~  
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uJ”Jmdn dz’ G,(O,z’,n) G(z,z’,N-n) 
d z )  = (2) 

uJ”Jmdn dz’ G,(O,z’,n) G(z,z’,N-n) 
d z )  = (2) 

The Green function G,(O,z,n) pertains to a sequence of segments 
with one end fixed to the wall whereas G(z,z’,n) describes an 
unattached sequence. Because the wall is impenetrable, G is zero 
at  the wall. 

In the analytical theories3v4 (which do not use eq 1 as a starting 
point), the chains “propagate” from the wall to the brush tip; i.e., 
each chain follows a “classical trajectory”. Presumably the WKB 
approximation is one way of deriving this path and the nearby 
fluctuations. Anticipating the WKB approximation we write 

G(z,z’,n) = a(z,z’n)e-s(z~z’*n) (3) 
where S is the “actionn and a is a slowly varying function. We 
substitute this expression in eq 1, setting 1 = 1: 

- -  aa a- as + wcpa+ -12- 1 aa - as -g) 2 + a- a2s -”) = 0 
an an 6 az az a z 2  a z 2  

(4) 

In ref 8 the WKB treatment of the Schrodinger equation involves 
a similar expression. But it contains imaginary arguments so that 
it separates into two equations. The formal analogy between 
quantum mechanics and diffusion allows us to conjecture a similar 
separation: 

We have deleted a2a/az2 as in the quantum mechanical case.* 
Equation 6 is the analogue of the classical Hamilton-Jacobi 
equation and is equivalent to Newton’s law of motion. After 
multiplication of eq 5 by a it can be written in the form of a 
conservation law: 

(7) 

Equation 6 is a nonlinear integrodifferential equation, which is 
coupled to eq 7 because Q still depends on a via G. Despite the 
considerable simplification embodied in the WKB analysis, the 
first two terms of eq 6 still define a diffusive rather than a 
propagating mode (in the quantum mechanical case the resulting 
Hamilton-Jacobi equation would have yielded a trajectory even 
when cp = 0). Hence propagation must somehow arise from the 
predominance of the last term involving the self-consistent po- 
tential. From the numerical work of ref 6 we expect a propagating 
mode with z =An) as N - m. At present we suspect that the 
integrand G,G in eq 2 acquires a sharp maximum for a value of 
z = An) as N - but we have not yet solved satisfactorily eq 
6 under this assumption. We hope to return to this problem in 
the future. 

Density Profie with Continuous Derivative 
In this section we concentrate on finding a smooth density profde 

cp(z) by approximately solving the self-consistent-field equations 
by a more physically motivated method. We start from the 
following ansatz: the Alexander-de Gennes stepfunction profile 
is a justifiable zero-order approximation, since it gives the right 
scaling behavior for the brush height and in this paper we con- 
centrate on the tails only. If we neglect the very few transverse 
chain fluctuations the problem is in essence a polymer chain 
confined within an imaginary tube perpendicular to the wall. 
Recall that the chain is effectively a sequence of impenetrable 

(8) Ldndau, L. D.; Lifshitz, E. M. Quantum Mechanics; Pergamon Res: 
1977; p 51. 
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blobs. Accordingly, the chain may be said to propagate from the 
wall to the tip because the blobs cannot interpenetrate. The surface 
of the tube is formed by the neighboring polymers. The test chain 
is stretched because it cannot cross the tube surface. We model 
the tube as a cylinder and use cylindrical coordinates 7 = (z,p) 
(ignoring the angular coordinate) with the z-coordinate perpen- 
dicular and the p-coordinate parallel to the wall. The surface of 
the cylindrical tube is defined by p = constant. End effects are 
disregarded altogether in the Alexandede Gennes profile which 
depends on p and is a step function in the z-direction. 

Writing the self-consistent field equation in cylindrical coor- 
dinates, we have 

+ wCp(p,z)C = 0 (8) 
ac 1 1 8  1 a2G an - 6 ; - 6 

where G = G(z,z’,p,p’,n) and cp is a functional of G and C, given 
by 
d P J )  = 

1 ” S d n  d i”  Gw(i’,i,n) G(i,i”,N-n) 

S d 7 ”  GW(7’,7’’,N) 
( i f€  wall) (9) 

We temporarily ignore the boundary condition l im( r r0 )  G(i,?’,n) 
= 6(i-i’), which is possible since we are dealing with long polymer 
chains. Since we are not interested in the depletion layer, we forget 
about the requirement G = 0 at the wall. The zero-order solution 
to the self-consistent-field equations yielding a uniform brush 
equivalent to the scaling theory of Alexander and de Gennes is 
denoted by Go(p,p’,n). Within the brush Go satisfies the following 
equation 

(10) 

where h is the brush height and the zero-order density profile cpo 
is independent of z. Outside the brush Go and cpo are simply given 
by 

Go = 0 and cpo = 0 for z > h (11) 

Since we are interested in the coarse-grained profile (p(z) it is 
unnecessary to evaluate Go(p,p’,n) explicitly so that the zero-order 
problem is basically a black box. The main point is that in the 
following analysis it turns out that we need merely the height h 
of the brush and its amplitude @which are both predicted by the 
scaling theory of Alexander and de Gennes. Accordingly, our 
treatment must be viewed as a zeroorder scaling picture perturbed 
by z-dependent effects calculated by a self-consistent-field method 
even though Go itself is couched in SCF language. 

We now average the expressions 8 and 10 across a section of 
the tube: 

for 0 5 z 5 h 

with 

I I... PPf dp’ dP 
(14) 

(-) = s s p p ‘  dp’ dp 

where we have used Go(p,p’,n) = go(p)go(p’)P and G(p,p‘,z,z’,n) 
= g(p) g(p’) H(z,z’), where the decomposition in the z- and 
p-directions is suggested because the Green function varies on a 
much smaller scale in the p-direction ( N U - ’ / * )  than in the z-di- 
rection (scale = u ~ / ~ w ’ / ~ N ) .  Furthermore, we have assumed that 
dg(p)/ap = 0 and ag0(p)/ap = 0 on the tube boundary so that 
the second terms vanish in eqs 8 and 10. 

In order to calculate the first-order correction to the step- 
function profile we postulate the following form for the averaged 
Green function ( C ) .  

(G(z,z’,p,p’,n)) = (Go(p,pfn))H(z,z? for 0 I z I h (15) 

(G(z,z’,p,p’)) = coH(z,z? for z > h (16) 
with co a constant independent of n. Substituting eqs 15 and 16 
in eqs 12 and using eqs 1 1  and 13 we get 

1 a2 

6 az2 
-- --H + w(cp(z) - p ) H  = 0 for 0 I z I h (17) 

1 a 2  

6 az2 
-- -H + wcp(z)H = 0 for z > h (18) 

where we have defined 

Both p and h in the above equations are given by the scaling theory 
of Alexander and de Gennes: 

(20) 

(21) 
If we are dealing with long enough chains it is reasonable to 

h ~1/3g1/jN 

p N w-1/ju2/j 

suppose that the function H(z,z? may be factorized as 

H(z,z? N *(Z).*(Z? (22) 
Note that this is not the ground-state solution but a zero-order 
estimate close to it and valid if end effects are small and pre- 
sumably justifiable in our perturbation analysis because G turns 
out to be close to Go. Interesting this in eq 9 we find for the 
segment density cp: 

(23) cp(z) N N\k2(z) 

The constant co has been chosen to make cp continuous and go2(p) 
and $ ( p )  are densities normalized to unity. Combining eqs 18, 
19,22, and 23 leads to the following nonlinear differential equation 
for 9: 

1 a 2  

6 az2 
- --\k = w(Np2 - @)\k for 0 I z I h (24) 

1 a 2  

6 az2 
- --\k = wN@ for z > h 

It is convenient to rewrite these in terms of scaled variables as 

-p* a2 = @(p*2 - l)\k* for 0 I z* I 1 
az*2 (26) 

with the scaled variables and @ defined as 

p* = ( p; z* = z / h ;  

cp* = cp/p; @ N h 4 / w  N2a4/3d/3 (28) 

Note that in the expression for @ a factor 6, originating from eqs 
24 and 25, has been incorporated in the N sign. We now have 
to solve eqs 26 and 27 as a function of the parameter @with the 
boundary conditions that ** and its derivative be continuous a t  
z* = 1 and 9* vanishes as z* - m. We furthermore demand 
that 

LiTcp(z) dz = Nu (29) 

The general solution to eq 26 is given by9 
\ k * (z* )  = C cn (X(z* - zo*),k) (30) 
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Figure 1. Scaled segment density cp* = cp/p as a function of the scaled 
distance from the wall Z* = r / h  for j3 = 1, 2, 5,  and 12. 
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Figure 2. Scaled segment density cp* = cp/p as a function of the scaled 
distance from the wall I* = r / h  for j3 = 36, 72, and 100. 

Here cn denotes one of the elliptic functions of Jacobi. The 
integration constants C, A, and k have to satisfy the relation 

X 2 - f l  B - X2 
and C? = - k2 = - 

2X2 B 
Since C and k are functions of X, it is clear that there are two 
independent integration constants. The solution to eq 27, with 
the boundary condition 9 - 0 as z - m, is simply given by 

/ , \ I 1 2  1 

3 * ( z * )  = (;) 
z* + B 

with B an integration constant. The integration constants are to 
be determined from the boundary conditions as a function of the 
parameter j3. We hae done this numerically and some typical 
results are shown in Figures 1-3, where we have plotted the 
resulting scaled segment density cp* (=V2) as a function of the 
scaled distance z* for representative values of 8. 
Discussion 

In the limit of j3 - m, Le., N - m, the step-function profile 
is obtained, which is to be expected because we perturb from this 
profile. For j3 larger than about 50 (cf. Figures 2 and 3) a plateau 
is still discernible in the segment profile. If we suppose our entire 
profile to be taken literally, then this agrees with the molecular 
dynamics calculations of Murat and Grest.Io Further reduction 
of j3 (cf. Figure 1) leads to a smoother decay, while at  j3 = 12 
the decay in a certain region of z* is close to a parabolic profile 
proposed by Milner, Witten, and Nevertheless, the likeness 

(9) Davis, H. T. Introduction to Nonlinear Differential and Integral 

(IO) Murat, M.; Grest, G. S. Macromolecules 1989, 22, 4054. 
Equations; Dover Publications: New York. 1962; p 207. 
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Figure 3. Scaled segment density cp* = cp/p as a function of the scaled 
distance from the wall z* = z / h  for j3 = 50 and 90. 
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Figure 4. Comparison between the scaled segment density profiles for 
j3= 5 and 12 and the parabolic profile proposed by Milner, Witten, and 
Cates. 

deteriorates rapidly when 6 starts to deviate from this value. For 
comparison we have plotted our predictions for two different values 
of j3 together with the parabolic approximation in Figure 4. We 
note that the deviations from the parabolic profile beyond the 
maxima in our curves are similar to those found in the numerical 
 simulation^.^^" Values of /3 below about 5 (Figure 1) will only 
occur for a physically unrealistic choice of the parameters u, w, 
and N. However, these detailed comparisons may be of limited 
value; our emphasis is on the Occurrence of tails and the =reorder 
AlexanderAe Gennes profile may be a poor starting point in, say, 
the middle of the brush. 

Defining the start of a tail as the point of inflection (z* = 1 
in our calculation) we observe that generally a tail has an am- 
plitude of about one-third of the maximum of the profile. The 
length of the tail decreases as p increases, but the influence of 
the tail on the total profile is still much larger than one might 
expect. Using the same definition, we find a similar behavior of 
the tails in numerical work.6Jp12 To compare our results with 
the numerical calculations we had to calculate the parameter j3 
from estimates of the parameters N, u, and w; j3 typically varies 
between 10 and 100. 

In summary we conclude that the density profile of grafted 
chains must have substantial tails. The tails in the scaled segment 
density profile cp* decay essentially as 1 / S Z * ~  with 8, a dimen- 
sionless parameter. This parameter equals the square of the ratio 
of the square brush height to the mean square extension length. 
The tails are especially significant for j3 smaller than 100, a range 
of values often met in practice. The profile approaches zero 
smoothly, i.e., without a discontinuity in the derivative which must 

~~~~ 

( 1 1 )  Chakrabarti, A.; Toral, R. Macromolecules 1990, 23, 2016. 
(12) Whitmore, M. D.; Noolandi, J., Macromolecules 1990, 23, 3321. 
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be so since the derivatives of the Green function are continuous 
except near the wall. Near the brush tip the chains become more 
diffuse so that the profile tends to be similar to that valid for the 
usual adsorbed polymer, at  least within the limitations of our 
perturbation analysis. 

Since our starting eqs 8 and 9 are of the mean-field type, the 
decay of the tails (=l/j3z*2) is also a mean field result. In order 
to heuristically improve upon this one may follow a method 
proposed by de Gennes.13 We know that the mean-field corre- 
lation length 5, = ( w N \ ~ ~ ) - ’ / ~  must be replaced by & z ( w N \ ~ ~ ) - ~ / ~  
valid in scaling theory (I = 1). Hence, an expression like eq 27 
becomes 

&\k*4 for z* > 1 (33) 
a2 

az*2 
-\k* = 

(13) De Gennes, P. G. Macromolecules 1981, 14, 1637 

with j3, 
The exponent of this decay is the same as that of the profile of 
a nongrafted polymer solution in contact with a adsorbing wall 
as given by de GennesI3 assuming a self-similar structure. 

When the tails are appreciable we expect our perturbation 
treatment to be fairly reliable beyond the inflection of the profile. 
We regard the Occurrence of a large depletion zone at  small /3 
to be an artifact since we use the “bare” Green function for the 
first-order correction which does not account for the presence of 
the wall. Again we stress that the Alexander-de Gennes ansatz 
is at best approximate and certainly not the only viable zereorder 
theory useful in evaluating tails. 
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h5/N3. As a consequence we find tails decaying as 
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Diffusion in a tube or channel of varying cross section has been treated, by Fick and Jacobs, as one-dimensional diffusion 
past an entropy barrier determined by the tube cross-sectional area or channel width. The Fick-Jacobs diffusion equation 
is rederived, along with corrections involving the curvature of the tube or channel. On comparison with two exactly solvable 
examples, the Fick-Jacobs equation appears to be quite reliable as long as the curvature is not too great. 

Introduction 
This paper deals with a method, described by Jacobs,’ for 

treating diffusion in a tube of varying cross section. For an 
illustration see Figure 1, which shows a cylindrical tube with a 
bulge in the middle. Suppose for example that a solute molecule 
starts out at one end of the tube. How long does it take to arrive 
at  the other end? If there is no change in the tube diameter, the 
problem is essentially one dimensional in character and is easily 
solved. But if there is a bulge, the molecule’s random walk through 
the tube is slowed in the vicinity of the bulge because of the extra 
space that it finds available for exploration. A constriction in the 
tube has the same effect; extra time is required to find the way 
through the bottleneck. Any change in shape appears to retard 
diffusion. 

Jacobs gave an essentially one dimensional treatment of such 
two or three dimensional problems. We give here a new derivation 
of Jacobs’ approach and investigate its limits of validity. 

Questions of this sort come up in various contexts. One example 
is concerned with the rate of passage of ions through a channel 
in a phospholipid membrane.2 Another example was discussed 
recently3 in connection with a model of a chemical reaction in 
which the kinetics was dominated by passage through a bottleneck 
rather than passage over a potential barrier. A third example is 
Brownian motion of a polymer subject to rigid constraints; this 
example is due to F i ~ m a n . ~  (The present paper is a development 
of his ideas in a different context.) 

The Fick-Jacobs Equation 
Jacobs,’ in his book Diffusion Processes, gave a heuristic de- 

rivation of an effective onedimensional diffusion equation, referred 
to here as the Fick-Jacobs (or F-J) equation. (Jacobs attributed 

(1) Jacobs, M. H .  Di//usion Processes; Springer: New York, 1967; p 68. 
(2) Gates, P.; Cooper, K.; Rae, J.; Eisenberg, R. Prog. Biophys. Mol. B id .  

(3) Zhou, H.-X.; Zwanzig, R. J. Chem. Phys. 1991, 94, 6147 
(4) Fixman, M. J .  Chem. Phys. 1978, 69, 1527. 

1990, 53, 153. 

his treatment to F i ~ k . ~ )  As far as I am aware, this material is 
not presented in any of the other standard references on diffusion 
theory. 

In Jacobs’ treatment, the center line of the tube is the x axis, 
and the cross-sectional area of the tube at  x is A(x). (In two 
dimensions, the tube is replaced by a channel, and A(x) is replaced 
by its width.) The total amount of solute in a cross sectional slice 
of thickness dx, at x, at time t ,  is G(x,t) dx, this is the integral 
of the local concentration C(xy,z,t) over the cross-sectional slice 
of volume A(x) dx. At equilibrium, C(x,y,r,eq) is a constant 
concentration, and so G(x,eq) is proportional to A(x). The F-J 
equation is 

Note that the correction to simple diffusion due to changes in shape 
is first order in A’(x). 

The F-J equation has exactly the same structure as the Smo- 
luchowski equation for diffusion in a one-dimensional potential 
U(x)  if we use the correspondence (omitting irrelevant constants) 

But since A(x) does not contain any temperature, being only an 
area or width, it appears more reasonable to connect A(x) to an 
entropy S ( x )  rather than a potential U(x) ,  according to 

(3) A(x) - e S ( x ) / k  

Then we can say that the F-J equation describes diffusion past 
an entropy barrier. 

The word “barrier” is used in the sense of an obstacle to passage 
from one place to another. It does not imply that the entropy is 

(5) Fick, A. Poggendorfs Ann. 1855, 94, 59. 
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