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Abstract 
Multi-axial stress state is the stress state where several stress components exist. Multi-axial fatigue 

assessment is very challenging due to complex stress state and component geometry. Many multi-axial 

fatigue assessment criteria simplify the complex multi-axial stress into an equivalent uniaxial stress. 

Critical plane method which bases on observation of fatigue cracking initiation and propagation 

behavior of smooth specimens is widely used. The critical plane is usually determined by maximizing the 

amplitudes and/or values of some stress components, and the parameters obtained on the critical plane 

are used to analyze fatigue strength. 

For uniaxial loading, rainflow counting method can be used to evaluate the complex variable-amplitude 

stress history. However, this method cannot be applied to non-proportional multi-axial stress state. The 

so-called Path-Dependent Maximum range (PDMR) method is proposed by Zhigang Wei and Pingsha 

Dong to evaluate complex multi-axial stress history. This method uses the calculated effective stress 

range at mapped normal-shear stress space to evaluate the fatigue damage. 

The aim of this thesis is to explore the feasibility by applying PDMR method to determine equivalent 

stress amplitude for critical plane method. PDMR matlab algorithm is programed based on publications 

in literature.  Several experimental results related to high cycle fatigue strength for smooth specimens, 

subjected to proportional or non-proportional loading with different mean stress values and various 

stress ratios, are analyzed by employing the proposed PDMR based critical plane method and other 

criteria available in the  literature, such as Findley, McDiarmid, Matake, Dang Van, Papadopoulos and 

modified Carpinteri-Spagnoli (C-S) criterion. The proposed method shows a good estimation capacity as 

compared to the aforementioned criteria. Also, the proposed critical plane method is extended to 

estimate the fatigue life for tubular tube-to-plane welded joints under proportional or non-proportional 

loading.  

Fracture plane orientation determination method is proposed based on observation of plotted 

equivalent stress amplitude on each material plane calculated by PDMR method. This method shows 

good estimation capacity for the experimental data examined. 

 

 

 

 

 

 

 

 

 



II 
 

Nomenclature 
 

m Reverse slope value of S-N curve  

𝐶𝑎 Shear stress amplitude [MPa] 

𝐶𝑎,𝑒𝑞 equivalent fully reversed shear stress amplitude [MPa] 

𝑡1, 𝑡2,⋯ , 𝑡𝑘 ,⋯ 𝑡𝑁 Time instants [sec] 

R Stress ratio  

T Length of stress history [sec] 

W Weight function  

 
Vectors and matrixes 
 

𝐈𝟏 first stress invariant matrix  

I identity tensor  

𝑺𝒘 stress vector on the material plane  

C shear stress vector acting on the material plane  

N normal stress vector perpendicular to the critical plane  

u unit vector on the material plane  

v unit vector on the material plane  

w unit vector normal to the material plane  

𝛔 cartesian stress tensor  

𝐁𝒊 i-th components of an orthonormal basis of 𝑑𝑒𝑣3  

𝐛𝒊 i-th component of an orthonormal basis of ℜ5  

X deviatoric stress tensor at material point P in 𝑑𝑒𝑣3  

x deviatoric stress vector at material point P in ℜ5  

 
Greek Symbols 
 

α 
phase angle between longitudinal normal stress 𝜎𝑥 and tangential 
normal stress 𝜎𝑦 

[rad] 

β 
phase angle between longitudinal normal stress 𝜎𝑥 and shear 
stress 𝜏𝑥𝑦 

[rad] 

𝛾 
angle between longitudinal axis of the specimen and normal vector 
𝐰 to the critical plane 

[degree] 
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η 
angle between longitudinal axis of the specimen and normal vector 
to fatigue fracture plane 

[degree] 

δ off angle  [rad] 

𝜆𝑥𝑦 Ratio between frequency ω𝑥𝑦/ω𝑥  

𝜆𝑦 Ratio between frequency ω𝑦/ω𝑥  

σ normal stress [MPa] 

σh hydrostatic stress [MPa] 

𝜎1 maximum Principal stress [MPa] 

𝜎𝑎𝑓,0 fatigue limit for purely pulsating normal stress [MPa] 

𝜎𝑎𝑓 fatigue limit for fully reversed normal stress [MPa] 

𝜎𝑓
′ fatigue strength coefficient [MPa] 

𝜎𝑢 ultimate tensile strength [MPa] 

𝜏 shear stress [MPa] 

τ𝑎𝑓 fatigue limit for fully reversed shear stress [MPa] 

ϕ̂, θ̂, ψ̂ expected values of the Euler angles [rad] 

φ, ϑ 
angles defining Puvw coordinate system with respect to PXYZ 
coordinate system 

[rad] 

ϕ, θ, ψ Euler angles [rad] 

ω𝑥 angular frequency of the sinusoidal longitudinal normal stress 𝜎𝑥 [rad/sec] 

ω𝑦 angular frequency of the sinusoidal tangential normal stress 𝜎𝑦 [rad/sec] 

ω𝑥𝑦 angular frequency of the sinusoidal shear stress τ𝑥𝑦 [rad/sec] 

 
Subscripts  
 

a amplitude of the stress components  

max maximum value of a given stress component  

min maximum value of a given stress component  

m mean value of a given stress component  

A,B indication of case A or case B crack growth  

ij Element of a given stress component in Cartesian stress tensor  
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1. Introduction  
Fatigue strength evaluation of the structure components is a major part for designing offshore 
structures. For simple uniaxial loading, S-N curve can be applied to access the fatigue strength easily. For 
variable-amplitude uniaxial loading, rainflow counting method can tackle the problem by transforming 
the complex stress history into so called equivalent stress amplitude. Because of the complex stress 
states, there are no universal accepted successful method for structure multi-axial fatigue strength 
assessment (Socie & Marquis, 2000). 

Early, static stress parameters are used to evaluate complex multiaxial loading (Niemi, 1995). However, 
the calculated fatigue strength results tends to be non-conservative under out-of-phase loading 
conditions (Chen, Gao, & Sun, 1994). Lately, stress invariant and hydrostatic stress are used as fatigue 
strength parameter to evaluate the multi-axial fatigue strength. For example, Crossland (Crossland, 
1956)and Sines (Sines, Waisman, & Dolan, 1959) methods use hydrostatic stress and stress invariant to 
represent the normal stress component and the shear stress component respectively. And the 
maximum combination of these two parameters is used to calculate the multi-axial fatigue strength.  

Critical plane method such as Papadopoulos (Papadopoulos I. , 1998) and Carpinteri-Spagnoli (Carpinteri 
& Spagnoli, 2001)is widely used for multi-axial fatigue strength calculation. This method is proposed 
according to crack initiation and propagation procedure of smooth specimens. After the critical plane is 
determined, the parameters obtained on the plane is applied to calculate fatigue strength.  

Loading path effect is a vital factor need to be considered for multi-axial fatigue strength assessment. 
Sonsino and Kueppers (Sonsino & Kueppers, 2001) proposed that the out-of-phase loading is more 
damaging than in-phase loading for ductile materials.  

Various counting method such as MCC (Zouain, Mamiya, & Comes, 2006) and PH (Mamiya, Araújo, & 
Castro, 2009)have been proposed to take non-proportional loading effect into account. Zhigang Wei and 
Pingsha Dong (Dong, Wei, & Hong, 2010) proposed a path-dependent multi-axial counting method 
searching effective stress ranges in the mapped normal and shear stress space. This method can not 
only be used in the 2D normal-shear stress plane, but also in the 3D stress space, such as normal, in-
phase shear and transverse shear stresses space. After every stress paths is counted, the equivalent 
uniaxial stress amplitude can be calculated by applying Miner’s rule. 

According to the experiment conducted by Smith, Sines states that mean shear stress is negligible for 
components under cyclic shear stress loading (Kluger, 2015). In the HCF range, many multiaxial fatigue 
criterion only consider the mean normal stress effect. 

This master thesis aims to explore the feasibility of applying PDMR based method to define the critical 
plane and corresponding equivalent uniaxial stress. First, the background knowledge for multi-axial 
fatigue evaluation is introduced. Then, various multi-axial fatigue criterions form literature are 
presented and compared. Last, the proposed PDMR based critical plane method and other critical plane 
methods from literature are applied to access experimental results from published literature. After 
comparison of results, the effectiveness and accuracy of proposed PDMR 3D critical plane method could 
be acquired. 
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2. Literature Review 

2.1. Stress Analysis 

2.1.1. Static Stress Analysis 
For the case of 3D-stress state, the stresses at a generic point P can be represented by stress tensor 𝛔 as 
follows: 

 
𝛔 = [

𝜎𝑥 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧

] (2.1) 

Tensile stress is defined as positive while compressive stress is defined as negative. When tensile stress 
is acting on the plane, positive shear stress direction on the plane is define as positive direction of the 
coordinate axes. Positive directions of normal and shear stresses at a generic point are shown in Figure 
2.1.a. 

 

 
a)                                                                                                   b) 

 
Figure 2.1. a) Stress components of a stress tensor at a generic point and b) stress tensor on the material 

plane ∆. 
 

Considering two orthogonal unit vectors, u and v, on the material plane 𝚫. Vector u is defined as on the 

wZ-plane. Note that Z-axis perpendiculars both the XY-plane and the vector v, so the vector v is on the 

XY-plane (Figure 2.2). The direction cosine of the vector w is determined with respect to 𝑃𝑋𝑌𝑍 by using φ 

and ϑ in the spherical coordinate system. 

 𝒘T = [𝑠𝑖𝑛ϑcosφ   sinϑsinφ   cosϑ] (2.2) 

The direction cosines of u and v can also be calculated with respect to 𝑃𝑋𝑌𝑍. 

 𝒖T = [𝑐𝑜𝑠ϑcosφ   cosϑsinφ  − sinϑ] (2.3) 

 𝒗T = [−𝑠𝑖𝑛φ   cosφ   0] (2.4) 
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The stress vector 𝑺𝑤 on ∆ is given by 
 𝑺𝑤 = 𝝈𝒘 (2.5) 

The stress vector 𝑺𝑤 is composed of  normal stress vector N and shear stress vector C as 
 
 

𝑁 = (𝝈𝒘 ∙ 𝒘)     𝑵 = 𝑁𝒘 (2.6) 

and 
 𝑪 = 𝑺𝑤 −𝑵 (2.7) 

 
where the dot in Eq.(2.6) is scalar product. Shear stress 𝑪 magnitude can be computed by Eq. (2.8) as 
follows 
 

 𝐶2 = 𝑪𝑇𝑪 = 𝑺𝑤
𝑻 𝑺𝑤 −𝑁

𝟐 (2.8) 

Shear stress vector 𝑪 on the plane ∆ can be decomposed into u and v direction.  
 

 𝑪𝑢 = (𝑪 ∙ 𝒖)𝒖      𝑪𝑣 = (𝑪 ∙ 𝒗)𝒗 (2.9) 

 
Fig. 2.2. 𝑃𝑢𝑣𝑤 and 𝑃𝑋𝑌𝑍 coordinate systems 

 

2.1.2. Principal stresses and stress invariants 
The principal stresses are the stresses of stress tensor when only normal stress components exist. The 
principal stresses and corresponding directions are the eigenvalues and corresponding eigenvectors of 
the stress tensor. The eigenvalues and corresponding eigenvectors can be calculated by solving the 
following equations: 

 (𝜎𝑖𝑗 − 𝜎𝛿𝑖𝑗)𝑛𝑗 = 0 (2.10) 

Where 𝜎𝑖𝑗 is the stress tensor, 𝜎 is eigenvalue, 𝛿𝑖𝑗  is the Kronecker delta and 𝑛𝑗are corresponding 

eigenvectors. The determinant need to be zero to get non-trivial eigenvectors: 
 

|𝜎𝑖𝑗 − 𝜎𝛿𝑖𝑗| = |

𝜎𝑥 − 𝜎 𝜏𝑥𝑦 𝜏𝑥𝑧
𝜏𝑦𝑥 𝜎𝑦 − 𝜎 𝜏𝑦𝑧
𝜏𝑧𝑥 𝜏𝑧𝑦 𝜎𝑧 − 𝜎

| = 0 (2.11) 
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The following characteristic equation can be get: 
 

 𝜎3 − 𝐼2𝜎
2 + 𝐼2𝜎 − 𝐼3 = 0 (2.12) 

With 
 𝐼1 = 𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧 (2.13) 

   
 𝐼2 = 𝜎𝑥𝜎𝑦 + 𝜎𝑦𝜎𝑧 + 𝜎𝑥𝜎𝑧 − 𝜏𝑥𝑦

2 − 𝜏𝑦𝑧
2 − 𝜏𝑥𝑧

2  (2.14) 

 𝐼3 = 𝜎𝑥𝜎𝑦𝜎𝑧 + 2𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑧𝑥 − 𝜏𝑥𝑦
2 𝜎𝑧 − 𝜏𝑦𝑧

2 𝜎𝑥 − 𝜏𝑧𝑥
2 𝜎𝑦 (2.15) 

Where 𝐼1, 𝐼2 and 𝐼3 is first, second and third stress invariants, respectively. These stress invariants are 
constant.𝜎1,𝜎2 and 𝜎3 is the first, second and third principal stress, respectively. Eigenvectors describe 
the direction of corresponding principal stresses. 
 

2.1.3. Deviatoric stress and invariants 
Considering a stress tensor 𝜎𝑖𝑗 acting at a generic point. Stress tensor 𝜎𝑖𝑗 can be divided into hydrostatic 

stress and deviatoric stress. Deviatoric stress tensor can be calculated as follows: 
 𝑠𝑖𝑗 = 𝜎𝑖𝑗 − 𝝈ℎ (2.16) 

The hydrostatic stress tensor is defined as: 
 

 
𝝈ℎ = 𝜎ℎ𝑰 =

1

3
(𝜎𝑥 + 𝜎𝑦 + 𝜎𝑧)𝑰 (2.17) 

After getting the deviatoric stress tensor, the first, second and third deviatoric stress invariants and 
corresponding directions can be calculated with the similar procedure for principal stress described in 
2.1.2. 𝐽1, 𝐽2 and 𝐽3 can be expressed as follows: 
 

 𝐽1  = 0 

𝐽2 =
1

2
𝑠𝑖𝑗𝑠𝑗𝑖 =

1

6
[(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑧 − 𝜎𝑥)

2] + 𝜏𝑥𝑦
2 + 𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2  

     𝐽3 = 𝑑𝑒𝑡(𝑠𝑖𝑗) =
1

3
𝑠𝑖𝑗𝑠𝑗𝑘𝑠𝑘𝑖 

(2.18) 

 

2.1.4. Mean stress effect 
Based on the experiment conducted by Smith, Sines (Sines, Waisman, & Dolan, 1959) states mean shear 

stress is negligible for structure components under sinusoidal shear stress loading In the HCF range. In 

this thesis, only the mean normal stress effect is considering for the multi-axial fatigue strength 

calculation. 

Gerber (Gerber, 1874)use ultimate strength as a correction factor and get the following equation: 

 σ𝑒𝑞,𝑎 = σ𝑎/ (1 − (
𝜎𝑚
σ𝑢
)2) (2.19) 

σ𝑒𝑞,𝑎 is equivalent fully reversed stress amplitude, σ𝑎 is stress amplitude and 𝜎𝑚 is mean stress value, 

σ𝑢 is ultimate strength value.  
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The main drawback of the Gerber method is that it cannot distinguish between compression and 

tension. It is apparent that tension is detrimental to the fatigue strength while the compression is on the 

contrary. 

Goodman’s (Goodman, 1899) method is very similar to Gerber’s and the compression and tension 

effect is distinguished: 

 𝜎𝑒𝑞,𝑎 =
σ𝑎

(1 −
𝜎𝑚
σ𝑢
)
        𝑓𝑜𝑟 𝜎𝑚 > 0 

𝜎𝑒𝑞,𝑎 = σ𝑎                        𝑓𝑜𝑟 𝜎𝑚 ≪ 0 

(2.20) 

Susmela  (Susmela, Tovoa, & Lazzarin, 2005) uses yield strength of the material as a correction factor 

and get the following equation: 

𝜎𝑒𝑞.𝑎 =
𝜎𝑎

(1 −
𝜎𝑚
𝜎𝑦
)
        𝑓𝑜𝑟 𝜎𝑚 > 0 

𝜎𝑒𝑞.𝑎 = 𝜎𝑎                          𝑓𝑜𝑟 𝜎𝑚 ≪ 0 

 

(2.21) 

Dowling (Dowling, 2009) use fatigue strength coefficient of the material as a correction factor and get 

the following equation: 

 
𝜎𝑒𝑞.𝑎 =

𝑆𝑎

(1 −
𝑆𝑚
𝜎𝑓
′ )

        𝑓𝑜𝑟 𝜎𝑚 > 0 

𝜎𝑒𝑞.𝑎 = 𝜎𝑎                          𝑓𝑜𝑟 𝜎𝑚 ≪ 0 

(2.22) 

 

The Smith-Watson-Topper (Susmela, Tovoa, & Lazzarin, 2005) method bases on Mode I growth and can 

be expressed as follows: 

 

𝜎𝑎𝑟 = √𝜎𝑚𝑎𝑥𝜎𝑎 = 𝜎𝑎√
2

1 − 𝑅
= 𝜎𝑚𝑎𝑥√

1 − 𝑅

2
 (2.23) 

2.1.5. Dynamic stress analysis 
For in-phase loading, the stress components histories can be expressed by following equation: 

 σ𝑖𝑗(𝑡) = 𝜎𝑖𝑗,𝑚 + 𝜎𝑖𝑗,𝑎sin (𝜔𝑡) (2.24) 

Where 𝜎𝑖𝑗,𝑚 is stress mean value, 𝜎𝑖𝑗,𝑎 is stress amplitude. ω is stress frequency. 

For non-proportional loading, the stress components history can be expressed as follows: 

 σ𝑖𝑗(𝑡) = 𝜎𝑖𝑗,𝑚 + 𝜎𝑖𝑗,𝑎sin (𝜆𝑖𝑗𝜔𝑖𝑗𝑡 − 𝛼𝑖𝑗) (2.25) 

Where 𝜆𝑖𝑗 is the frequency ratio and 𝛼𝑖𝑗 𝑖s the phase angle. 
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Fig. 2.3. Cylindrical specimen 

The stress histories at the generic point P of a specimen (Fig.2.3.) under sinusoidal normal and shear stress 

loading can be expressed by following equations: 

 σ𝑥 = 𝜎𝑥,𝑚 + 𝜎𝑥,𝑎sin (𝜔𝑥𝑡) 

σ𝑦 = 𝜎𝑦,𝑚 + 𝜎𝑦,𝑎sin (𝜔𝑦𝑡 − 𝛼) 

τ𝑥𝑦 = 𝜏𝑚 + 𝜏𝑎sin (𝜔𝑥𝑦𝑡 − 𝛽) 

(2.26) 

As shown in 2.4., the stress vector history 𝑺𝑤(𝑡) on the material plane Δ can be divided into normal 
stress vector history N(𝑡) and shear stress vector history C(t) (B. Li & Freitas, 2009).  
 

 
Fig. 2.4. Stress 𝑆𝑤 on the material plane Δ 

 
Since the direction of normal stress vector 𝑵 is normal to the material plane Δ, amplitude of the normal 
stress 𝑵𝒂 and mean value of normal stress 𝑵𝒎 is easy to calculate. Because direction of shear stress 
vector history Ψ′ is changing with time, calculation of shear stress amplitude is quite complicated. 
Various methods has been proposed to define shear stress amplitude, such as: Longest Projection 
method (V & A., 1976), the Longest Chord method (Lemaitre & Chaboche, 1990), the Minimum 
Circumscribed Circle (MCC) method (Zouain, Mamiya, & Comes, 2006) (Li, Reis, & Freitas, 2009) and the 
Prismatic Hull (PH) method (Mamiya & Araújo, 2002) (Mamiya, Araújo, & Castro, 2009) (Gonçalves, 
Araújo, & Mamiya, 2005) (Araújo, Dantas, Castro, Mamiya, & Ferreira, 2011).  
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Fig. 2.5. Amplitude and mean value (𝐶𝑎1, 𝐶𝑚1), (𝐶𝑎2, 𝐶𝑚), (𝐶𝑎3, 𝐶𝑚) and (𝐶𝑎4, 𝐶𝑚) of stress history Ψ′ on 

the material plane calculated by the LP, LC, MCC and PH methods. 
 
Mean and amplitude of stress history determined by aforementioned various method for a complex 
loading history is shown in Fig. 2.5. The longest projection method searches for the maximum projection 
of stress history 𝛹′ to a line tangent to the stress history. The amplitude of stress history is defined as 
half-length of projection. Mean value is defined as the middle point of projection line. Longest chord 
method searches longest chord in the stress history Ψ′. Stress amplitude is defined as half-length of the 
longest chord. Mean stress is defined as the longest chord middle point. Minimum circumscribed circle 
method searches the minimum circle that encloses stress history 𝛹′. Stress amplitude is defined as 
radius of the enclosed minimum circle. Mean stress is defined as the center of enclosed circle.  
 
Longest projection, longest cord and minimum circumscribed circle method cannot differentiate out-of-
phase and in-phase stress histories. For example, a linear stress history and a circle stress history with 
diameter equal to the linear stress length will be defined having the same stress amplitude and mean 
value according to those methods.  
 
Araújo et al. (Araújo, Dantas, Castro, Mamiya, & Ferreira, 2011) proposes the maximum rectangular hull 
method to define shear stress amplitude on material planes. This method searches the maximum 
rectangular hull which is tangent to the shear history on the material planes. Considering a specific shear 
stress history  Ψ′ on the material plane Δ(Fig.2.5), the orthonormal vectors u and v, which can be 
defined with respect to direction of x axis in this thesis, can define the half-length of the sides of 
rectangular hulls as follows: 
 

 
𝐶𝑢,𝑎(φ) =

1

2
[ max
0≤𝑡<𝑇

𝐶𝑢(𝑡, φ) − min
0≤𝑡<𝑇

𝐶𝑢(𝑡, φ)] (2.27a) 

 
𝐶𝑣,𝑎(φ) =

1

2
[ max
0≤𝑡<𝑇

𝐶𝑣(𝑡, φ) − min
0≤𝑡<𝑇

𝐶𝑣(𝑡, φ)] (2.28b) 

For each 𝜑-oriented rectangular hull, stress amplitude 𝐶𝑎 of stress history Ψ′ is define as half-length of 
diagonal of rectangular hull: 

 
𝐶𝑎 = max

0≤𝑡<𝑇
√[𝐶𝑢,𝑎(φ)]

2
+ [𝐶𝑣,𝑎(φ)]

2
 (2.29) 

http://www.sciencedirect.com/science/article/pii/S0142112311000041
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It is obvious that only the points of shear stress history  Ψ′ that belonging to the largest rectangular hull 
is used to define the stress amplitude according to the MCH method, which may be a drawback 
compared to PDMR method which uses every point of the stress history Ψ′. 
 

2.2. Fracture procedure 
There are three basic fracture modes shown in Figure 2.6. Mode I corresponds to tension, mode II 

corresponds to in-plane shear and mode III corresponds to out-of-plane shear. 

 

Figure 2.6. Fracture mode (Anderson, 2005)  

Crack development until final fracture can be divided into three stages: crack initiation stage, crack 

propagation stage and final fracture stage. Different mechanism control these stages. At the first stage, 

crack nucleation occurs along shear slip band. Many critical plane methods define the shear ship plane 

as the critical plane (Carpinteri, Spagnoli, & Vantadori, 2009). The critical plane is the plane on which the 

stresses are used to do the fatigue evaluation. At the second stage, crack propagates along the plane 

which is normal to the direction of maximum principal stress (Carpinteri, Spagnoli, & Vantadori, 2009). 

This plane is the fracture plane observed from the experiments. And the orientation of the two planes at 

stage one and stage two is different (Carpinteri, Spagnoli, & Vantadori, 2009). 

 

Figure 2.7. Crack develop procedure (Radaj, Sonsino, & Fricke, 2006)  

Crack propagate plane is assumed normal to the direction of maximum principal stress. Crack initiate 

plane, which is the critical plane defined by critical plane method, can be obtained relate to fracture 

plane using off angle given as follows (Carpinteri, Brighenti, & Spagnoli, 2000): 

 
𝛿 =

3𝜋

8
[1 − (

𝜏𝑎𝑓

𝜎𝑎𝑓
 )2] (2.30) 

Off angle 𝛿 is the angle between vector w and direction of averaged maximum principal stress 

direction 1̂, in averaged principal plane 1̂3̂(Fig.2.8). 
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Fig.2.8. off angle δ (Carpinteri, Spagnoli, & Vantadori, 2009) 

For hard metal (𝜏𝑎𝑓/𝜎𝑎𝑓 > 1), δ is assumed to be 0. So the fracture plane coincides with critical plane 

For mild metal, δ is assumed to be 𝜋 4⁄ . 

2.3. SN curve 
The S-N curve presents the relationship between stress range and number of load cycles to failure on 

logarithmic scale. Under constant amplitude loading, the relationship can be defined as: 

 𝑁(∆𝑆)𝑚 = 𝐶 (2.31) 

N is cycles to failure, ∆𝑆 is stress range, C and m are material dependent constant. 

Fatigue limit is defined in S-N curves. Fatigue failure will occurs when stress range is bigger than fatigue 

limit.  

2.4. Multi-axial cycle counting 
For simple cyclic constant amplitude uniaxial loading, it is very easy to define the amplitude and 

corresponding cycle. However, for complex asynchronous variable amplitude stress histories, it is very 

difficult to define equivalent stress amplitude and corresponding cycles. There are many methods 

proposed by different authors to transform the random stresses history into equivalent uniaxial 

stresses. 

2.3.1.1. Bannantine & Socie 

Bannantine & Socie (Bannantine & Socie, 1992) states that according to the different loading type, 

different crack modes (as stated in 2.2) develop. Damage caused by normal and shear stress needed to 

be calculated according to uniaxial rainflow counting respectively, and the large damage value will be used 

for fatigue evaluation (Bannantine & Socie, 1992). Because the calculation is processed separately, so the 

out-of-phase effect is not taken into account (Dong, Wei, & Hong, 2010). 

2.3.1.2. Wang & Brown 

Early, the static stress parameter such as von Mises stress is used for multi-axial fatigue calculation (Niemi, 

1995), since the von Mises stress value is always positive, which will lead mistake for 90 out-of-phase 

loading (Meggiolaro & Castro, 2012). 

Wang and Brown (Wang & Brown, 1996) proposed a relative effective von Mises strain parameter to 

solve this problem. 
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휀𝑅𝑀𝑖𝑠𝑒𝑠 =
√(Δ휀𝑥 − Δ휀𝑦)

2
+ (Δ휀𝑥 − Δ휀𝑧)

2 + (Δ휀𝑦 − Δ휀𝑧)
2
+ 1.5(Δ𝛾𝑥𝑦

2 + Δ𝑟𝑥𝑧
2 + Δ𝑟𝑦𝑧

2 )

√2 ∙ (1 + �̅�)
 

(2.32) 

Where �̅� is effective Poisson coefficient, which is calculated according to the ratio of plastic and elastic 

strain. Δ휀𝑥 ≡ 휀𝑥𝑗 − 휀𝑥𝑖, Δ휀𝑦 ≡ 휀𝑦𝑗 − 휀𝑦𝑖 , Δ휀𝑧 ≡ 휀𝑧𝑗 − 휀𝑧𝑖 , Δ𝛾𝑥𝑦 ≡ 𝛾𝑥𝑦𝑗 − 휀𝑥𝑦𝑖, Δ𝛾𝑥𝑧 ≡ 𝛾𝑥𝑧𝑗 −

휀𝑥𝑧𝑖, Δ𝛾𝑦𝑧 ≡ 𝛾𝑦𝑧𝑗 − 휀𝑦𝑧𝑖, and 𝑗 > 𝑖.  

Wang & Brown’s multiaxial counting method is quoted below (Meggiolaro & Castro, 2012): 

1. The fist counting point should always be the point corresponding to maximum Mises strain. 

2. With the initial maximum Mises strain point, the next peek or valley point is searched.  

3. When the maximum relative Mises strain or previous path is searched, the final point is acquired. 

A complex multiaxial load path in Fig.2.9 is taken from (Meggiolaro & Castro, 2012) for the purpose of 

illustration. The point A corresponding to the maximum absolute Mises strain is the first point. The 

relative equivalent strain is calculated using the aforementioned equation. According to Wang & 

Brown’s method, the path ABB′F give the maximum relative Mises strain. So the next initial counting 

point is B. The procedure for the first two counting is illustrated in Fig 2.10. and 2.11. 

 

Figure 2.9. Normal and shear strain history (left) and normal-shear strain plot (right) (Meggiolaro & 

Castro, 2012) 

 

Figure 2.10. First cycle count (Meggiolaro & Castro, 2012) 
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Figure 2.11. Second cycle count (Meggiolaro & Castro, 2012) 

2.3.1.3. Path-dependent maximum range 

Dong & Hong (Dong, Wei, & Hong, 2010) propose a path-dependent maximum range multi-axial 

counting method which gets the exact same result as rainflow counting method for uniaxial stress 

counting. For Wang & Brown method, the point corresponding to the maximum strain value is searched 

firstly, maximum stress amplitude cannot be counted for some loading cases (Dong, Wei, & Hong, 2010), 

while for PDMR method, the maximum range of entire stress or strain history is searched firstly. The 

distance or the so called range is counted as half cycle for this procedure (Dong, Wei, & Hong, 2010).  

A simple stress history for the purpose of illustration is shown in Fig.2.12, since the range from P to Q is 

monotonously increasing, stress range ∆𝑆𝑒 corresponding to the maximum range PQ is defined and half 

cycle is counted (Dong, Wei, & Hong, 2010). 

 

Figure 2.12. Path-dependent maximum range method searching procedure (Dong, Wei, & Hong, 2010). 
 

𝛽 is the fatigue strength equivalency factor, which is the ratio between normal stress range and shear 

stress range in the stress history (Dong, Wei, & Hong, 2010). The parameter is normally between 2 and 4 

for steel (Dong, Wei, & Hong, 2010). 

Another cycle counting procedure for more complicated stress path is shown in Fig.2.13 (Dong, Wei, & 

Hong, 2010). 

 

Figure 2.13. PDMR counting procedure in a normal and shear stress space (a) first counted half cycle and 
(b) second counted half cycle (Dong, Wei, & Hong, 2010) 
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From point P to R, distance to P is monotonously increasing. From point R to 𝑅∗, the distance to P is 

decreasing, so the first turning point R is get. Distance from R to P and distance from 𝑅∗ to P is the same, 

so  𝑅∗ is the projected turning point. From the point 𝑅∗ to Q, distance to P is also monotonously 

increasing. The maximum distance in this loading history is PQ, so the first half cycle is counted. Effective 

stress range in this cycle is define as real path add virtual path. The real path (solid line in Figure 2.12(a)) 

is equal to length PR and length 𝑅∗R. Virtual path is define as the dashed line in the Figure 2.12(a). Since 

the distance from the point R to 𝑅∗ is monotonously increasing.  The solid line in the Figure 2.12(b) is the 

second cycled counted. Effective stress range is length 𝑅𝑅∗. 

The path length can be expressed as follows: 

 
∆𝑆𝑒

(𝑖)
= ∫𝑑 𝑆𝑒

𝑖 = ∫√(𝑆𝜎)
2 + 𝛽(𝑆𝜏)

2 (2.33) 

Every point belonging to the normal and shear stress space is used for the counting procedure. Path-

dependent maximum range method can be used to analysis asynchronous variable amplitude stress 

history (Wei & Dong, 2010). 

After every half cycle is counted, Mine’s rule can be applied to get corresponding equivalent uniaxial 

stress range as follows (Dong, Wei, & Hong, 2010): 

 
∆𝑆𝑒𝑞 = (

1

𝑁𝑅
∑𝑛𝑖∆𝑠𝑖

𝑚

𝑖

)
1
𝑚 (2.34) 

𝑁𝑅 is the total number of cycles counted, m is the exponent of S-N curve. 𝑛𝑖 is the number of cycle 

counted for stress range ∆𝑠𝑖.  

The PDMR method can also be applied to three stress space (Dong, Wei, & Hong, 2010). A stress history 

in 3D space (N(t), 𝐶𝑢(t) and 𝐶𝑣(t) ) is shown in Figure 2.15 for the purpose of illustration.  

 

Figure 2.15. PDMR applications 3-D 

From the point P to R, the distance to point P is monotonously increasing. From the point P to 𝑅∗,  

distance to point P is decreasing. So the point R is the turning point. Distance from R to P and distance 

from 𝑅∗ to P is the same, so  𝑅∗ is the projected turning point. The path length in 3D space is expressed 

as follows: 
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∆S𝑒

(𝑖)
= ∫𝑑𝑆𝑒

𝑖 = ∫√(𝑑𝑁)2 + 𝛽𝑢(𝑑𝐶𝑢)
2 + 𝛽𝑣(𝑑𝐶𝑣)

2 (2.35) 

   

2.5. Multi-axial fatigue criteria 
 
The multi-axial fatigue evaluation criteria could be divided into three main types:  stress based criteria, 
strain based criteria and energy based criteria (Sines, Waisman, & Dolan, 1959). For high cycle multi-
axial fatigue calculation, stress-based criteria is usually used (Araújo, Dantas, Castro, Mamiya, & Ferreira, 
2011). Most of stress-based criterions transform the multiaxial stress to an equivalent uniaxial stress to 
calculate fatigue strength with parameters obtained from uniaxial fatigue test (Wang & Yao, 2004). In 
this thesis, only stress-based multi-axial fatigue criteria is used because it is simplicity and suitability for 
the engineering practice.  
 
An important procedure for the multi-axial fatigue calculation is to determine the relationship between 
normal stress damage and shear stress damage (Anes, Reis, Li, Fonte, & Freitas, 2014). The stress-based 
method could be divided into critical plane criteria, stress invariant criteria, empirical equivalent stress 
based criteria and integral criteria (You & Lee, 1996).  
 

2.5.1. Empirical equivalent stress 
 
Empirical equivalent stress method use the parameters from static yield theories to combine the normal 
and shear stress component to calculate the multiaxial fatigue (Li, Jiang, Han, & Li, 2015). However, the 
predicted results are non-conservative for non-proportional loading condition (Anes, Reis, Li, Fonte, & 
Freitas, 2014).  
 

2.5.1.1. Von-Mises 

The second deviatoric stress can be expressed with only principal stresses as follows: 
 

𝐽2 =
1

6
[(𝜎𝑥 − 𝜎𝑦)

2
+ (𝜎𝑦 − 𝜎𝑧)

2
+ (𝜎𝑧 − 𝜎𝑥)

2] (2.36) 

For the uniaxial loading condition, where 𝜎𝑦 = 𝜎𝑧 = 0 , second deviatoric stress is simplified as follows: 

 √𝐽2 =
𝜎𝑥

√3
 (2.37) 

According to von Mises yield criterion, material will yield when second deviatoric stress is larger than 
yield stress under pure shear loading, the following equation can be acquired: 

 √3𝜏𝑥𝑦 = 𝜎𝑥 (2.38) 

For 2D stress state, the equivalent stress amplitude can be simplified as follows: 
 

 𝜎𝑒𝑞 = √𝜎𝑚𝑎𝑥
2 + 3(𝜏𝑚𝑎𝑥)

2 (2.39) 

2.5.1.2. Ellipse quadrant and Ellipse arc 

For ductile material, Gough and Pollard (Gough & Pollard, 1935) proposed the following ellipse quadrant 
equation: 

 
(
𝜏𝑎
𝜏𝑎𝑓

)

2

+ (
𝜎𝑎
𝜎𝑎𝑓

)

2

= 1 (2.40) 
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For brittle material, Gough and Pollard proposed the following Ellipse Arc equation: 
 

(
𝜏𝑎
𝜏𝑎𝑓

)

2

+ (
𝜎𝑎
𝜎𝑎𝑓

)

2

(
𝜎𝑎𝑓

𝜏𝑎𝑓
− 1) + (

𝜎𝑎
𝜎𝑎𝑓

)(2 −
𝜎𝑎𝑓

𝜏𝑎𝑓
) = 1 

(2.41) 

 
Because both Ellipse Quadrant and Ellipse Arc method use the applied stresses rather than stresses 
acting on the material plane, Gough’s method is very simply to apply for multi-axial fatigue calculation. 
However, Wang et al. (Wang & Yao, 2004) proposed that Gough’s method cannot be used for non-
proportional loading. 
 

2.5.1.3. Lee 

In order to take into the phase difference effect into account, Lee (Lee, 1985) modified Gough’s criterion 
as follows: 

 

𝜎𝑎,𝑒𝑞 = 𝜎𝑎 [1 + (
𝑓−1𝜏𝑎
𝑡−1𝜎𝑎

)
𝛼

]

1
𝛼

/(1 − (𝜎𝑚/𝜎𝑢)
𝑛) 

 

(2.42) 

 𝛼 = 2(1 + 𝛽𝑠𝑖𝑛𝜑) (2.43) 

2.5.2. Stress invariants 
The stress invariants criterion uses the stress invariant and hydrostatic stress related parameter, which 
represents damage caused by shear and normal stress respectively, to calculate the multiaxial fatigue 
damage. For Sines et al. (Sines, Waisman, & Dolan, 1959) and Crossland (Crossland, 1956) invariant 
criteria, multi-axial fatigue damage is calculated through combination of second deviatoric invariant and 
hydrostatic stress. And the relationship between the damage caused by stress invariant and hydrostatic 
stress is determined by uniaxial torsion and uniaxial bending loading (Anes, Reis, Li, Fonte, & Freitas, 
2014).  
 

2.5.2.1. Crossland 

Crossland (Crossland, 1956) criterion considers that multiaxial fatigue can be calculated through the 
combination of second deviatoric stress invariant and hydrostatic stress. Shear and normal stress 
amplitudes are represented by second deviatoric stress invariant and hydrostatic stress, respectively 
(Anes, Reis, Li, Fonte, & Freitas, 2014). The relation of second deviatoric stress invariant and hydrostatic 
stress is defined by following equation:  

 

 
(√𝐽2)𝑎 + (3

𝜏𝑎𝑓

𝜎𝑎𝑓
− √3)𝜎𝐻,𝑚𝑎𝑥 ≤ 𝜏𝑎𝑓 (2.44) 

2.5.2.2. Sines 

Sines (Sines, Waisman, & Dolan, 1959) defines relationship of second deviatoric stress invariant and 
hydrostatic stress by fully reversed torsion and purely pulsating bending fatigue limit. Extra experiment 
or formula needed to determine purely pulsating axial loading fatigue limit may be the shortcoming. 
Sines criterion can be expressed as follows: 

 (√𝐽2)𝑎 + (6
𝜏𝑎𝑓

𝜎𝑎𝑓,0
− √3)𝜎𝐻,𝑚 ≤ 𝜏𝑎𝑓 (2.45) 

Where 𝜎𝑎𝑓,0 is the fatigue limit of purely pulsating axil loading, 𝜎𝐻,𝑚𝑎𝑥 is maximum hydrostatic stress. 
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2.5.2.3. Prismatic Hull 

Mamiya et al. (Mamiya, Araújo, & Castro, 2009) proposed the stress invariants multiaxial criterion as 

follows: 

 𝜏𝑒𝑞,𝑎 + 𝜅𝜎𝐻,𝑚𝑎𝑥 ≤ ς (2.46) 

Where 𝜎𝐻,𝑚𝑎𝑥  is maximum hydrostatic stress. 𝜅  and ς  are material property related parameters. 

𝜏𝑒𝑞,𝑎  stands for deviatoric stress amplitude. Note that deviatoric stress amplitude in prismatic hull method 

is not the same shear stress amplitude defined by critical plane method (Mamiya, Castro, Algarte, & Araújo, 

2011).  

The deviatoric stress tensor X in the space 𝑑𝑒𝑣3 from ℜ3 to ℜ3 can be defined by five orthonormal bases 

𝐁𝑖(with i=1,⋯ ,5) as follows: 

 
𝐗(t) =∑𝑥𝑖(𝑡)𝐁𝑖

5

𝑖=1

 (2.47) 

Five orthonormal bases are expressed as follows: 

 
𝐁1 =

1

√6
(
2 0 0
0 −1 0
0 0 −1

) , 𝐁2 =
1

√2
(
0 0 0
0 1 0
0 0 −1

) 

 

𝐁3 =
1

√2
(
0 1 0
1 0 0
0 0 0

) , 𝐁4 =
1

√2
(
0 0 1
0 0 1
1 0 0

) 

 

𝐁5 =
1

√2
(
0 0 0
0 0 1
0 1 0

) 

(2.48) 

𝑥𝑖(𝑡) is expressed as follows: 
 

𝑥1(t) = √
3

2
𝑋𝑥(𝑡) =

1

√6
(2𝜎𝑥(𝑡) − 𝜎𝑦(𝑡) − 𝜎𝑧(𝑡)) 

𝑥2(𝑡) =
1

√2
(𝑋𝑦(𝑡) − 𝑋𝑧(𝑡)) =

1

√2
(𝜎𝑦(𝑡) − 𝜎𝑧(𝑡)) 

𝑥3(𝑡) = √2𝑋𝑥𝑦(𝑡) = √2𝜏𝑥𝑦(𝑡) 

𝑥4(𝑡) = √2𝑋𝑥𝑧(𝑡) = √2𝜏𝑥𝑧(𝑡) 

𝑥5(𝑡) = √2X𝑦𝑧(𝑡) = √2𝜏𝑦𝑧(𝑡) 

(2.49) 

 

Where 𝑋𝑥, 𝑋𝑦, ⋯  are components of deviatoric tensor, while 𝜎𝑥, 𝜎𝑦,⋯   are components of Cauchy stress 

tensor (Carpinteri, Ronchei, Spagnoli, & Vantadori, 2014). X can be simplified as follows: 

 𝐱 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]
T (2.50) 

The half-length of prismatic hull side is expressed as follows: 

 
𝑎𝑖 =

1

2
[ max
0≤𝑡<𝑇

𝑥𝑖(𝑡) − min
0≤𝑡<𝑇

𝑥𝑖(𝑡)] (2.51) 
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Deviatoric stress amplitude τ𝑒𝑞 is defined as follows:  

 

τ𝑒𝑞 = max
Θ
√∑ [𝑎𝑖(Θ)]

2
5

𝑖=1
 (2.52) 

Where Θ is the parameter used to adjust the bases 𝐍𝑖 to produce maximum value in eq. (2.50). 
 

𝑎𝑖(Θ) =
1

2
[ max
0≤𝑡<𝑇

𝑥𝑖(𝑡, Θ) − min
0≤𝑡<𝑇

𝑥𝑖(𝑡, Θ)] 
 (2.53) 

2.5.3. Critical plane criteria 
Critical plane method can be divided into stress, strain and energy based. In this thesis, only the stress 
based critical plane method is considered. The procedure of applying critical plane method is basically 
comprised of two steps. First step is to search critical plane and second step is to use parameters such as 
shear and normal stress amplitudes on critical plane to calculate fatigue strength (Li, Jiang, Han, & Li, 
2015). 
 

2.5.3.1. Findley 

Findley criterion (Findley, 1957) assumes shear stress amplitude is the most important factor affect 

multi-axial fatigue strength, and the damage caused by maximum normal stress has a linear relationship 

with shear stress amplitude. 

Findley multiaxial fatigue criterion is expressed by following equation: 

 𝐶𝑎,𝑒𝑞 = 𝐶𝑎 + 𝑘𝑁𝑚𝑎𝑥 (2.54) 

Where 𝐶𝑎 is shear stress amplitude and 𝑁𝑚𝑎𝑥 is maximum normal stress at the same material plane. 

Critical plane is defined as the plane which maximizes combination of 𝐶𝑎 and 𝑁𝑚𝑎𝑥. 𝑘 is material 

property related coefficient, which can be determined by fully reversed torsion and bending fatigue limit 

as follows:  

 𝜎𝑎𝑓

𝜏𝑎𝑓
=

2

1 + 𝑘/√1 + 𝑘2
 (2.55) 

2.5.3.2. McDiarmid 

McDiarmid criterion (McDiarmid, 1994) (McDiarmid, 1991)considers two types of crack propagation; in 

type A, the crack propagation occurs along the surface; in case B, the crack propagation occurs into 

inside. Critical plane is the plane where largest shear stress amplitude acts. 

McDiarmid criterion equation is expressed as follows: 

 𝐶𝑎,𝑒𝑞 = 𝐶𝑎,𝑚𝑎𝑥 +
𝜏𝐴,𝐵
2𝜎𝑢 

𝑁𝑚𝑎𝑥 (2.56) 

Where 𝜏𝐴 is fully reversed shear stress fatigue limit for case A crack growth and 𝜏𝐵 for case B. 𝜎𝑢 is the 
ultimate tensile strength. For multi-axial bending and torsion loading condition, crack type A presents, 
𝜏𝐴,𝐵 = 𝜏𝐴 = 𝜏𝑎𝑓. 
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2.5.3.3. Matake 

Matake criterion (Matake, 1977) defines the critical plane as the plane where maximum shear stress 

amplitude acts. Matake criterion is expressed as follows: 

 𝐶𝑎,𝑒𝑞 = 𝐶𝑎,𝑚𝑎𝑥 + 𝑘 ∙ 𝑁𝑚𝑎𝑥 (2.57) 

Where 𝐶𝑎,𝑚𝑎𝑥 and 𝑁𝑚𝑎𝑥 stand for shear stress amplitude and maximum normal stress on critical plane, 

respectively. Coefficient 𝑘 can be expressed as follows: 

 𝑘 = 2
𝜏𝑎𝑓

𝜎𝑎𝑓
− 1 (2.58) 

2.5.3.4. Dang Van 

Dan van criterion (K, G, JF, A, & HP, 1989) assumes at stable elastic shakedown state fatigue will not 

occur (Karolczuk & Kluger, 2014). And the stable state can be described by mesoscopic shear stress 

amplitude and maximum hydrostatic stress related parameters. Critical plane is defined as the plane 

where maximum shear stress amplitude acts. 

Dan Van criterion on the macroscopic scale used in this thesis, 

 𝐶𝑎,𝑒𝑞 = 𝐶𝑎,𝑚𝑎𝑥 + 𝑘 ∙ 𝜎𝐻,𝑚𝑎𝑥 (2.59) 

Where 𝜎𝐻,𝑚𝑎𝑥 is the maximum hydrostatic stress and coefficient 𝑘 is defined as follows: 

 
𝑘 = 3

𝜏𝑎𝑓

𝜎𝑎𝑓
−
3

2
 (2.60) 

2.5.3.5. Papadopoulos 

Papadopoulos criterion (Papadopoulos I. V., 2001) is also a mesoscopic criterion using average shear 

stress amplitude. Shear stress amplitude is defined as follows: 

 
√〈𝑇𝑎〉 = √5 × √

1

8𝜋2
∫ ∫ ∫ (𝑇𝑎(𝜑, 𝜃, 𝜓)

2
2𝜋

𝜓=0

𝜋

𝜃=0

2𝜋

𝜑=0

𝑑𝜓sin (θ)𝑑𝜃𝑑𝜑 (2.61) 

Where angle 𝜓 define the gliding directions. 𝜓 and 𝜃 define material plane orientations (Anes, Reis, Li, 
Fonte, & Freitas, 2014). Papadopoulos (Papadopoulos I. V., 2001) defines critical plane as the plane 
where maximum 𝑇𝑎 value acts. Multi-axial fatigue equation is defined as follows: 

 𝐶𝑎,𝑒𝑞 = √〈𝑇𝑎〉 + 𝑘 ∙ 𝜎𝐻,𝑚𝑎𝑥 (2.62) 

Coefficient 𝑘 is defined as follows: 

 𝑘 = 3
𝜏𝑎𝑓

𝜎𝑎𝑓
− √3 (2.63) 

For Biaxial loading condition, 𝑇𝑎  can be simplified as von Mises equivalent stress (Anes, Reis, Li, Fonte, & 

Freitas, 2014).  

For biaxial loading condition, equation (2.60) is simplified as follows: 

http://www.sciencedirect.com/science/article/pii/S0142112301000597
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𝐶𝑎,𝑒𝑞 = √
𝜎𝑎

2

3
+ 𝜏𝑎

2 + 𝑘 ∙ max (
𝐼1
3
) (2.64) 

2.5.3.6. Carpinteri-Spagnoli 

Critical plane defined in C-S criterion is quite different from aforementioned multi-axial criterions. Main 

steps of critical plane determination for Carpinteri-Spagnoli criterion (Carpinteri, Spagnoli, & Vantadori, 

2011) is quoted here: 

(1) Determine averaged maximum principal stress direction. 

(2) Critical plane orientation is related to direction calculated in (1).  

Critical plane determination in Carpinteri-Spagnoli method is based on fracture mechanism mentioned 

in chapter 2.2. C-S criteria (Carpinteri & Spagnoli, 2001)modified Gough criterion as follows: 

 
𝐶𝑎,𝑒𝑞 = √𝐶𝑎

2 + 𝑘2𝑁𝑎,𝑒𝑞
2  (2.66) 

Where 𝑁𝑎,𝑒𝑞 stands for equivalent normal stress amplitude on critical plane. 𝑁𝑎,𝑒𝑞 is defined using 

Goodman mean stress correction criterion to take mean normal stress effect into account.  

 
𝑁𝑎,𝑒𝑞 = 𝑁𝑎 + 𝜎𝑎𝑓 (

𝑁𝑚
𝜎𝑢
) (2.67) 

Where 𝑁𝑎 stands for normal stress amplitude. 𝑁𝑚 stands for mean normal stress. 𝜎𝑢 stands for material 

ultimate tensile strength. 

Coefficient 𝑘 is defined as follows: 

 𝑘 =
𝜏𝑎𝑓

𝜎𝑎𝑓
 (2.68) 

Fracture plane orientation determination procedure is introduced below. Maximum principal stress 

instantaneous direction 1 can be defined through ϕ, 𝜃 and 𝜓 with respected to fixed XYZ coordinate 

system (Fig.2.17). Specific procedure to obtain averaged 𝜙,̂ 𝜃, �̂� is described in (Carpinteria, Machab, 

Brighentia, & Spagnoli, 1999). 

 

Figure. 2.17. Instantaneous principal stress directions (Carpinteri, Ronchei, Spagnoli, & Vantadori, 2014) 

Carpinteria et al. (Carpinteria, Machab, Brighentia, & Spagnoli, 1999) proposes the following weighted 

equation to calculate averaged 𝜙,̂ 𝜃, �̂�: 
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�̂� =

1

𝑊
∫ 𝜙(𝑡)𝑊(𝑡)𝑑𝑡  
𝑇

0

𝜃 =
1

𝑊
∫ 𝜃(𝑡)𝑊(𝑡)𝑑𝑡    �̂� =

1

𝑊
∫ 𝜓(𝑡)𝑊(𝑡)𝑑𝑡   
𝑇

0

𝑇

0

 

𝑊 = ∫ 𝑊(𝑡)𝑑𝑡
𝑇

0

 

(2.69) 

Where T is loading cycle period. Weight function 𝑊(𝑡) is originally defined as: 

 

W(t) = {

0                               𝑖𝑓 𝜎1(𝑡) ≥ 𝑐𝜎𝑎𝑓

(
𝜎1(𝑡)

𝑐𝜎𝑎𝑓
)

𝑚

𝜎          𝑖𝑓 𝜎1(𝑡) ≥ 𝑐𝜎𝑎𝑓
        0 < 𝑐 ≤ 1 (2.70) 

Where 𝜎1 is the maximum principal stress. 

In order to simplify the lengthy procedure for getting averaged Euler angles 𝜙,̂ 𝜃 and �̂�, Carpinteri et al. 

(Carpinteri, Spagnoli, & Vantadori, 2011) use instantaneous direction of maximum 𝜎1 axes as average 

weighted direction. Simplified averaged weighted equation is defined as follows: 

 
W(t) = 𝐻  [𝜎1(𝑡) − 𝜎1,𝑚𝑎𝑥] 

𝐻[𝑥] = 1 𝑓𝑜𝑟 𝑥 ≥ 0

𝐻[𝑥] = 0 𝑓𝑜𝑟 𝑥 < 0
 (2.71) 

Where 𝜎1,𝑚𝑎𝑥 is maximum value of maximum principal stress 𝜎1.  

Although simplified weighted equation is relative easy to apply compared to original weighted equation, 

simplified weighted equation cannot take into material property into account, which is the 

disadvantage.  

The algorithm to calculate stress amplitude  C𝑎 on the critical plane using prismatic hull method for 

Carpinteri-Spagnoli multi-axial fatigue criterion is listed below (Mamiya, Castro, Algarte, & Araújo, 

2011): 

(1). Calculate the stress history {𝝈(𝑡), 𝑡 = 1: 𝑇} on the critical plane: 

(2). Set C𝑎=0; 

(3). For θ = 0: Δθ:
𝜋

2
 

       (3.1). Calculate the stress history in a θ-oriented basis (C𝑢(𝜃), C𝑣(𝜃)) 

 
(
C𝑢(𝑡, 𝜃)

C𝑣(𝑡, 𝜃)
) = [

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] (
C𝑢(𝑡)

C𝑣(𝑡)
) (2.72) 

       (3.2). Calculate half-lengths of θ-oriented prismatic hull sides  C𝑢,𝑎(𝜃) and C𝑢,𝑎(𝜃)  

 
C𝑢,𝑎(𝜃) =

1

2
[ max
0≤𝑡<𝑇

𝐶𝑢(𝑡, 𝜃) − min
0≤𝑡<𝑇

𝐶𝑢(𝑡, 𝜃)] (2.73) 

 
C𝑣,𝑎(𝜃) =

1

2
[ max
0≤𝑡<𝑇

𝐶𝑣(𝑡, 𝜃) − min
0≤𝑡<𝑇

𝐶𝑣(𝑡, 𝜃)] (2.74) 
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        (3.3). Calculate half diagonal length of θ-oriented prismatic hull: 

 
C𝑎(𝜃) = √C𝑢,𝑎(𝜃)

2 + C𝑣,𝑎(𝜃)
2 (2.75) 

         (3.4). If C𝑎(𝜃) > C𝑎, set C𝑎 = C𝑎(𝜃); 

End. 

3. Proposed PDMR based method 
The proposed PDMR is defined in 3D 𝑁 − 𝐶𝑢 − 𝐶𝑣 space. In order to compare with modified C-S 

criterion, same Goodman mean normal stress correction is used. Proposed method will also apply 

Smith-Watson-Topper mean normal stress correction method to access mean normal stress correction 

effect. Equivalent shear stress amplitude is expressed as follows: 

 
𝐶𝑎,𝑒𝑞 = √𝐶𝑢𝑎

2 +𝐶𝑣𝑎
2 + 𝑘2𝑁𝑎,𝑒𝑞

2  (3.1) 

 
𝑁𝑎,𝑒𝑞 = 𝑁𝑎 + 𝜎𝑎𝑓 (

𝑁𝑚
𝜎𝑢
) (3.2) 

Coefficient k in the equation (3.1) is calculated from the equation below: 

 k =
𝜏𝑎𝑓

𝜎𝑎𝑓
 (3.3) 

The proposed method define critical plane relative to fracture plane the same as Carpinteri-Spagnoli 

method. Two fracture plane orientation determination methods based on observation of plotted 

equivalent stress amplitude on each plane calculated by PDMR in 3D 𝑁 − 𝐶𝑢 − 𝐶𝑣 space.  

First proposed method define the material plane where maximum equivalent stress amplitude acts as 

fracture plane using following equation: 

 
𝐶𝑎,𝑒𝑞 = √𝐶𝑢𝑎

2 +𝐶𝑣𝑎
2 +𝑁𝑎,𝑒𝑞

2  (3.4) 

 
𝑁𝑎,𝑒𝑞 = 𝑁𝑎 + 𝜎𝑎𝑓 (

𝑁𝑚
𝜎𝑢
) (3.5) 

Both the proposed first fracture plane orientation determination method and modified average 

maximum principal stress direction method (Carpinteri, Spagnoli, & Vantadori, 2011) define fracture 

plane without material property taken into account, which is the drawback compared to the following 

proposed second method. 

The second proposed method can be described as a max-min optimization procedure using the equation 

(3.1). 

a) At every φ angle, search ϑ∗ to get the maximum equivalent stress amplitude defined by PDMR 

method. 
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b) At the determined ϑ∗ angle, search φ∗ in the interval φ ∈ [0, π] to get the minimum equivalent 

stress amplitude. The angle between longitudinal axis and normal vector to fracture plane is 

defined as |φ∗ −
𝜋

2
|. 

In order to evaluate the coefficient k effect, the third proposed method defined the coefficient as 

constant √3 and same searching procedure as the second method.  

4. Validation 

4.1 Fracture plane orientation 
The experimental synchronous loading data (APPENDIX A) collected by Carpinteri et al. in (Carpinteri A. , 

Brighenti, Macha, & Spagnoli, 1999) is examined in this chapter to validate the feasibility of the two 

proposed fracture plane orientation determination methods. The fracture plane orientation calculated 

by the two proposed methods and modified average maximum principal stress direction method are 

provided in APPENDIX A. 

 

Figure 4.1. angle η to define fracture plane orientation 

For uniaxial torsion, uniaxial tension and combined non-proportional torsion-tension loading (APPENDIX 

A), loading histories, stress paths on the fracture plane in the 3D coordinate and equivalent shear stress 

amplitudes on each material plane are shown below for the purpose of illustration: 

 

Figure 4.2. Loading histories for tests 1, 9 and 11 
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Figure 4.3. Stress paths on the fracture plane based on proposed first method for tests 1, 9 and 11 

 

Figure 4.4. Equivalent shear stress amplitudes on each material plane based on proposed first method 

for tests 1, 9 and 11 

The same tests are calculated by applying second proposed methods, stress paths on the fracture plane 

in the 3D coordinate and equivalent shear stress amplitudes on each material plane are shown below for 

the purpose of comparison. 

   

Figure 4.5. Stress paths on the fracture plane based on proposed second method for tests 1, 9 and 11 
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Figure 4.6. Equivalent shear stress amplitudes on each material plane based on proposed second 

method for tests 1, 9 and 11 

 

Fracture plane orientation results from the experiment (Carpinteri A. , Brighenti, Macha, & Spagnoli, 

1999) and (Carpinteri & Spagnoli, 2001) and estimation by applying CS and proposed methods are 

shown in Figure 4.7 for the purpose of comparison. 

 

Fig.4.7. Fracture plane orientation result from the experiment and the estimation by applying CS 

average maximum principal stress method and two proposed methods 

As can be seen from Figure 4.7, all the methods can give almost the same predations as the 

experimental results for test 1-10&25-28&31-35&41&45 which correspond to proportional loading and 

test 29&30 which correspond to180 degree out-of-phase loading for hard steel, carbon steel, mild steel 
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and cast iron. The C-S fracture plane orientation determination method gives very bad estimation for 

large out-of-phase loading, such as tests19-24 which correspond to 90 degree out-of-phase loading, 

while the proposed methods can give satisfy estimation, especially the proposed 3 method. The fracture 

plane orientation estimated by proposed 2 and 3 are almost the same except test 48 corresponding to 

cast iron under 90 out-of-phase loading condition. Overall, the results given by proposed 3 agrees very 

well with experimental results.  

4.2 Results of PDMR based method 
Experimental data corresponding to fatigue limit conditions is examined in this chapter to validate the 

proposed method. Experimental data ( APPENDIX B and C) examined here are collected by Carpinteri et 

al. (Carpinteri, Ronchei, Spagnoli, & Vantadori, 2014) from published literature about bars and tubes 

under various loading types. 

Fatigue properties of the experiment components is provided in APPENDIX B. Multi-axial stress states 

corresponding to fatigue limit are provided in APPENDIX C (where 𝜆𝑥𝑦 = 𝜔𝑥𝑦/𝜔𝑥 or 𝜆𝑦 = 𝜔𝑦/𝜔𝑥). 

Critical plane orientation defined by angle γ between normal vector w to critical plane and specimen’s 

longitudinal axis X is also provided in the APPENDIX C. 

 
 

Fig.4.8. angle γ used to define the critical plane (Carpinteri, Ronchei, Spagnoli, & Vantadori, 2014) 
  

The effective stress range defined by the path-dependent maximum range method is composed of real 

path and virtual path. The virtual path is the imaginary stress path and not composed of stress path on 

critical plane. In order to access virtual path effect in the multi-axial fatigue strength estimation, the 

modified PDMR with only the real stress path is proposed to compare with the original PDMR method.   

58 tests (APPENDIX C) can be divided into two groups. The first group (tests 1-50), loading histories are 

synchonous and stress paths on the critical plane in 3D 𝑁 − 𝐶𝑢 − 𝐶𝑣 space is either line or ellipse, there 

are no vritual path accoridting to the PDMR method, so the proposed real path PDMR method will get 

exactly the same result as the original PDMR method.  The second group (tests 51-58), the stress 

loadings are asynchonous, there are virtual paths on the critical plane in 3D 𝑁 − 𝐶𝑢 − 𝐶𝑣 space and the 

two PDMR methods are expected to give different results.   

4.2.1 PDMR real path based method 
Load histories, stress path in the 3D 𝑁 − 𝐶𝑢 − 𝐶𝑣 space and the equivalent shear stress amplitudes on 

each material plane of some synchronous loading tests are shown in figure below for the purpose of 

illustration. 
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Fig.4.9 Load histories for synchronous data (tests 1, 13 and 31) 

 

 

Figure 4.10. Stress paths on the critical plane (tests 1, 13 and 31) 

 
Figure 4.11. Equivalent shear stress amplitudes on each plane (tests 1, 13 and 31) 

Load histories, stress path in 3D 𝑁 − 𝐶𝑢 − 𝐶𝑣 space and the equivalent shear stress amplitudes on each 

plane of some asynchronous loading tests are shown in figure below for the purpose of illustration. 
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Fig.4.12. Load histories for asynchronous data (tests 51, 55 and 58) 

 

Figure 4.13. Stress paths on the critical plane (tests 51, 55 and 58)   

 

Figure 4.14. Equivalent shear stress amplitudes on each plane (tests 51, 55 and 58) 

4.2.2 PDMR based method 
Load histories, stress path in the 3D 𝑁 − 𝐶𝑢 − 𝐶𝑣 space and the equivalent shear stress amplitudes on 

each plane of same asynchronous loading tests used in 4.3.1 are shown in figure below for the purpose 

of illustration. 
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Figure 4.15. Stress paths on the critical plane (tests 51, 55 and 58)   

 

Figure 4.16. Equivalent shear stress amplitudes on each plane (tests 51, 55 and 58) 

Error index is introduced to evaluate fatigue strength estimation: 

 
𝐼% =

𝐶𝑎,𝑒𝑞 − 𝜏𝑎𝑓

𝜏𝑎𝑓
100% (4.1) 

Where 𝐶𝑎,𝑒𝑞 is equivalent shear stress amplitude. 𝜏𝑎𝑓 stands for fully reversed shear stress fatigue limit. 

Positive values of I indicates multiaxial criteria conservatively estimates fatigue strength compared to 

experimental results. The values of error index for each test calculated by applying modified Carpinteri-

Spagnoli criteria using PH method and proposed two PDMR methods is plotted in figure 4.17.  As can be 

seen from the Figure 4.17, the C-S method tends to give non-conservative results except the extremely 

hard (𝜏𝑎𝑓/𝜎𝑎𝑓 ≥ 0.9)material (tests 7-9 and 25-28) which have no obvious non-proportional loading 

effect (Wei & Dong, 2010). The proposed PDMR based critical plane method also give conservative 

estimation for the extremely hard material. It makes sense since the PDMR method is originally 

proposed for ductile material which has obvious non-proportional loading effect (Wei & Dong, 2010). It 

is expected that the proposed PDMR method will overestimate the fatigue strength for the cast 

materials. Although the proposed fracture plane orientation determination method and the critical 

plane correlation equation considering the material property, the proposed method cannot fully reflect 

the non-proportional insensitivity effect for cast material. 

For tests 1-10 which correspond to proportional loading without mean stress, all the methods get 

approximately the same results. For tests 38-50 which correspond to large out-of-phase loading, 
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because the proposed PDMR based methods tends to estimate larger critical plane angle  𝛾 (APPDENDIX 

D) with respected to the modified C-S method, the proposed PDMR based methods produce less non-

conservative results and improve the estimation with respect to modified Carpinteri-Spagnoli methods.  

 

Fig.4.17. Error index values computed via modified C-S and two proposed PMDR methods 

In order to access the material property effect for the proposed PDMR based methods, 58 tests are 

divided into mild steel (𝜏𝑎𝑓/𝜎𝑎𝑓 ≤ 0.6), hard steel (0.6 < 𝜏𝑎𝑓/𝜎𝑎𝑓 < 0.9) and extremely hard 

steel(𝜏𝑎𝑓/𝜎𝑎𝑓 ≥ 0.9). Error index calculated by real path PDMR based method for different material 

property are provided in Figure below. Error index in the range of ±10% accounts for 65%, 80% and 60% 

for mild steel, hard steel and extremely steel respectively.  

 

Fig.4.18. Error index for different material property 
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In order to compare with other critical plane methods, two parameters are introduced. 

Mean value of the error index 𝜇𝐼% is expressed in (4.2) 

 
𝜇𝐼% =

1

𝑛
∑𝐼%𝑖

𝑛

𝑖=1

 (4.2) 

The sample standard deviation of the error index s𝐼% is expressed in (4.3) 

 

s𝐼% = √
1

𝑛 − 1
∑(𝐼%𝑖 − 𝜇𝐼%)

𝑛

𝑖=1

 (4.3) 

Error index calculated by various critical plane methods is shown in figure 4.22. The proposed PDMR 

based method with SWT mean normal stress correction is also calculated to assess mean stress 

modification effect. 

 

 

Fig.4.19. Error index calculated by various critical plane methods 

As can be seen from the figure above, proposed PDMR based methods give good estimation results 

compared to another methods introduced in 2.5.  

4.3 Stress cycle from industry 
A variable amplitude stress cycle from industry (Bruun, 2013) will be assessed according to 

aforementioned critical plane methods. The experiment component is assumed to be Stahl ausser 

diesen and material parameter is given at APPENDIX B. There are 142 steps in one cycle. The stress cycly 

is normalize by the maximum stress 𝜎𝑥. 
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Fig.4.20. Stress history 

 

Table 4.1 normalize equivalent stress amplitude calculated by various method. 

Value Findley McDiarmid Matake Dang Van Papadopoulos PDMR real PMDR  

𝛾 23 44 44 44 89 43 49 

Equivalent 
amplitude 

0.55 0.55 0.55 0.60 0.53 0.59 0.59 

 

 

Fig.4.21. Stress path and equivalent stress amplitude on each plane 
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4.4 Fatigue life prediction 
Fatigue life will also be predicted by the proposed method based on nominal stress. All the experimental 

results collected by (SUSMEL & TOVO, 2004)are circular tube-to-plate welded joints under tension, 

torsion, proportional or non-proportional combined tension and torsion loading.  

 

 

Fig.4.22.Joint Geometry 

The parameter normal stress fatigue limit 𝜎𝑎𝑓 , shear stress fatigue limit 𝜏𝑎𝑓 , reverse slope value of 

normal stress S-N curve m and reverse slope value of shear stress S-N curve 𝑚∗calculated by (SUSMEL & 

TOVO, 2004) is provided in Appendix E. The loading paths is provided in figure 4.23. 

 

 

                            A                                 B                                      C                                       D 

 

 

                             E                                    F                                      G                                       H                
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                                                I                                      J                                         K 

Figure 4.23: Loading paths 

Basquin equation is used to relate the fatigue life 𝑁𝑓  under stress amplitude 𝜎𝑎 and reference fatigue 

life 𝑁𝑎𝑓 under fully reversed normal stress 𝜎𝑎𝑓.   

 
𝜎𝑎 = 𝜎𝑎𝑓(

𝑁𝑎𝑓

𝑁𝑓
)
1
𝑚 (4.4) 

The same relationship can be applied to shear stress. 

 
𝜏𝑎 = 𝜏𝑎𝑓(

𝑁𝑎𝑓

𝑁𝑓
)
1
𝑚∗ (4.5) 

Substitute the equation (4.4) and (4.5) to (3.1) and (3.2) to get the following equation.  

 

√(𝑁𝑎 + 𝜎𝑎𝑓(
𝑁𝑎𝑓

𝑁𝑓
)
1
𝑚 (

𝑁𝑚
𝜎𝑢
))

2

+ (
𝜎𝑎𝑓

𝜏𝑎𝑓
)

2

(
𝑁𝑎𝑓

𝑁𝑓
)

2
𝑚

(
𝑁𝑓

𝑁𝑎𝑓
)

2
𝑚∗

𝐶𝑎
2 = 𝜎𝑎𝑓 (

𝑁𝑎𝑓

𝑁𝑓
)

1
𝑚

 (4.6) 

𝑁𝑓  is calculated  by means of iteration. 

Also the following equation with constant k is used to evaluate the coefficient effect. 

 

√(𝑁𝑎 + 𝜎𝑎𝑓 (
𝑁𝑚
𝜎𝑢
))

2

+ (
𝜎𝑎𝑓

𝜏𝑎𝑓
)

2

𝐶𝑎
2 = 𝜎𝑎𝑓 (

𝑁𝑎𝑓

𝑁𝑓
)

1
𝑚

 (4.7) 

 

The experimental fatigue life and predicted fatigue life by the equation (4.5) and (4.6) are showed in 

figure below. 
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a)                                                                                                        b) 

Fig.4. 24 Experimental cycles to failure and predicted cycles to failure with a) iteration method and b) 

constant coefficient method 

 

  

Fig.4. 25 Experimental cycles to failure and predicted cycles to failure for all data with a) iteration 

method and b) constant coefficient method 

As can be seen from the figure above, satisfied estimation can be made by proportional data. But for 

non-proportional loading, the proposed method tends to give non-conservative estimation.   

Error index is introduced to evaluate the fatigue life estimation. 
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𝐼(%) =

{
 
 

 
 
𝑁𝑒𝑥𝑝 −𝑁𝑐𝑎𝑙

𝑁𝑒𝑥𝑝
100 𝑓𝑜𝑟 𝑁𝑐𝑎𝑙 ≤ 𝑁𝑒𝑥𝑝

𝑁𝑒𝑥𝑝 −𝑁𝑐𝑎𝑙
𝑁𝑐𝑎𝑙

 100 𝑓𝑜𝑟 𝑁𝑐𝑎𝑙 > 𝑁𝑒𝑥𝑝

 (4.7) 

 

 

 

Fig.4. 26 Experimental cycles to failure and predicted cycles to failure with a) iteration method and b) 

constant coefficient method 

As can be seen from the Figure above, both methods tends to give non-conservative estimation for the 

data examined.  

5. Conclusion 
In this thesis, fracture plane orientation determination method is proposed. The method is easy to apply 

and can give satisfied estimation of the fracture orientation for 48 experimental data examined related 

to hard steel, mild steal and cast iron.  

58 experiment data related to fatigue limit loading condition is analyzed for smooth specimens 

subjected to proportional or non-proportional loading with different mean stress values and various 

stress ratios by various critical plane method. The proposed PDMR based critical plane methods show a 

good estimation capacity as compared to other critical plane methods from literature. 

Fatigue life of 123 experimental data about circular tube-to-plate welded joints under tension, torsion, 

proportional or non-proportional combined tension and torsion loading analyzed by the proposed 

method based on nominal stresses. The proposed method shows a satisfied estimation capacity. But the 

estimation for non-proportional loading tends to be non-conservative. 
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Material No α 
(°) 

β 
(°) 

𝜎𝑥,𝑎 

(𝑀𝑃𝑎) 

𝜎𝑥,𝑚 

(𝑀𝑃𝑎) 

𝜎𝑦,𝑎 

(𝑀𝑃𝑎) 

𝜎𝑦,𝑚 

(𝑀𝑃𝑎) 

τ𝑥𝑦,𝑎 

(𝑀𝑃𝑎) 

𝜏𝑥𝑦,𝑚 

(𝑀𝑃𝑎) 

η𝑒𝑥𝑝 

(°) 

CS  
(°) 

Proposed 1 
 (°) 

Proposed 2 
(°) 

Proposed 3 
(°) 

Hard 
steel 

1 0 0 0.0 0.0 0.0 0.0 225.63 0.0 45 45 45 45 45 

2 0 0 0.0 0.0 0.0 0.0 201.11 0.0 45 45 45 45 45 

3 0 0 162.85 0.0 0.0 0.0 195.69 0.0 35 34 34 34 34 

4 0 0 141.85 0.0 0.0 0.0 171.28 0.0 34 34 34 34 34 

5 0 0 274.68 0.0 0.0 0.0 137.34 0.0 23 23 23 22 22 

6 0 0 255.06 0.0 0.0 0.0 127.53 0.0 22 23 23 22 22 

7 0 0 344.33 0.0 0.0 0.0 71.32 0.0 12 12 11 11 11 

8 0 0 308.03 0.0 0.0 0.0 63.86 0.0 12 12 11 11 11 

9 0 0 353.16 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 

10 0 0 323.73 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 

11 0 30 152.35 0.0 0.0 0.0 183.94 0.0 23 34 30 33 33 

12 0 30 141.95 0.0 0.0 0.0 171.18 0.0 32 34 30 33 33 

13 0 30 264.87 0.0 0.0 0.0 132.44 0.0 16 22 20 21 21 

14 0 30 255.06 0.0 0.0 0.0 127.53 0.0 16 22 19 21 21 

15 0 60 157.65 0.0 0.0 0.0 190.31 0.0 23 41 18 34 34 

16 0 60 147.15 0.0 0.0 0.0 177.56 0.0 22 39 18 34 34 

17 0 60 264.87 0.0 0.0 0.0 132.44 0.0 8 18 11 17 17 

18 0 60 255.06 0.0 0.0 0.0 127.53 0.0 8 18 11 17 17 

19 0 90 162.85 0.0 0.0 0.0 196.69 0.0 25 62 0 37 38 

20 0 90 152.45 0.0 0.0 0.0 184.23 0.0 29 62 0 37 38 

21 0 90 294.30 0.0 0.0 0.0 147.15 0.0 0 88 0 0 0 

22 0 90 264.87 0.0 0.0 0.0 132.44 0.0 0 88 0 0 0 

23 0 90 344.33 0.0 0.0 0.0 71.32 0.0 0 87 0 0 0 

24 0 90 308.03 0.0 0.0 0.0 63.86 0.0 0 87 0 0 0 

Carbon 
steel 

25 0 0 227.6 0.0 2.0 0.0 0.0 0.0 0 0 0 0 0 

26 0 0 233.5 52.0 191.3 41.2 0.0 0.0 0 0 0 0 0 
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27 0 0 171.7 -24.5 228.6 -11.8 0.0 0.0 90 90 90 90 90 

28 0 0 121.6 11.8 156.0 -7.8 0.0 0.0 90 90 90 90 90 

29 180 0 6.9 0.0 224.6 -2.9 0.0 0.0 90 90 90 90 90 

30 180 0 155.0 79.0 118.7 0.0 0.0 0.0 0 0 0 0 0 

Mild 
steel 

31 0 0 245.3 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 

32 0 0 235.6 0.0 0.0 0.0 48.9 0.0 12 12 11 11 11 

33 0 0 187.3 0.0 0.0 0.0 93.6 0.0 22 23 23 22 22 

34 0 0 101.3 0.0 0.0 0.0 122.3 0.0 30 34 34 34 34 

35 0 0 0.0 0.0 0.0 0.0 142.3 0.0 45 45 45 45 45 

36 0 60 194.2 0.0 0.0 0.0 97.1 0.0 12 18 11 17 18 

37 0 60 108.9 0.0 0.0 0.0 131.5 0.0 8 35 18 34 34 

38 0 90 235.6 0.0 0.0 0.0 48.9 0.0 0 0 0 0 0 

39 0 90 208.1 0.0 0.0 0.0 104.1 0.0 8 8 0 0 0 

40 0 90 112.6 0.0 0.0 0.0 136.0 0.0 39 39 0 38 38 

Cast iron 41 0 0 93.2 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 

42 0 0 95.2 0.0 0.0 0.0 19.7 0.0 12 12 11 11 11 

43 0 0 83.4 0.0 0.0 0.0 41.6 0.0 25 23 22 22 22 

44 0 0 56.3 0.0 0.0 0.0 68.0 0.0 34 34 34 34 34 

45 0 0 0.0 0.0 0.0 0.0 94.2 0.0 49 45 45 45 45 

46 0 90 104.2 0.0 0.0 0.0 21.6 0.0 0 0 0 0 0 

47 0 90 97.1 0.0 0.0 0.0 48.6 0.0 0 8 0 0 0 

48 0 90 71.3 0.0 0.0 0.0 86.1 0.0 37 39 0 0 38 
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Authors Material 𝜎𝑢 𝑓𝑦⁄  

(MPa) 

𝜎𝑎𝑓 

(MPa) 

𝜏𝑎𝑓 

(MPa) 

𝜏𝑎𝑓

𝜎𝑎𝑓
 

Nishihara et al. Hard steel 681 313.9 196.2 0.63 

Mild steel 374 235.4 137.3 0.58 

Cast steel 181 96.1 91.2 0.95 

Froustey et al. 30NCD16 1880 660 410.0 0.62 

Bhongb hibhat St35 340 230.0 130 0.57 

42CrMo4V 1003 485.0 315 0.65 

Zenner et al. 25CrMo4 780 361.0 228.0 0.63 

Troost et al. 25CrMo4 660 340 228.0 0.67 

Heidenreich et al. 34Cr4 550 343 204 0.59 

Kaniut 25CrMo4 780 361 228 0.67 

McDiarmid En24T 850 405 270 0.67 

- Stahl ausser diesen 1000 450 259.7 0.58 
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Material No Path 
type 

α(°) β(°) 𝜆𝑥𝑦, 𝜆𝑦(-) 𝜎𝑥,𝑎(𝑀𝑃𝑎) 𝜎𝑥,𝑚(𝑀𝑃𝑎) 𝜎𝑦,𝑎(𝑀𝑃𝑎) 𝜎𝑦,𝑚(𝑀𝑃𝑎) τ𝑥𝑦,𝑎(𝑀𝑃𝑎) 𝜏𝑥𝑦,𝑚(𝑀𝑃𝑎) γ(°) 

Hard steel 1 (a.1) 0 0 1 131.8 0.0 0.0 0.0 167.1 0.0 75 

2 0 0 1 245.3 0.0 0.0 0.0 122.7 0.0 64 

3 0 0 1 299.1 0.0 0.0 0.0 62.8 0.0 53 

Mild steel 4 (a.1) 0 0 1 99.9 0.0 0.0 0.0 120.9 0.0 78 

5 0 0 1 180.3 0.0 0.0 0.0 90.2 0.0 67 

6 0 0 1 213.2 0.0 0.0 0.0 44.8 0.0 56 

Cast iron 7 (a.1) 0 0 1 56.3 0.0 0.0 0.0 68.0 0.0 46 

8 0 0 1 83.4 0.0 0.0 0.0 41.6 0.0 29 

9 0 0 1 95.2 0.0 0.0 0.0 19.7 0.0 18 

30NCD16 10 (a.1) 0 0 1 485.0 0.0 0.0 0.0 280.0 0.0 66 

St35 11 (a.2) 0 0 1 160.0 176.0 160.0 176.0 0.0 0.0 61 

42CrMo4V 12 (a.2) 0 0 1 402.0 442.0 201.0 221.0 0.0 0.0 39 

Hard steel 13 (b.1) 0 30 1 140.4 0.0 0.0 0.0 169.9 0.0 75 

14 0 30 1 249.7 0.0 0.0 0.0 124.9 0.0 63 

15 0 60 1 145.7 0.0 0.0 0.0 176.3 0.0 77 

16 0 60 1 252.4 0.0 0.0 0.0 126.2 0.0 59 

17 0 90 1 150.2 0.0 0.0 0.0 181.7 0.0 80 

18 0 90 1 258.0 0.0 0.0 0.0 129.0 0.0 41 

19 0 90 1 304.5 0.0 0.0 0.0 63.9 0.0 41 

Mild steel 20 (b.1) 0 60 1 103.6 0.0 0.0 0.0 125.4 0.0 80 

21 0 60 1 191.4 0.0 0.0 0.0 95.7 0.0 62 

22 0 90 1 108.9 0.0 0.0 0.0 131.8 0.0 84 

23 0 90 1 201.1 0.0 0.0 0.0 100.6 0.0 45 

24 0 90 1 230.2 0.0 0.0 0.0 48.3 0.0 45 

Cast iron 25 (b.1) 0 60 1 67.6 0.0 0.0 0.0 81.6 0.0 42 

26 0 60 1 93.7 0.0 0.0 0.0 46.9 0.0 25 

27 0 90 1 73.2 0.0 0.0 0.0 88.4 0.0 46 

28 0 90 1 101.9 0.0 0.0 0.0 21.1 0.0 7 
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St35 29 (b.1) 90 0 1 140.0 154.0 140.0 154.0 0.0 0.0 46 

30 180 0 1 120.0 132.0 120.0 132.0 0.0 0.0 46 

42CrMo4V 31 (b.1) 90 0 1 402.0 442.0 201.0 221.0 0.0 0.0 39 

30NCD16 32 (b.1) 0 0 1 211.0 300.0 0.0 0.0 365.0 0.0 69 

33 0 0 1 480.0 300.0 0.0 0.0 277.0 0.0 59 

34 0 0 1 590.0 300.0 0.0 0.0 148.0 0.0 51 

35 0 45 1 480.0 300.0 0.0 0.0 277.0 0.0 57 

36 0 45 1 565.0 300.0 0.0 0.0 141.0 0.0 48 

37 0 60 1 470.0 300.0 0.0 0.0 270.0 0.0 54 

38 0 90 1 473.0 300.0 0.0 0.0 273.0 0.0 41 

39 0 90 1 480.0 0.0 0.0 0.0 277.0 0.0 41 

40 0 90 1 540.0 300.0 0.0 0.0 135.0 0.0 41 

25CrMo4 41 (b.2) 0 60 1 155.0 340.0 0.0 170.0 155.0 0.0 44 

42 0 60 1 220.0 340.0 0.0 170.0 110.0 0.0 42 

43 0 90 1 159.0 340.0 0.0 170.0 159.0 0.0 41 

44 0 90 1 233.0 340.0 0.0 170.0 117.0 0.0 41 

25CrMo4 45 (b.2) 0 90 1 208.0 255.0 156.0 210.0 104.0 0.0 39 

46 60 90 1 225.0 255.0 169.0 210.0 113.0 0.0 37 

47 90 45 1 222.0 255.0 167.0 210.0 111.0 0.0 42 

48 90 90 1 205.0 255.0 154.0 210.0 103.0 0.0 37 

49 90 135 1 215.0 255.0 161.0 210.0 108.0 0.0 40 

50 180 90 1 224.0 255.0 168.0 210.0 112.0 0.0 37 

34Cr4 51 (c) 0 0 2 200.0 244.0 200.0 244.0 0.0 0.0 44 

25CrMo4 52 (c) 0 0 1/4 210.0 0.0 0.0 0.0 105.0 0.0 48 

53 0 90 2 220.0 0.0 0.0 0.0 110.0 0.0 60 

54 0 0 2 242.0 0.0 0.0 0.0 121.0 0.0 58 

55 0 0 8 196.0 0.0 0.0 0.0 98.0 0.0 60 

En24T 56 (c) 180 0 3 260.0 0.0 260.0 0.0 0.0 0.0 55 

St35 57 (c) 0 0 2 130.0 143.0 130.0 143.0 0.0 0.0 90 

58 90 0 2 140.0 154.0 140.0 154.0 0.0 0.0 46 
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 𝛾
 

Test 
No. 

Critical plane 
orientation (°) 

Findley McDiarmid Matake Dang Van Papadopoulos Carpinteri
-Spagnoli 

PDMR 
First/Second 

PDMR 
SWT 

𝛾𝑐𝑠 𝛾𝑃𝐷𝑀𝑅  𝛾𝑃𝐷𝑀𝑅_𝑆𝑊𝑇  𝐼𝑃𝐻(%) 𝐼𝑃𝐻(%) 𝐼𝑃𝐻(%) 𝐼𝑃𝐻(%) 𝐼𝑃𝐻(%) 𝐼𝑃𝐻(%) 𝐼𝑃𝐷𝑀𝑅(%) 𝐼𝑃𝐷𝑀𝑅(%) 

1 75 75 75 3.23 -3.60 -0.03 -0.05 -2.21 -4.85 -4.88 -4.88 

2 64 63 63 7.50 -2.60 4.00 4.10 4.82 -0.81 -0.71 -0.71 

3 53 52 52 5.07 -6.34 1.74 1.73 6.00 -1.55 -1.49 -1.49 

4 78 78 78 2.77 2.00 1.36 1.33 -0.88 -2.22 -2.24 -2.24 

5 67 67 67 5.30 4.90 3.78 3.82 4.62 0.78 0.91 0.91 

6 56 56 56 -1.50 -1.55 -2.87 -2.88 1.42 -4.02 -3.93 -3.93 

7 40 41 41 146.36 -11.50 8.48 8.38 6.51 5.46 5.44 5.44 

8 29 29 29 140.10 -23.90 5.56 5.61 6.18 4.08 4.11 4.11 

9 18 18 18 134.90 -30.30 3.48 3.32 6.24 2.50 2.50 2.50 

10 66 66 66 7.87 -3.27 4.57 4.65 4.71 -0.29 -0.17 -0.17 

11 90 46 49 -29.89 -26.67 -30.40 -4.72 -30.90 -15.00 21.33 0.81 

12 39 39 39 -13.20 -26.10 -17.10 23.9 7.10 -1.18 6.22 0.99 

13 75 74 74 5.80 -3.20 0.23 1.10 0.16 -4.40 -4.26 -4.26 

14 63 62 62 8.10 -2.58 5.16 2.80 6.04 -1.86 -1.04 -1.04 

15 76 75 75 9.40 -4.90 -2.60 1.25 3.38 -6.41 -6.46 -6.46 

16 58 58 58 5.10 -6.89 1.73 -2.52 5.62 -8.48 -6.43 -6.43 

17 80 78 78 12.30 3.60 11.70 2.10 6.20 -9.74 -10.72 -10.72 

18 42 41 41 6.10 -60 2.70 -1.40 6.90 -10.00 -2.99 -2.99 

19 41 41 41 4.60 -7.40 1.20 0.40 6.60 -3.36 -0.54 -0.54 

20 80 79 79 4.90 -2.50 -2.90 -0.20 1.90 -5.15 -5.11 -5.11 

21 62 62 62 4.40 4.40 2.90 -0.20 8.60 -4.10 -2.77 -2.77 

22 84 83 83 9.40 10.50 9.20 2.60 6.80 -5.21 -5.43 -5.43 

23 45 45 45 8.30 8.30 6.70 3.70 13.00 -5.06 1.67 1.67 

24 45 45 45 3.50 3.50 2.00 1.50 8.20 -0.59 1.97 1.97 

25 42 31 31 178.70 -3.00 10.90 24.90 27.00 14.13 23.29 23.29 

26 24 19 19 165.80 -18.60 23.30 11.20 17.70 10.53 18.34 18.34 

27 46 7 7 172.10 17.10 68.90 32.90 37.20 7.00 35.73 35.73 
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28 7 7 7 151.30 -27.10 10.40 8.40 12.80 7.81 11.44 11.44 

29 46 44 44 -13.90 -9.30 -13.90 1.50 -16.80 -25.62 29.35 13.90 

30 46 54 44 -6.90 -7.60 -7.70 5.50 -10.20 -36.25 0.60 -7.33 

31 39 39 39 -4.80 -17.50 -7.50 24.10 9.60 -1.18 16.03 14.46 

32 69 77 78 1.90 -4.50 -1.10 7.70 -0.10 -6.14 -4.89 -4.95 

33 57 65 66 6.70 -4.30 3.50 12.40 6.80 3.03 0.30 0.47 

34 51 55 55 0.90 -11.70 -2.00 6.80 4.70 0.82 -2.32 -1.29 

35 57 62 63 4.00 -8.60 2.00 5.80 5.60 -3.32 -4.49 -4.42 

36 48 51 51 -5.60 -18.20 -8.40 -0.70 -0.60 -5.40 -6.60 -5.33 

37 54 60 61 -0.60 -13.90 -3.60 0.40 2.50 -9.44 -10.00 -10.13 

38 42 42 42 -1.50 -14.70 -4.30 -0.28 2.40 -12.18 -4.87 -2.76 

39 42 42 42 -0.10 -13.40 -2.90 -7.80 0.70 -17.57 -10.51 -10.50 

40 42 42 42 -10.40 -22.50 -13.20 -5.20 -5.30 -11.86 -8.56 -6.80 

41 44 59 71 -12.90 -20.90 -14.00 8.90 -5.40 -20.08 -8.61 -17.42 

42 42 48 57 -20.10 -30.00 -22.90 3.20 -8.00 -14.17 -1.27 -13.19 

43 41 41 73 -11.30 -20.10 -12.00 8.30 -3.60 -19.08 -1.66 -24.57 

44 41 41 41 -16.20 -26.70 -19.30 6.80 -4.00 -10.79 4.14 -0.67 

45 38 70 80 -18.70 -33.20 -23.60 19.00 3.70 -15.35 -3.39 -12.12 

46 37 87 83 -1.50 -19.00 -7.40 29.50 17.50 -8.95 -1.30 -9.58 

47 43 68 65 2.20 -16.00 -4.00 27.20 18.10 -0.91 22.36 14.81 

48 37 46 81 -3.30 -20.40 -9.00 21.80 11.80 -15.47 20.76 -20.72 

49 40 54 58 -1.00 -13.60 -2.80 30.30 14.10 -13.71 2.12 -13.07 

50 37 37 41 5.30 -5.30 3.20 24.90 12.30 -9.57 23.6 13.06 

51 44 73/47 47 2.90 2.20 2.60 25.20 6.80 -27.26 1.04/71.24 -17.73 

52 59 38/37 37 -3.50 -13.50 -6.50 -10.20 -6.70 -26.20 -31.35/-12.00 -12.00 

53 18 38/37 37 47.30 52.40 46.00 43.20 50.50 -30.00 -24.36/-23.06 -23.06 

54 18 38/37 37 62.00 67.50 60.50 57.50 65.50 -0.40 7.40/21.40 21.40 

55 60 37/37 37 45.60 50.20 44.20 41.30 47.90 -30.01 -31.43/10.20 10.20 

56 38 82/37 53 8.00 -11.00 2.20 9.00 9.70 -38.40 -35.24/-6.02 -6.02 

57 46 66/66 66 -0.50 4.80 -0.60 13.80 -3.20 -30.93 -2.61/20.72 -16.32 

58 46 90/84 84 -4.80 0.00 -5.00 13.60 -8.20 -25.62 6.15/11.00 -30.76 
average - - - 27.1 14.2 10.4 10.9 10.6 10.6 8.9/9.6 8.7 
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Reference Material 𝜎𝑢 
(MPa) 

𝜎𝑎𝑓 

(MPa) 

m τ𝑎𝑓 

(MPa) 

𝑚∗ 𝜏𝑎𝑓 𝜎𝑎𝑓⁄  

Yung et al. A519 700 65.3 5.4 47.0 3.7 0.72 

Siljander et al. A519 700 89.2 3.8 74.8 5.5 0.84 

Amstutz et al. StE 460 670 84.2 5.4 75.5 6.2 0.90 

Sonsino et al. StE 460 670 109.4 4.4 88.2 4.8 0.81 
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Referenc
e 

No Path 
type 

β(°) 𝜎𝑥,𝑎 
(𝑀𝑃𝑎) 

𝜎𝑥,𝑚 
(𝑀𝑃𝑎) 

τ𝑥𝑦,𝑎 

(𝑀𝑃𝑎) 

𝜏𝑥𝑦,𝑚 

(𝑀𝑃𝑎) 

 𝑁𝑒𝑥𝑝 

(cycles) 

𝑁𝑐𝑎𝑙 
(cycles) 

𝑁𝑐𝑎𝑙2 
(cycles) 

Yung et 
al. 

1 A 0 115.0 0.0 0.0 0.0 76,660 198,320 35,000 

2 0 109.0 0.0 0.0 0.0 198,000 253,340 178,190 

3 0 100.5 0.0 0.0 0.0 145,690 366,570 273,190 

4 0 86.5 0.0 0.0 0.0 560,850 721,920 601,670 

5 0 79.5 0.0 0.0 0.0 624,330 1,054,000 938,100 

6 C 0 0.0 0.0 70 0.0 466,860 517,710 312,590 

7 0 0.0 0.0 60 0.0 827,560 935,700 703,590 

8 E 0 115 0.0 39.5 0.0 27,100 119,030 69,684 

9 0 109 0.0 62.5 0.0 47,090 79,147 39,573 

10 0 109 0.0 41.5 0.0 78,620 138,070 81,602 

11 0 86.5 0.0 50.0 0.0 93,690 218,510 132,060 

12 0 79.5 0.0 46.0 0.0 220,030 314,550 205,390 

13 0 65.0 0.0 37.5 0.0 788,370 745,450 592,280 

Siljander 
et al. 

14 A 0 220.0 0.0 0.0 0.0 76,800 57,676 72,241 

15 0 158.5 0.0 0.0 0.0 276,400 224,590 254,950 

16 0 140.0 0.0 0.0 0.0 395,900 374,090 410,930 

17 0 110.0 0.0 0.0 0.0 729,900 1,002,000 1,038,900 

18 B 0 222.0 222.0 0.0 0.0 55,700 17,834 48,745 

19 0 140.0 140.0 0.0 0.0 270,390 183,750 277,270 

20 0 103.85 103.85 0.0 0.0 1,036,000 754,510 874,660 

21 0 110 110 0.0 0.0 1,300,140 578,160 701,030 

22 C 0 0.0 0.0 110.0 0.0 132,000 530,680 657,140 

23 0 0.0 0.0 85.0 0.0 1,605,000 1,732,800 1,771,400 

24 0 0.0 0.0 70.0 0.0 3,303,000 4,168,500 3,738,000 

25 0 0.0 0.0 70.0 0.0 1,989,000 4,168,500 3,738,000 

26 D 0 0.0 0.0 110.0 110.0 374,000 353,730 513,940 

27 0 0.0 0.0 85.0 85.0 919,600 1,261,900 1,385,400 

28 F 0 130.15 130.15 54.45 54.45 260,200 125,690 208,730 

29 0 130.15 130.15 54.45 54.45 274,700 125,690 208,730 
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30 0 108.05 108.05 14.7 14.7 577,000 575,120 698,550 

31 0 108.05 108.05 14.7 14.7 748,600 575,120 698,550 

32 0 68.0 68.0 68.0 68.0 852,900 1,083,900 1,282,400 

33 0 87.0 87.0 36.3 36.3 1,196,100 865,440 985,780 

34 0 87.0 87.0 36.3 36.3 1,201,400 865,440 985,780 

35 0 87.0 87.0 36.3 36.3 1,699,800 865,440 985,780 

36 G 0 170.0 0.0 85.0 85.0 981,200 1,073,300 1,236,000 

37 J - 87.0 87.0 36.3 36.3 111,500 630,680 488,330 

38 - 87.0 87.0 36.3 36.3 142,600 630,680 488,330 

39 - 87.0 87.0 36.3 36.3 167,900 630,680 488,330 

40 - 87.0 87.0 36.3 36.3 206,300 630,680 488,330 

41 K - 87.0 87.0 36.3 36.3 352,500 407,490 556,260 

42 - 87.0 87.0 36.3 36.3 354,200 407,490 556,260 

43 - 87.0 87.0 36.3 36.3 644,500 407,490 556,260 

Amstutz 
et al. 

44 A 0 220.0 0.0 0.0 0.0 43,700 13,434 14,275 

45 0 150.0 0.0 0.0 0.0 129,400 103,590 107,160 

46 0 120.0 0.0 0.0 0.0 548,400 340,060 346,790 

47 0 120.0 0.0 0.0 0.0 865,000 340,060 346,790 

48 0 120.0 0.0 0.0 0.0 1,991,200 340,060 346,790 

49 0 120.0 0.0 0.0 0.0 142,500 340,060 346,790 

50 B 0 310.0 310.0 0.0 0.0 2,230 114 1,307 

51 0 260.0 260.0 0.0 0.0 2,925 531 3,300 

52 0 155.0 155.0 0.0 0.0 8,900 24,531 50,195 

53 0 130.0 130.0 0.0 0.0 63,750 78,457 126,680 

54 0 100.0 100.0 0.0 0.0 141,000 410,610 503,970 

55 0 90.0 90.0 0.0 0.0 2,324,000 781,800 877,470 

56 C 0 0.0 0.0 150.0 0.0 26,650 74,438 84,751 

57 0 0.0 0.0 150.0 0.0 51,520 74,438 84,751 

58 0 0.0 0.0 120.0 0.0 103,500 253,400 274,280 

59 D 0 0.0 0.0 155.0 155.0 36,000 20,603 43,630 

60 0 0.0 0.0 155.0 155.0 18,100 20,603 43,630 

61 0 0.0 0.0 135.0 135.0 43,680 51,399 90,275 

62 0 0.0 0.0 120.0 120.0 157,000 109,850 167,800 
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63 E 0 100.0 0.0 100.0 0.0 72,400 63,350 68,162 

64 0 100.0 0.0 100.0 0.0 97,200 63,350 68,162 

65 0 85.0 0.0 85.0 0.0 253,750 152,000 160,330 

66 F 0 175.0 175.0 175.0 175.0 2,440 260 2,060 

67 0 125.0 125.0 125.0 125.0 15,100 3,698 12,100 

68 0 100.0 100.0 100.0 100.0 29,900 17,846 39,162 

69 0 80.0 80.0 80.0 80.0 49,940 78,354 126,740 

70 0 70.0 70.0 70.0 70.0 65,150 183,630 255,940 

71 0 90.0 90.0 90.0 90.0 183,700 36,241 68,186 

72 H 90 100.0 0.0 100.0 0.0 22,270 257,960 201,150 

73 90 110.0 0.0 110.0 0.0 24,040 15,313 12,180 

74 90 110.0 0.0 110.0 0.0 30,780 15,313 12,180 

75 I 90 155.0 155.0 155.0 155.0 7,470 3,411 10,842 

76 90 130.0 130.0 130.0 130.0 12,130 12,893 27,363 

77 90 105.0 105.0 105.0 105.0 34,160 58,237 84,206 

78 90 95.0 95.0 95.0 95.0 82,680 114,510 142,600 

79 90 82.0 82.0 82.0 82.0 279,030 300,980 309,370 

80 90 60.0 60.0 60.0 60.0 315,540 2,150,400 1,601,400 

81 90 73.0 73.0 73.0 73.0 631,740 633,220 570,450 

Sonsino 
et al. 

82 A 0 285.0 0.0 0.0 0.0 23,600 35,044 38,217 

83 0 280.0 0.0 0.0 0.0 26,850 37,915 41,274 

84 0 290.0 0.0 0.0 0.0 29,460 32,435 35,433 

85 0 280.0 0.0 0.0 0.0 31,870 37,915 41,274 

86 0 220.0 0.0 0.0 0.0 76,790 110,810 117,770 

87 0 190.0 0.0 0.0 0.0 159,200 212,610 222,780 

88 0 160.0 0.0 0.0 0.0 276,080 456,180 470,290 

89 0 185.0 0.0 0.0 0.0 367,200 239,350 250,160 

90 0 140.0 0.0 0.0 0.0 394,750 825,380 840,430 

91 0 150.0 0.0 0.0 0.0 588,800 607,590 622,620 

92 0 110.0 0.0 0.0 0.0 730,230 2,407,100 2,398,100 

93 0 120.0 0.0 0.0 0.0 3,319,300 1,636,100 1,642,800 

94 C 0 0.0 0.0 230.0 0.0 16,400 36,267 45,606 

95 0 0.0 0.0 220.0 0.0 19,855 44,533 55,330 
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96 0 0.0 0.0 217.0 0.0 21,480 47,448 58,734 

97 0 0.0 0.0 180.0 0.0 65,280 112,460 132,400 

98 0 0.0 0.0 110.0 0.0 373,080 1,089,100 1,126,600 

99 0 0.0 0.0 140.0 0.0 469,260 358,450 394,840 

100 0 0.0 0.0 120.0 0.0 826,200 729,420 771,770 

101 0 0.0 0.0 105.0 0.0 821,100 1,349,300 1,379,200 

102 0 0.0 0.0 85.0 0.0 918,700 3,569,000 3,456,400 

103 0 0.0 0.0 104.0 0.0 1,483,600 1,410,100 1,437,800 

104 0 0.0 0.0 90.0 0.0 1,503,800 2,743,500 2,695,900 

105 0 0.0 0.0 105.0 0.0 2,007,250 1,349,300 1,379,200 

106 0 0.0 0.0 80.0 0.0 3,398,530 4,717,100 4,498,900 

107 0 0.0 0.0 80.0 0.0 3,629,400 4,717,100 4,498,900 

108 E 0 172.0 0.0 100.0 0.0 54,600 102,500 111,800 

109 0 172.0 0.0 100.0 0.0 72,260 102,500 111,800 

110 0 165.0 0.0 96.0 0.0 86,400 123,490 133,940 

111 0 160.0 0.0 93.0 0.0 119,960 141,750 153,110 

112 0 123.0 0.0 72.5 0.0 320,780 460,590 480,390 

113 0 123.0 0.0 72.5 0.0 357,130 460,590 480,390 

114 0 125.0 0.0 72.5 0.0 858,360 428,490 447,860 

115 H 90 162.0 0.0 94.0 0.0 24,260 182,210 130,570 

116 90 165.0 0.0 95.7 0.0 25,900 167,810 120,560 

117 90 168.0 0.0 97.4 0.0 29,350 154,770 111,470 

118 90 125.0 0.0 72.5 0.0 51,970 582,870 403,120 

119 90 125.0 0.0 72.5 0.0 79,640 582,870 403,120 

120 90 126.0 0.0 73.1 0.0 99,560 562,420 389,390 

121 90 122.0 0.0 71.0 0.0 346,670 649,920 448,030 

122 90 80.0 0.0 46.4 0.0 728,060 4,302,300 2,806,300 

123 90 80.0 0.0 46.4 0.0 2,267,300 4,302,300 2,806,300 

 

 


