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Abstract

Computational Fluid Dynamics (CFD) based on RANS models remain the standard but suffer from high errors
in complex flows. In particular, turbulent kinetic energy is over-produced in high strain rate regions, such as the
near-wake of wind turbine flows. Data-driven turbulence modelling methods aim to derive novel turbulence models
with lower uncertainties, which generalize well to a certain class of flows. The state-of-the-art constitutes to first
derive model-form corrections of a selected baseline model from high fidelity reference data, followed by regressing the
corrections in terms of RANS-known flow features. For data-driven wind turbine wake modelling, industrial-scale wind
turbines and non-neutral atmospheric boundary layers have yet to be considered. In this thesis, the first steps are
made to address this research gap.

First, Large-Eddy Simulation (LES) data is generated and validated against literature. The considered cases are
under neutral, convective and stable atmospheric conditions. The frozen-RANS methodology, a technique used to
derive turbulence model corrections given the high fidelity data, is then extended to non-neutral conditions. The new
framework now provides corrections to both the Boussinesq eddy viscosity hypothesis for the Reynolds stress and the
gradient-diffusion hypothesis for the turbulent heat flux.

By injecting the obtained corrections into dynamic Reynolds-Averaged Navier-Stokes (RANS) simulations, the
baseline turbulence model deficiencies are corrected. In particular, high rate-of-strain regions now no longer show
an overproduction of mechanical turbulence. Similarly, the lack of buoyant turbulence production in the free-stream
atmosphere under convective conditions is solved. In the stable case, too large values of buoyant destruction in
the free-stream and buoyant production in the wake are adequately corrected for. For the neutral and stable case,
the corrected models produce wake velocity profiles that show excellent agreement with the LES reference data.
Issues in the wall stress solution of the convective LES propagate to issues in the corrected RANS solutions, proving
the necessity of high-quality data. Furthermore, it is shown that for most cases a single scalar correction to the
turbulent heat flux, as opposed to the full vector correction, is sufficient for improving the error introduced by the
gradient-diffusion hypothesis. This result is considerable since the simpler correction would be much easier to regress
in terms of mean RANS-known quantities. The computational cost of the corrected RANS models is around the same
as that of baseline RANS models; only 2%-5% of the LES computational cost.
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Introduction

1.1 Background

It is projected that wind energy will cover 22%-30% of Europe’s energy demand by 2030. A significant increase from
the 15% wind energy share in 2015 [1]. Off-shore wind energy will likely increase in share due to the ever-increasing
project scales. To meet these targets, the levelized cost of energy of offshore wind needs to be further reduced. In
order to do so, turbine manufacturers and operators require detailed knowledge about the conditions in which turbines
will operate.

The design and optimization of wind turbines and wind farms is a complex process. The turbine wakes are turbulent
regions of a velocity deficit with the free-steam. Any turbine immersed in a wake will have lower power production
and higher fatigue loading. Designers must therefore understand the structure and dynamics of wind turbine wakes,
as well as the interaction of multiple wakes in a farm. The relationship of wake dynamics with atmospheric stability
is also important. On-shore, the atmospheric boundary layer (ABL) is stable or unstable most periods of the day,
only being neutral during a short period in the morning and the evening [2]. Field experiments [3], [4] show that
non-neutral conditions also occur for most periods of time throughout the year in off-shore locations.

Currently, Large-Eddy Simulation (LES) is the most appropriate method of simulating wind farm flows. The
most significant scales of turbulent motion are fully resolved, leading to accurate solutions that include most of the
physical phenomena in real wind farms. Reynolds-Averaged Navier-Stokes (RANS) simulations have a computation
cost of about two orders of magnitude lower compared to LES [5], making them the tool of choice in industry. RANS
models come in a multiplicity of flavours, with linear-eddy viscosity models (LEVM) the most popular and common
ones [6]. The reduced computational cost of these models, however, comes at a price. The assumptions made in
the turbulence models fail in a several complex, but common, flow cases[7], [8], including wind turbine flows [9].
The main problems include an over-prediction of turbulent kinetic energy in the edges of the near wake, resulting in
increased turbulent mixing and an under-prediction of the wake velocity deficit. Numerous attempts have been made
to construct engineering fixes to the turbulence models to improve the velocity predictions in the wake, with varying
success. Most fixes do not generalize well beyond training cases and fail to account for atmospheric stability, leaving
room for improvement.

Data-driven turbulence models aim to improve the limitations of turbulence models by assimilating higher-fidelity
reference data. Various machine learning algorithms have been applied to turbulence modelling. Deep neural networks
emerged first, as these have become massively popular in numerous other fields of science [10]. The drawback of
’black-box’ methods, such as neural nets and random forests, is the lack of interpretability. The modeller is unable
to evaluate the relation that is learned by the algorithm or manually tweak the model to match physical needs or
improve stability. Symbolic data-driven techniques, on the other hand, output explicit algebraic relations. Gene
expression programming has been successfully demonstrated by Weatheritt and Sandberg [11] and Weatheritt and
Sandberg [12], and Schmelzer, Dwight, and Cinnella [13] demonstrated a novel framework for symbolic data-driven
turbulence modelling; Sparse Regression of Turbulent Stress Anisotropy (SpaRTA). An additional benefit of a symbolic
approach is that the resulting models are easily implemented in RANS solvers. Instead of applying machine learning
directly to generalize the Reynolds stress tensor, it is more effective to first assess the error an existing turbulence
model has with respect to the reference data, and then generalize that error with machine learning [14]. The two
approaches commonly used for evaluating the turbulence model error are (i) Bayesian statistical inference, and (ii)
frozen-RANS. With Bayesian inference, full-field data is not required. Frozen-RANS based approaches, on the other
hand, do require full-field reference data but do not require an expensive inversion process [13]. It was shown for
k-corrective-frozen-RANS (a development from the basic version) that a near-perfect match with the reference data is
obtained when the derived error is injected into RANS as a correction [5], [13].

Steiner, Dwight, and Viré [5] applied the SpaRTA methodology to moderate Reynolds number wind turbine
flows and significantly improved the baseline turbulence model. This study constituted an intermediate step between
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canonical flows and industrial-scale flows. Future work in this research avenue is to apply SpaRTA to such full-scale
flows and to improve numerical stability on various mesh resolutions. In most literature on data-driven turbulence
modelling, the energy or temperature equation was not included. Some studies attempt to discover new scalar flux
models using machine learning [15], [16], but these did not test the derived models in coupled RANS solvers. They
only considered a priori determination of the heat flux on mean LES fields. This is likely due to the limitations of
the underlying RANS turbulence model. To the best of the author’s knowledge, simultaneous data-driven turbulence
model improvements for the Reynolds stress and scalar-flux in heated flows have not yet been considered.

In this thesis, the research gap of simultaneous data-driven Reynolds stress and scalar-flux modelling improvements
will be addressed while considering wind turbine wake flows under neutral, stable and unstable atmospheric conditions.
Several LES studies for wind turbine flows in non-neutral conditions have already been conducted in literature [17]–[19]
[19]. Unfortunately, for some of these studies, the time-averaged field data is no longer saved, while for others the
specific data required for the present study was never saved at all. For this reason, and to ensure a certain quality,
in-house large-eddy simulations are developed and validated within this thesis. Afterwards, the existing frozen-RANS
framework is extended to obtain the model-form error of the turbulent heat flux. This framework will be applied to
several non-neutral cases. The novel frozen-RANS framework is then validated by injecting the obtained model-form
errors, now as corrections, into the RANS turbulence model during simulation run time. The performance of the
corrected RANS model is then evaluated by comparison against the baseline RANS model and the LES reference data.
This thesis aims to pave the way for further research on machine learning of turbulence models for industrial-scale
wind turbines for non-neutral atmospheric conditions.

1.2 Research Questions

The project can be deemed finished when the research questions (RQ) and their sub-questions (SQ) have been
answered. The various research questions are:

(RQ1): What are the model-form errors of the k − ε and GDH model in stable and unstable wind turbine
flows, and how do they differ from neutral wind turbine flows?

(RQ2): What are the considerations injecting the model-form corrections into the RANS equations during
simulation?

(RQ3): What is the accuracy of the corrected RANS models compared to the baseline RANS model and the
LES model?

(RQ4): How does the computational cost of the corrected RANS model compare to the baseline and LES
models?

(RQ5): How is the frozen-RANS framework best extended to stable and unstable conditions?

1.3 Research Objectives

To answer the research questions, the main research objective, and the sub-objectives must be achieved.

"To contribute to algebraic data-driven turbulence model development, and the understanding of turbulence
for industrial-scale wind turbine flows in neutral and non-neutral atmospheric conditions, by inferring the
model form error of the benchmark k − ε turbulence model and the gradient-diffusion scalar-flux model
from high fidelity data."

The following sub-objectives (SO) are formulated in support of the main objective.

(SO1): To generate ground-truth reference data by running Large-Eddy Simulations with the open-source
CFD package OpenFOAM-SOWFA.

(SO2): To determine the model form corrections of the k − ε and Gradient-Diffusion Hypothesis models by
formulating a novel frozen-RANS framework in OpenFOAM-SOWFA.

(SO3): To validate the model form corrections by injecting them into the OpenFOAM-SOWFA solvers and
comparing against the ground truth.

(SO4): To determine the regions and mechanisms of baseline turbulence model failure by assessing the
validated model form corrections.
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1.4 Report Structure

Firstly, the thesis contains a summary of the relevant literature on the atmospheric boundary layer, atmospheric
stability and wind turbine flows in chapter 2. Chapter 3 contains a summary of the relevant literature on CFD,
turbulence modelling and data-driven turbulence model improvements. The complete methodology of LES data
generation, frozen-RANS framework and the corrected RANS simulations are presented in chapter 4. The LES results
and validation are shown in chapter 5, after which the frozen-RANS model-form errors are discussed in chapter 6.
The corrected RANS models are tested against the baseline and the LES model in chapter 7. Finally, the conclusions
and recommendations to future work are discussed in chapter 8.
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2

The Atmospheric Boundary Layer and Wind
Turbine Flows

When a solid object is immersed in a fluid flow, a boundary layer forms over the surface of the object. Adhesion
causes the fluid to have the same velocity as the object on the surface of the object, and diffusive effects smooth the
velocity profile, which becomes the free stream velocity outside of the boundary layer. Laminar boundary layers are
characterized by the fluid moving in orderly parallel shear layers, whereas turbulent boundary layers are characterized
by chaotic motions in the fluid, higher degrees of mixing and higher skin friction. The Reynolds number of the flow,
defined as the ratio between the inertial and viscous forces, is used to determine or indicate whether a flow is laminar,
turbulent or in a state of transition between the two. The Reynolds number is defined based on a characteristic length
of the flow L.

Re =
UL

ν
(2.1)

U and ν are the free stream velocity and the kinematic viscosity, respectively. The bottom 300 m-3 km of the
troposphere is known as the atmospheric boundary layer (ABL). Just as with any other boundary layer, the flow
velocity is zero at the surface and equal to the free-stream outside of the boundary layer, which is the geostrophic wind
speed in case of the atmospheric boundary layer. The ABL is the only part of the atmosphere that is directly affected
by the presence of the Earth’s surface. Besides the drag due to surface roughness, these effects are the heating of air
during the day, cooling of air during the night, and changes in humidity and pollutant concentration [20].

The geostrophic wind speed and driving forces in the ABL are discussed in section 2.1. Atmospheric stability and
Monin-Obukhov similarity theory are discussed in section 2.2 and section 2.3, respectively. Finally, a brief summary of
wind turbine flows is presented in section 2.4.

2.1 Driving Forces in the Atmosphere

The winds in Earth’s atmosphere are driven by a multiplicity of forces. Generally speaking, these wind driving forces
are time-varying and depend on heat and moisture, which are convected with the air. This results in a complicated
coupling that we refer to as weather [20]. The geostrophic wind speed is defined as the wind speed in which the free
atmosphere (the part of the troposphere above the atmospheric boundary layer) is in geostrophic balance. In other
words, the geostrophic wind speed is the theoretical steady-state wind speed above the ABL [20]. Two forces are
important for the determination of the geostrophic wind speed: the horizontal pressure gradient force and the Coriolis
force. The pressure gradient force and the Coriolis force are by eq. (2.2) and eq. (2.3), respectively.

FPG
m

= −1

ρ
∇P (2.2)

FC
m

= −2Ω × U , Ω = ω

 0
cos(φ)
sin(φ)

 (2.3)

Here, ω is Earth’s rotation rate and φ is the latitude. Since the pressure gradient force and the Coriolis force are the
only acting forces, and the Coriolis force acts normal to the velocity vector per definition, both forces cancel out and
the geostrophic wind blows parallel to the isobars in weather maps. This is illustrated in fig. 2.1a, taken from Stull
[20]. When considering the theoretical steady-state wind speed inside the ABL, the surface drag force needs to be
considered as well. This drag not only slows the wind but also rotates it with respect to the geostrophic wind speed.
In fig. 2.1b, also taken from Stull [20], it is seen that the vector sum of the drag and the Coriolis force cancel the
pressure gradient force. The theoretical steady-state forces vary as a function of depth in the ABL due to the local
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(a) Geostrophic wind (here G) (b) Theoretical steady-state boundary layer wind (here MABL)

Figure 2.1: Idealized weather maps for the northern hemisphere showing theoretical steady-state winds. Figure taken
from Stull [20].

gradients. Consequently, the angle between the local steady-state wind and the geostrophic wind changes as well,
forming a so-called Ekman spiral [20].

2.2 Atmospheric Stability

The ABL is generally turbulent to some degree. However, rather than using the Reynolds number as a metric for
turbulence, it is informative to assess the degree of atmospheric stability, which depends on buoyancy. In the ABL, a
buoyant force Fb acts on a parcel of air when there is a difference in density ρ between the parcel (subscript p) and
its environment (subscript e). The value of the buoyant force is given by the following expression.

Fb
m

=
ρp − ρe
ρp

· g (2.4)

Buoyant forces arise naturally in the ABL under various vertical temperature gradients or atmospheric lapse rates.
Consider a parcel of air that is displaced away from the Earth’s surface. It expands due to the lower pressure. The work
done during this expansion is adiabatic (without any heat exchange) and causes the parcel to drop in temperature, at
a rate Γd; the dry adiabatic lapse rate. When the lapse rate of the air in the ABL is larger than the dry adiabatic
lapse rate, the vertically displaced air parcel is warmer than its environment. Consequently, it has a lower density,
resulting in a buoyant force acting upwards. The air parcel thus travels upwards even further in a so-called thermal.
The atmosphere, in this case, is referred to as unstable, or convective. The atmosphere is stable when the lapse rate is
lower than the dry adiabatic lapse rate. In this case, an upwards displacement of an air parcel results in it being colder
than its direct environment, causing a downwards buoyant force. Figure 2.2 (from Stull [20]) shows a thermo-diagram
for a simplified unstable atmosphere. This diagram allows for an easy comparison between the parcel temperature and
the environment temperature. Note that the potential temperature is defined simply as θ = T + Γdz.

The unstable ABL or convective boundary layer (CBL) is, due to positive buoyancy, associated with higher degrees
of ambient turbulence. Higher turbulence in boundary layers is associated with enhanced momentum transport towards
the surface, resulting in nearly constant velocity profile with low shear. Right by the surface, the mean velocity profile
decreases rapidly until it is zero at the wall. This state is in stark contrast with the stable boundary layer (SBL),
where negative buoyancy suppresses atmospheric turbulence. As shown in fig. 2.3, taken from Stull [20], the relative
lack of turbulence in the SBL results in lower vertical momentum transport and much larger wind shear. In the figure,
zSL is the height of the surface layer (the bottom 5% of the ABL [20]), and M is the mean wind speed.

A strong diurnal cycle occurs in the atmospheric boundary layer over land due to the periodic heating of the sun
[20]. During the day, the surface is hotter than the atmosphere, resulting in unstable conditions. During the night
conditions are stable. In fact, the ABL is non-neutral during most periods of the day, only being neutral during a
short period in the morning and the evening [2]. As shown in field experiments [3], [4], non-neutral conditions also
occur for most periods of time throughout the year in off-shore locations, highlighting the importance of considering
atmospheric stability in the analysis of wind turbine wakes.

The Monin-Obukhov (M-O) length L = −u3
∗θ0/(κgqs) is often used as a quantitative measure for atmospheric

stability. It is defined through the friction velocity u∗, the von Kármán constant κ = 0.4, gravitation acceleration g,
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Figure 2.2: Thermo-diagram for a simplified unstable atmosphere. The rising parcel is compared to its environment in
temperature (left) and potential temperature (right). Figure from [20].

the surface heat flux qs and the reference potential temperature θ0. Peña, Gryning, and Mann [21] distinguished
between several stability classifications based on the Monin-Obukhov Length. These classifications are shown in
table 2.1. Another common method for quantifying atmospheric stability in field measurements is the Bulk-Richardson
approach, based on Rib, the Bulk-Richardson number [17]. Pandolfo [22] derived simple empirical relationships that
relate the Bulk-Richardson number to the Monin-Obukhov length.

Table 2.1: Atmospheric stability classes, as defined by the Monin-Obukhov Length. Table obtained from Peña, Gryning,
and Mann [21].

Monin-Obukhov length Stability class
−100 ≤ L ≤ −50 Very unstable
−200 ≤ L ≤ −100 Unstable
−500 ≤ L ≤ −200 Near unstable
|L| > 500 Neutral

200 ≤ L ≤ 500 Near stable
50 ≤ L ≤ 200 Stable
10 ≤ L ≤ 50 Very stable

2.3 Monin-Obukhov Similarity

Monin-Obukhov similarity theory describes the structure of the surface layer, the lowest part of the ABL. Using
dimensional analysis and the Buckingham-Pi theorem, two non-dimensional independent variables are said to be
functionally related, making one a dependant variable. The formulation is such that the dependant variable is a
function only of the z/L, L being the Monin-Obukhov (M-O) length. The resulting expression for the constant surface
layer wind speed gradient is given by eq. (2.5). The surface layer potential temperature gradient is given by eq. (2.6).

κz

u∗

∂U

∂z
= Φm

(
z

L

)
(2.5)

κz

θ∗

∂θ

∂z
= Φh

(
z

L

)
(2.6)
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Figure 2.3: Typical velocity profiles for the unstable, stable and neutral boundary layer. The figure is taken and
adapted from Stull [20].

The functions Φm and Φh are called the M-O functions. They are said to be universal, meaning they are identical
for all surface layers that are locally homogeneous and quasi-steady. The surface layer temperature scale is defined
as θ∗ =

θ0u
2
∗

gκL . The M-O functions are linear in the stable region but have a more complex form in the unstable
region. Using an analytical formulation for the functions allows for integration of eq. (2.5) and eq. (2.6), resulting in
expressions for the mean velocity profile eq. (2.7), and mean potential temperature profile eq. (2.8). These expressions
are, however, only valid in the surface layer, which roughly constitutes the bottom 5% of the ABL [20].

U(z) =
u∗
κ

[
ln

(
z

z0

)
−Ψm

( z
L

)]
(2.7)

Θ(z) = θ0 +
θ∗
κ

[
ln

(
z

z0

)
−Ψh

( z
L

)]
(2.8)

The roughness length z0 a parameter which characterizes the surface roughness. It is reported in Laan, Kelly, and
Sørensen [23] that the most commonly used functions for Φm and Φh, and the resulting Ψm and Ψh are those of
the field measurements of Dyer [24] and Businger, Wyngaard, Izumi, et al. [25]. They are shown in eq. (2.9) and
eq. (2.10), with the corresponding coefficients shown in table 2.2.

Ψm = ln

[
1

8
(1 + Φ−2

m )(1 + Φ−1
m )2

]
− 2arctan(Φ−1

m ) +
π

2

Unstable conditions Ψh = (1 + σθ)ln
[1

2
(1 + Φ−1

h )
]

+ (1− σθ)ln
[1

2
(−1 + Φ−1

h

]
(2.9)

Φm =
(

1− γ1
z

L

)−1/4

Φh = σθ

(
1− γ2

z

L

)−1/2

Ψm = −β z
L

Stable conditions Ψh = (1− σθ)ln
( z
L

)
− β z

L
(2.10)

Φm = 1 + β
z

L

Φh = σθ + β
z

L

2.4 Wind Turbines and Wakes

Wind turbines are energy conversion devices that extract momentum from the air. At the level of the blade cross-section
(or blade-element), the flow around the blade-element induces a result force F , as shown in fig. 2.4, obtained from
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Table 2.2: Empirically determined coefficients of the Monin-Obukhov functions

σθ β γ1 γ2

Businger, Wyngaard, Izumi, et al. [25] 0.74 4.7 15 9
Dyer [24] 1 5 16 16

Porté-Agel, Wu, Lu, et al. [26]. The sum, over all three blades, of the normal component Fx results in a thrust force
on the turbine. The tangential components Fθ contribute towards the torque that drives the generator.

Figure 2.4: Schematic of the resultant force acting on the blade element and the decomposed forces. Figure obtained
from Porté-Agel, Wu, Lu, et al. [26].

By Newton’s third law, the wind turbine blades produce a stream-wise and tangential force that acts upon the
air, affecting the flow field. Distinct regions are often distinguished when discussing wind turbine flows. Upwind of
the turbine, there is the induction region, which is characterised by decelerated air. Downwind of the turbine, there
is the wake region, which is characterised by a velocity deficit (due to the momentum extraction) and by increased
turbulence. The wake is further divided into the near wake and the far wake. The near wake stretches until 2-4 rotor
diameters downwind of the turbine. In this region, one will find coherent helical vortical structures that originate
from the blade tips and from the turbine hub. The flow field in the near wake is directly affected by the blade, hub
and nacelle geometry [27]. The far wake, however, is independent of the specific geometry and can be characterised
by the global operating parameters, such as the tip-speed ratio and thrust coefficient. Large scale meandering is
observed in turbine wakes in the atmospheric boundary layer. These motions are associated with very large turbulent
fluctuations in the atmosphere. Figure 2.5 shows a schematic of the flow around wind turbines. The figure is taken
from Porté-Agel, Bastankhah, and Shamsoddin [28].

Understanding the behaviour of the far wake is crucial because wind turbines in large wind farms usually operate
in the far wake of upstream turbines. The mean stream-wise velocity deficit ∆U = U0 − U , U0 being the mean
stream-wise incoming velocity, is shown to closely match the axisymmetric Gaussian distribution in wind tunnel
experiments of a wind turbine in boundary layer flow [29]. Since the Gaussian profile is self-similar, the normalized
(by magnitude and width) velocity deficit profile is independent of stream-wise position in the far wake. This has
facilitated the development of several analytical models. It should be noted that the Gaussian profile is only observed
for standalone turbines, not for turbines that operate in the wakes of other turbines. As the distance from the turbine
increases, the wake expands and the velocity recovers due to turbulent mixing with the undisturbed air outside of the
wake.

It was shown in field measurements [17], [30], [31] that The wake deficit and rate of recovery depend strongly on
atmospheric stability. The quicker wake recovery for unstable cases is associated with wake meandering caused by
large convective motions [17], as well as an earlier breakdown of tip vortices, resulting in higher entrainment with
the flow outside of the wake [28]. Figure 2.6 shows contour plots of instantaneous and time-averaged velocity for a
very stable atmosphere (left) and an unstable atmosphere (right), obtained from Machefaux, Larsen, Koblitz, et al.
[17]. The authors show a higher meandering amplitude for the unstable case, but also mention that these LES results
still under-predict the unstable meandering magnitude compared to their field experiments. Consequently, their LES
slightly under-predicts wake recovery.
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Figure 2.5: Schematic of the wake and its distinct regions. Figure obtained from Porté-Agel, Bastankhah, and
Shamsoddin [28].

Figure 2.6: Velocity and potential temperature contours from LES for very stable conditions (left plots) and unstable
conditions (right plots). Figure obtained from Machefaux, Larsen, Koblitz, et al. [17].
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3

Computational Fluid Dynamics and Turbulence
Modelling

Computational Fluid Dynamics (CFD) is the field of science that involves methods for finding numerical solutions
to the governing equations of fluid flow. These equations are the conservation of mass, momentum and energy,
and are often referred to as the Navier-Stokes equations. There are various methods to solve these equations, each
with a different level of fidelity and computational cost. The three main methods are Direct Numerical Simulation,
Large-Eddy Simulation and Reynolds-Averaged Simulation. These are discussed in section 3.1, section 3.2 and
section 3.3, respectively. A short discussion on buoyancy is included in section 3.1. Section 3.4 presents various
methods of handling turbines in CFD and, finally, data-driven turbulence modelling approaches are discussed in
section 3.5.

3.1 Direct Numerical Simulation

Direct Numerical Simulation (DNS) is the CFD type in which the governing equations are solved as is, without any
turbulence model. All turbulent scales are fully resolved. Excluding the energy equation, and assuming constant
density, the Navier-Stokes equations are as follows.

∂ui
∂xi

= 0 (3.1)

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

+ gi (3.2)

With ui the fluid velocity, p the static pressure, ν the kinematic viscosity and gi the gravitational acceleration vector.
A requirement when doing DNS is that the mesh needs to be sufficiently fine in order to resolve any turbulent eddy
between the largest scales in the flow, of size L, and the smallest Kolmogorov scales, of size η. The size ratio between
the Kolmogorov scale and the largest scale is known given by the following equation [7].

η

L
= Re−3/4 (3.3)

Most fluid flows in nature and engineering are of very large Reynolds number. As such, a very fine mesh is required in
order to resolve the Kolmogorov scales. The computational cost of DNS is therefore prohibitive for most practical
cases.

Strictly speaking, the full compressible governing equations are required in the CFD formulation for atmospheric
boundary layers, since temperature variations result in density variations. However, using the Boussinesq buoyancy
approximation for the buoyant force term allows for the use of the incompressible flow equations. The approximation
is obtained by expanding the gravitational force term in the momentum equation, ρgi into a constant reference term,
indicated by subscript 0, and a term that constitutes the difference with the constant.

ρgi = ρ0gi + (ρ− ρ0)gi (3.4)

Here, ρ is the density which varies with temperature T and ρ0 is the constant reference density. A first-order Taylor
expansion for ρ(T ), with β = − ∂ρ

∂T |T=T0 the coefficient of thermal expansion, is then introduced. The expression for
the Boussinesq approximation is given below in terms of temperature T and potential temperature θ = T + Γdz, with
Γd the dry adiabatic lapse rate.

ρ

ρ0
gi = ρkgi = gi(1− β(T − T0)) = gi(1− β(θ − θ0)) (3.5)
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In the momentum equation, eq. (3.2), the gravitational acceleration vector gi is then replaced by ρkgi, and the
buoyant density ρk is found by solving the scalar transport equation for the potential temperature θ.

∂θ

∂t
+
∂θuj
∂xj

=
ν

Pr

∂2θ

∂xj∂xj
(3.6)

3.2 Large Eddy Simulation

In Large Eddy Simulations (LES), the problem of having to resolve the up to the Kolmogorov scales is solved by
separating the scales using a filter (̃...). This filter is applied to the full solution u(x, t), letting through a resolved
component and filtering out a sub-filter component.

u(x, t) = ũ(x, t) + u′′(x, t) (3.7)

The LES equations are derived by applying the filtering operation to the Navier-Stokes equations, eq. (3.1) and
eq. (3.2). This yields the LES equations, eq. (3.8) and eq. (3.9), and the LES scalar transport equation eq. (3.10).

∂ui
∂xi

= 0 (3.8)

∂ũi
∂t

+
∂ũiũj
∂xj

= −1

ρ

∂p̃

∂xi
+

∂

∂xj

(
ν
∂ũi
∂xj
− τSFSij

)
+ ρ̃kgi , τSFSij = ũiuj − ũiũj (3.9)

∂θ̃

∂t
+
∂θ̃ũj
∂xj

=
∂

∂xj

(
ν

Pr

∂θ̃

∂xj
− qSFSj

)
, qSFSj = θ̃uj − θ̃ũj (3.10)

With δij the Kronecker delta. The quantity τSFSij is the sub-filter stress tensor and qSFSj the sub-filter scale heat flux.
These quantities account for the effect of the sub-filter turbulent fluctuations on the resolved (or filtered) flow. Both
quantities require modelling, since, in the simulations, filtered products such as ũiuj are unknown. It is important to
note that, in most Large Eddy Simulations, the filter (̃...) is not explicitly defined. Rather, it is defined implicitly by
the local mesh, since no turbulent fluctuations of size smaller than the local mesh can be resolved in the simulation.
In such LES, the term sub-filter is often exchanged with sub-grid, and τSFSij is exchanged with τSGSij .

The simplest closure model for the deviatoric part of the SGS stress tensor is the model of Smagorinsky [32].

τSGSij − 2

3
kSGSδij = −2νSGSS̃ij = −2∆2C2

s |S̃|S̃ij (3.11)

Here, kSGS = 1
2τ

SGS
kk is the SGS turbulent kinetic energy, νSGS is the SGS viscosity, S̃ij is the resolved strain rate

tensor with magnitude |S̃|, ∆ is the local filter width, often taken as the cube root volume of the cell, and Cs is a
model constant. The isotropic part of the stress tensor is absorbed into the pressure term, forming a modified pressure
p̃M = p̃+ 2

3k
SGS . In the basic Smagorinsky model Cs is set as a constant. More sophisticated models, such as the

Dynamic Smagorinsky model [33] use an explicitly defined filter to locally optimize the value of the model coefficient.
Another noteworthy LES closure is the WALE model [34], which was specifically designed to have correct cubic near
wall scaling of the SGS viscosity without a dynamic procedure. The choice of sub-grid scale model does, however, not
have a significant impact on the time averaged wake structure if the mesh is sufficiently fine [35].

3.3 Reynolds-Averaged Navier-Stokes

In LES, the largest turbulent scales are revolved, and the effect of the smaller scales are modelled. Another approach
is to resolve no turbulence and represent all turbulence by models. This approach is referred to as Reynolds-Averaged
Navier-Stokes (RANS). RANS allows much coarser meshes resulting in much lower associated computational costs.
The RANS equations are derived by first decomposing all relevant quantities in the governing equations into a mean
part (indicated by capital letters or symbols) and a fluctuating part with zero mean (indicated by a prime).

u(x, t) = U(x) + u′(x, t) (3.12)

The governing equations are than ensemble averaged (...). This results in the RANS equations eq. (3.13) and
eq. (3.14), and the RANS scalar transport equation eq. (3.15).

∂Ui
∂xi

= 0 (3.13)
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∂UiUj
∂xj

= −1

ρ

∂P

∂xi
+

∂

∂xj

(
ν
∂Ui
∂xj
− u′iu′j

)
+ ρkgi (3.14)

∂ΘUj
∂xj

=
∂

∂xj

(
ν

Pr

∂Θ

∂xj
− u′jθ′

)
(3.15)

The Reynolds decomposition and ensemble averaging introduce the Reynolds stress tensor (or the turbulent
momentum flux) u′iu

′
j in the momentum equation and the turbulent heat flux u′jθ′ in the potential temperature

conservation equation. Similarly, as with LES, these fluxes depend on quantities that are unknown and, thus, require
modelling.

Due to the modelling of the turbulent fluxes, uncertainty is introduced in the RANS equations at several levels.
These levels are described in [14] from level L1 to level L4. L1 is the uncertainty due to the averaging operation
combined with the nonlinear advection term. It is fundamentally impossible for the closure model to exactly reconstruct
the turbulent fluxes, since information is lost in the averaging process, regardless of the choice of model. L2 is the
uncertainty due to the model form error of the closure model selected or developed. L3 is the uncertainty due to the
choice of functional form within the model. Finally, L4 is the uncertainty due to the calibration of model coefficients.
Perfect turbulence models will inherently still be subject to L1 uncertainty. Uncertainty is also introduced into the
LES solution due to modelling. However, this uncertainty is much lower since the largest, energy-containing, turbulent
scales are resolved, and not subject to modelling errors.

The most common turbulence models for the Reynolds stress are based upon the Boussinesq eddy-viscosity
hypothesis [36]. This theory relates the deviatoric part of the Reynolds stress to the hypothetical ’eddy viscosity and
the mean rate of strain tensor Sij .

u′iu
′
j −

2

3
kδij = −2νtSij (3.16)

Since this expression for the Reynolds stress is linear with the mean rate of strain, these models are referred to as linear
eddy-viscosity models (LEVM). The adequacy of this assumption is questionable for a large number of flows. Even
though the eddy-viscosity is analogous to the molecular viscosity, it is not a real physical quantity, so the hypothesis is
not informed by real physics [6]. It has also been shown, using multiple DNS data-sets, that there is poor alignment
between the Reynolds stress tensor and the mean rate of strain [37]. This results in the hypothesis failing for flows
with sudden changes in rate of strain, flows with strong streamline curvatures and three-dimensional flows [6], as well
as flows with anisotropic turbulence [7].

3.3.1 k − ε Model
Despite their shortcomings, LEVMs have always been the most popular turbulence model type. One of the first and
most popular LEVM is the k − ε model of Launder and Spalding [38]. This model calculates the eddy viscosity νt
from the turbulent kinetic energy (TKE) k and the dissipation rate ε.

νt = Cµ
k2

ε
(3.17)

The TKE and the dissipation rate are given by their respective transport equations. The k transport equation is
derived by manipulation of the momentum equation. The ε transport equation is, however, mostly empirical in its
nature, further introducing errors in the model [6].

Dk

Dt
= Pk +B − ε+

∂

∂xj

[(
ν +

νt
σk

) ∂k
∂xj

]
(3.18)

Dε

Dt
=
ε

k
(C1εPk − C2εε+ C3εB) +

∂

∂xj

[(
ν +

νt
σe

) ∂ε
∂xj

]
(3.19)

σk and σε are known as the Schmidth numbers. And C1ε , C2ε and C3ε are model coefficients. Pk is the shear
(mechanical) production of turbulence and B is the buoyant production of turbulence, with θ0 being the reference
potential temperature.

Pk = −u′iu′j
∂Ui
∂xj

B = − gi
θ0
u′iθ
′

The k − ε model is a simple, complete and robust turbulence model. It is implemented in most RANS solvers and
is applicable to a wide range of simple flows. Nevertheless, its accuracy is limited. The standard model is unable to
correctly predict the atmospheric boundary layer turbulence due to its incapability of predicting anisotropic turbulence
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[7]. Additionally, the standard k − ε, as well as the k − ω model, fails in the region of high strain in the near wake
of a wind turbine. In these regions, an overproduction of turbulent kinetic energy results in high mixing and an
under-predicted wake velocity deficit [9], [39]–[42]. Réthoré [40] found that two assumptions, made in the Boussinesq
hypothesis, are violated in wind turbine wake flows. The first assumption is that the flow particles remain constant in
their velocity over the turbulent time scale. This assumption is violated around the rotor, in the region of large adverse
pressure gradients. The main contribution to the TKE build-up, due to this violation, is due to the over-predicted
axial normal Reynolds stress −u′1u′1. The second violated assumption is that the fluid velocity is linear over a local
length scale. These assumptions do not seem to hold at the interface between the wake and the free-stream.

3.3.2 Improvements to the k − ε and k − ω Models
Numerous attempts have been made to overcome the wake deficit under-prediction issue, observed when using
the k − ε or k − ω turbulence model. El Kasmi and Masson [39] tested the addition of a source term in the ε
model equation. This source term activates in the near wake, suppressing local TKE overproduction. In a study
by Prospathopoulos, Politis, Rados, et al. [41], several changes were proposed and tested to overcome the wake
deficit issue. Firstly, a source term, similar to the one tested by El Kasmi and Masson, was added to the dissipation
equation, now instead for the k − ω model. Additionally, the authors attempted to modify the value of the model
coefficients in order to change the turbulence decay ratio. Both changes resulted in better wake deficit predictions.
However, the changes did not generalize well to other test cases. Furthermore, the authors tested a method that
adds a realizability limit to the turbulence timescale. This method was originally developed by Durbin [43] with the
objective of improving stagnation point flows. Since similarly high turbulent time scale values are observed in some
regions in the near wake, the Durbin method is also applicable in the current context. Although physics informed and
without the need for calibration, no desired results were obtained. Finally, model constants were adjusted in order
to enforce consistency with Monin-Obukhov similarity theory for stable atmospheric boundary layers. The results,
however, showed a considerable underestimation of turbulence in the near wake.

Réthoré [40] constructed additional eddy viscosity limiters based on the local pressure gradient and on Realizability
by the Schwartz inequalities. The limiters essentially attempt to correcting the identified violations to the assumptions
of the Boussinesq hypothesis. The adverse pressure gradient based limiter is shown to have better agreement with
LES close to the rotor, where the adverse pressure gradient is large, but poor further away from the rotor. The
Realizability limiter showed some improvements at the wake interface but was overall not consistent enough with LES.

Laan, Sørensen, Réthoré, et al. [9] developed a k − ε extension with a variable Cµ (the model constant in
eq. (3.17)), through a limiter function called fp. The limiter function is a simplified version of the cubic non-linear
eddy viscosity model of Apsley and Leschziner [44], with all non-linear terms omitted from the formulation. The
stress-strain relationship is still linear, so only isotropic turbulence is predicted meaning that the Reynolds stress
predictions are not improved, only wake deficit predictions. The proposed model is tested against the baseline model
for several LES data sets and experiments. The k − ε− fp model shows improvements for close to all cases. Only in
the case of high total turbulence intensity did the the baseline k− ε model agree better with LES. In further work van
der Laan and Andersen [45] the k − ε− fp was compared against the the Realizable k − ε of Shih, Liou, Shabbir, et
al. [46], and k − ε with limiter function based on Durbin’s model [43] by testing against LES reference data for low
and high ambient turbulence intensity. It was found that all models were able to predict the turbulent time scale well,
but only the k− ε− fp model and the Shih model predicted the correct turbulent length scale. The k− ε− fp model
was tested further on wind farm scale [47]. In particular, power output was obtained from the RANS simulations
and compared to field measurements from the Wieringermeer, Lillegrund and Horns Rev wind farms. The k − ε− fp
showed good agreement with measurements, implying that correct wake deficit profiles translate reasonably to wind
farm power output. It was, however, also observed by the authors that the model was not able to predict correct power
outputs for measurements obtained in non-neutral atmospheric stability. This highlights the need for a turbulence
model that is able to correctly, and generally, predict wind turbine wake profiles for stratified atmospheres.

It is known that the standard k − ω turbulence model suffers from the same shortcomings in wind turbine wakes
as the standard k − ε model [41]. However, the most common extension to this model, Menter’s k − ω shear-tress
transport (SST) model [48], has proven to produce satisfactory results in numerous aeronautics application [49]. The
k−ω SST model has improved performance in adverse pressure gradient boundary layer over the baseline model, since
an upper limit is placed on the stress intensity ratio, which would normally overshoot in adverse pressure gradients.
Furthermore, a blending function is employed which switches to the k − ε model outside of the boundary layer. The
k − ω SST model is compared by Antonini, Romero, and Amon [50] with the standard k − ω and k − ε models, as
well as the Reynolds stress model. Comparisons with two experimental data set show that the k − ω SST model has
comparable performance to the more complex Reynolds stress model, unlike the standard k − ε and k − ω models. In
other work, Antonini, Romero, and Amon [51] showed that wind direction uncertainty needs to be taken into account
in order to make fair comparisons between RANS flow field predictions and experimental data.

Shives and Crawford [52] also tested the k − ω SST model, as well as an extension to the model, against several
cases from two experimental sites. It was found that the k − ω SST model, although it provides satisfactory results
for velocity profiles, under-predicts turbulent kinetic energy. This TKE deficit is related to the fact that tip vortices,
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and the turbulence due to their breakdown in the wake, are not resolved or accounted for in actuator disc RANS
simulations. The proposed k − ω SST model extension intends to solve this issue by including a source term in the k
equation. The source term only adds TKE in a specific region in the near wake, and was tuned for the test cases. The
proposed model extension compares excellent to the experimental data, both in velocity deficit and in turbulence
levels. The authors note, however, that tip vortex breakdown depends on the ambient turbulence intensity, and that
currently the model does not account for this. Furthermore, ad hoc corrections like these likely do not generalize well.

3.3.3 Non-Linear Eddy-Viscosity Models
Non-linear eddy viscosity models (NLEVM) provide a more appropriate and realistic description of the Reynolds stress
tensor by assuming a non-linear stress-strain relationship [53]. The Boussinesq hypothesis, eq. (3.16) can, within this
framework, be seen as a leading term in a larger expansion for the Reynolds stress [6]. Pope [54] laid the foundation
for NLEV modelling by generalising the eddy-viscosity hypothesis. The anisotropy tensor bij = u′ii

′
j/k − 2

3δij can be
expressed as a tensor polynomial based on products of the strain rate tensor Sij and the rotation rate tensor Ωij . The
complete set of ten bases tensors, expressed as T (λ)

ij , is found by the generalised Cayleigh-Hamilton theorem. The
tensor polynomial expression for the anisotropy tensor is given in eq. (3.20).

bij =

10∑
λ=1

c(λ)(ηi)T
(λ)
ij (sij , ωij) (3.20)

The tensor bases T (λ)
ij are a function of the dimensionless strain rate tensor sij and the dimensionless rotation rate

tensor ωij , and c(λ) are the corresponding coefficients.

sij =
1

2

k

ε

(
∂Ui
∂xj

+
∂Uj
∂xi

)
, ωij =

1

2

k

ε

(
∂Ui
∂xj
− ∂Uj
∂xi

)
(3.21)

For an exact expression of the tensor bases, the reader is referred to the work of Laan, Sørensen, Réthoré, et al. [55].
Laan, Sørensen, Réthoré, et al. [55] tested two NLEVMs for several cases from an experimental site. The models

tested were modified versions of the cubic NLEVM of Apsley and Leschziner [44], and the quartic NLEVM of Taulbee
[56]. The non-linear stress-strain relationship allows for the formulation of anisotropic stresses. This improves the
performance of non-linear models compared to linear eddy viscosity models, both in terms of stress and velocity
profiles. The main drawback of the tested NLEVMs were numerical instabilities for high levels of ambient turbulence
intensity and for finer grid resolutions.

3.3.4 Reynolds Stress Models
Reynolds stress models (RSM) circumvent the deficiencies of the Boussinesq eddy-viscosity hypothesis in a natural
way and thus offer potential benefits in numerous complex flows [6], [53]. Instead of finding a relationship between
the Reynolds stress and mean flow quantities, mediated by the hypothetical eddy-viscosity, RSM directly calculate the
Reynolds stress from a transport equation. Cabezón, Migoya, and Crespo [42] tested such a RSM against models
based on parabolic approximations to the governing equations, the standard k − ε model and the Realizable k − ε
model of Shih, Liou, Shabbir, et al. [46]. All models are tested against LES data, obtained by Jimenez, Crespo, Migoya,
et al. [57], and experimental data from the Sexbierum experiments. The tested RSM showed some improvements over
the baseline in both the near wake and far wake. However, improvements were not consistent and only one case was
used for testing, which brings to question generality. Besides the lack of significant improvement, RSM are rather
complicated compared to LEVM, and require solving additional modelling challenges, such as that of the pressure
strain correlation tensor [6].

3.3.5 Scalar Flux Models
The most common model for the scalar flux is the gradient diffusion hypothesis (GDH), which assumed the heat flux
is aligned with the mean gradient.

−u′iθ′ =
νt
Prt

∂θ

∂xi
(3.22)

With Prt the turbulent Prandtl number. Other models include the generalised gradient diffusion hypothesis (GGDH)
of Daly and Harlow [58], given in eq. (3.23), and the higher-order generalised gradient diffusion hypothesis (HOGGDH)
of Abe and Suga [59], given in eq. (3.24).

−u′iθ′ = C ′θ
k

ε
u′iu
′
j

∂θ

∂xj
(3.23)
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−u′iθ′ = C ′′θ
k

ε

u′iu
′
ku
′
ku
′
j

k

∂θ

∂xj
(3.24)

With C ′θ and C ′′θ being model constants and k
ε an approximation to the turbulent time scale τ . Ling, Ryan, Bodart,

et al. [60] tested these three scalar flux models for a film cooling case. Reference LES velocity and pressure fields
were used to ensure no Reynolds stress modelling errors were included in the scalar flux errors. It was found that the
HOGGDG was the most accurate far from the wall, and that, generally speaking, all models had some errors close to
the wall. As one would expect, the GDH was the least accurate. The errors observed close to the wall could be an
indicator of similar errors occurring in the turbulent heat flux of atmospheric boundary layers.

3.3.6 Non-Neutral Atmospheres
Several efforts have been made to improve RANS predictions of non-neutral atmospheres. Alinot and Masson [61]
made the Cε,3, the coefficient that governs buoyancy in the ε equation, a function of the stability to enforce MOST
profiles. Laan, Kelly, and Sørensen [23] recognized that the k equation is not in balance with MOST, resulting in the
inlet profile changing slowly when distance is covered in the domain. To prevent this, they added a source term in the
k equation. Together with a variable Cε,3, the modification ensures sustained MOST profiles up to 50 km.

Han, Liu, Xu, et al. [62] tested the MOST consistent turbulence model of Laan, Kelly, and Sørensen [23], as well
as the turbulence models of Alinot and Masson [61] and of El-Askary, Sakr, AbdelSalam, et al. [63], by applying
them to a wind turbine wake flow for neutral and stable conditions. The method of El Kasmi and Masson [39] is
used, in addition, to overcome the issue of under-predicted wake velocity deficit. The gradient diffusion hypothesis
heat flux turbulence model is used to close the energy equation in all cases, except for in the model of El-Askary,
Sakr, AbdelSalam, et al. [63], in which the energy equation is not solved. It is found that, in stable conditions, the
MOST consistency results in over-predicted surface normal velocity gradients compared to LiDAR (light detection
and ranging) field measurements. Additionally, wake velocity profiles do not agree with the measurements presented
from two experimental cases. The authors attribute this to the over-predicted velocity gradient. Based on these
observations, the model of Laan, Kelly, and Sørensen [23] is adjusted to match the surface normal velocity gradient
observed in measurements. The resulting model performs better in the near wake, but is equally inadequate in the
far wake as the original models, for the first experimental case. Agreement as improved considerably in the second
experimental case, but now instead for the far wake. The authors expect that these mixed results might be due
to LiDAR measurement inaccuracies and the effects of complex terrain not being accounted for in the numerical
simulations. This study highlights that two sets of modifications are required to the basic turbulence models in order
to produce results that agree with measurements or higher fidelity data. Next to a correction aimed to improve wind
turbine wake profiles, a correction is needed for ensuring turbulence model consistency with the non-neutral boundary
layer profiles. Furthermore, further work is required to construct and test turbulence models that consistently match
experimental and LES profiles in both the near- and far-wake under non-neutral conditions.

3.4 Turbine Modelling in CFD

In CFD, wind turbines can be represented with various degrees of fidelity [64]. The most physically sound representation
is to directly model the rotor, nacelle and tower with a CAD model, and refine the surface mesh until sufficient
resolution is obtained in the boundary layers. LES requires the mesh to be refined until the inertial sub-range. At
the surfaces, this requirement results in extremely fine meshes, making this approach of direct modelling oftentimes
infeasible.

Actuator line models (ALM)[65] constitute a lower fidelity method of representing wind turbines in CFD. In this
method, the rotor blades are substituted by body forces which act along lines that coincide with the blades. The
forces are found by assessing the local inflow velocity and direction, and by using airfoil lookup tables. Since the line
coordinates generally do not coincide with the cell centre coordinates, the line body forces must be mapped to the
surrounding cells. This is often done by a Guassian function to avoid instabilities, in which r represents the distance
between the line section center and the cell center, and ε is a parameter which governs the width of the mapping [66].

fmesh =
fline
ε3π3/2

exp
[
− (r/ε)2

]
(3.25)

Actuator line models can only be used in unsteady CFD codes, since the applied body forces rotate with exactly the
rotational speed of the turbine they represent. This puts an additional requirement on the maximum time-step size
∆t besides the Courant-Friedrichs-Lewy (CFL) condition; the tip of the blade should not pass through more than a
single cell over a time-step.

Actuator disc models (ADM) are a time averaged version of actuator line models in which turbines are represented
by a disc that spans the swept area of the turbine blades [67]. This turbine representation is thus suitable for steady
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CFD codes, such as RANS, as well as unsteady codes. The forces in ADM, which are also obtained from airfoil lookup
tables, are scaled by a solidity factor σ = NAb

Ar
to account for the averaging. Here, N is the number of blades, Ab is

the area of the disc section and Ar is the swept area of the turbine. The lift L and drag D of a disc section with
chord c and width w is given below.

L = σCL(α)
1

2
ρV 2cw (3.26)

D = σCD(α)
1

2
ρv2cw (3.27)

An actuator line model and actuator disc turbine model are compared in LES by Martínez Tossas, Leonardi, Churchfield,
et al. [64]. The actuator line representation is the most physically complete, since tip and root vortices are resolved.
The instantaneous flow field of the ADM matches the ALM flow field in the far wake, but not in the near wake.
However, when results are time averaged, flow fields from both turbine representations agree with each other, also in
the near wake. Furthermore, it is recommended to use a parameter ε of twice the local grid size to avoid numerical
instabilities in the solver. For the remainder of this research, Large-Eddy Simulations will be conducted with actuator
disc turbine representations since (i) the computation cost is lower and (ii) the time averaged fields, which are needed
for RANS model improvements, agree well with ALM.

3.5 Data-Driven Turbulence Modelling

Duraisamy, Iaccarino, and Xiao [14] explain that, historically, data has been used to improve turbulence models in
several distinct methodologies. The first turbulence models were calibrated with experimental data in a simple manner.
A set of model coefficients c were tuned until one or more outputs of the modelM(c) agreed sufficiently well with
the measurement data θ. Usually, measurements uncertainties were not included. Besides simple calibration, these
methodologies are statistical inference and various machine learning approaches.

3.5.1 Statistical Inference and Uncertainty Quantification
Statistical inference, often referred to in literature as Bayesian inversion, is a more advanced method of improving
models by assimilating data. This framework is entirely probabilistic, meaning that measurement uncertainties are
included, and that the model coefficients are uncertain random variables. In this methodology, the modeller must first
make a choice for a prior probability distribution of the model coefficients P(c) based on previous studies, physical
insight or on intuition. The likelihood P(θ|c) is defined as the conditional probability of the data given the prior model
coefficients. The posterior P(c|θ), defined as the probability distribution of the uncertain model coefficients given the
data, is then found by Bayes’ theorem.

P(c|θ) =
P(c) · P(θ|c)

P(θ)
(3.28)

Since probability densities integrate to unity, the normalization factor P(θ) is not required. The knowledge that the
posterior is proportional to the product of the prior and likelihood is sufficient. With the posterior distributions for the
coefficients c inferred from the data, one can take the most likely values to obtain the maximum a posteriori estimate
(MAP) of the coefficients [68]. If it is assumed that both the error distribution and the coefficient distribution are
Gaussian of form, an explicit expressions for the MAP of the coefficients. Using the MAP coefficients in further
simulations yields MAP values for the relevant output quantities. The full posterior distribution of the coefficients c
can also be propagated through the model and the simulation to provide uncertainty estimations of relevant outputs.

The methods discussed thus far in this section only attempt to reduce (or quantify) uncertainty at level L4; at
the level of model coefficients. Model form uncertainty thus remains unchanged, even after calibration. Emory,
Pecnik, and Iaccarino [69] first introduced a method of structural uncertainty quantification which aimed to provide
uncertainty bounds to output quantities directly from L2 and L3 uncertainty. In this method, the normalized anisotropy
tensor is decomposed and perturbed towards various altered states but constrained under physical limits, such as the
realizability constraint. Works on structural uncertainty quantification, such as these, demonstrate how basic RANS
turbulence models fail in reference to experimental or higher-fidelity data.

An extended approach to statistical inference is to explicitly formulate a stochastic discrepancy function δ as a part
of the model, which represents the difference between the model output and the data. Just as with the coefficients
c, δ needs a prior distribution and will, after the inference process, have a posterior distribution. The maximum
a posteriori discrepancy function can be embedded to the calibrated model to obtain improved results. Although,
this highly depends on the mathematical form of the discrepancy function the modeller chooses for the problem.
Furthermore, the posterior discrepancy function is case specific and does not generalize to other cases, even if the
geometry is similar.
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3.5.2 Machine Learning
Supervised machine learning techniques have gained increasing attention in turbulence modelling literature recently.
Ling, Kurzawski, and Templeton [10] first demonstrated its potential by formulating a deep neural network to model
the Reynolds stress anisotropy tensor. This was achieved by utilizing the generalized eddy-viscosity hypothesis of Pope
[54], who postulated a non-linear stress-strain relationship. As mentioned in section 3.3.3, the anisotropy tensor is
expressed as a tensor polynomial, the basis tensors being products of the non-dimensional strain rate and rotation rate
tensors. In the machine learning framework, the coefficients c in the polynomial are a layer in the neural network,
and are functions of flow features η and the training data θ. The five invariants of Pope’s tensor bases are used as
features (input) for the neural network.

bij =

10∑
λ=1

c(λ)(η, θ)T
(λ)
ij (3.29)

Using Pope’s Galilean invariant tensor bases T (λ)
ij allows the modeller to directly embed this invariance into the

resulting model. Ling et al. obtained improved Reynolds stress and mean flow predictions, as well as the prediction of
secondary flow features that linear eddy viscosity models fails to predict, such as corner flow in a square duct. The
authors acknowledged that the Reynolds stress tensor from DNS might not be the best choice for training for the
purpose of matching RANS mean flow fields to the DNS fields.

Wu, Xiao, Sun, et al. [70] showed that explicit data-driven models for the Reynolds stress leads to an ill-conditioned
system, especially at high Reynolds numbers. With their derived metric for conditioning, they showed that errors
in ill-conditioned models are amplified to the mean flow field compared to well-conditioned models, even if the
ill-conditioned models produce more accurate Reynolds stress tensors. This behaviour was observed in various
data-driven turbulence modelling studies, amongst which the study of Wang, Wu, and Xiao [71], in which random
forests were used to discover the model. Wu, Xiao, Sun, et al. [70] also report that data-driven corrections to turbulent
transport equations, and machine learning of algebraic models are less affected by the issue of conditioning. Duraisamy,
Iaccarino, and Xiao [14] also conclude that direct learning of DNS quantities could produce unexpected outcomes due
to inconsistencies with the RANS system. They recommend, instead, to apply machine learning algorithms to learn
generalized discrepancy functions with, or within, existing RANS models. The discrepancy functions can have multiple
functional forms within the model. It is also possible that multiple discrepancy functions are used simultaneously.
This was successfully demonstrated by Schmelzer, Dwight, and Cinnella [13], who learned algebraic corrections for the
Reynolds stress anisotropy and the turbulence kinetic energy production using the k − ω SST as baseline model.

Artificial neural networks, and deep learning in particular, have become massively popular tools in various fields
of science [72]. It is no surprise that that neural networks have found their way into turbulence modelling research,
as they offer great flexibility towards representing complex non-linear relations. However, flexible as they might be,
they are a true black box. In the context of turbulence modelling, the model coefficients are replaced by the neural
network itself. The same is true for random forest algorithms. This means it is practically impossible to extract
insights out of the learned turbulence models. Symbolic data-driven models inherently overcome this limitation as they
output an algebraic expressions. Weatheritt and Sandberg [11] and Weatheritt and Sandberg [12] use gene expression
programming, an evolutionary algorithm, to model a new stress-strain relationship. The new learned explicit algebraic
stress models are easily implemented in a solver for testing. Schmelzer, Dwight, and Cinnella [13] developed another
framework for learning improved turbulence models; Sparse Regression of Turbulent Stress Anisotropy (SpaRTA).
The model form error (or discrepancy) of the normalised anisotropy tensor b∆ij is defined as the difference between
the reference data (DNS or LES) normalized anisotropy and the RANS model (baseline) normalized anisotropy
boij = −νtk Sij . This leads to a new stress-strain relationship, eq. (3.30).

u′iu
′
j = 2k

(
bij +

1

3
δij

)
(3.30)

bij = −νt
k
Sij + b∆ij (3.31)

The evaluation of the eddy-viscosity νt, however, requires knowledge about the specific dissipation rate ω. To make
sure the dissipation rate is consistent with the RANS framework, the ’frozen approach’ is used [73]. The dissipation
equation of the baseline turbulence model is evaluated passively on the frozen LES fields, as was successfully done by
Weatheritt and Sandberg [12]. Due to modelling approximations the k transport equation is not naturally consistent
with the reference data. Furthermore, the inclusion of b∆ij changes the Reynolds stress, which changes the turbulent
kinetic energy production Pk. An additional term R is defined as the residual of the k transport equation, to ensure
full consistency with there reference data. The augmented system is solved iteratively on the frozen reference data
fields until the value of ω converges. The final value of b∆ij and R are then the model form error of the baseline
k − ω SST model. This methodology, named k-corrective-frozen-RANS, is an inexpensive alternative to the statistical
inversion process described in Duraisamy, Iaccarino, and Xiao [14]. Although, unlike with statistical inversion full field
reference data is required.
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With the model form error known, the SpaRTA approach follows with the following four steps. (i) Building a
library of candidate functions. (ii) Use logistic regression, together with sparsity promoting elastic net regularization,
to find a set of unique abstract models given the candidate functions. (iii) Infer the model by least squares regression.
Use additional L2-norm regularization so that the resulting models have small coefficients and convergence in CFD is
better. (iv) Test inferred models by cross-validation; test the models on a case which was not used for training. In
this final step, the modeller should try to find the right combination of elastic net weight ans regularization type in
step (ii), as well as the appropriate amount of L2-regularization in step (iii), to ensure the model does not over-fit the
data and strikes the right balance between accuracy and convergence. Figure 3.1, taken from Schmelzer, Dwight, and
Cinnella [13], shows a flowchart of the entire methodology. It is shown that insertion of the model form error, as
optimal corrections, into the turbulence model result in a near perfect match with the mean DNS flow. Furthermore,
the SpaRTA learned turbulence models show good agreement with the learning data and significant improvements
over the baseline k − ω SST model, demonstrating the potential of the method.

Figure 3.1: Technical flowchart of the SpaRTA (Sparse Regression of Turbulent Stress Anisotropy) methodology.
Figure taken from Schmelzer, Dwight, and Cinnella [13].

The SpaRTA framework was applied to three-dimensional higher Reynolds number cases [5], [74]. Steiner, Dwight,
and Viré [5] inferred turbulence models for wind turbine wake flows on wind tunnel scale. A much richer set of
input features was used, in part because of the three-dimensional nature of wind turbine flows. A pre-processing
step is added to the methodology, in which the number of features is reduced by assessing the mutual information a
feature has with the optimal corrections. Only the set of the most important features are selected so that overall
computational cost of the model discovery steps remain manageable. Stream-wise velocity profiles and TKE profiles
are shown for a dual turbine constellation case in fig. 3.2a and fig. 3.2b, respectively. The second turbine (T2) is
immersed in the wake of the first turbine (T1). Once again, insertion of the optimal corrections from the frozen
approach resulted in wake velocity profiles that were consistent with the LES reference data. The learned models
showed significant improvements over the baseline k− ε model. This is a significant result, since k− ε and other basic
turbulence models fail to accurately predict wind turbine wake flows, as discussed in detail in section 3.3.1. The others
note that a few of the obtained models were unstable, highlighting the importance of appropriate model selection.
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(a) Stream-wise velocity

(b) Turbulent kinetic energy

Figure 3.2: Comparison between the LES reference data, the baseline RANS model, the frozen-RANS predictions and
the corrected models for a dual turbine constellation. Figure taken from Steiner, Dwight, and Viré [5].
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Future work includes understanding these abilities, considering non-neutral atmospheric stability and industrial scale
flows. In summary, learning of algebraic models using SpaRTA has potential because there are less issues with model
conditioning [70]. Furthermore, the models can be interpreted to gain physical insights, they can be tweaked to
improve numerical stability and they are easily implemented in CFD solvers.

Errors in the Reynolds stress propagates to uncertainty the scalar-flux by two mechanisms; altering the mean flow
and altering the input for the scalar flux model [75]. Besides this effect, in heated flows, error in the scalar-flux model
is propagated back to the mean flow by buoyancy related terms in the momentum equation and in the turbulent
transport equation. Machine learning was first used in scalar-flux modelling to learn the values of model coefficients
[76], [77]. Weatheritt, Zhao, Sandberg, et al. [15] first generalized the scalar fluxed itself, based on not only the
Reynolds stress and temperature gradient, but also on invariants of the strain and rotation rate tensors. The alignment
of the basis vectors with the reference scalar-flux is checked a priori, since well aligned bases are required in order to
produce an satisfactory model. It was found that no particular basis vector had good alignment everywhere, justifying
the approach of data-driven model inference from multiple basis vectors and enabling the reduction of the number
of bases. The resulting algebraic scalar flux models outperformed the gradient-diffusion hypothesis in all test cases
in terms of heat flux. The resulting velocity profiles are not reported. In a similar study, Milani, Ling, and Eaton
[16] successfully implemented the tensor bases neural network to the scalar-flux [10], also in the jet in cross-flow
case. The model was not coupled to a RANS solver but rather applied to the LES fields to predict the heat-flux.
Although data-driven modelling of the heat-flux is still very much in its infancy, good potential is demonstrated
in the mentioned studies by improving the scalar flux predictions. There is still a gap however; it is not clear how
the accuracy of the mean flow field improves when data-driven models are applied to both the Reynolds stress and
scalar-flux simultaneously.
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4

Methodology

4.1 Large-Eddy Simulations

In the present thesis, three cases are used to demonstrate the methodology: the neutral boundary layer (NBL) case,
the convective boundary layer (CBL) and the stable boundary layer (SBL) case. This section presents the methodology
for running Large-Eddy Simulations in SOWFA-6 to generate reference data on these cases.

4.1.1 Case Definitions
The general strategy for generating high-quality reference data is to first develop the LES setup and methodology
by validation against scientific literature for non-neutral atmospheric boundary layer flows. Firstly, the GEWEX
Atmospheric Boundary Layer Study (GABLS) [78] is selected for validating the SBL case setup. This inter-comparison
study contains data from multiple participants and thereby offers a range of output values. Secondly, the unstably
stratified case of Abkar and Moin [79] is used for the validation of the CBL. Finally, all cases are validated against the
analytical log-law for rough wall atmospheric boundary layer flows, eq. (2.7).

The general case parameters of the SBL case and CBL case are the same as those presented in the validation
literature. The NBL case is a modification of the SBL case. Only the initial temperature condition and wall temperature
flux are modified such that stable conditions are maintained in the NBL case simulations. The general case parameters
are summarized in table 4.1.

Table 4.1: General parameters and conditions used in the LES cases

NBL SBL CBL
Reference density ρ0 [kg/m3] 1.225 1.225 1.225
Prandtl number Pr 0.7 0.7 0.7
Kinematic viscosity ν [m2/s] 1.569E-5 1.569E-5 1.569E-5
Reference potential temperature θ0 [K] 263.5 263.5 301.78
Von Kármán constant κ 0.4 0.4 0.4
Latitude φ [◦] 73.0 73.0 43.36
Earth’s rotation period P [hr] 24 24 24
Roughness length z0 [m] 0.1 0.1 0.16

4.1.2 Governing Equations
The governing LES equations solved in SOWFA-6 are given in eq. (4.1), eq. (4.2) and eq. (4.3).

∂ũi
∂xi

= 0 (4.1)

∂ũi
∂t

+
∂ũiũj
∂xj

= − 1

ρ0

∂p̃

∂xi
+

∂

∂xj

(
ν
∂ũi
∂xj
− τSGSij − τw,ij

)
+

(
θ̃ − θ0

θ0

)
gi − 2εi3kΩ3ũk + Si +

1

ρ0
fTi (4.2)

In the SOWFA-6 formulation, 1
ρ0

∂p̃
∂xi

is the density normalized pressure gradient as deviation from the hydrostatic
component and the mean horizontal pressure gradient. The wall stress is enforced by adding the term τw,ij . Si is the
momentum source term. Theoretically, it is the horizontal mean pressure gradient that drives the flow. Practically, its
value is controlled such that the horizontal mean wind speed is constant at a certain reference height. Furthermore,
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Ω3 = 2π
P ·3600 sin(φ) with P Earth’s rate of rotation and φ the latitude. Finally, turbine actuator forces are represented

by fTi .
∂θ̃

∂t
+
∂θ̃ũj
∂xj

=
∂

∂xj

(
ν

Pr

∂θ̃

∂xj
+ qw,j − qSGSj

)
(4.3)

As was done with the wall stress in eq. (4.2), the wall heat flux is added as the source term qw,j .

As is standardly implemented in SOWFA-6, the sub-grid scale turbulent fluxes are parameterized with the one equation
Deardoff model for planetary boundary layer flows [80], [81]. This model assumes a stability dependant sub-grid length
scale l which is a function of stability. The value of l decreases for stably stratified conditions to include the effect of
turbulence suppression.

l = min

(
∆ , 0.76

√
kSGS

( ∂θ̃
∂xi

gi
θ0

)−1/2
)

(4.4)

The local grid size ∆ is computed as the cube root of the volume of the respective cell and kSGS is the sub-grid scale
turbulent kinetic energy, which is governed by a transport equation. The formulation for the SGS eddy viscosity is
shown in eq. (4.5).

νSGS = lCk
√
kSGS (4.5)

The model coefficient Ck = 0.1, whereas the coefficient Ce = 0.19 + 0.74 l
∆ , such that its Ce = 0.93 when l = ∆

for neutral or unstable conditions [82]. For the SGS heat flux, the gradient diffusion hypothesis model is used.
Equation (4.6) and eq. (4.7) show the corresponding expressions.

qSGSj = − νSGS
PrSGS

( ∂θ
∂xj

)
(4.6)

PrSGS =
(

1 +
2l

∆

)−1

(4.7)

4.1.3 Numerical Schemes
The differential operators in eq. (4.1), eq. (4.2) and eq. (4.3) are discretized with second-order finite volumes schemes.
Table 4.2 summarizes which schemes are used for which operators. An additional constraint on the time-marching is
that the CFL number does not exceed 0.75.

Table 4.2: Finite volume schemes for LES solver

Operator Scheme Order
∂
∂t (time) CrankNicolson 0.9 second
∇ (gradient) Gauss linear second

∇· (divergence) ũi, θ̃: Gauss localBlended linear upwind second
Remaining: Gauss linear second

∇2 (Laplacian) Gauss linear corrected second
Surface-normal gradient corrected second

4.1.4 Precursor-Successor Approach
The governing equations are solved on a rectangular domain in which the air flows from the west face to the east face.
The precursor-successor approach is used to generate realistic turbulent conditions at the west boundary [83]. In the
precursor stage of the simulation, no wind turbines are present in the domain. The west and east boundaries as well
as the north and south boundaries are connected by cyclic boundary conditions. The flow is driven by the momentum
source term Si which is controlled to maintain a constant horizontal velocity at a reference height. The simulation is
continued until turbulence has developed fully. From this point onwards, the flow is said to be statistically stationary
and boundary plane data of the west boundary is collected at every time step until the end of the precursor simulation.

In the successor stage of the simulation, the wind turbines are present in the domain and the west and east
boundaries become inflow and outflow boundaries. The inflow conditions at the west boundary are prescribed from
the boundary planes saved during the precursor stage. The driving momentum source term Si during the successor
stage is set as the mean of the precursor momentum source. A schematic of the precursor-successor concept is shown
in fig. 4.1 [83].

In chapter 5, it will be shown how the present LES framework is developed and validation against literature. It is
important to note that the validation cases are similar to the precursor stage, as the west and east boundaries are

22



Figure 4.1: Schematic of the precursor-successor approach to providing inflow conditions for wind turbine flows. The
figure is obtained from Matthew J. Churchfield, Lee, Michalakes, et al. [83].

connected by cyclic boundary conditions and no wind turbines are present in the domain. However, the precursor
stages of the final turbine simulations vary slightly from the validation case in the wind direction. In the precursor, the
momentum source is always controlled such that the hub-height velocity as a zero lateral component (i.e. Vhub = 0)
so that the flow is generally aligned with the coordinate axis and flows from west to east. For the validation cases,
however, the momentum source is controlled such that the geostrophic wind speed matches the values reported in the
literature used for validation, resulting in a generally non-zero lateral wind speed at hub-height.

Simulation time and Statistical Stationarity

The simulation validation cases are kept the same as in the reference literature; 2.5 hr for the CBL case and 9 hr for
the SBL case. The precursor cases last 1.5 hr longer than the validation case so that the boundary plane data can be
collected during this period. For the NBL case, the precursor is run for 6.5 hr of total simulation time. With this
time, the case is statistically stationary for at least the final 1.5 hr, meaning the friction velocity u∗ and mean forcing
no longer change. All successor cases run for the 1.5 hr that coincides with the collection of boundary plane data in
the respective precursor stage.

The main output for the Large-Eddy Simulations are the time-averaged statistics such as the mean velocity field,
Reynolds stress tensor and turbulent heat flux. In all precursor and successor cases, these statistics are obtained by
averaging over the very final hour of simulation time using data from every timestep.

4.1.5 Initial Conditions

Precursor stage

For all three precursor cases, the velocity field is initialized as a uniform which is equal to geostrophic velocity, which
was Ui = (9, 0, 0) m/s for the NBL case and the SBL case, and Ui = (10, 0, 0) m/s for the CBL case. Additionally,
the velocity in the stream-wise and span-wise direction, U and V , are perturbed so that the development of turbulence
is promoted.

The initial condition for the potential temperature is θ, together with the wall heat flux, the determining factor
for atmospheric stability in a Large-Eddy Simulation. For the NBL case, the initial temperature is uniform with a
value equal to the reference potential temperature θ0. The initial potential temperature conditions for the CBL and
SBL are set according to Abkar and Moin [79] and Beare, Macvean, Holtslag, et al. [78], respectively. The initial
condition is a function height z only, as shown in fig. 4.2. In the CBL case, the θ = 300 K until z = 937 m, after
which there is a strong capping inversion in which the temperature rises ∗ K in 126 m. Above the capping inversion,
the temperature rises with 3 K/km. The strong capping inversion effectively sets the height of the initial boundary
layer by suppressing turbulence locally. For the SBL case, the θ = 265 K until z = 100 m, after which it rises with
1 K/km.

The initial condition for SGS kinetic energy is set as uniform kSGS = 0.5 m2/s2 for all three cases. Finally, the
initial condition for the SGS eddy viscosity is set as uniform νSGS = 0 m2/s.

Successor Stage

For the initial conditions of the successor stage, the usual approach is to use the instantaneous field data from the
precursor case. This field data should be taken at the time in the precursor at which the successor starts and boundary
data is collected for inflow. However, in the present LES setup, the precursor domain and mesh are generally not the
same as those of the successor, as explained in section 4.1.8. The alternative approach used here is to first take planar
averages for the velocity and temperature of the precursor field. These planar averages are then written to successor
case. The downside of this method is the lack of proper turbulence in the initial conditions, as is particularly visible in
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Figure 4.2: Initial conditions for the potential temperature θ for the CBL case (left) and the SBL case (right)

the velocity field. However, as will be shown in section 5.4, turbulence is still propagated through the domain due to
the turbulent inflow conditions, and the flow reaches statistical stationarity relatively quickly. Similarly to the precursor
stage, the SGS kinetic energy and SGS eddy viscosity are initialized as kSGS = 0.5 m2/s2 and νSGS = 0 m2/s.

4.1.6 Boundary Conditions
The Schumann-Grötzbach boundary condition is used for the wall stress at the lower boundary. This model relates the
local instantaneous wall shear stress τi3 to rough wall ABL log-law from Monin-Obukhov similarity theory.

τw = u2
∗ =

( < ur > κ

ln(z/z0)−Ψm

)2

(4.8)

τi3 = − ũi
< ur >

τw , i = 1, 2 (4.9)

The wall parallel velocity is given by ur =
√
ũ2

1 + ũ2
2, and < ... > indicates the planar average operator. For the

determination of the stability dependant term Ψm, which was defined in eq. (2.10) and eq. (2.9), the Monin-Obukhov
coefficients β = 4.9 and γ1 = 15 are used.

Next tho the Schumann-Grötzbach boundary condition for the wall stress, it is customary to use the no-slip
boundary condition for the velocity at the lower wall. Although this is possible, it is recommended in default SOWFA-6
to use boundary condition velocityABLWallFunction. This boundary condition sets the velocity at the first cell off
the wall such that the wall-normal velocity gradient at the wall is equal to the wall-normal velocity gradient at the
top face of the first cell. The purpose of this is to supply a proper vertical velocity gradient to the SGS model. As
shown in section 5.1, velocityABLWallFunction produces better stress results for the present setup. As such, the
condition is used for the NBL and SBL cases. In section 5.2 it is shown that the no-slip condition must be used for
the CBL case.

For the wall heat flux, a fixed uniform value of qw = 0.24 Km/s is used for the CBL case, while a constant
temperature change of −0.25 K/h is prescribed for the SBL case, starting from 265 K at the start of the simulation.
Given the surface temperature, the instantaneous heat flux is computed using the fixedHeatingRate boundary
condition which evaluates the following expression.

qw =
κu∗∆θ

σθln
(
z
z0

)
− ψh

(4.10)

Here, ∆θ is the temperature difference between the surface and the fluid at the first cell, Ψh is the Monin-Obukhov
function for the heat flux with the coefficients for its determination being σθ = 1 and γ2 = 9.

All other boundary conditions are listed in table 4.3 for the precursor stage and table 4.4 for the successor
stage. The value corresponding to a fixed value or gradient boundary condition is indicated as well. Note that
timeVaryingMappedFixedValue represent the boundary condition that reads and applies the boundary plane data
from the precursor stage.
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Table 4.3: Boundary conditions of the LES precursor cases under neutral (N), stable (S) and unstable (U) conditions

Lower Upper West South East North

ũi

N velocityABLWallFunction
slip cyclic cyclic cyclic cyclicS velocityABLWallFunction

U noSlip
p̃ fixedFluxPressure fixedFluxPressure cyclic cyclic cyclic cyclic

θ̃

N
zeroGradient

zeroGradient
cylic cyclic cyclic cyclicS fixedGradient 0.003

U fixedGradient 0.001
τw SchumannGrotzbach fixedValue 0 cyclic cyclic cyclic cyclic

qw

N fixedValue 0
fixedValue 0 cyclic cyclic cyclic cyclicS fixedHeatingRate

U fixedValue qw
νSGS fixedValue 0 fixedValue 0 cyclic cyclic cyclic cyclic
kSGS zeroGradient zeroGradient cyclic cyclic cyclic cyclic
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4.1.7 Turbine Representation
For the turbine, the NREL 5 MW Reference Turbine is used [84]. This three-bladed upwind turbine is representative
of modern industrial-scale off-shore wind turbines. As described in section 3.4, the actuator disc model (ADM) is
the preferred method for wind turbine parameterization over the actuator line model (ALM) in the LES cases for
the present study. The primary reason for this is the significantly lower computational cost required coupled with a
comparable accuracy for the time-averaged fields, which are our main quantities of interest in the LES cases. In the
Large-Eddy Simulations, the wind turbine power production is controlled by two independent basic control systems: the
generator-torque controller and the collective rotor blade pitch controller. The generator torque controller effectively
controls the rotational speed of the wind turbine and is mostly active below the rated operating point where power
production is maximized. The blade pitch controller is active above rated speed such that power production is limited.
A detailed description of the parameters of the two control systems can be found in the NREL technical report[84].

4.1.8 Domain and Mesh
The LES equations are solved on a rectangular domain with sizes as shown in table 4.5. For the precursor NBL and
SBL cases, the domain size is reduced in stream-wise length to save computational cost. For the CBL case, the
domain is large to allow large convective eddies to form.

Table 4.5: Domain size Lx · Ly · Lz for the LES precursor and successor stages

NBL CBL SBL
Precursor 800 m · 800 m · 800 m 5000 m · 2000 m · 2000 m 600 m · 600 m m600 m
Successor 2000 m · 800 m · 800 m 5000 m · 2000 m · 2000 m 2000 m · 600 m · 600 m

For actuator disc turbine representations, 25 grid cells are required per rotor diameter [85]. This translates to
a mesh resolution of 5 m at the turbine. As such, the NBL and SBL case mesh resolution ∆x ·∆y ·∆z is set as
5 m · 5 m · 5 m below z = 200 m and is coarsened to 10 m · 10 m · 10 m above z = 200 m. For the convective
boundary layer, multiple refinement zones are used to limit the total cell count for such a large domain. The mesh
definitions are presented in table 4.6.

Table 4.6: Mesh resolution and refinement zones for the CBL precursor case

∆x [m] ∆y [m] ∆z [m] position x [m] position y [m] position z [m]

precursor Background 100 100 40 - - -
Refinement 1 50 50 20 0 ≤ x ≤ 2000 0 ≤ y ≤ 2000 0 ≤ z < 1500

successor
Background 100 40 40 - - -
Refinement 1 50 20 20 0 ≤ x ≤ 2000 0 ≤ y ≤ 2000 0 ≤ z < 1500
Refinement 2 25 10 10 0 ≤ x < 2640 685 < y < 1315 0 ≤ z < 504
Refinement 3 12.5 5 5 0 ≤ x < 2010 811 < y < 1189 0 ≤ z < 378

4.2 Frozen-RANS

The goal of the frozen-RANS method is to find the model-form errors between a baseline RANS turbulence model
and time-averaged high fidelity reference data. These errors are postulated where the baseline RANS model is known
to suffer from simplifying assumptions, and such that the RANS model becomes consistent with the reference data.
For selecting the baseline model, it is convenient to choose simple and commonly used models. This allows us to gain
insight into the failure mechanisms of these models and leverage fast convergence rates during the simulations. The
latter is not only important now, but also, particularly when machine learning techniques are used to generalize the
frozen-RANS corrections, and when these models are applied to novel cases. Furthermore, in order to demonstrate the
novel frozen-RANS framework, the complexity of the baseline model is an arbitrary matter beyond computational time.

4.2.1 Baseline k − ε model
For the baseline model, the requirements are that atmospheric stratification is considered. The basic k − ε model
described of Duynkerke [86] and Wyngaard [87] is selected. More sophisticated k− ε models do exist for the stratified
ABL, such as the model of Koblitz [88]. However, to demonstrate the novel frozen approach a simple model is
sufficient. The transport equations of the selected model are given in eq. (4.11) and eq. (4.12).

Dk

Dt
= Pk +B − ε+

∂

∂xj

[(
ν +

νt
σk

) ∂k
∂xj

]
(4.11)
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Dε

Dt
=
ε

k

(
Cε1Pk − Cε2ε+ Cε3B + Cε4

B2

ε

)
+

∂

∂xj

[(
ν +

νt
σe

) ∂ε
∂xj

]
(4.12)

The model coefficients are a function of atmospheric stratification. For the neutral case, Cε3 = Cε4 = 0, since
there are no temperature variations. For the unstable case, Cε3 = Cε1 and Cε4 = 0. For the stable case Cε3 = 0.5
and Cε4 = 1.0. For the other model coefficients standard values for ABL flows are used [89]. All standard model
coefficients are summarised in table 4.7

Table 4.7: Standard model coefficients for the selected k− ε ABL model, under neutral, stable and unstable conditions

Cµ Cε,1 Cε,2 Cε,3 Cε,4 σk σε
k − ε ABL neutral 0.03 1.21 1.92 0 0 1.00 1.30
k − ε ABL stable 0.03 1.21 1.92 0.5 1 1.00 1.30
k − ε ABL unstable 0.03 1.21 1.92 1.21 0 1.00 1.30

For the turbulent heat flux, the gradient diffusion hypothesis model, eq. (3.22), is used as this is the most common
and simple model.

−u′iθ′ =
νt
Prt

∂θ

∂xi

Prt = 0.85 is used in all frozen-RANS and RANS cases since Li [90] have shown that the turbulent Prandtl number
asymptotically reaches this value for the large Peclet numbers observed in the atmospheric boundary layer.

4.2.2 Postulation of model-form error
With the baseline model known, the model-form error can be postulated. With the addition of this error in the model,
the complete RANS and turbulence model equations become fully consistent with the time-averaged LES reference
system. In terms of terminology, an unknown error is usually referred to as uncertainty, while a known error can be
corrected for. Since the frozen-RANS approach derives exact known model-form errors, the term model-form error is
often interchanged with the term correction. The corrections are postulated in the Reynolds stress anisotropy, the
turbulent kinetic energy transport equation, and in the current framework, in the turbulent heat flux.

Normalised anisotropy error

Following Weatheritt and Sandberg [12], a correction to the normalised Reynolds stress anisotropy b∆ij is defined in
eq. (4.13).

bij =
u′iu
′
j − 2

3kδij

2k
= bBoussinesqij + b∆ij =

−2νtSij
2k

+ b∆ij (4.13)

The change to the normalised anisotropy impacts the RANS model directly at the Boussinesq hypothesis since the
term bBoussinesqij is normally an approximating model for bij . Additionally, the change impacts the expression for the
shear production of turbulence in the k and ε transport equations.

Pk = −u′iu′j
∂Ui
∂xj

= PBoussinesqk + P∆
k = 2νtSij

∂Ui
∂xj
− 2kb∆ij

∂Ui
∂xj

Transport equation residual

As shown by Schmelzer, Dwight, and Cinnella [13], the k-transport equation is not exactly satisfied on mean LES
fields, even with the addition of the correction term b∆ij . As such a residual R to the k transport equation is needed
for the RANS system to be consistent with LES.

Dk

Dt
= Pk +R+B − ε+

∂

∂xj

[(
ν +

νt
σk

) ∂k
∂xj

]
(4.14)

The k transport equation residual R can be considered as an additional term for turbulence production or destruction
inside the transport equation. As such, R also appears in the ε transport equation.

Dε

Dt
=
ε

k

(
Cε1(Pk +R)− Cε2ε+ Cε3B + Cε4

B2

ε

)
+

∂

∂xj

[(
ν +

νt
σe

) ∂ε
∂xj

]
(4.15)
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Turbulent heat flux error

In the scalar transport equation for the potential temperature eq. (3.15), the unknown turbulent heat flux u′jθ′ is
modelled by the Gradient-Diffusion Hypothesis (GDH). Equation (4.16) shows how the turbulent heat flux error q∆

j is
defined as the difference between the GDH value and the LES value.

θ′u′j = qGDHj + q∆
j = − νt

Prt

∂Θ

∂xj
+ q∆

j (4.16)

With the addition of the turbulent heat flux error, q∆
j , the scalar transport equation for potential temperature

becomes the expression given in eq. (4.17).

∂ΘUj
∂xj

=
∂

∂xj

[(
ν

Pr
+

νt
Prt

)
∂Θ

∂xj

]
−
∂q∆
j

∂xj
(4.17)

Additionally to the altered form of the potential temperature transport equation, the expression for the buoyant
production of turbulence in the k and ε transport equations change as shown below. The gravitational vector used is
gj = (0, 0,−9.81).

B =
gj
θ0
u′jθ
′ = BGDH +B∆ =

gj
θ0

νt
Prt

∂Θ

∂xj
− gj
θ0
q∆
j

4.2.3 Algorithm Description

In order for the corrections R, b∆ij and q∆
j to be calculated, the fields for νt and ε are required. The k − ε equations

with corrections are iteratively solved on the frozen LES fields to do so. Figure 4.3 shows the flow of the algorithm.
First, all variables that are known or calculated from LES are loaded in and frozen, meaning they are not updated
or recalculated throughout the process. Frozen variables are indicated with an asterisk. After all corrections and ε
are initialized as zero, and νt is initialized with 10−5, the main loop is started. The turbulence production terms
are calculated, including the effect of the normalised anisotropy correction b∆ij and the heat flux correction q∆

j . The
epsilon equation is evaluated to update ε, after which νt is updated. Finally, the values for all corrections are updated.
The process is repeated until the residual for epsilon drops below 10−10.

4.2.4 Numerical Schemes
The numerical schemes for the froze-RANS approach are the same as those of the RANS simulation. The used
schemes are shown in table 4.8.

Table 4.8: Finite volume schemes for RANS and frozen-RANS solvers

Operator Scheme Order
∂
∂t (time) steadyState -

∇ (gradient) Ui,Θ: cellLimited Gauss linear 1.0 second
Remaining: Gauss linear second

∇· (divergence)

Ui: bounded Gauss linearUpwindV second
Θ: bounded Gauss linearUpwind second
k, ε, R: bounded Gauss upwind first

Remaining: Gauss linear second
∇2 (Laplacian) Gauss linear corrected second

Surface-normal gradient corrected second

4.2.5 Boundary Conditions
In OpenFOAM-6, the wall stress in typical neutral ABL RANS simulations is set by the νt nutkAtmRoughWallFunction.
The boundary condition is adapted to include the effects of atmospheric stratification in the ABL log-law by adding
the integrated Monin-Obukhov function Ψm. The modified expressions, now represented by the boundary condition
nutkStratAtmRoughWallFunction, are shown in eq. (4.18). The condition is used in all present frozen-RANS and
RANS simulations. All other boundary conditions for the frozen-RANS method are shown in table 4.9.

τw/ρ = ν
∂U

∂z
|wall = u2

∗ = u∗
U1κ[

log
(
z1
z0

)
−Ψm

] = C1/4
µ

√
k

U1κ[
log
(
z1
z0

)
−Ψm

] ∼= (ν + νt)
U1

z1
(4.18)
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No

Yes

Figure 4.3: Flowchart for the Frozen-RANS method to computing model-form errors

4.2.6 Consistency with LES System
In order to ensure the frozen-RANS cases are consistent with LES in terms of wall stress and driving force, u∗ needs
to matched. This is done by changing the k− ε model coefficients Cµ and Cε1 according to eq. (4.19) and eq. (4.20).
These relations relate the coefficients to the wall stress under wall equilibrium turbulence [89].

Cµ =
u4
∗

k|2w
(4.19)
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Table 4.9: Boundary conditions for the Frozen-RANS cases

Lower Upper West South East North
νt nutkStratAtmRoughWallFunction slip zeroGradient cyclic zeroGradient cyclic
k kqRWallFunction slip zeroGradient cyclic zeroGradient cyclic
ε epsilonWallFunction slip zeroGradient cyclic zeroGradient cyclic
R calculated calculated calculated cyclic calculated cyclic
b∆ij calculated calculated calculated cyclic calculated cyclic
q∆
j calculated calculated calculated cyclic calculated cyclic

Cε1 = Cε2 −
κ2√
Cµσε

(4.20)

Here, the total wall turbulent kinetic energy is obtained from the reference LES case as k|w = kResolved|w + kSGS |w.
The friction velocity u∗ is obtained as the mean from the final hour of simulation time of the precursor case. The
values of k|w and u∗ are shown in table 4.10, and the corresponding model coefficients are shown in table 4.11.

Table 4.10: LES friction velocity and wall turbulent kinetic energy

u∗ k|wall
Neutral 0.40 0.54
Stable 0.25 0.06
Unstable 0.57 4.39

Table 4.11: k − ε model coefficients that ensure consistency with the LES reference for the NBL case, SBL and CBL
case

Cµ Cε,1 Cε,2 Cε,3 Cε,4 σk σε
standard k − ε ABL 0.03 1.21 1.92 0 0 1.00 1.30
NBL case 0.085 1.50 1.92 0 0 1.00 1.30
SBL case 1.17 1.81 1.92 0.5 1 1.00 1.30
CBL case 0.0056 0.28 1.92 0.28 0 1.00 1.30

4.3 Corrected RANS

With the turbulence model corrections R and b∆ij , and the turbulent heat flux model correction q∆
j known from

frozen-RANS, they can be injected back into the models during the RANS simulation. The hypothesis being that the
injection results in significant improvements in the Reynolds stress profiles, the turbulent kinetic energy profiles and in
the turbulent heat flux profiles. These improvements should in turn result in near-perfect matches for the velocity and
potential temperature. If this is the case, the frozen-RANS framework can be applied to a set of similar LES reference
flows for wind turbines in non-neutral atmospheres. The resulting corrections can then be used as input data for
machine techniques to construct generalized corrected turbulence models that can be applied in a predictive setting.

4.3.1 Governing and Model Equations
The governing RANS equations solved in SOWFA-6 are shown in eq. (4.21), eq. (4.22) and eq. (4.23).

∂Ui
∂xi

= 0 (4.21)

∂UiUj
∂xj

= − 1

ρ0

∂P

∂xi
+

∂

∂xj

(
ν
∂Ui
∂xj
− u′iu′j

)
+

(
Θ− θ0

θ0

)
gi − 2εi3kΩ3Uk + Si +

1

ρ0
fTi (4.22)

∂ΘUj
∂xj

=
∂

∂xj

(
ν

Pr

∂Θ

∂xj
− θ′u′j

)
(4.23)

The momentum source Si is taken as the mean value of the LES precursor case. The turbine forcing term fTi is
calculated once again by the actuator disc model. Now, however, the pitch and rotor speed are not regulated by the
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Table 4.12: Mean LES rotor revolutions per minute (RPM) and pitch angle, used as input settings for the RANS cases

mean RPM mean rotor pitch [◦]

NBL 9.09 0.0
SBL 9.301463494059407 0.0
CBL 8.43 0.0

controllers as in LES but instead kept fixed at the mean LES values shown in table 4.12.

The turbulence model turbulent heat flux model equations are the same as the frozen-RANS model equations
described in section 4.2.2. The known model-form errors or corrections, calculated by the frozen method, are injected
into the model equations. A blending term F is introduced that switches off the corrections 30 m below the upper
boundary to avoid interaction with the boundary conditions. The blending term can also be used to switch of certain
corrections at the lower wall. Additionally, a relaxation term γ is introduced that ramps from 0 to 1 in the span of 50
or 100 iterations, depending on whether the domain is empty, for simulating free-stream flow, or contains the turbine.

R̃ = γRFRR

b̃∆ij = γbFbb
∆
ij

q̃∆
j = γbFbq

∆
j

(4.24)

4.3.2 Momentum Forcing

4.3.3 Initial and Boundary Conditions
For the initial conditions, the LES field for Ui, P and Θ are used. The initial fields for k, ε and νt are taken as the
final fields from the respective frozen case. For the inflow conditions, the frozen cases act as precursors to the RANS
stages. During the frozen stage, boundary plane data is collected at the inflow boundary for U , Θ, k, ε and νt. The
boundary plane data of the final frozen iterations (the iteration upon which ε has converged) is then used as inflow
data for the RANS case. This is represented by the mappedFixedValue boundary condition in OpenFOAM-6. All
other boundary conditions for the RANS simulations are shown in table 4.13.
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5

Large-Eddy Simulation Results

In this chapter, the LES results are presented. First, the validation of the setup is discussed in section 5.1 for the
stable case, in section 5.2 for the convective case and in section 5.3 for the neutral case. Afterwards, in section 5.4,
the most important results from the main precursor and successor cases are shown. All other LES successor results
are shown in chapter A. Unless stated otherwise, all validation and precursor results are both temporally and spatially
(in-plane) averaged, while the successor results are only temporally averaged profiles along a certain line.

5.1 Validation Case 1: GABLS

In this section, the validation for the SBL case is shown. Simulation results are plotted against the GABLS data [78]
which is shown as a set of black lines. All of the GABLS profiles are obtained with a uniform mesh resolution of
3.125 m. This is slightly finer than the mesh resolution of the SOWFA-6 cases, which have a 5 m resolution below
z = 250 m and a 10 m resolution above.

In the LES development, particular attention is paid to the choice of velocity boundary condition on the lower
wall, next to validating the general setup and mesh resolution. As described in section 4.1.6, the boundary condition
velocityABLWallFunction is used in SOWFA-6 to limit the wall-normal velocity gradient that is supplied to the SGS
model. The no-slip boundary condition is normally used in other LES solvers. In the validaton plots, both boundary
conditions are tested and compared with the GABLS data.

Figure 5.1 shows the time-averaged profiles of velocity and temperature for the present LES and the GABLS LES
cases. The SOWFA-6 results agree with the GABLS data, which displays moderate spread. The boundary layer height,
measured as the lowest location at which the wind speed can be considered geostrophic, varies from 200 m to 240 m
between the cases. In terms of potential temperature, the profiles show a positive wall-normal gradient throughout
the domain, indicating purely stable conditions. The difference between the two boundary conditions is negligible for
both velocity and temperature.

0.0 2.5 5.0 7.5 10.0
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Figure 5.1: Stable boundary layer case validation results. Left: U (solid) and V (dashed) components of velocity.
Right: temperature distribution. Thin black lines represent the GABLS data.

The components of the resolved Reynolds stress tensor are shown plotted against the GABLS data in fig. 5.2. At
the wall, a large spread is observed in the GABLS data. The SOWFA-6 LES results show good agreements in general,
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but a small peak is observed in the v′v′ and w′w′ components right below the top of the boundary layer at z = 180 m.
The pattern seems to be present in some of the GABLS cases as well, although less pronounced. The small local
peaks are not thought to be mesh dependant, since they do not occur at the coarsening height of z = 250 m.
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Figure 5.2: Stable boundary layer case validation results for the Resolved Reynolds stress components. Thin black
lines represent the GABLS data.

The resolved heat flux components are shown in fig. 5.3. Simulation results agree reasonably with the GABLS
data. For the x component, the predicted magnitudes are slightly higher than the GABLS values, while the match is
better around the top of the boundary layer. For the y component, the predicted values are right on the edge of
the GABLS range throughout the height of the boundary layer. For the z component, the predicted magnitudes are
slightly lower than the reference close to the wall but agree well above. Once again, the choice of velocity boundary
condition does not play a significant effect.
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Figure 5.3: Stable boundary layer case validation results for the Resolved heat flux components. Thin black lines
represent the GABLS data.

In fig. 5.4 the vertical momentum flux, or xz component of the Reynolds stress, is shown decomposed into the
resolved component, the SGS component and the total. In the total momentum flux plots for the SOWFA-6 LES
cases, the xz component of the average wall shear stress τw,xz is added at the wall. In the actual simulation code,
the wall stress is introduced as a source term to the momentum equation. A large difference is observed in the SGS
component of the momentum flux at the wall. For the no-slip condition, the value is significantly larger than for
the velocityABLWallFunction condition or than for any of the GABLS cases. This results in a spike in the total
momentum flux for the no-slip condition. Although both velocity boundary conditions show discontinuous behaviour
close to the wall, it can be concluded that velocityABLWallFunction produces results that closer agree with the
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validation data. Since the choice of velocity boundary condition does not have a large effect on the prediction quality
of the velocity, temperature, resolved Reynolds stress and resolved heat flux profiles, the velocity boundary condition
velocityABLWallFunction is the preferred choice in the present setup. The condition is used for all SBL and NBL
cases, but can not be used for the CBL cases, as is explained in section 5.2.
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Figure 5.4: Stable boundary layer case validation results for the Vertical momentum flux decomposed into the Resolved
and SGS components. Thin black lines represent the GABLS data.
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5.2 Validation Case 2: Abkar & Moin Convective Planetary Boundary
Layer

In this section, the validation for the CBL case is shown. The convective case of Abkar and Moin [79] is used as
reference data. Throughout the section, their data is labelled as ’Abkar & Moin’. Figure 5.5 shows the simulation
results for the mean planar average velocity and potential temperature profiles. The velocity profiles obtained using
the velocityABLWallFunction show a large discrepancy with the validation data below the boundary layer height
zi, which is defined as the wall-normal location where the wall-normal turbulent heat flux is lowest. Additionally, an
oscillating pattern is seen right in the lower part of the boundary layer, with the strongest oscillation right at the wall.
The results for the no-slip condition show much greater agreement with the validation data. Moderate discrepancies
exist in the stream-wise velocity in the upper part of the boundary layer and around the capping inversion. As the wind
turbine in the successor stage only stretches until z = 150.6 m or z/zi = 0.146, the velocity mismatch at the boundary
layer top likely does not affect the quality of the successor solution. Considering Abkar & Moin used a pseudo-spectral
code for their LES, and OpenFOAM is a finite volume code, the velocity results for the no-slip case are satisfactory. Both
the potential temperature profiles obtained with no-slip condition and the velocityABLWallFunction condition
agree well with the reference, with the no-slip condition providing a slightly better match at the wall.
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Figure 5.5: Convective boundary layer case validation result. Left: Planar averages of mean U (solid) and V (dashed)
components of velocity. Right: Planar average of mean potential temperature distribution.

Figure 5.6 shows planar average profiles of the horizontal and vertical resolved stress. The values are normalised
by the convective velocity w∗ = 3

√
((|g|/θ0)qwzi). Additionally, fig. 5.6 shows field observations obtained by aircraft

in the Air Mass Transformation Experiment [91]. The results from both velocity boundary conditions lie on the low
end of the range of the field observations. For the vertical resolved stress, the no-slip condition produces an excellent
match with both observations and the validation LES results.
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Figure 5.6: Convective boundary layer case validation results for the planar averages of the horizontal (left) and
vertical (right) resolved stresses, compared to field aircraft observations.
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Figure 5.7: Convective boundary layer case validation results for the planar averages of the vertical momentum flux
decomposed into the Resolved and SGS components.
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Figure 5.8: Convective boundary layer case validation results for planar averages of the vertical heat flux decomposed
into the Resolved and SGS components.

The momentum flux is compared with the validation case in fig. 5.7. In accordance with the results obtained for
the stable boundary layer, using the no-slip condition for velocity at the wall results in a high value of SGS momentum
flux at the wall, which carries over to the total momentum flux. upwards of this peak in momentum flux, the no-slip
actually produces a much closer match with the validation case than velocityABLWallFunction does.
Figure 5.8 shows the vertical component of the turbulent heat flux. At the wall, the value of qw = 0.24 is added to
the total vertical heat flux. During simulation runtime, this value is not added to the resolved or SGS component of
the heat flux, but rather added as a source term to the temperature equation, as seen in eq. (4.3). The results from
both velocity boundary conditions agree well in the middle and upper part of the boundary layer. However, as was the
case with the momentum flux, the no-slip condition produces a better match in the lower part of the boundary layer.
Only at the height of the first two cells does the total heat flux disagree with the reference.
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5.3 Validation Case 3: Rough Wall Atmospheric Log-Law

As was established in the section 5.1, the use of the velocity boundary condition velocityABLWallFunction is
preferred over the no-slip condition if possible. As another check, the NBL case, which is essentially the GABLS case
modified to be neutrally stratified, is compared against the atmospheric boundary layer log-law (eq. (2.7)) in fig. 5.9.
The agreement is well throughout most of the domain. At the first cell, the velocity is lower than log-law. This is the
direct working of the boundary condition velocityABLWallFunction. Since the match is generally well and the
profile is smooth, unlike how it was for the CBL case, the boundary conditions is deemed suitable for the NBL case.
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Figure 5.9: Neutral boundary layer case horizontal velocity planar averages compared to the rough wall ABL log-law
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5.4 Main Case Results

The main precursor and successor results are shown in this section. For the successor stage, only velocity deficit
profiles are shown. Kinetic energy and heat flux profiles will be shown and discussed in detail in chapter 7, where they
are compared to the corrected RANS profiles. The complete set of LES successor wake profiles are also shown in
Appendix chapter A. Note that the successor profiles are not spatially averaged but samples along lines in certain
parts of the domain. All results are time-averaged unless otherwise stated.

In table 5.1, the general results of the LES precursor and successor cases are summarized. All quantities tabulated
are time averages of the final hour of simulation time, during which the simulations are (quasi-)stationary. In all cases,
the wind turbine operates in the lowly loaded region and below its rated point of 12.1 RPM [84].

Table 5.1: General time-averaged LES results

NBL SBL CBL
Hub-height velocity Uhub [m/s] 7.50 7.45 7.15
Friction velocity u∗ [m/s] 0.40 0.25 0.57
Wall heat-flux qw [Km/s] 0.0 -0.011 0.24
Monin-Obukhov length L [m] ∞ 100.0 -61.4
Thrust coefficient CT 0.82 0.80 0.70
Power coefficient CP 0.57 0.56 0.44
turbine RPM 9.09 9.00 8.43
turbine pitch φ [◦] 0.0 0.0 0.0

5.4.1 Neutral Boundary Layer
In order to assess statistical stationarity, the friction velocity of the simulations is plotted over time in fig. 5.10. A level
friction velocity or equivalent wall stress time series indicates a stationary. Time averaging should only be done when
the flow is stationary and for a long enough period. The figure shows how the successor case starts 1.5 hr before the
end of the precursor. In other words, boundary plane data is collected during this window. The time averages of
both the precursor and successor stages are taken over the final hour of the simulation so that the averaging periods
coincide. This hour constitutes roughly 14 flow-throughs. All time-averages are taken over a period during which the
flow can be considered stationary.
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Figure 5.10: Neutral boundary layer case convergence based on friction velocity u∗ time series

Velocity profiles along vertical lines upstream of the wind turbine are plotted in fig. 5.11. The effect of the turbine
forcing shows as the velocity decreases closer to the turbine. The profile at 1.5 rotor diameters D upstream of the
turbine is considered outside of the induction region, and is used as free-stream velocity to calculate later velocity
deficit profiles.

Figure 5.12 shows vertical wake velocity and wake velocity deficit profiles on the left, and horizontal wake profiles
on the right. All profiles are collected along lines at the indicated stream-wise stations with respect to the turbine.
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Figure 5.11: Neutral boundary layer velocity profiles in the induction region

The velocity deficit is clear, and a slow wake-recovery is observed. Furthermore, in the far wake, the horizontal velocity
deficit profiles appear to be Gaussian of shape, as is reported in literature.
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Figure 5.12: Neutral boundary layer velocity and velocity deficit profiles in the wake

5.4.2 Stable Boundary Layer
Figure 5.13 shows the friction velocity time series for the precursor and successor case. The result is slightly different
than the neutral case, as the friction velocity appears to stabilize after 1.5 hr of simulation time but then gradually
decreases. This decrease is due to the lower wall heat flux boundary condition. Instead of prescribing a fixed negative
surface heat flux, it is considered best practice for stable boundary layer LES to prescribe a constant temperature
change. In this case, the wall temperature change is set to −0.25 K/hr, as was done for the GABLS validation case.
This results in variable surface heat flux over time until the flow reaches quasi-stationarity, as is shown in fig. 5.14.
Again, all time averages are taken over the final hour of simulation time, constituting roughly 14 flow-throughs.
Furthermore, all averages are taken during quasi-stationary flow conditions. The flow is considered, quasi-stationary, as
opposed to stationary since the temperature in the domain still changes over time due to the non-zero heat balance.

Velocity profiles along vertical lines upstream of the wind turbine are plotted in fig. 5.15. The effect of the turbine
forcing shows as the velocity decreases closer to the turbine. A much higher velocity gradient is observed compared to
the neutral case, along with a low-level jet. The profile at 1.5 rotor diameters D upstream of the turbine is considered
outside of the induction region, and is used as free-stream velocity to calculate later velocity deficit profiles. Some
mesh-dependant effect is seen in the velocity profiles at the mesh coarsening level of z/D ≈ 2.

Figure 5.16 shows vertical wake velocity and wake velocity deficit profiles on the left, and horizontal wake profiles
on the right. The velocity deficit is clear, and a slow wake-recovery is observed once more. Compared to the neutral
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Figure 5.13: Stable boundary layer case convergence based on friction velocity u∗ time series
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Figure 5.14: Stable boundary layer case wall heat flux qw time series
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Figure 5.15: Stable boundary layer induction region velocity profiles

case, the wake appears to be significantly thinner, as less spreading is observed. Even until, 9D downstream of the
rotor plane, the wake is strictly limited to the lateral and wall-normal coordinates of the wind turbine rotor. Again,
Gaussian-shaped velocity deficit profiles are observed in the far-wake.
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Figure 5.16: Stable boundary layer velocity and velocity deficit profiles in the wake

5.4.3 Convective Boundary Layer
Figure 5.17 shows the friction velocity time series for the convective boundary layer precursor and successor stages.
After the initial development of turbulence, the flow becomes fully quasi-stationary, since the prescribed heat flux
is constant over time. The averaging period of 1 hr constitutes 5 flow-throughs. The amount is significantly less
than in the neutral and stable case due to the larger stream-wise domain length; 5 km for unstable versus 2 km for
neutral and stable. In section 5.2 it was discussed how the use of the no-slip condition as lower wall velocity boundary
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Figure 5.17: Convective boundary layer case convergence based on friction velocity u∗ time series

condition resulted in a high xz component of the SGS stress tensor. Planar average profiles of the resolved and SGS
stress tensor of the precursor are plotted in fig. 5.18. The same high SGS stress observed in the xz component are
seen in the xx, yy and zz components, resulting in large total stresses at the wall. Figure 5.19 shows a similar pattern
for the turbulent kinetic energy.

The velocity profiles in the induction region are shown in fig. 5.20. The induction effect can be seen until about 3D
upstream of the turbine, as the difference between the 5D and 3D profiles is negligible. The 5D profile is used as the
free-stream in further velocity deficit plots. Even though these results are time-averaged, some non-smooth patterns
are observed in the profiles, suggesting the averaging window of 1 hr ≈ 5 flow-throughs might not be sufficient.

The wake velocity and velocity deficit profiles for the unstable case are shown in fig. 5.21. Wake recovery
occurs much quicker than for the neutral and stable case, with the wake being nearly fully recovered at 9 diameters
downstream. Furthermore, the lateral wake spread is much greater under convective conditions as well. These are all
results that are expected when turbulence production is promoted in the free-stream atmosphere.
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Figure 5.18: Convective boundary layer precursor Reynolds stress components
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Figure 5.19: CBL case precursor turbulent kinetic energy
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Figure 5.20: Convective boundary layer induction region velocity profiles

5.5 Averaging Period Sensitivity Study

For the convective boundary layer, the velocity profiles show high levels of non-smooth structure, particularly in
the far-wake. Similar patterns are observed for the turbulent kinetic energy and turbulent heat fluxes in Appendix

44



0.6 0.8 1.0
U/Uhub

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

z/
D

-5D
2D
3D
5D
7D
9D

−0.3 −0.2 −0.1 0.0
(U−U−5D)/Uhub

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a) Vertical

0.8 1.0
U/Uhub

6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

y/
D

−0.2 0.0
(U−U−5D)/Uhub

6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5 2D

3D
5D
7D
9D

(b) Horizontal

Figure 5.21: Convective boundary layer velocity and velocity deficit profiles in the wake

chapter A. This is an undesirable result, as time-averaged profiles are typically smooth. The non-smooth profiles in
the far-wake are attributed to large-scale turbulent structures with long time scales. The near-wake results appear
smooth since the turbulent structures here are of much smaller spatial and temporal scales. Similarly, the neutral and
stable boundary layer time-averaged profiles are smoother because the more stable boundary layer (relative to the
convective boundary layer) limits the observed turbulent sales. The stable boundary layer turbulent heat flux profiles
are an exception, as these results also contain some non-smooth structure. The stable boundary layer, however, is not
included in the averaging period analysis due to limitations in time.

The non-smooth far-wake profiles in the convective boundary layer successor suggest that larger averaging periods
are required. The effect of the averaging window is therefore investigated and presented in this section. Five results
are shown; representing time averaging windows that range from 1 hour in duration to five duration. All results are
obtained with the time averaging window starting at the same simulation time. Additionally, all convective boundary
layer LES successor results with a 5-hour averaging period are shown in Appendix chapter A.
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Figure 5.22: Sensitivity of wake velocity deficit profiles to the time averaging period for the CBL case
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Figure 5.23: Sensitivity of wake turbulent kinetic energy profiles to the time averaging period for the CBL case
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Figure 5.24: Sensitivity of wake potential temperature profiles to the time averaging period for the CBL case

Wake velocity deficit profiles are shown in fig. 5.22. At 2D downstream of the turbine rotor, only minor differences
are observed in the location of the wind turbine wake. At 5D and 9D downstream of the rotor, non-smooth profiles
are successfully smoothed by longer averaging periods. The strong wall speed-up effect observed for Tavg = 1 h is no
longer present for the longer averaging duration. It can not be said, however, that the profiles converge to the same
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Figure 5.25: Sensitivity of wake wall-normal turbulent heat-flux profiles to the time averaging period for the CBL case

values as some drift is sen at all stations.
For the turbulent kinetic energy, shown in fig. 5.23, increasing the time averaging duration also smooths the profiles

significantly. The drift between the different profiles is, however, even stronger than with the velocity. Particularly,
there is a large drift between Tavg = 3 h and Tavg = 4 h in the wall-normal profiles. For span-wise wake profiles, the
drift is strongest in between the shorter averaging windows.

The small drift observed in the velocity deficit and TKE profiles is a result of the accumulation of heat in the
domain. This is seen clearly in the mean potential temperature profiles shown in fig. 5.24. The accumulation of heat
results in the flow state changing slowly over time. In a sense, this means that besides turbulent variations around
some mean, an additional time-varying bias exists in the solution, which is averaged out in the present formulation.
What effect this has on the frozen-RANS and RANS simulation results is unknown.
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Figure 5.26: Monin-Obukhov length time series for the convective boundary layer case with Tavg = 5 h

Finally, the heat flux profiles are shown in fig. 5.25. A drastic variation is seen between Tavg = 3 h and Tavg = 4 h.
It looks to be related to the smaller variation seen in the kinetic energy profiles. It seems as though some event
occurred between these times that triggered a massive increase in wall-normal turbulent fluctuations for the rest of
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the simulation. It is likely that at some point in time one or more very large convective eddies formed in the domain
and were recycled for by the periodic boundary conditions at the precursor inflow and outflow boundaries. Since the
successor inflow data is obtained from a recording of the precursor inflow boundary, these large convective turbulent
motions carried over the successor case. As seen in fig. 5.26, the event that causes the large shift in heat flux and
TKE does not have an influence on the Monin-Obukhov length. Besides this result, it is noteworthy that a large
degree of non-smooth structure is still present in the Tavg = 5 h profiles.

Although longer averaging periods indeed result in smoother time-averages, the change in averaging period does
not seem to improve the frozen-RANS and corrected RANS solution quality. The effect of the LES averaging period
on these techniques is shown and discussed in section 7.4.
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6

Frozen-RANS Results

For all three cases, the frozen-RANS method is first applied to the precursor case. This gives us insight into how well
the baseline model replicates the LES free-stream flow. Afterwards, results are shown for the frozen approach applied
to the successor case, giving an indication of the baseline model’s ability to represent the wind turbine wake.

All model-form errors, or equivalently corrections, as well as their effect on shear and buoyant turbulent production,
are plotted relative to the respective LES reference value, indicated by the superscript *. However, since the transport
equation residual R does not have a direct LES value, it is shown normalized with another metric: the mean Boussinesq
shear production or gradient-diffusion hypothesis (GDH) buoyancy production in the lowest part of the boundary layer.
This metric is chosen so that it is easy to compare values against production terms that might typically be observed in
RANS simulations close to the wall. The definition and value for the metrics vary depending on the stability case and
are summarized in table 6.1.

Table 6.1: Shear and buoyancy production based normalization metrics for the frozen correction figures. D = 126 m
and zi = 1070 m.

Case Shear production metric [m2/s] Buoyancy production metric [m2/s]

NBL meanz/D<1(PBoussinesqk ) = 0.0194 -
SBL meanz/D<1(PBoussinesqk ) = 0.0168 meanz/D<1(BGDH) = −1.49 · 10−3

CBL meanz/zi<0.1(PBoussinesqk ) = 3.83 · 10−3 meanz/zi<0.1(BGDH) = 9.57 · 10−4

6.1 Neutral Boundary Layer

Figure 6.1 shows planar averages of the normalized anisotropy error b∆ij compared to the Boussinesq and LES (asterix
*) values. For the 11, 22, 33 and 12 components, the Boussinesq hypothesis completely fails to predict any anisotropy,
meaning the b∆ij completely accounts for the LES reference value. For the 13 and 23 components, the Boussinesq
hypothesis provides a reasonable prediction. As such, the corrections remain small. Figure 6.2a shows how the
anisotropy error affects the shear turbulence production term. The quantity P∆

k represents the direct effect of the
normalized anisotropy error. It is shown to correct for an overproduction of turbulence at the wall. The transport
equation residual R, shown in fig. 6.2b, has a negative value right at the wall and shows a positive peak above.
Additionally, mesh defended oscillations are seen below the coarsening height. Considering the small normalization
value (table 6.1), the transport equation residual values are considered small as well.

The effect of the anisotropy error on the shear production of turbulence is shown for the successor case in fig. 6.3a.
The negative value around the wind turbine rotor shows that the baseline model over-produces mechanical turbulence
around the rotor and in the upper part of the near-wake, as is consistent with literature. Contours for the transport
equation residual R are shown in fig. 6.3b. Large positive and negative values are observed next to each other at
the upper edge of the near wake. In the far wake, some noise is observed. Additionally, negative values are seen
right upstream of the rotor and at the wall below the rotor. The corrections P∆

k and R generally show much greater
magnitudes when considering the wind turbine flow. This makes sense considering the increased complexity compared
to standard ABL flows and the limitations of the Boussinesq hypothesis.
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Figure 6.1: Frozen-RANS results for the NBL precursor case showing the normalized anisotropy error

6.2 Stable Boundary Layer

6.2.1 k − ε Model-Form Errors
The normalized anisotropy error is plotted against the Boussinesq and LES (asterix *) values in fig. 6.4. As was the
case with the neutral case, the Boussinesq model fails to produce any meaningful values for the 11, 22, 33 and 12
components. However, the Boussinesq model now also fails to produce well-matching results for the other components,
leading to large correction values for every single component.

The effect of b∆ij on shear production is visualized by plotting P∆
k against the Boussinesq and LES values in

fig. 6.5a. A similar pattern is observed with the neutral case; P∆
k corrects for an overproduction of mechanical

turbulence close to the wall. Additionally, P∆
k corrects for a small production of turbulence right above the peak at

the wall until z/D ≈ 1.7. In fig. 6.5b, a very large wall value is observed for the transport equation residual R.
Contours for P∆

k and R are shown in fig. 6.6. The shear production correction shows the baseline model over-
produces turbulence at the rotor and around the upper edge of the near wake, as was the case under neutral conditions.
The transport equation residual R shows a similar pattern at the rotor and at the wall below the rotor with small
negative values. In the wake, the patterns has changed considerably. Large positive values are observed at the upper
edge of the far wake. Furthermore, no noisy patterns are observed.

6.2.2 Gradient-Diffusion Hypothesis Error
The turbulent heat flux corrections are shown in fig. 6.7 together with the LES value and the value from the
Gradient-Diffusion Hypothesis (GDH) model. The GDH model only predicts a wall normal heat flux value as the
potential temperature only varies in the wall-normal direction. Throughout the entire boundary layer depth, q∆

z

corrects for a turbulent heat flux correction that is too great.
The difference in angle between the GDH and LES turbulent heat fluxes is calculated according to eq. (6.1).

∠q∗j , q
GDH
j =

q∗j q
GDH
j

|q∗j ||qGDHj |
(6.1)

This difference is shown in fig. 6.8a together with the ratio of the magnitudes of the two vectors. It can be seen that
the angle difference varies from 70◦ to 90◦. The gradient-diffusion hypothesis thus completely fails at predicting the
direction of the turbulent heat flux. The ratio of magnitudes ranges from 0.1 to around 5, showing that the constant
turbulent Prandtl number is violated. The effect of q∆

j on the buoyancy production of turbulence is shown in fig. 6.8b.
As buoyancy production is governed only by the wall-normal component of the turbulent heat flux, the figure shows
essentially the same pattern as the wall-normal part of fig. 6.7. Throughout the entire boundary layer, the GDH model
shows exceedingly high values of buoyant destruction.
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Figure 6.2: Frozen-RANS results for the NBL precursor case

(a) Shear turbulence production correction

(b) k transport equation residual

Figure 6.3: Contours of frozen-RANS corrections for NBL wind turbine flow, plotted at −1 ≤ x/D ≤ 9 relative to the
turbine

Figure 6.9 shows contours of the buoyancy production correction in wind turbine flow case. Downstream of the
rotor plane, the buoyancy production correction decreases in magnitude compared to the free-stream value. This
indicates that the baseline model wall-normal turbulent heat flux shows greater agreement with the LES reference in
the near-wake than in the free-stream. This improvement stems from the fact that the LES buoyancy destruction
values grow in the wake while the potential temperature, and consequently the GDH buoyancy production, hardly
changes in the wake (as is shown in chapter 7). In the far-wake the value of the buoyancy production correction flips
sign, indicating the GDH model destroys too little turbulence locally.
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Figure 6.4: Frozen-RANS results for the SBL precursor case showing the normalized anisotropy error
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Figure 6.5: Frozen-RANS results for the CBL precursor case

6.3 Convective Boundary Layer

6.3.1 k − ε Model-Form Errors
fig. 6.10 shows the components of the normalized anisotropy error. As was the case for the NBL and SBL cases,
the Boussinesq hypothesis fails in predicting the 11, 22, 33 ans 12 components. Additionally, the corrections for
the 13 and 23 components are large, particulary around the strong capping inversion. The effect of the anisotropy
correction on the shear production of turbulence is visualized in fig. 6.11a. As expected from the anisotropy results,
the correction is large primarily at the wall and in the capping inversion. In the capping inversion, the Boussinesq
model produces mechanical turbulence, whereas none is produced if the anisotropy is corrected for. At the wall,
Boussinesq under-predicts turbulence production. Figure 6.11b shows a mostly negative transport equation residual
below the capping inversion with a strong positive very close to the wall. The positive might be a result of the high
wall turbulence kinetic energy produced by the SGS model, as discussed in section 5.2.

Figure 6.12a shows the shear production error P∆
k for the successor case. As was the case in the neutral case, the

the standard k− ε model suffers from an overproduction of mechanical turbulence around the rotor. The value of P∆
k

is large at the wall, as was already seen in fig. 6.11a. Figure 6.12b shows contours of the transport equation residual
R in the turbine wake region. Large levels of noise is observed with no clear structure. The noise magnitude seems
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(a) Shear turbulence production correction

(b) k transport equation residual

Figure 6.6: Contours of frozen-RANS corrections for SBL wind turbine flow, plotted at −1 ≤ x/D ≤ 9 relative to the
turbine
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Figure 6.7: Frozen-RANS results for the SBL free-stream flow showing the turbulent heat flux error

to increase considerably in the upper part of the turbine wake. The noise is likely a artefact of oscillations in the
time-averaged LES data. Convective boundary layer simulations where performed using a Crank-Nicholson parameter
of 0.8 instead of 0.9, with the purpose of preventing such oscillations. Based on these contours, using even lower
values is warranted.

6.3.2 Gradient-Diffusion Hypothesis Error
The turbulent heat flux errors are shown in fig. 6.13 together with the LES value and the value from the Gradient-
Diffusion Hypothesis (GDH) model. Due to the strong vertical temperature gradient in the capping inversion, the
GDH model predicts a negative vertical heat flux which is barely present in LES. At the lower wall, the GDH model
predicts values much lower than the LES values. In the x and y components of the heat flux, the GDH fails to
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Figure 6.8: Frozen-RANS results for the SBL free-stream flow showing various effects of the turbulence heat flux error

Figure 6.9: Frozen-RANS results for the SBL wind turbine flow showing buoyant turbulence production error, plotted
at −1 ≤ x/D ≤ 9 relative to the turbine
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Figure 6.10: Frozen-RANS results for the CBL precursor case showing the normalized anisotropy error

produce any non-zero values since the temperature gradient does not have non-zero wall-parallel components. The
angle difference between the GDH and LES heat flux, together with the ratio of magnitude, is shown in fig. 6.14a.
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Figure 6.11: Frozen-RANS results for the CBL precursor case

(a) Shear turbulence production correction

(b) k transport equation residual

Figure 6.12: Contours of frozen-RANS corrections for CBL wind turbine flow, plotted at −1 ≤ x/D ≤ 9 relative to
the turbine

In the lower part of the boundary layer, the angle error is the lowest with values below 50◦ since there is a vertical
temperature gradient. However, in the absence of this vertical gradient, and in the capping inversion above, the angle
error becomes extremely large. It can be concluded that the gradient diffusion hypothesis is an extremely poor model
for predicting the turbulent heat flux direction. The magnitude of the GDH heat flux is much lower than the LES
value inside the boundary layer and varies greatly as function of height. This suggests that the constant turbulent
Prandtl number is inadequate when combined with the gradient-diffusion hypothesis. Figure 6.14b shows the effect of
the heat flux error on the buoyant production of turbulence. Due its definition, buoyant turbulence production shows
largely the same patterns as the vertical component of the heat flux. GDH predicts high buoyancy production in the
capping inversion, while this is barely the case in the LES model. Furthermore, GDH severely under-predicts buoyancy
production in the lower part of the boundary layer.
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Figure 6.13: Frozen-RANS results for the CBL precursor case showing the turbulent heat flux error
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Figure 6.14: Frozen-RANS results showing various effects of the turbulence heat flux error, plotted at −1 ≤ x/D ≤ 9
relative to the turbine

Contour plots of the buoyancy production correction are shown in fig. 6.15. The value increases slightly in the
upper region of the wind turbine wake as was also the case in the stable boundary layer wind turbine wake. Additionally,
small negative values are observed right above the wall. This pattern is not seen in the free-stream solution shown in
fig. 6.14b. Besides the presence of the turbine, the likely reason for this discrepancy is that the successor simulation
uses a much finer mesh resolution of ∆z = 5 m around the wind turbine compared to the ∆z = 20 m of the precursor
simulation.

Figure 6.15: Frozen-RANS results for the CBL successor case showing buoyant turbulence production error
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7

Corrected RANS

In this chapter, the corrections to the baseline turbulence model are inserted dynamically into the RANS simulation to
obtain corrected RANS solutions. The results are compared to results obtained by the baseline uncorrected k − ε
model and to time-averaged LES results. For all three stability cases, a distinction is made between the free-stream
flow and the successor flow.

7.1 Neutral Boundary Layer

7.1.1 Free-Stream Flow
The velocity components are plotted in fig. 7.1a. Both the baseline model and the corrected model agree well with
the reference. For the turbulent kinetic energy, shown in fig. 7.1b, the corrected model matches the reference. The
baseline model has a slightly lower TKE in the lower part of the boundary layer.
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Figure 7.1: Free-stream CBL corrected RANS profiles compared to the baseline and to LES

The Reynolds stress components are shown in fig. 7.2. The corrected model shows near-perfect agreement with
LES for each component. The baseline model only produces an adequate match for the xz component. The xx, yy
and zz have the same values since in the definition of the Reynolds stress, shown in eq. (7.1), the strain rate tensor
only has non-zero xz and yz components.

u′iu
′
j =

2

3
kδij − 2νtSij (7.1)

7.1.2 Wind Turbine Flow
Figure 7.3 shows wall-normal wake velocity deficit in the top set of plots and lateral wake velocity deficit in the bottom
set. Results are shown 2, 5 and 9 diameters D downstream of the wind turbine. The thin black lines indicate the
rotor center and the upper and lower or north and south edge of the wind turbine rotor. The corrected model shows
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Figure 7.2: Corrected RANS Reynolds stress results for the free-stream NBL case
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Figure 7.3: Corrected RANS wake velocity deficit profiles for the NBL case

good agreement at all stations and adequately handles the shortcomings of the baseline model, which produces a
lower wake velocity deficit in the near wake. Interestingly, at 9D downstream of the turbine, both the baseline and
corrected model produce a correct velocity deficit magnitude, but it is only the corrected model that produces profiles
with the correct shape.

The wake turbulent kinetic energy profiles are shown in ??. The corrected model shows near-perfect agreement
with the reference. In the near wake, the turbulent kinetic energy of the baseline model is much larger throughout the
height and width around the turbine. The overproduction of mechanical turbulence was observed in fig. 6.3a as a very
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Figure 7.4: Corrected RANS horizontal wake turbulent kinetic energy profiles for the NBL case

local effect; P∆
k was negative only around the wind turbine rotor and at the upper part of the near wake. As such,

both the TKE and the velocity show large discrepancies with the reference in the near wake.
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7.2 Stable Boundary Layer

In this section, three different methods of inserting the frozen-RANS obtained corrections are tested. The first method
is inserting the full set of corrections: b∆ij , R and q∆

j . In the second method, a simplification is made in the correction
to the turbulent heat flux; only the wall-normal component q∆

3 is injected instead of the full vector correction. In the
third method, the turbulent heat flux is not corrected at all.

7.2.1 Free-Stream Flow
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Figure 7.5: Corrected RANS velocity results for the free-stream SBL case
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Figure 7.6: Free-stream SBL corrected RANS profiles compared to the baseline and to LES

The corrected k − ε model results for free-stream velocity are shown in fig. 7.5. All models agree well with the
reference values, even the baseline k − ε model. Even though the baseline models shows discrepancies with LES for
the momentum fluxes, it appears that the profiles do not evolve much due to the short stream-wise length of the
precursor domain. Similarly, the potential temperature, shown in fig. 7.6a, does not evolve regardless of heat flux
discrepancies. Figure 7.6b shows how the baseline model has a lower peak TKE in the lower part of the boundary
layer. As is the case with Reynolds stress, shown in fig. 7.7, both models ’correct b∆ij , R, q

∆
j ’ and ’correct b∆ij , R, q

∆
3 ’

agree perfectly with the reference. The model that does not correct for the heat flux shows a lower TKE in the upper
region of the stable boundary layer as well as discrepancies in the Reynolds stress. The lower TKE is explained by
the larger values of buoyant destruction due to the larger heat flux magnitude values seen in fig. 7.8. In the same
figure, only the model with the full corrections reproduces all heat flux components accurately. As expected, the
models ’correct b∆ij , R, q

∆
3 ’ and ’correct b∆ij , R’ do not produce any non-zero value of wall-parallel heat flux due to

their definition. It can be concluded that a scalar correction to the wall-normal heat flux is sufficient for obtaining
accurate velocity, TKE and Reynolds stress results, at least for the free-stream flow.
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Figure 7.7: Corrected RANS Reynolds stress results for the free-stream SBL case
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Figure 7.8: Corrected RANS turbulent heat flux results for the free-stream SBL case

7.2.2 Wind Turbine Flow
Wake velocity deficit profiles are shown in fig. 7.9. All corrected models show generally good agreement with the
reference, with the models that included the heat flux correction showing slightly better agreement. The RANS models
show a small discrepancy with the LES values at and right above the wall in the far wake. Interestingly, this pattern
was not at all observed for the neutral case. A further discussion on the matter is provided in section 7.6. The baseline
model produces an adequate wake velocity deficit magnitude, but only in the very near wake. In the far-wake, the
velocity deficit is over-predicted by the baseline model due to a severely under-predicted turbulent kinetic energy in all
regions of the wake, as is seen in fig. 7.10. The corrected modules that include the heat flux correction show perfect
TKE agreement, while the agreement is good but slightly worse for the corrected model that does not include a heat
flux correction. Similar patterns are seen for the xz component of the Reynolds stress, shown in fig. 7.11. Although
the heat flux corrections are by no means negligible, the main driver for velocity, kinetic energy and Reynolds stress
improvements is the correction to the normalized Reynolds stress anisotropy and the transport equation Residual.
The wake potential temperature profiles in fig. 7.12 are shown to be insensitive to the choice of model. As was the
case for the free-stream flow, the errors of the baseline model do not accumulate noticeably over the span-wise length
of the domain. Since some spatial variation is observed, convective and diffusive transport seems to dominate the
turbulent transport of the potential temperature.
The wall-normal heat flux profiles are shown in fig. 7.13. The baseline k − ε model fails to produce accurate heat flux
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Figure 7.9: Corrected RANS wake velocity deficit profiles for the SBL case
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Figure 7.10: Corrected RANS wake turbulent kinetic energy profiles for the SBL case

results at all stations. The models that include the heat flux correction show perfect agreement. The model that
excludes the heat flux correction only shows large discrepancies in the near wake, resulting in buoyancy destruction
values that are larger than the reference LES. This leads to the slightly lower TKE observed in fig. 7.10 and the
slightly higher wake deficit observed in fig. 7.9.
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Figure 7.11: Corrected RANS wake Reynolds stress xz-component profiles for the SBL case
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Figure 7.12: Corrected RANS wake potential temperature profiles for the SBL case

7.3 Convective Boundary Layer

In this section, a distinction is made between corrected k− ε cases depending on where in the domain the model-form
corrections are applied. To this extent, the blending functions Fb is set to 0 where the anisotropy corrections are not
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Figure 7.13: Corrected RANS wake wall-normal heat flux profiles for the SBL case

applied. Equation (4.24) shows how the corrections from the frozen case are applied to the RANS simulations. The
equation is repeated here.

R̃ = γRFRR

b̃∆ij = γbFbb
∆
ij

q̃∆
j = γqFqq

∆
j

As with the other stability cases, all blending functions are set to 0 within 30 m of the upper wall. For the case
labelled ’k − ε corr. b∆ij 20 m’, the term Fb = 0 below z = 20 m. Similarly, ’k − ε corr. b∆ij 10 m’ indicates Fb = 0
for z < 10 m. For the case labelled ’k − ε corrected’, all corrections are applied until the lower wall.

7.3.1 Free-Stream Flow

The velocity profiles for the free-steam CBL case are shown in fig. 7.14. Corrected case b∆ij 20 m and the baseline
case both match the reference. The standard corrected case, however, shows a sharp discontinuity at the wall. Since
turning off the anisotropy correction at the wall improves the results, the issue is likely a cascading effect of the
nonphysical total stress tensor at the wall in the CBL case.

The discontinuity observed in the velocity profile is also observed in the kinetic energy and Reynolds stress profiles,
shown in fig. 7.15b and fig. 7.16. Not applying the anisotropy correction below z = 20 m does improve the profiles,
but does not provide a perfect match. In particular, the turbulent kinetic energy and the xx, yy and xz components
of the Reynolds stress show lower near-wall values. Not applying the corrections locally seems to result in the
respective variables closer matching the baseline RANS values. Both corrected models show good agreements for
the vertical heat flux in fig. 7.17, The standard corrected model shows slightly higher at the peak than the reference LES.

The potential temperature distribution is shown in fig. 7.15a. In a domain of this size, the temperature is insensitive
to the model chosen as the errors do not accumulate sufficiently to influence the temperature within the distance
from the inflow plane to the outflow plane. The effect of the scalar heat flux correction to the potential temperature
transport equation would likely be more evident if the domain was several kilometers long.

7.3.2 Wind Turbine Flow
Figure 7.18 shows the velocity deficit profiles in the wake at 2D, 5D and 9D downstream of the rotor plane. The
baseline k − ε model shows a reasonable near wake agreement but a much lower wake recovery rate. The corrected
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Figure 7.14: Corrected RANS velocity results for the free-stream CBL case
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Figure 7.15: Free-stream CBL corrected RANS profiles compared to the baseline and to LES

models show agreement away from the wall but sharp discontinuities close to the wall, particularly at 5D and 9D.
Unlike for the free-stream flow, moving up the application region for b∆ij does not improve the solution quality. It
instead results in the profiles sharply transitioning to, and even overshooting, the baseline k − ε value. In the lateral
velocity deficit profiles, all corrected RANS models show some disagreement with the LES reference on the south end.
In the middle of the domain, however, the match with LES is much closer and constitutes a significant improvement
over the baseline model.

The TKE profiles are plotted in fig. 7.19. The baseline model shows an under-prediction in TKE in the near wake
and above the wake. The turbulence under-prediction is the primary driver for the slow wake recovery observed in the
velocity deficit profiles. The corrected RANS models all show better agreement with the LES reference away from the
wall. At the wall, the values significantly exceed the LES value, including for the baseline RANS case. Particularly at
2D, the wall TKE value for the standard k − ε corrected model has a considerable magnitude. The pattern is similar
to the pattern observed for the corrected RANS free-stream wall TKE in fig. 7.15b, although there the agreement
with the LES reference was better. It seems that introducing the anisotropy correction further away from the wall
does not improve the TKE predictions, since the baseline RANS model performs rather poorly at the wall as well. In
the lateral TKE profiles, shown in ??, the corrected RANS discrepancies grow larger towards the south end.

The wall-normal turbulent heat flux is plotted in fig. 7.21. In the wake profiles, the effect of the turbine is hardly
visible. Only a small change in flux is observed at the 2D station for the GDH flux. As was the case with the
free-stream flow, the baseline severely under-predicts wall-normal heat flux, resulting in lower buoyancy production,
lower wake TKE and lower wake recovery. At the wall, there is some discrepancy between the corrected RANS heat
flux and the reference heat flux. As the potential temperature profiles, shown in fig. 7.22, agree well with the reference,
and turbulent Prandtl number is constant across models, the observed discrepancy is a product of a discrepancy in
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Figure 7.16: Corrected RANS Reynolds stress results for the free-stream CBL case
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Figure 7.17: Corrected RANS turbulent heat flux results for the free-stream CBL case

the eddy viscosity νt between the frozen-RANS and the dynamic corrected RANS.

qj = qGDHj + q∆
j = − νt

Prt

∂Θ

∂xj
+ q∆

j

In fig. 7.23 the dynamic RANS eddy viscosity is compared to the eddy viscosity obtained from frozen-RANS. It does
appear to be slightly lower than the reference value, but not to the same extent or with the same shape as the
difference seen in fig. 7.22. Some other effects, possibly related to the wall velocity and kinetic energy mismatch,
might be at play.
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Figure 7.18: Corrected RANS wake velocity deficit profiles for the CBL case
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Figure 7.19: Corrected RANS wake turbulent kinetic energy profiles for the CBL case
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Figure 7.20: Corrected RANS wake Reynolds stress xz-component profiles for the CBL case
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Figure 7.21: Corrected RANS wake wall-normal turbulent heat flux profiles for the CBL case
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Figure 7.22: Corrected RANS wake potential temperature profiles for the CBL case
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Figure 7.23: Corrected RANS wake eddy viscosity for the CBL case, compared to the frozen case eddy viscosity
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7.4 Averaging Period Effect

This section presents corrected RANS results for the convective case with a one-hour averaging period and a 5-hour
averaging period. Only solutions at stations 5D and 9D downstream of the rotor plane are shown as the errors were
largest here. Additionally, the turbulent time scales in the far-wake are greater than in the near-wake.

The wake velocity deficit profiles are shown in fig. 7.24. Not surprisingly, the wall discontinuity persists for the
longer averaging period. Additionally, the Tavg = 5 h profiles show similar discrepancies with the reference as the
original profiles, the velocity deficit is over-predicted at 5D and mismatches occur on the outside edge of the boundary
layer in the span-wise direction.

−0.1 0.0
0

1

2

3

z/
D

5D, Tavg=1 h

LES k− ε k− ε corrected

−0.1 0.0
0

1

2

3
5D, Tavg=5 h

−0.05 0.00
0

1

2

3
9D, Tavg=1 h

−0.05 0.00
0

1

2

3
9D, Tavg=5 h

−0.1 0.0
(U−U0)/Uhub

7

8

9

y/
D

−0.1 0.0
(U−U0)/Uhub

7

8

9

−0.1 0.0
(U−U0)/Uhub

7

8

9

−0.05 0.00
(U−U0)/Uhub

7

8

9

Figure 7.24: Corrected RANS wake velocity deficit profiles for the CBL case using a five-hour averaging period

Figure 7.25 shows the wake kinetic energy profiles. Now, a more drastic difference is observed with the original
profiles; the kinetic energy is over-predicted by the corrected RANS model at and right below hub-height. The
mismatch at the outer edge of the span-wise plots is also much greater with the larger averaging period.

For the wall-normal turbulent heat flux, shown in fig. 7.26, no difference in pattern is observed between the
Tavg = 1 h and Tavg = 5 h profiles. The heat flux is still under-predicted compared to the reference.
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Figure 7.25: Corrected RANS wake turbulent kinetic energy profiles for the CBL case using a five-hour averaging
period
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Figure 7.26: Corrected RANS wake wall-normal turbulent heat flux profiles for the CBL case using a five-hour averaging
period
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7.5 Computational Cost

In order to estimate the computational cost of the corrected RANS simulations, RANS convergence is first assessed
by plotting the residual history for the neutral case in fig. 7.27. The figure shows the difference between instantly
applied corrections, gradually applied corrections over a hundred iterations and the baseline RANS model. The gradual
introduction of corrections is achieved by increasing the relaxation term γ in eq. (4.24) from zero to one. Surprisingly,
the residual analysis shows that the corrected models’ convergence much better than the baseline model, at least for
the neutral case. The corrected simulations reach a residual level of 10−3 within 250 iterations, while the baseline
simulation only does so after 800 iterations. This indicates that the injection of corrections results in a system that is
satisfied easier by the governing and model equations. Towards the end of the simulation, the baseline simulation
residual convergence rate seems to be closer to corrected cases.
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Figure 7.27: NBL case RANS residuals for the corrections applied right from simulation start (instant), gradually over
100 iterations (100 It) and for the baseline k − ε model (baseline)

The computational cost, measured by the number by core-time (total wall clock-time multiplied with the number
of cores), is shown in table 7.1. When considering these results of computational cost, one also needs to take into
account the number of cores used to run the simulation. The communication between different cores for computations
during parallel processing results in extra overhead that increases the computation cost. As a result, computations run
on fewer cores are inherently more efficient although they take longer to run in terms of wall clock-time. The question
of parallel processing efficiency and computational cost is incredibly complex and depends not only on the software
that is executed but also on the hardware. The results presented in table 7.1 should be interpreted with this in mind.

As expected, the corrected RANS models are able to leverage the computational cost decrease of RANS compared
to LES. In terms of computations performed, the extra terms hardly add any work to the models. In fact, the corrected
RANS models even show a minor speed-up compared to the baseline RANS models due to quicker convergence. The
computational cost of predicting average wake profiles with the new RANS models comes in at only 2− 5% of the
LES cost.

Table 7.1: Computational cost for the various models, measured by wall-clock time and core-time

Model type NBL SBL CBL

LES Cores 32 100 32
Wall clock-time [h] 29 12 24
Core-time [h] 930 1179 767

RANS baseline Cores 40 80 24
Wall clock-time [h] 0.91 0.25 1.7
Core-time [h] 36 20 40

RANS corrected Cores 40 72 24
Wall clock-time [h] 0.76 0.28 1.4
Core-time [h] 31 20 34
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7.6 Discussion

SBL velocity mismatch and wall shear stress

In fig. 7.9, a velocity mismatch was observed at the wall in the far wake. The effect could be caused by the following
two reasons. Firstly, there might be some discrepancy between the RANS wall stress boundary condition and the
LES wall stress boundary condition that is not addressed. The RANS model coefficient Cµ is determined from planar
and temporal average of uLES∗ and kLESwall , as described in section 4.2.6. Then, during the RANS simulation, the
fixed Cµ and the spatially varying kRANSwall are used to determine the spatially varying uLES∗ , which in turn is used
to determine the local RANS wall stress. This local RANS wall stress is not guaranteed to be consistent with the
local LES stress, since information was lost in the spatial averaging of uLES∗ and kLESwall . Perhaps, a solution to the
discrepancy would be to assign a spatially varying Cµ based on the local LES wall kinetic energy and friction velocity.
However, in fig. 7.10 it was observed that the fixed Cµ leads to corrected RANS profiles with a perfect kinetic energy
match, even at the wall. It might, therefore, be beneficial to keep this fixed Cµ formulation for the entire internal
field, and only allow it to vary spatially at the lower boundary field. The second possible reason for the discrepancy
is the nonphysical velocity boundary condition velocityABLWallFunction used in the LES formulation. It was
discussed in section 5.1 that the use of this boundary condition is preferred to avoid nonphysical wall SGS stresses.
However, the custom boundary condition’s change on the velocity profile might affect the frozen-RANS solution and,
consequently, the corrected RANS solutions in ways that are not properly understood. In any case, a more formal
investigation is required to determine the cause of this issue, especially considering it is not present at all for the
neutral case. Besides, fixing the wall stress LES issue, it is crucial to compare the fields of the LES and RANS wall
stresses for both the neutral and the stable case.

Scalar correction to the wall-normal turbulent heat flux

In chapter 6, it was shown that the gradient diffusion hypothesis is an extremely poor model for predicting the
direction of the turbulent heat flux. The difference in angle with the LES heat flux was consistently larger than 70◦

throughout both stratified boundary layers. Additionally, it was shown that the constant turbulent Prandtl number
assumption is clearly violated in both cases. This would lead one to believe a full vector correction to the turbulent
heat flux is necessary for accurate RANS results. This is true if CFD users are interested in knowing the direction of
the heat flux, or if they would like to know the accurate transport of some other passive scalar that is modelled by the
gradient diffusion hypothesis. However, in most analyses such as these, knowing the value of wall-parallel turbulent
heat fluxes is unnecessary. The stable boundary layer corrected RANS analysis showed that, in this case, using a single
scalar correction for only the wall-normal component of the heat flux is perfectly reasonable. The velocity, potential
temperature and turbulence quantities were all predicted with equal near-perfect accuracy as when the full vector
correction was used.

Only the scalar correction is necessary for the following reasons. For the domain sizes considered, potential
temperature transport is almost completely governed by the convective term. Turbulent diffusion term, which is much
larger than molecular diffusion, plays a negligible effect on the potential temperature distribution. For both the stable
and convective boundary layer wind turbine flow, the baseline k − ε GDH model predicted the potential temperature
distribution equally well as the corrected models and perfectly matched the LES reference. When much larger domain
sizes, on the order of tens of kilometers, are considered the turbulent heat flux error might accumulate and lead to a
mismatch in potential temperature far downstream of the inflow boundary. Secondly, the stream-wise and span-wise
components of the turbulent heat flux correction q∆

j do not affect the level of buoyant turbulent production, at least
if the gravitational vector is aligned with the z axis. As such, only a correct wall-normal turbulent heat flux affects the
turbulent production, which in turn affects the velocity distribution.

The effect of averaging period

It was shown in section 5.5 that the LES successor profiles in the far-wake of the convective boundary layer got
smoother when the length of the averaging window was increased. This shows that a one-hour averaging window is
not sufficient in the convective boundary layer. One would expect that this leads to discrepancies when attempting
to match corrected RANS profiles to the reference LES. However, it was shown in section 7.4 that using a larger
averaging period did not lead to improved solutions for the convective boundary layer corrected RANS profiles. In
fact, the solution quality decreased for the turbulent kinetic energy profiles.

This unexpected result might be caused by the changing state of stratified boundary layers over time. When heat
is added to the convective boundary layer, the flow state slowly changes over time. This was seen as a slow but steady
drift in time-averaged profiles. This effect is not limited to this theoretical work. The actual atmospheric boundary
layer is never completely steady. Even when if the geostrophic wind velocity is kept fixed in a theoretical exercise, the
diurnal cycle would still result in a constantly changing state. At best, the realistic atmospheric boundary layers are
quasi-steady, as is the case for the statistically stationary convective and stable boundary layers studied in the present
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thesis. This inherent unsteadiness of the ABL presents a problem for the present RANS and frozen-RANS analysis.
Ideally, when comparing RANS against LES, the LES time averages are long so that the obtained profiles are smooth
and no longer change when the averaging window is made any greater. However, for such long averaging windows,
there is a non-zero bias in the profiles due to the changing state. The effect of this bias is smallest when using a very
short time-averaging window.

The present analysis of averaging period on the RANS analysis does not show if there is some kind of satisfactory
averaging window duration that produces the best results. It can even be said that the convective boundary layer
results were not of high enough quality in any case, convolution the results. It would therefore be interesting to
perform a similar analysis for the stable boundary layer. Due to limitations in time, this was no longer possible in this
thesis.

Another solution to the problem of averaging period for stratified ABL LES might be to compute the total energy
added to the domain at the lower boundary and subtract it evenly from the entire domain at every time step. This
would mean it would be possible for the stratified boundary layer to reach a true steady-state enabling longer averaging
periods. It is unsure, however, whether the specific flow features, such as the capping inversion and the low-level jet,
would remain a part of the steady-state solution.
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8

Conclusions and Recommendation

The main objective of this thesis was to contribute to data-driven turbulence model developments, and the understanding
of turbulence, for wind turbine wake flows. The contributions of the work lie in several factors. Firstly, high fidelity
LES reference data was generated and archived so that it may benefit other’s research as well. Secondly, the effects of
non-neutral atmospheric conditions as well as Coriolis force are considered. Finally, the frozen-RANS analysis is done
for a representative industrial-scale wind turbine flow.

After the generation of LES reference data, the frozen-RANS framework was extended to include model-form error
of the turbulent heat flux and its impact on other turbulence quantities. The model-form errors were then injected, as
corrections, into RANS simulations and compared against the LES data and the baseline model. The results were
analysed and discussed, with a focus on discrepancies between simulations and possible strategies to overcome these.
Based on these analyses, conclusions are drawn in section 8.1 and recommendations for future work are given in
section 8.2.

8.1 Conclusions

RQ1: What are the model-form errors of the k− ε and GDH model in stable and unstable wind
turbine flows, and how do they differ from neutral wind turbine flows?

Visualizing the model-form correction of the normalized anisotropy tensor shows that anisotropy in the
atmospheric boundary layer is not reproduced by the baseline model. Only the xz and yz components
have a non-zero strain rate. As such, these are the only components for which the baseline model
produces a non-zero value. For the neutral free-stream ABL, the baseline model predicts these components
reasonably well. But for the stratified cases, the predictions for these components show large discrepancies
with LES, resulting in high values of the anisotropy correction for all components. For the neutral and
stable boundary layer, the effect of the anisotropy on the shear production is turbulence is a correction
for an overproduction at the wall by the baseline k − ε model equations. For the convective case, the
anisotropy results in a correction for an under-production of shear turbulence at the wall. Additionally,
the over-production of shear turbulence in the strong capping inversion is corrected for. When considering
the wind turbine, the anisotropy corrects for an over-production of turbulence in the near wake for all
stability cases.

The residual to the k transport equations seems to be the most dependant on atmospheric stability. For
the free-stream, the correction adds to the transport equation at the wall, while it is negative for the
convective case in the entire boundary layer depth. For the turbine wake in the stable case, the residual
shows a very clear structure as it has large positive values at the upper edge of the far wake and low
negative values at the rotor plane. For the neutral boundary layer wake, the residual moderate noise
levels while the signal is completely dominated by large values of noise for the convective case. Numerical
instabilities in the large-eddy simulation are the likely cause for this noise.

The turbulent heat flux correction, and the angle between the modelled and the reference heat flux,
show that the gradient-diffusion hypothesis completely fails to produce accurate heat flux direction and
magnitude. For the stable case, the correction accounts for a negative wall-normal heat flux that is too
large in magnitude in the free-stream boundary layer, resulting in too much buoyant destruction by the
baseline model. In the wake, the heat flux correction corrects for too little buoyant destruction. For the
convective case, the heat flux correction corrects for too little buoyant production in the boundary layer
and in the wind turbine wake but corrects for an extreme over-destruction of turbulence in the capping
inversion.
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RQ2: What are the considerations injecting the model-form corrections into the RANS equations
during simulation?

There are a few considerations when injecting the static frozen-RANS corrections to dynamic RANS
solvers. Firstly, the corrections can be applied to various parts of the simulation domain by multiplying
them with a blending term F before injecting. In both the present RANS simulations and those done in
Steiner, Dwight, and Viré [5], it was found that using the blending function to turn off the corrections
at the upper wall is necessary for the correct RANS simulations to converge. Generally speaking, the
model-form corrections should be applied throughout the rest of the domain, so until and including the
first wall-normal cell. In the present convective boundary layer LES, the use of the one equation Deardoff
model with this SOWFA-6 setup produces an erroneous SGS stress tensor and kinetic energy at the lower
wall. Excluding the anisotropy correction from this near-wall region improved the corrected RANS results
for the free-stream case compared to fully including all corrections, demonstrating another use for the
blending function. It is always preferred, though, to use reference data that is of the best possible quality,
particularly at the lower wall, since this region is hard but important to model.
Before injecting them into the RANS system, the corrections are also multiplied with the relaxation term
so that they can be gradually introduced. Neutral case results indicate that gradual injection results in
slightly faster convergence than immediate full injection.

RQ3: What is the accuracy and the computational demand of the corrected RANS models
compared to the baseline RANS model and the LES model?

For the free-stream flow, the baseline models provide satisfactory velocity and potential temperature
predictions for all stability cases. The stream-wise lengths of the domains are not long enough for the error
in the baseline turbulence to accumulate and effect the solution. The effect of the corrections become
noticeable when observing the secondary statistics; the turbulent kinetic energy, Reynolds stress, and the
turbulent heat flux. In all cases the baseline models show an under-prediction of ambient turbulence. For
the neutral and stable cases, the corrected RANS turbulence kinetic energy and Reynolds stress accuracy
are close to perfect. The corrected RANS heat flux for the stable free-stream boundary layer also shows
near perfect agreement. For the convective case, the corrected RANS profiles improve significantly but
show some wall wall discrepancies. The issue is improved slightly by excluding the anisotropy correction
below a certain height close to the wall. In general, the corrected RANS models provide accurate solutions
for the complex flow features not typically handled well in RANS; the low level jet in the stable atmosphere
and the capping inversion in the convective atmosphere.

With the inclusion of the wind turbine, the flow complexity increases significantly. The baseline model
velocity predictions in the wake show large discrepancies with the reference data. For the neutral case, the
near-wake wake velocity discrepancy is largest while the opposite is true for both stratified boundary layers.
For the neutral case, the injection of the model-form corrections completely fix the well documented k− ε
limitation of an overproduction of kinetic energy in the near wake, resulting in near perfect velocity and
turbulent statistics.

For the stable case, the corrected RANS results also show impressive accuracy. In every statistic, the
match is excellent, with the exception of a slightly lower wall velocity in the far-wake. It was discussed
that the most likely reasons are an inconsistency between the RANS and LES wall stress formulations and
the possibly non-physical LES velocity boundary condition.

For the unstable case, the velocity and TKE prediction accuracy is extremely poor at the lower wall,
particularly in the far-wake. The most likely reason for this is the nonphysical wall SGS stresses observed
in the LES. When the anisotropy correction is excluded in the near wall region, the quantities tend to
the values produced the baseline RANS simulations. Since these did not match the reference either, the
prediction quality at the wall is not improved with this strategy. Away from the wall, above the lower
tip of the wind turbine, the corrected RANS velocity and TKE do agree better with the LES reference,
showing that there is indeed merit to the approach if high-quality reference data is used. The corrected
RANS heat flux profiles on the other hand show good agreement with the reference. Since the heat flux
affects the turbulence production, and the TKE affects the velocity, the heat flux correction contributes
considerably to the improvements observed in the velocity profiles away from the wall.

RQ4: How does the computational cost of the corrected RANS model compare to the baseline
and LES models?

For all stability cases, the computational cost of the corrected RANS models is shown to be slightly lower
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than that of the baseline model. It is computationally inexpensive to introduce a static field into the
model equations. Additionally, the addition of the corrections seems to result in a system which better
satisfies the governing and model equations, resulting in quicker convergence. The computational cost of
the corrected RANS model presents only 2%-5% of the cost of the LES model. When the model-form
corrections are regressed in terms of flow-features known in RANS, the computational cost would go up
slightly depending on the complexity of the regression model. Still, it is expected that the methodology
would remain cost-competitive with standard RANS models.

RQ5: How is the frozen-RANS framework best extended to stable and convective atmospheric
conditions?

When attempting to correct the GDH model for the turbulent heat flux, one can either correct the
wall-normal heat flux, or the entire vector. The former option, which could be enforced as a variable
turbulent Prandtl, presents a much more simple solution. The latter option, on the other hand, is much
more general. A full vector correction would improve both the error in the heat flux magnitude and
direction, both of which were shown to be extreme in the stratified boundary layers. However, it was
shown that, if the user is not interested in the direction of the flux or the wall-parallel components, the
scalar correction to the wall-normal heat flux is sufficient. Over the stream-wise domain lengths considered,
the wall-parallel components do not at all improve the modelled quantities. Instead, only the wall-normal
heat flux component drives the buoyant production of turbulence. In the stable boundary layer results, it
was shown that only injecting the wall-normal heat flux correction results in predictions equally accurate as
the predictions obtained with the full vector heat flux correction, at least for the velocity, temperature and
turbulence quantities. The implications of a scalar correction to the wall-normal heat flux being sufficient
for most cases are considerable. Not only is simplicity generally favourable, but regressing a model for
a scalar correction would constitute a much easier modelling challenge than regressing the full vector
correction. The result is only true for for flat-terrain wind turbine flows in domains that are not too long.

Returning the main objective to contribute to the understanding of turbulence in non-neutral wind turbine flows,
the analyses in this thesis have shown that the gradient-diffusion hypothesis for the turbulent heat flux is violated,
and that some kind of heat flux correction is necessary for non-neutral atmospheric conditions. However, a scalar
correction such as a variable turbulent Prandtl number model is shown to be sufficient for accurate wake velocity and
turbulence predictions. The work has shown that the current frozen-RANS framework can be successfully applied to
non-neutral atmospheres and to industrial scale wind turbines. Provided that high quality reference data is available,
LES quality solutions can be obtained a computational cost of that is two orders of magnitude lower.

8.2 Recommendations

The first and most important recommendation in future work is to produce reference LES data that is of higher quality.
In the current setup, use of the velocity boundary condition velocityABLWallFunction is necessary to avoid high
SGS stresses at the wall. This comes at the cost of a slightly lower, non-physical, wall velocity which does not agree
with the log-law. In the unstable case, the condition could not be used, and the no slip condition had to be used
instead, resulting in non-physically high wall stresses. Preferably, wall damping functions are applied to limit the SGS
viscosity so that the no slip condition can be used, as is customary for wall-modelled LES. Alternatively, an SGS model
with a dynamic procedure could also be used.
Furthermore, high degrees of roughness and structure in time averaged wake profiles show that the convective LES
case has not been averaged for long enough. The averaging period of 1 h or roughly five flow-throughs was increased
to 5 h but the results, although smoothed, did not improve for the corrected RANS analyses. A more thorough
investigation is required into the possibility of modelling the inherently unsteady atmospheric boundary layer with
steady-state techniques like RANS.

As concluded, only a scalar turbulent heat flux correction is required for the accurate modelling of the non-neutral
boundary layer under the condition that the terrain is flat and the stream-wise length of the domain is not too long.
What constitutes as too long remains an open question, and it is not a trivial one since off-shore wind farms are
getting larger and larger. It is recommended that future work is dedicated to quantifying a limit for when the scalar
correction is sufficient.

Splitting up the applied corrections into a free-stream term and turbine specific term can be useful for turning off
either one of the two locally. Furthermore, it is useful when applying machine learning algorithms to learn improved
models. It is more appropriate to have a separate model for only the free-stream and a separate model for only
turbines corrections. This would also help in getting physical insight from the models, as it is easier to interpret model
terms that are only derived for one specific purpose.
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A.1 Neutral Boundary Layer Case
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Figure A.1: Neutral boundary layer velocity and velocity deficit profiles in the wake
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Figure A.2: Neutral boundary layer wake TKE profiles
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A.2 Stable Boundary Layer Case
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Figure A.3: Stable boundary layer velocity and velocity deficit profiles in the wake
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Figure A.4: Stable boundary layer wake TKE profiles
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Figure A.5: Stable boundary layer vertical wake heat-flux profiles
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Figure A.6: Stable boundary layer horizontal wake heat-flux profiles

A.3 Convective Boundary Layer Case

A.3.1 Averaging Period 1 Hour
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Figure A.7: Convective boundary layer velocity and velocity deficit profiles in the wake obtained with Tavg = 1 h

A.3.2 Averaging Period 5 Hours
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Figure A.8: Convective boundary layer wake TKE profiles obtained with Tavg = 1 h
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Figure A.9: Convective boundary layer vertical wake heat-flux profiles
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Figure A.10: Convective boundary layer horizontal wake heat-flux profiles obtained with Tavg = 1 h
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Figure A.11: Convective boundary layer velocity and velocity deficit profiles in the wake obtained with Tavg = 5 h
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Figure A.12: Convective boundary layer wake TKE profiles obtained with Tavg = 5 h
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Figure A.13: Convective boundary layer vertical wake heat-flux profiles obtained with Tavg = 5 h
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Figure A.14: Convective boundary layer horizontal wake heat-flux profiles obtained with Tavg = 5 h
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