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ABSTRACT

Modeling and imaging techniques for geophysics are
extremely demanding in terms of computational resources.
Seismic data attempt to resolve smaller scales and deeper
targets in increasinglymore complex geologic settings. Finite
elements enable accurate simulation of time-dependent wave
propagation in heterogeneous media. They are more costly
than finite-difference methods, but this is compensated by
their superior accuracy if the finite-element mesh follows
the sharp impedance contrasts and by their improved effi-
ciency if the element size scales with wavelength, hencewith
the local wave velocity. However, 3D complex geologic
settings often contain details on a very small scale compared
to the dominant wavelength, requiring the mesh to contain
elements that are smaller than dictated by the wavelength.
Also, limitations of the mesh generation software may
produce regions where the elements are much smaller than
desired. In both cases, this leads to a reduction of the time
step required to solve the wave propagation and significantly
increases the computational cost. Local time stepping (LTS)
can improve the computational efficiency and speed up the
simulation. We evaluated a local formulation of an LTS
schemewith second-order accuracy for the discontinuousGa-
lerkin finite-element discretization of the wave equation. We
tested the benefits of the scheme by considering a geologic
model for a North-Sea-type example.

INTRODUCTION

Efficient numerical methods for the simulation of acoustic,
electromagnetic, or seismic wave phenomena are of fundamental

importance for modeling and inversion. Finite-difference methods
are widely used because they are relatively easy to implement
and computationally efficient. Moreover, the use of explicit time
stepping is natural. However, their reliance on Cartesian structured
grids makes them less suitable for complex heterogeneous geologic
settings. When abrupt changes in the properties of the material arise,
the scheme loses its accuracy. This can be amended by using very
fine grids at the expense of computational time. A similar limitation
is encountered when considering a heterogeneous medium that in-
cludes topography such as hills and mountains (Hestholm and
Ruud, 1994; Bartel et al., 2000; Bohlen and Saenger, 2006). In con-
trast, finite-element methods (FEMs) easily handle unstructured
meshes and spatial local refinement. Moreover, their extension to
high-order spatial discretization schemes is straightforward, an im-
portant feature if we want to keep numerical dispersion minimal.
The finite-element Galerkin approximation of hyperbolic problems
typically leads to a system of ordinary differential equations. How-
ever, if explicit time stepping is subsequently employed, the mass
matrix arising from the spatial discretization with standard conform-
ing finite elements must be inverted at each time step, significantly
reducing the efficiency of the scheme.
There are several classes of finite elements that do not require

the inversion of a large sparse mass matrix, for instance, spectral,
continuous mass-lumped, or discontinuous Galerkin (DG) ele-
ments. The spectral finite-element method (SEM) employs
Gauss-Lobatto nodes for the discretization on hexahedra, leading
to a diagonal mass matrix (Orszag, 1980; Patera, 1984; Rønquist
and Patera, 1987; Maday and Rønquist, 1990; Komatitsch and Vi-
lotte, 1998; Komatitsch and Tromp, 1999; Komatitsch et al., 1999;
Mulder, 1999). However, hexahedral grids are less flexible than tet-
rahedral meshes, for instance, near pinch-outs. To overcome this
problem, each tetrahedron can be divided into four hexahedra, in-
creasing the number of nodes per tetrahedron (Taniguchi et al.,
1996; Charara et al., 2011). The resulting hexahedral meshes,
however, often have poor quality (Owen, 1998). Continuous finite

Manuscript received by the Editor 3 July 2012; revised manuscript received 21 November 2012; published online 29 April 2013.
1Shell Global Solutions International BV, Rijswijk, The Netherlands.
2Source Contracting, Culemborg, The Netherlands.
3Shell Global Solutions International BV, Rijswijk, The Netherlands and Delft University of Technology, Department of Geoscience & Engineering, Faculty

of Civil Engineering and Geosciences, Delft, The Netherlands.
© 2013 Society of Exploration Geophysicists. All rights reserved.

T67

GEOPHYSICS, VOL. 78, NO. 3 (MAY-JUNE 2013); P. T67–T77, 15 FIGS., 1 TABLE.
10.1190/GEO2012-0252.1

D
ow

nl
oa

de
d 

05
/2

9/
13

 to
 1

31
.1

80
.1

31
.2

53
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



elements with mass lumping belong to the second class. In this case,
the mass matrix is replaced by a diagonal one that is trivial to invert.
This technique is straightforward for piecewise linear elements but
requires particular quadrature rules and additional discretization
nodes for higher-order schemes to preserve accuracy (Fried and
Malkus, 1975; Cohen et al., 1993; Mulder, 1996; Chin-Joe-Kong
et al., 1999). Currently, however, the set of additional nodes needed
for mass lumping for tetrahedral elements beyond polynomial
degree three (cubic shape function) is unknown for 3D problems.
Discontinuous Galerkin methods (DGMs) offer an attractive alter-
native for the spatial discretization of time-dependent hyperbolic
problems (Arnold et al., 2002) and geophysical applications (Käser
and Dumbser, 2006; de la Puente et al., 2007; Etienne et al., 2010;
De Basabe and Sen, 2010; Baldassari et al., 2011).
The DGM is a generalization of the FEM that allows the approx-

imating functions to be discontinuous at the element’s faces. The
continuity is weakly imposed with some extra terms, so-called
fluxes, in the weak formulation. Moreover, the discontinuous repre-
sentation of the solution results in a block-diagonal mass matrix that
is easily inverted. There are many different ways to weakly impose
the continuity, leading to different formulations of the DGM. Apart
from the advantages of the FEM mentioned above, the DGM can
accommodate discontinuities, not only in the medium parameters
but also in the wavefield; can be energy conservative; and can han-
dle more general meshes. The method can accommodate elements
of various types and shapes, irregular nonmatching grids, and even a
locally varying polynomial degree; hence they offer greater flexibil-
ity in the mesh design.
Table 1 summarizes the main advantages and disadvantages of

the three spatial discretizations. Formulations of the DGM can differ
in the choice of fluxes and interior penalty. Some flux formulations
use the velocity-stress form of the wave equation. Among them
is the arbitrary high-order derivative discontinuous Galerkin
(ADER-DG) by Käser and Dumbser (2006), which has the
important characteristic that it yields the same order of accuracy
in space and time. The time-stepping scheme is based on the
Cauchy-Kovalewski or Lax-Wendroff (1960) procedure, replacing
higher time derivatives by spatial derivatives using the partial dif-
ferential equation. This trick is also known as the modified equation
approach (Shubin and Bell, 1987) or Dablain’s (1986) scheme. An
interesting feature of the ADER-DG implementation is that it incor-
porates local time stepping (LTS), which can improve efficiency.
Another class of schemes are the interior penalty formulations,
based on the displacement formulation of the wave equation in
the elastic case or on the pressure formulation in the acoustic case.
These include the symmetric interior penalty Galerkin (SIPG), non-
symmetric interior penalty Galerkin (NIPG), and incomplete inter-
ior penalty Galerkin (IIPG). Appendix A describes the details.

When a spatial DG discretization is combined with explicit time
integration, the resulting time-marching scheme will be truly expli-
cit and easily parallelized. This is straightforward in case of an
element-by-element formulation. To have uniform accuracy, the
size of the elements should scale with the dominant wavelength
of the solution, hence with the local velocity. The mesh can be finer
than required by the dominant wavelength for the following rea-
sons: (1) singularities in the wavefield, for instance, around the
source, requiring local mesh refinement and (2) small-scale geolo-
gic structures such as variations in the landscape, irregular inter-
faces, faults, and thin beds. Other difficulties arise when trying
to mesh a region with large contrasts or complex geometries, such
as pinch-outs. Also, near a sharp velocity contrast, mesh generation
usually creates a transition zone to maintain conformity across the
interface while avoiding poorly shaped tetrahedra. In that case, the
desired element size as a function of the local velocity cannot be
honored. Some of the elements in the transition zone will be too
small. Unfortunately, meshes that are locally refined or finer than
required for accurate representation of the wavefield impose severe
stability constraints on explicit time-marching schemes, in which
the maximum time step allowed by the Courant-Friedrichs-Lewy
(CFL) condition (Courant et al., 1928) is dictated by the smallest
elements in the mesh, where “small” is defined relative to the wa-
velength of the wavefield, hence the local wave speed. When mesh
refinement is restricted to a small region, the use of a very small
time step in the entire computational domain is a high price to pay.
To overcome the overly restrictive stability constraint, various

LTS schemes (Collino et al., 2003; Piperno, 2006) have been devel-
oped, which use either implicit time-stepping or explicit but smaller
time steps, but only where the smallest elements in the mesh are
located. Because DGMs allow for a local formulation, they are par-
ticularly well suited for the development of explicit LTS schemes.
Among several LTS schemes, we focus on the approach of Diaz and
Grote (2009). Baldassari et al. (2011) use a similar approach to
speed up reverse-time migration for 2D problems. Instead of assem-
bling a global stiffness and mass matrix, as Diaz and Grote (2009)
do, we consider a local formulation in which mass and stiffness
matrices per element are assembled on the fly. This avoids the
storage of the global mass and stiffness matrix, which is more
important in 3D than in 2D. The local formulation requires a refor-
mulation of the LTS method.
To have uniform accuracy, we would like to have a computational

mesh in which the size of the elements is proportional to the local
velocity. This strategy produces meshes with an optimal number of
elements and ideally gives rise to a uniform discretization time step
in the domain. However, small-scale geologic structures or short-
comings of the mesh generator as mentioned above will lead to
a usually small number of elements that require LTS.

Table 1. Advantages and disadvantages of various discretization methods.

FD SEM DG

Main features Rely on Cartesian structure grid High-order shape functions Discontinuous shape functions

Advantages Easy to implement, computationally efficient High accuracy Geometric flexibility

Disadvantages Loss of accuracy Limited geometric flexibility Large number of unknowns

T68 Minisini et al.
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In the next two sections, we provide a description of the DG for-
mulation and the LTS. Then, we briefly review the mesh generation
procedure. Finally, we describe an heuristic algorithm for the selec-
tion of those elements that require LTS and present results for a 3D
salt diapir model.

THE DISCONTINUOUS GALERKIN METHOD

There are many different DG formulations suitable for solving
acoustic-wave propagation. Arnold et al. (2002) provide an over-
view of these variants and a unified formulation that summarizes
most of them. They show that the interior penalty DGM guarantees
stability and an optimal order of convergence. We refer to the papers
by Grote et al. (2006) and Grote and Schötzau (2009) for the anal-
ysis of the convergence and conservation properties of the scheme
when applied to the acoustic-wave equation. Baldassari et al. (2011)
compare the method with spectral finite elements in terms of accu-
racy and performance. They conclude that the two methods perform
well in terms of accuracy and that they involve the same computa-
tional burden. They consider the interior penalty DG formulation
that is suitable for the widest range of applications because it
can be applied on any mesh while keeping the same level of
accuracy.
Here, we consider the second-order scalar wave equation:

�
c−2utt − Δu ¼ f; in ð0; TÞ ×Ω;
ujt¼0 ¼ u0; utjt¼0 ¼ v0; inΩ;

(1)

on a bounded domain Ω ⊂ R3 and with a given source term fðt; xÞ.
Here, u ¼ uðt; xÞ represents the wavefield and c ¼ cðxÞ is the ve-
locity of propagation, which is assumed to be piecewise constant
per element and strictly positive. Moreover, we assume a constant
density. Two initial conditions are needed, one for the pressure u
and one for its first derivative in time ut. To complete equation 1,
suitable boundary conditions are imposed.
We briefly review the formulation of acoustic wave propagation

when using the SIPG formulation. A detailed derivation can be
found in a paper by Rivière (2008). Let τh denote a finite-element
partition of the domainΩ. We collect all the faces of the elements in
the set F h and the internal faces in the subset Fh

I . Let F ∈ Fh
I be an

interior face shared by two neighboring elements Kþ and K− as
shown in Figure 1. The outward unit normal
on F is n. In particular, we denote with nþ

the normal on Fþ and with n− the normal on
F−. For a scalar function, the jump and average
are defined as

½q� ≔ qþnþ þ q−n−;

fqg ≔
1

2
ðqþ þ q−Þ:

(2)

We look for an approximate solution of the wave
equation in the space, Wh

p ≔ fwh ∈ L2ðΩÞ∶
whjK ∈ PpðKÞ; ∀K ∈ τhg, with Pp polynomials
up to degree p. A function that belongs to Wh

p

can be discontinuous on the internal boundaries
Fþ and F−. The first step consists of multiplying
the equation by a test function and integrating
over space to obtain the so-called weak formula-
tion. If, for the sake of simplicity, we assume

homogeneous Neumann boundary conditions, meaning that the
normal derivative of the solution equals zero (other types of bound-
ary conditions can be used such as Dirichlet at the free surface or
absorbing boundary conditions that will lead to minor changes in
the formulation), then the problem becomes: Find u∶ð0; TÞ × R3 →
Wh

p such that

� ðc−2utt; vÞ þ aðu; vÞ ¼ ðf; vÞ; ∀v ∈ Wh
p; t ∈ ð0; TÞ;

ujt¼0 ¼ u0; utjt¼0 ¼ v0; inΩ;

(3)

where v is the test function. The bilinear form aðu; vÞ is defined by

aðu; vÞ ¼
X
K∈τh

Z
K
∇u · ∇vdK −

X
F∈Fh

I

Z
F
½u� · f∇vgdF

−
X
F∈Fh

I

Z
F
½v� · f∇ugdF þ

X
F∈F h

I

Z
F
γ½u� · ½v�dF: (4)

The three integrals on the faces define the fluxes across the element
boundaries (see Appendix A for details). The last integral is the
penalty term with a parameter γ depending on the size of the ele-
ments of the partition τh. This term is necessary to guarantee the
optimal convergence of the spatial discretization. It vanishes in case
of a continuous solution because then the jump is zero. We define h
as the diameter of the inscribed sphere for the element K. The mesh
size can then be taken as hmin ¼ minK∈τhh. We generalize the coef-
ficient γ proposed by Ainsworth et al. (2006) to 3D by choos-
ing γ ¼ NDG∕hmin, with NDG ¼ ðpþ 1Þðpþ 2Þðpþ 3Þ∕6 being
the number of nodes per element for polynomial degree p. Consid-
ering that we will choose an explicit scheme to discretize the sec-
ond-order time derivative, the semidiscrete problem in space is
formulated on a single element Kþ as

Mþutt þ Sþuþ
X

F∈F I⊂Kþ
Fþ
Fuþ

X
F∈F I⊂K−

F−
Fu

− ¼ f; (5)

where Mþ and Sþ are the local mass and stiffness matrix, respec-
tively, both of dimension NDG × NDG; and u− is the solution on one
of the neighboring elements K−. We also have the contribution of

a) b)

Figure 1. Schematic representation of the fluxes for tetrahedral elements. (a) One ele-
ment with 4 neighbors. (b) The element Kþ discretized by polynomial shape functions
of degree one. The element has four degrees of freedom corresponding to the vertices of
the tetrahedron. On each face, we have an outgoing flux Fþ

F and an incoming flux F−
F

from the neighboring element.

Local time stepping T69
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the fluxes. The first term denotes the sum of outgoing fluxes over
faces F in the element Kþ. The second term contains incoming
fluxes from the neighboring elements K−. In this way, we distin-
guish the computation of fluxes for the element Kþ from the con-
tribution coming from the neighboring elements K−.

LOCAL TIME STEPPING

To the best of our knowledge, high-order LTS methods are con-
sidered for the wave equation by Dumbser et al. (2007) and Diaz
and Grote (2009). The approach proposed in Käser and Dumbser
(2006), Dumbser and Käser (2006), and Dumbser et al. (2007) is
based on the use of arbitrary high-order derivatives methods. The
method of Diaz and Grote (2009) conserves a discrete energy,
which guarantees the long-time stability of the scheme. Moreover,
it can be coupled with any type of spatial discretization method,
whereas the arbitrary high-order derivatives method requires the
use of DGMs. The approach has been extended by Baldassari et al.
(2011) to allow for p-adaptivity in time as well as in space when
using an interior penalty scheme.
In this section, we summarize the main ideas behind LTS as Diaz

and Grote (2009) propose and discuss our modification of the algo-
rithm to solve the problem element by element. A detailed deriva-
tion of the scheme and its energy conservation properties can be
found in the cited paper. To ensure stability, an explicit time-
integration scheme must satisfy the usual CFL condition that re-
stricts the time step Δt by Δt ≤ CFLðh∕cÞ for each element. Here,
c is the velocity inside the element, h is the diameter of the inscribed
sphere, and the CFL number CFL is dictated by the numerical
scheme. The element in the domain with the smallest ratio
r ¼ h∕c defines the actual largest time step Δtmax that can be used
for computing the solution of the problem. Polynomials of higher
degree require a more restrictive CFL number. In Zhebel et al.
(2012), we estimated the value of CFL for polynomial degrees
one to four on tetrahedra. We also analyzed its dependence on
the distortion of the element. Epshteyn and Rivière (2007) present
a theoretical analysis to estimate the lower bounds of the penalty
parameters for stable and convergent symmetric interior penalty
Galerkin methods. In particular, the authors derive the explicit de-
pendence of the penalty parameter on the polynomial degree, an-
gles, and diameter of the mesh elements. However, the study
was carried out for a stationary reaction-diffusion equation.
The restriction on the time step Δt can severely impact the effi-

ciency of the simulation when most of the elements in the domain
have a ratio exceeding rmin ¼ minK∈τhh∕c. The LTS approach aims
to divide the elements into two or more subsets. For simplicity, we
only consider two sets. The set of coarse elements Sc consists of
the coarse elements that do not share any face with a fine element.
The set of the fine elements Sf contains all the other elements.
The solution for the fine elements is computed with a time step
Δτ ¼ CFL rmin, whereas on the coarse elements Δt ¼ qΔτ for
an integer q > 1. Then, for each global time step Δt, each local time
step of sizeΔt∕q requires the solution of a modified problem, which
we denote by P. The second-order “leapfrog” time-integration
scheme is used to compute the solution for all the elements in
Sc. The fully algebraic system formulated on each element reads

unþ1 ¼ 2un − un−1 − Δt2ðMþÞ−1ðSþun þ Fþun þ F−u−n Þ;
(6)

where we assumed the source term f to be zero. Equation 6 is used
to compute the local solution unþ1 at time tnþ1, knowing the solu-
tion at two previous time steps, un−1 and un.
To describe the modified problem P on the elements in Sf , we

briefly summarize the derivation of the algorithm for a globally
assembled problem. We express the global semidiscrete problem
on the domain as

ytt þ Ay ¼ 0; (7)

where y is the vector of the unknowns and A is the elliptic operator
containing the stiffness matrix as well as the contribution of the
fluxes. First, we rewrite the unknown vector as the sum of two com-
ponents, y ¼ yc þ yf , where yc ¼ ðI − PÞy and yf ¼ Py, where P
is a diagonal matrix with unit entries corresponding to the un-
knowns belonging to the fine region and I is the identity matrix.
The solution of equation 7 satisfies

yðtþ ΔtÞ − 2yðtÞ þ yðt − ΔtÞ

¼ −Δt2
Z

1

−1
ð1 − jθjÞAyðtþ θΔtÞdθ: (8)

Rewritten in terms of yc and yf , this becomes

yðtþ ΔtÞ − 2yðtÞ þ yðt − ΔtÞ ¼

− Δt2
Z

1

−1
ð1 − jθjÞ½Aycðtþ θΔtÞ þ Ayfðtþ θΔtÞ�dθ:

(9)

To circumvent the severe stability constraints, we have to treat yf in
a different way. The following approximation is introduced by Diaz
and Grote (2009):

yðtþ ΔtÞ − 2yðtÞ þ yðt − ΔtÞ ≈ −Δt2AycðtÞ

− Δt2
Z

1

−1
ð1 − jθjÞAyfðtþ θΔtÞdθ:

(10)

This approximation allows us to solve the evolution of the solution
y during the time step Δt while fixing the contribution of the coarse
elements at the time step tn. With some additional technical steps
and using the symmetry properties of the solution (Diaz and Grote,
2009; Grote and Mitkova, 2010), the term that involves yf can be
approximated as

Z
1

−1
ð1 − jθjÞAyfðtþ θΔtÞdθ ¼

Z
1

0

APqðτÞdτ; (11)

where qðτÞ solves the following modified differential problem,
P, for τ ∈ ½0;Δt�:

qð0Þ ¼ yn; qtð0Þ ¼ 0; qðτÞtt ¼ −AycðtÞ − APqðτÞ:
(12)

To advance the solution yn from tn to tnþ1, we have to evaluate
qðΔtÞ by solving equation 12 on [0, Δt]. We solve equation 12 with
time step Δτ until τ ¼ Δt, using q steps of the leapfrog scheme with
a smaller time step Δτ ¼ Δt∕q, where q is the rate of local refine-
ment. The solution of the global time step can then be reconstructed
as ynþ1 ¼ −yn−1 þ 2qðΔtÞ. In case of P ¼ 0, there is no LTS

T70 Minisini et al.

D
ow

nl
oa

de
d 

05
/2

9/
13

 to
 1

31
.1

80
.1

31
.2

53
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



(q ¼ 1) and we recover the standard leapfrog scheme. If the fraction
of nonzero entries in P is small, the overall cost is dominated by the
computation of the solution on the coarse elements.
So far, the modified problem P has been formulated for the glob-

al problem. We will now outline the algorithm to do the same ele-
ment by element. For each element that belongs to Sf , we solve the
system of equations 12 with the leapfrog scheme and time step Δτ
for q iterations. We need two initial conditions û0 and û1 to start the
iterations, as shown in Figure 2. These conditions are

û0 ¼ un; û1 ¼ û0 −
1

2

�
Δt
q

�
2

ðMþÞ−1ðwþ Jû0Þ: (13)

For m ¼ 2; : : : ; q − 1, we use the leapfrog scheme to advance the
solution, which in this case reads,

ûðmþ1Þ∕q ¼ 2ûm∕q − ûðm−1Þ∕q

þ
�
Δt
q

�
2

ðMþÞ−1ðwþ Jûm∕qÞ:
(14)

The vector w is kept fixed during the q iterations
and is constructed from solution un on the
element at time tn. For the computation of w
and J, we have to consider three cases that we
summarize as follows:

1) Fine element that shares one or more faces j
with coarse neighbors. Let us define F c as
the set that contains the faces shared with
a coarse neighbor. The flux coming from
the coarse neighbors is computed at time
tn. Therefore,

w ¼
X

j∈F c⊂K−

F−
Fu

−
n (15)

and

J ¼ Sþûm∕q þ
X

F∈F I⊂Kþ
Fþ
F ûm∕q þ

X
F∈F I \F c⊂K−

F−
Fû

−
m∕q:

(16)

The term J contains the stiffness matrix and all the fluxes that
are updated at each iteration q.

2) Coarse element that shares one or more faces j with a fine
neighbor. Let us define F f as the set that contains the faces
shared with fine neighbors. Thus, we have

w ¼ Sþun þ
X

F∈F I⊂Kþ
Fþ
Fun þ

X
F∈F I \F f⊂K−

F−
Fu

−
n (17)

and

J ¼
X

j∈F f⊂K−

F−
Fû

−
m∕q: (18)

Here, w contains the stiffness matrix and the fluxes that do not
need to be updated at each iteration q because they are coming
from coarse neighbors.

Figure 2. Schematic representation of the LTS algorithm in the case
of q ¼ 2. The solution unþ1 for a coarse element is computed in a
single step. For the other elements, the initial step û0 is computed
based on the solution un. Then, two time steps are performed to
build the solution û1 used to update unþ1.

Figure 4. Convergence analysis on a series of four meshes with
h ¼ hcoarse ¼ 0.0531, 0.0281, 0.0141, and 0.01015, for q ¼ 2
and q ¼ 4.

Figure 3. Irregular tetrahedral meshes used in the convergence analysis. In both cases,
h ¼ hcoarse ¼ 0.0531. In (a), the inner region has hfine ¼ h∕2. In (b), the inner region has
hfine ¼ h∕4.
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3) Finally, for a fine element with no coarse neighbor, w ¼ 0 and

J ¼ Sþûm∕q þ
X

F∈F I⊂Kþ
Fþ
F ûm∕q þ

X
F∈F I⊂K−

F−
Fû

−
m∕q:

(19)

The proposed LTS scheme is second-order accurate in time. Diaz
and Grote (2009) (Lemma 3.2) prove the accuracy of the scheme by
rewriting the formulation in a more general form. They also prove
that the scheme conserves the discrete energy (section 3.2 in Diaz
and Grote, 2009) and is stable under a CFL condition. They perform
a systematic numerical study and show that the overall rate of con-

vergence is independent of the number of local
time steps q.
Nevertheless, for completeness, we test the

convergence on a simple example to confirm
the expected numerical accuracy. We consider
3D wave propagation with a constant wave speed
c of 1 km∕s on the cube Ω ¼ ½0; 1� × ½0; 1�×
½0; 1� km3 for the time interval [0, 1] s. The initial
conditions are chosen to yield the exact solution
u exðx; tÞ ¼ − cosðkxÞ cosðkctÞ, where k is the
spatial frequency, taken equal to five half-periods
over the length of the domain. We insert inside
the domain a smaller cube-shaped region Rf with
dimensions of ½0.1� × ½0.1� × ½0.1� km3, discre-
tized with tetrahedra of size hfine ¼ hcoarse∕q,
hcoarse being the size of the elements outside
Rf . We consider a spatial discretization with
quadratic polynomial shape functions and a sec-
ond-order leapfrog time-stepping scheme. We
perform the convergence analysis on a series
of meshes with decreasing element sizes. Figure 3
depicts two of them. We reduce the global mesh
size hcoarse as well as hfine and the time step. The
CFL is kept constant and equal to 0.01.
We measure the difference between the numer-

ical solution and the exact one in terms of the L2

error norm, defined as

�Z
Ω
ðu − uexÞ2jt¼TdΩ

�
1∕2

; (20)

where T ¼ 1 s is the final time. Figure 4 shows
the numerical error against the size of the mesh
h ¼ hcoarse. We found that, for q ¼ 2 and 4, the
convergence rate is of order three, in agreement
with the theoretical estimates (Zampieri and
Pavarino, 2006; Grote and Schötzau, 2009).
Figure 5 displays the recorded signal at one of
the receiver’s position.

MESH GENERATION

The complexity in mesh generation for seismic
applications is due to sharp and abruptly varying
interfaces and a large modeling volume. Mesh
generation becomes even more complex if there
is a large number of interfaces and if they
have multiple intersections. Moreover, to have
the equivalent of a fixed number of points per
wavelength as is common with finite differences
and to have all elements running at not too small
a time step, the element size should be propor-
tional to the local velocity. Our approach is based
on five consecutive steps, as summarized inFigure 6. The five main steps needed to build the mesh.

Figure 5. (a, b, c, d) Comparison between the numerical solution (dashed line) and the
exact solution (solid line) at one receiver position. We use two meshes with hcoarse ¼
0.053 and 0.014. (a, b) Refer to the experiments on the two meshes with q = 2, while
(c, d) have q = 4. (e, f) Difference between the exact and the numerical solution,
ϵ ¼ u − uex, for the cases q = 2 (solid line) and q = 4 (dashed line).
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Figure 6. We refer to the paper by Kononov et al. (2012) for a full
description of the mesh generation procedure. The first step consists
of the extraction of the interfaces, the surfaces that describe the
discontinuities in the velocity model. Often, the velocity field is
described on a finite-difference grid. That is because most of the
realistic models were constructed with the aim of producing a
finite-difference wave-propagation solution. Then, the interfaces
need to be constructed by finding and extracting the locations of
the discontinuities. Thus, the input consists of a set of interface
points together with the velocities on the original finite-difference
grid. For large problems, the domain can be divided into a few
blocks to accelerate the whole meshing procedure, allowing for
parallel mesh generation for each block. In the second step, the
extracted interfaces are transformed into triangulated surface
meshes bounding the subdomains. These should be identical over
the shared areas and edges of neighboring subdomains. If the initial
model is already specified in a surface mesh form, steps 1 and 2 can
be skipped. However, most of the time, the surfaces coming from
CAD models need to be remeshed and regularized. The third step is
to disassemble the model into several interconnected volumes
whose connectivity is accomplished via the compatible triangulated
surface meshes. As a fourth step, one has to generate volumetric
tetrahedral meshes using the surface meshes as input to a 3D mesh
generator. The size of the tetrahedra is controlled by either the
velocity fields enclosed in the subdomains or by the surface mesh
sizes of nearby interfaces. The fifth step is to merge the meshed
subdomains together, producing the final mesh. This approach
has many advantages: it can be directly parallelized in a straightfor-
ward manner because each volume and each surface can be meshed
independently, thereby reducing the total meshing time; further
mesh adjustments and optimization can be applied locally for each
subdomain; and, if the quality of surfaces meshes is good enough,
then the overall mesh can be easily refined or coarsened by applying
the corresponding operations to the surface and volumetric meshes.

RESULTS

To illustrate how LTS can speed up the computation, we consider
wave propagation in a 3D geometry with variable velocity for the
model in Figure 11. The geometry is typical for a part of the North
Sea. The domain Ω has a size of 4.4 × 4.4 × 5.1 km3. The model
contains eight different layers, and the velocity increases with depth
from 1.5 km∕s to 4.0 km∕s. In each region, the velocity is assumed
to be constant. The orange inclusion in Figure 11 is a salt diapir with
a high velocity of 4.5 km∕s. For simplicity, we impose a reflecting
Neumann boundary condition on the boundary ofΩ in this test. The
source is located below the surface, as shown in Figure 14. We de-
scribe the steps for the generation of the mesh of Figure 6 for this
specific example. From the initial velocity model, we extract the
interfaces or contrasts among regions with a different velocity as
shown in Figure 7. Then we make a 2D triangulation of the
extracted layers and the salt, Figure 8. We then merge all the sur-
faces in such a way that the nodes in the intersections are matching,
Figure 9. Finally, we grow the tetrahedra in the volumes. An exam-
ple of a mesh volume is shown in Figure 10. In this step, we impose
the constraint that the diameter of the elements has to be propor-
tional to the velocity. For instance, the water layer, the dark-blue
region in Figure 11, has a low velocity and small tetrahedra,
whereas the salt diapir, the orange volume, has a high velocity
and large elements. Ideally, the adaptation of the mesh to the

velocity field would lead to a uniform Δt in the domain. However,
due to the complex geometry of the 3D layers and the thinness of
some layers close to the salt, as marked in black in Figure 11, some
elements are smaller than necessary for resolving the dominant
wavelength of the wavefield. Geometrical constraints and the lim-
itations of mesh generation lead to elements with a ratio r ¼ h∕c
smaller than that of most of the other elements, which in turn re-
duces the maximum allowable time step.
To apply LTS, we first have to identify the two sets of elements,

coarse and fine. In 3D, this is not as simple as in 1D or 2D. In our
example, there is no unique region where the elements have a
clearly smaller ratio of h∕c. Instead, these elements are scattered
throughout the domain. To use LTS to its full potential, we should
have a set of fine elements that contains far less elements than the
set of coarse ones. To find the optimal balance between the fine
and coarse sets, we determine them for 10 different values of
q ¼ 1; : : : ; 10. We compute Δtmax in the domain and then select
coarse elements whose ratio h∕c is larger than qΔtmax∕CFL.
The rest of the elements are fine. In the computation, we use finite

x (km)

z 
(k

m
)

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4
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Figure 7. Identification and extraction of the interfaces that
corresponds to velocity discontinuities.

Figure 8. Triangulated surfaces. (a) A layer intersecting with the
salt. (b) The salt body.
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elements of degree two (P2) and CFL ¼ 0.07 equal to 70% of the
maximum value of CFL for P2 as estimated by Zhebel et al. (2012).
The histogram in Figure 12 shows the distribution of fine and coarse
elements, with black for the percentage of coarse elements and gray
for the fine elements. For q ¼ 1; : : : ; 5, the number of fine elements
is less than the 10%. The total computational cost can be estimated
as the number of iterations Nit ¼ T∕Δtmax, T being the simulation
time, multiplied by the number of elements in the domain. In the
case of LTS, the computational cost can be estimated as
NfNit þ NcðNit∕qÞ, where Nf is the number of fine elements
and Nc is the number of coarse elements. When no LTS is applied,
the cost becomes ðNc þ NfÞNit. The speed-up is then defined as
ðNf þ NcÞ∕ðNf þ Nc∕qÞ. Figure 13 shows the estimated speed-
up as a function of q for the current example. Choosing q ¼ 2

speeds up the computation by a factor of about two, whereas the
optimal choice is q ¼ 4. Figure 14 displays the modeled wavefield
along a section of the 3D domain. The source is located in a region
with a constant velocity of 1.7 km∕s. We ran the computation with
q ¼ 4. The total number of time steps for the coarse elements is
2104, whereas without LTS, we would need 8417 steps for each
element. The fine set contains 20,648 elements, and the coarse
set contains 1,268,144. In terms of computational time, LTS was
observed to be four times faster. Figure 15 shows a section of
the domain with the fine elements highlighted in red. The other ele-
ments are coarse. The fine elements are concentrated along the con-
nection between regions with different velocity. It is clear that the
LTS does not require a contiguous volume of fine elements but al-
lows them to be isolated.
The computations were performed in parallel using OpenMP in a

shared-memory environment, treating each element in parallel but
having all elements share the same memory. The execution of the

Figure 9. Triangulated surfaces merged together. The grid is
conforming.

Figure 10. Subdomain of the model filled with tetrahedra.

Figure 12. Distribution of the elements. For each value of q, we can
determine the number of the elements in Sf represented with gray
bars and those in Sc with black bars. A fine element has
h∕cðxÞ ≤ qΔtmax∕CFL.

Figure 11. Mesh used for the computation. Black lines identify re-
gions where the size of the elements is not properly scaled with the
velocity.
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LTS in an MPI environment is more challenging (Dumbser et al.,
2007). In that case, the partitioning of mesh should account for the
presence of fine or coarse elements because they require a different
number of updates, which will impact the overall communication.
Therefore, it is not easy to find a good load balance. The LTS can be
used for those subsets in which, due to the complexity of the geo-
metry, the size of the elements is too small compared to the domi-
nant wavelength.
Another interesting application is the use of the LTS formulation

together with p-adaptivity. Etienne et al. (2010) propose using
p-adaptivity to mitigate the presence of undersized elements in
the domain. As lower-degree polynomials have a less restrictive
CFL, they can be used for those elements. Baldassari et al. (2011)
apply a hybrid LTS strategy, with a varying polynomial degree in
the domain, to simulate reverse-time migration in a 2D setting.

CONCLUSIONS

We have described and tested an explicit LTS method for wave-
propagation modeling, allowing for arbitrarily small time steps pre-
cisely where the smallest elements in the mesh are located. Here,
smallness is defined in terms of the element diameter compared to
the local dominant wavelength. The latter is determined by the local
velocity. The speed-up of the computation depends on the mesh and
on the ratio between the minimum and maximum values of the local
diameter divided by the velocity in the mesh. In the example, we
have considered only two types of elements, coarse and fine, but the
method can be applied in a hierarchical way. Each local time step in
the fine region can itself include further local time steps inside a
smaller subregion with an even higher degree of local time refine-
ment. This would be necessary to model structures that are an order
of magnitude smaller than the dominant wavelength, for instance, a
fracture.

APPENDIX A

DISCONTINUOUS GALERKIN FORMULATION

In this appendix, we provide a brief description of the interior
penalty scheme. Starting from the weak formulation, we show
the steps needed to obtain the semidiscrete formulation of the pro-
blem. At the end, we introduce the basis functions considered in
this paper.
To discretize the wave equation 1 with finite elements, we multi-

ply by a test function and we integrate over the domain. After
integrating by parts, we obtain the so-called weak formulation,

Z
Ω

1

c2
∂2u
∂t2

ϕdΩþ
Z
Ω
∇u · ∇ϕdΩ −

Z
δΩ
ðn · ∇uÞϕdΩ

¼
Z
Ω
fϕdΩ; (A-1)
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Figure 14. Snapshot of the wavefield after 0.48 s. The total simula-
tion time is 1 s.
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Figure 15. Distribution of the elements for q ¼ 4. The red elements
in this cut-away view are classified as fine, the others are classified
as coarse.
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Figure 13. Computational speed-up for different values of q. The
graph shows that q ¼ 4 is the optimal choice to divide the elements
between fine and coarse because it results in a speed-up close to 4.
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for all test functions ϕ that are chosen as piecewise polynomials
up to degree p. Here, n denotes the outward normal to the
boundary and δΩ consists of internal and external boundaries of
the domain Ω. In case of DG finite elements, the solution and
the shape functions ϕ are discontinuous across the internal bound-
aries. The third integral term in equation A-1, called a flux term, is
given by

þϵ

Z
δΩ
½u� · f∇ϕgdΩ −

Z
δΩ
½ϕ� · f∇ugdΩ

þ γ

Z
δΩ
½u� · ½ϕ�dΩ: (A-2)

If uþ is the solution inside the element Kþ and u− lives on one of
the neighboring elements K−, then ½u� ≔ uþnþ þ u−n− denotes the
jump across the element boundary and fug ≔ 1

2
ðuþ þ u−Þ is the

average, whereas γ is a penalty parameter. Different values of
the parameters ϵ and γ define different variants of the interior pen-
alty finite-element discretization:

• the SIPG with ϵ ¼ −1 and γ > 0;
• the IIPG with ϵ ¼ 0 and γ > 0;
• the NIPG with ϵ ¼ 1 and γ > 0:

If we express the solution in the basis of the test functions
uðx; y; z; tÞ ¼ P

ujðtÞϕjðx; y; zÞ, then the flux term for a face F
of element Kþ is given by

−
1

2

Z
F
ð∇ϕj · nÞþϕþ

i u
þ
j dsþ

1

2

Z
F
ð∇ϕj · nÞ−ϕþ

i u
−
j ds

þ ϵ

2

Z
F
ð∇ϕi · nÞþϕþ

j u
þ
j ds −

ϵ

2

Z
F
ð∇ϕi · nÞþϕ−

j u
−
j ds

þ γ

Z
F
uþj ϕ

þ
j ϕ

þ
i ds − γ

Z
F
u−j ϕ

−
j ϕ

þ
i ds

¼ ∶ðAij þ ϵBij þ γCijÞuþj þ ðDij þ ϵEij þ γFijÞu−j :
(A-3)

We then define

Fþ
F ¼ ðAij þ ϵBij þ γCijÞ; F−

F ¼ ðDij þ ϵEij þ γFijÞ:
(A-4)

The semidiscrete problem in space for each element becomes

Mþutt þ Sþuþ Fþ þ F− ¼ f; (A-5)

where the mass matrix is

Mþ
ij ¼

Z
Kþ

ϕjϕidK (A-6)

and the stiffness matrix is

Sþij ¼
Z
Kþ

∇ϕj · ∇ϕidK; (A-7)

whereas for the fluxes we have to sum over the four faces of the
element

Fþ ¼
X

F∈F I⊂Kþ
Fþ
Fun; F− ¼

X
F∈F I⊂K−

F−
Fu

−
n : (A-8)

With the DGM, the basis functions are not required to be continuous
over the entire domain but only inside the elements. This important
feature of the DGM implies that the mass matrix is always block-
diagonal, which translates into an efficient time-marching algo-
rithm. Furthermore, the basis functions can be chosen such that
the mass matrix is exactly diagonal. Because, in our implementa-
tion, we use Lagrangian shape functions, the local mass matrix Mþ

is not diagonal. However, the matrix is local and has size 4 × 4 for
linear polynomial shape functions, or in general, NDG × NDG, NDG

being the local number of degrees of freedom in the tetrahedron. A
general description of the basis functions can be found in the book
by Hughes (2000) and a description of the basis functions used in
DGM in that of Li (2006).
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