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ABSTRACT We introduce a dynamic scaling hypothesis which connects the self-diffusion of a chain with 
the viscosity of the macromolecular solution. It applies to both semidilute and concentrated solutions and 
leaves the detailed motion of the chains unspecified. When it is valid, one is able to measure the density 
v of effective dynamic units in the transient network of entangled chains. The feasibility of the hypothesis 
is shown for aqueous poly(ethy1ene oxide) and sodium poly(styrenesulfonate), polymers not at all conforming 
to the usual scaling dynamics. Surprisingly, the density v is not very sensitive to charge or the addition of 
salt. 

Introduction 
A concrete mechanism for the motion of individual 

chains is invoked in the usual scaling dynamics of 
polymers.' For complex macromolecular fluids like poly- 
electrolytes, a formulation of the chain dynamics is 
hampered by a poor understanding of chain entanglement, 
the concentration dependence of the polyion conforma- 
tions, and the effect of electrohydrodynamic dissipation 
arising from the strong coupling of the polyions to the 
small ions. Moreover, it is well-known that many polymers 
do not obey mechanistic scaling dynamics.' That being 
the case, we wish to introduce a simple scaling hypothesis 
which does not rely on a precise mechanism for the 
macromolecular motion and applies to semidilute polymer 
solutions, whether or not they are charged. It is not 
necessary for the chain dynamics to conform to reptation,' 
Rouse: or other models proposed in the literature. 

We argue that there should be a general connection 
between the self-diffusion of a chain and the viscosity 
within a wide range of concentrations. The fact that there 
might be some kind of connection is of course not a new 
proposal as such. For simple liquids, Zwanzig presented 
a simple motivation for a variant of the Stokes-Einstein 
formulam3 For polymers, Graessley and others pointed out 
the importance of the relation between the two  variable^.^ 
Nevertheless, these authors3i4 employed microscopic mech- 
anisms. Our scaling hypothesis is derived by eliminating 
a time scale associated with the global dynamics of a chain. 
It is not necessary to know how the chain moves. It turns 
out that the hypothesis can be checked empirically via the 
dependence of a certain quasi-static scaling variable on 
the molar mass. 

We will test the scaling hypothesis on two different 
polymeric systems. The first is poly(ethy1ene oxide) (PEO) 
in water which is a model system for a neutral polymer in 
a good solvent. The second is a strong linear polyelec- 
trolyte, sodium poly(styrenesulfonate) (NaF'SS), in water. 
Our main emphasis is on salt-free solutions, but in several 
preliminary experiments the solvent quality is varied by 
adding salt. 

t Current address: Unilever Research Laboratory, P.O. Box 114, 

t Leiden University. 
8 Delft University of Technology. 
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In the following section we introduce our dynamic scaling 
hypothesis. A brief description of experimental methods 
will then be given. Next, we discuss the results on PEO 
in water. We need additional hypotheses to analyze the 
salt-free solutions of NaPSS. Finally, several tentative 
conclusions are drawn for the NaPSS solutions with added 
salt. 
Scaling Hypothesis 

T h e  macromolecular solution is semidilute or 
concentrated: the chains interpenetrate so the excluded 
volume effect, whatever its origin, is screened in a static 
sense at  least. For long linear chains the mean square 
extension (=R2) is then proportional to the contour length 
or polymer mass. Suppose we are able to ascertain the 
self-diffusion coefficient D, of a single chain unambiguously 
(this could be the case in a pulsed field gradient NMR 
experiment, a t  least under certain conditions). The 
relation 

D, R2/7 
defines a time scale T in which a test chain diffuses out of 
its original domain of size R3. Hence we are assuming 
there are no other relevant scales (static or dynamic) larger 
than R. We need not specify the detailed dynamics of the 
surrounding fluctuating network of other chains, nor 
whether the probe diffuses in or out of an effective tube, 
nor any other mechanism. Very strong fluctuations in 
the chain configuration would render eq 1 meaningless, 
but then the nondiffusional signature of the chain motion 
would show up in the experiment (the mean square 
displacement of a chain would no longer be proportional 
to time). A general theory for T is very involved but we 
now argue that r may be eliminated via the viscosity. 

After a time of order T ,  there is virtually nothing left of 
the original network existing at  time t = 0. The probability 
of two test chains initially occupying essentially the same 
domain of size R3 and overlapping somewhat a t  a later 
time t ,  decays rapidly to zero for t > O(7). If the polymer 
solution is sheared at  t = 0, it flows after a duration t = 
O(T)  because a test chain has lost almost all memory of its 
original position and configuration at  t = 0. Clearly, then, 
T represents an approximate upper bound for the time it 
takes a chain to disentangle, i.e. escape from its original 
confining environment. At this stage, we introduce our 
scaling postulate: we hypothesize that the solution does 
not flow even at  times earlier than O(T);  T also signifies a 
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disentanglement time. In other words, we propose there 
is only one relevant time scale pertaining to these two 
types of chain motion. The breaking apart of the transient 
network under shear is directly related to the self-diffusion 
of the individual chains although we do not appeal to any 
specific mechanism for the dynamics. Our hypothesis 
allows us to generalize a scaling relation introduced 
previously by de Gennesl for polymer melts: 

A7 ET (2) 
This is derived by analyzing the transition of the polymer 
network under constant shear, from an elastic rubber to 
a flowing Newtonian liquid, the crossover occurring after 
a time of order T. The increment Aq occurs in eq 2 since 
the dissipation associated with the motion of the polymer 
chains is proportional to Aq q - qo where q is the viscosity 
of the solution and qo that of the solvent. When the chains 
are entangled dynamically, the elastic modulus E has to 
be interpreted in terms of a temporary elastic network 
presumed to exist for times shorter than O(T). Otherwise, 
whenever the chains do not interact with each other 
dynamically, E is the osmotic compressibility (for a related 
discussion of the interpretation of the modulus in the 
context of entangled 8 solutions, see ref 5). Explicit 
examples clarifying the meaning of E are given in the 
Appendix. 

I t  is expedient to write E in terms of v, the effective 
number of dynamic units per unit volume making up the 
rubbery network (or associated with an osmotic com- 
pressibility when the chains are disentangled dynamically): 

E E kBTv (3) 
where kg is Boltzmann’s constant and Tis the temperature. 
On eliminating the unknown time scale T ,  we have from 
eqs 1-3 

X AqD,/kBT vR2 (4) 

The empirical quantity X (dimension: length-’) has the 
following features: (a) X is independent of the detailed 
dynamics of an individual chain. We expect its properties 
to be more universal than the experimental quantities q 
and D ,  themselves. (b) X is a quasi-static variable which 
may be simpler to understand than T. (c) X is probably 
much less sensitive to changes in chain configuration than 
q and D,. 

In the Appendix we show explicitly the (theoretical) 
usefulness of eq 4 by applying it to polymer solutions 
conforming to the usual theories postulating a mechanism 
for the chain dynamics (Rouse, reptation, Kirkwood- 
Riseman). 

In practice we expect two important limiting cases for 
the quantity X: (i) It is independent of the molar mass 
M. This implies that v is inversely proportional to M so 
the chains themselves form the individual units within 
the transient network. (ii) X is proportional to M. Hence 
v is independent of M so the effective units are intensive 
quantities. We note that when either case occurs, it is an 
important consistency check on the dynamic scaling 
hypothesis. 

Experimental Section 
Technique. Chain self-diffusion coefficients were measured 

by the use of pulsed field gradient nuclear magnetic resonance 
(PFG-NMRL6 Shear viscosities were determined with a Haake 
Rotovisco RV20 viscosimeter with shear rates in the range 1-300 
s-l. Measuremenb were performed at T = 298 K. A detailed 
description of the experimental setup has been given bef~re .~ .~  

Chemicals. Sodium poly(styrenesu1fonate) fractions were 
obtained from Pfannenschmidt, Hamburg, and were manufac- 
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Figure 1. Poly(ethy1ene oxide) in DzO. Chain self-diffusion for 
various degrees of polymerization: (+) PE015; (A) PE0200; (0) 
PE0350. 

tured at the Pressure Chemical Co., Pittsburgh, PA. Three 
degrees of polymerization were studied: PSS3l with N = 169 
( M ,  = 31 OOO), PSS88 with N = 481 (M, = 88 OOO), and PSS177 
with N = 967 (M,  = 177 OOO). Polydispersity ratios (M,/M.) 
were found to be smaller than 1.2 by gel permeation chroma- 
tography. Polyelectrolyte solutions were prepared in Millipore 
water. D, was determined in a concentration range of 0.02-0.5 
monoM; q in a concentration range of O.OO1-0.5 monoM (the unit 
of concentration monoM refers to the molarity of the monomeric 
units). For the fraction PSS177, D, and q were also determined 
in solutions with added NaCl concentrations of 0.01 and 0.1 M. 
We note that at low concentrations (c, C 0.03 monoM) the 
experimental accuracy of D, is limited. NaPSS sample prepa- 
ration has been described in detail before? A detailed account 
of the NaPSS measurements is given in refs 7, 8, and 18. 

Poly(ethy1ene oxide) fractions were obtained from Merck. 
Three degrees of polymerization were studied PE015 with N 
= 34 (M,  = 1500), PE0200 with N = 455 (M, = 20OOO), and 
PE0350 with N = 795 (M,  = 35000). The fractions were 
characterized by gel permeation chromatography in 0.1 M KNOs 
on a Waters Model ALC/GPC equipped with Toyo Soda TSK- 
PW columns (G3000 PW 30 for M ,  5 20 OOO; G5000 for M, > 
20 OOO). M J M .  ratios were found to be 1.04,1.10, and 1.15 for 
PE015, PE0200, and PE0350, respectively. The PEO was 
dissolved in DzO (Merck), allowing 3 days for equilibration. 
Concentrations were in the range of 0.1 monoM up to 42 monomoV 
kg solvent. Solutions were stored in the dark at 4 O C  to minimize 
biological and photochemical degradation. Experimental con- 
ditions and setups were the same as those in the NaPSS 
experiments. Echo attenuation plots in the PFG-NMR exper- 
iments showed simple exponential decays, as expected for 
homogeneous diffusion6 in samples of monodisperse fractions. 
No shear rate dependence of the viscosity was found, allowing 
simple determination of the zero shear viscosity q. At very high 
concentrations experimental accuracy is limited. 

Poly(ethy1ene oxide) Results 
The concentration dependence of the self-diffusion and 

viscosity is presented in Figures 1 and 2 on a log-log scale. 
Clearly, no simple scaling relations are evident for these 
transport properties as a function of the concentration. 
However, some indication for a transition is apparent in 
the region between about 1 and 5 monoM. 

In Table Ia-c we give values of X calculated from D, 
and q using eq 4, and they are plotted against the 
concentration in Figure 3. It is seen that the quantity X 
is independent of the molar mass within experimental 
accuracy over two decades of concentration. Furthermore, 
X does show scaling behavior as a function of the 
concentration with exponent 0.72(*0.03). Note that the 
scaling is not valid in the entire region but breaks down 
at  very high concentrations. 
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force for chain dynamics cannot always be inferred simply 
from the static description, as is often assumed in scaling 
theory,' 

(b) Since local entanglements are ineffective in the global 
dynamics of the chain, the effective medium of chains 
surrounding a test chain is isotropic on average and on a 
time scale of 7, even a t  very high concentrations. Locally, 
however, chain motion may be anisotropic. In particular, 
a t  segment concentrations higher than b3, the inverse 
volume of revolution of a Kuhn segment of length b, the 
reorientation of a test segment may be significantly 
hindered by the presence of other segments. We denote 
the corresponding transition by c** p lr3. The concen- 
tration regime above c** is sometimes called concentrated.2 
In the case of PEO, c** is equal to about 1 monoM (1.5%) 
using avalue for the Kuhn length of 1.2 nm.lo Accordingly, 
it is tempting to identify the crossover in the concentration 
dependence of D, and q as a c** transition from the 
semidilute to the concentrated regime. (See Figures 1 
and 2.) 

(c) Because the chains themselves are the basic dynamic 
units, the behavior of 7 is reflected in the concentration 
dependence of the specific viscosity qsp Aqlc,, as can be 
inferrred from eq 2. In effect, the quantity AqlckBT is 
proportional to 7 and is plotted in Figure 6. It is seen that 
up to about 0.5 monoM, it hardly varies with the polymer 
concentration. Beyond the c** transition, however, 7 
increases strongly with concentration. We know there are 
no local entanglements involved in the osmotic force 
(proportional toE or v) driving the solution to equilibrium 
when the PEO solution is perturbed. Yet, apparently, 
the global motion of a chain (i.e. on a time scale 7) is 
somehow connected to the local hindrance of Kuhn 
segments. This connection is unclear at present. 

Increased hindrance of local reorientations above c** 
has also been observed in the nuclear magnetic relaxation 
of PEO nuclei." A significant increase of the relaxation 
rates of chain deuterons at high concentration could be 
explained in terms of a strong slowing down of the 
segmental reorientation when the persistence length 
exceeds the average distance between contact points of 
neighboring chains. 

Although the global chain dynamics is affected by the 
crossover from the semidilute to the concentrated regime, 
the quantity X does not show a transition at c**, as can 
be seen from Figure 3. This is in accordance with the 
suppositionmentioned earlier, that details of the dynamics 
will be reflected in the principal relaxation time 7 rather 
than in X. 
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Figure 2. Poly(ethy1ene oxide) in DzO. Zero shear viscosity 7 
for various degrees of polymerization: (+) PE015; (A) PE0200; 
(0) PE0350. 

Discussion of PEO Results 
If we assume the density remains invariant and the PEO 

monomer has a radius and length of 0.3 nm, the PEO 
volume fraction ranges from 0.14% to about 60%. In 
addition, the overlap concentration c* of the chains is lower 
than 10-1 monoM for all the samples. Consequently, the 
PEO solutions that have been studied here are either 
semidilute or concentrated. 

Dependence on Molar Mass. The fact that X is 
independent of the molar mass enables us to hypothesize 
that the individual chains form the elastic units in both 
the semidilute and concentrated regimes up to about 10 
monoM. Apparently, local entanglements are not effective 
within the transient network, that is, as far as the dynamic 
properties are concerned. Figures 4 and 5 show that simple 
scaling relations are not possible to describe the mass 
dependences of q and D, when considered individually. 
However, we may define concentration ranges in which 
the diffusion coefficient can be normalized to Mu with a 
varying from -0.75 to -2 or larger. For reasons stated 
earlier, the consideration of these individual curves is 
outside the scope of this paper. 

Concentration Dependence. Since the chains are the 
independent elastic units in the transient network, the 
quantity Y should be proportional to c ,  the number of chains 
per unit volume. It is then concluded from eq 4 that R2 - c-".28*0.03. Since water is a good solvent for PE0,9 the 
chains are swollen in dilute solution. The concentration 
dependence of R therefore amounts to an increasingly 
effective screening of the intramolecular excluded volume 
with increasing concentration. The exponent of -0.28 f 
0.03 agrees well with the prediction -0.25 of classical 
semidilute scaling theory for good athermal so1vents.l 
Remarkably, the scaling approach seems to predict the 
correct concentration dependence of R2 even in the 
concentrated regime where volume fractions are on the 
order of tens of percent. In the latter regime a one- 
parameter scaling theory is not deemed to be applicable. 

Additional Remarks. With respect to the behavior of 
the disentanglement time 7 and underlying mechanistic 
features we note the following. 

(a) The screening length is the basic intensive scale in 
the scaling theory for the description of entangled poly- 
meric solutions a t  low volume fraction.' Though we find 
that the concentration dependence of R2 is well described 
by this theory, the density of independent elastic units as 
introduced in the theoretical section is not an intensive 
quantity for aqueous PEO solutions. We conclude that 
the relevant length scale associated with the elastic driving 

Poly(styrenesu1fonate) Results 
In Table IIa-e we present the self-diffusion coefficient 

D, and the viscosity increment Aq at zero shear, together 
with the quantity X calculated from eq 4. In Figure 7, X 
is plotted against the monomer concentration for several 
NaPSS fractions. We discern that X is independent of 
the molar mass to a good approximation. Up to a 
concentration of about 0.2 monoM, X is proportional to 
cpo.~*O~O1. Moreover, the addition of 0.01 M NaCl does 
not affect X within experimental accuracy. 

The influence of a substantial amount of salt (c ,  = 0.1 
M NaC1) is shown in Figure 8. Evidently, X now follows 
an enhanced concentration dependence. The dotted line 
in Figure 8 represents X - cp0,64. Since experimental 
accuracy is limited at low concentrations (cp C 0.04 
monoM), this line must be viewed as approximate, merely 
serving as a guide to the eye. The dependence of X at 
concentrations higher than about 0.1 monoM is weaker 
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Table I. Zero Shear Viscosity Increment, Chain Self-Diffusion Coefficient, and X ver8u8 Monomer Concentration 
cp (monoM) (CP) 1011D (m*/s) 1O4X (A+) cp (monoM) Aq (cp) 1O11D (m2/s) 1O4X (A-1) 

(a) PE015 
0.100 0.06 20.7 3.1 3.33 1.85 9.05 40.1 
0.158 0.10 19.8 5.0 5.45 3.73 6.45 57.6 
0.269 0.12 18.4 5.4 9.02 8.27 3.85 76.3 
0.449 0.19 17.0 7.7 14.88 19.34 1.99 92.3 
0.729 0.31 15.8 11.7 21.66 38.53 1.16 107.1 
1.13 0.56 14.3 19.1 42.22 112.8 0.5 135.2 
2.01 0.98 12.0 28.3 

(b) PE0200 
0.10 0.23 4.50 2.4 2.01 9.07 1.27 27.6 
0.16 0.36 4.27 3.6 3.33 22.53 0.66 35.4 
0.27 0.61 4.00 5.9 5.48 66.05 0.33 51.5 
0.45 1.08 3.40 8.8 9.41 223.3 0.12 63.7 
0.73 1.99 2.63 12.6 14.74 871.0 0.05 108.6 
1.22 4.03 1.90 18.3 

( e )  PE0350 
0.10 0.29 3.95 2.7 2.01 18.2 0.60 26.2 
0.16 0.52 3.31 4.2 3.33 53.4 0.30 38.3 
0,27 0.94 2.65 6.0 5.46 186.1 0.11 48.4 
0.45 1.77 2.22 9.4 9.03 792.4 0.044 83.3 
0.73 3.41 1.63 13.3 14.88 3909 0.020 190.0 
1.23 7.50 1 .00 17.9 21.60 13479 0.011 351.5 

__-_____I____ 

cp (monoM) 
cp  (monoM)  

Figure 3. Poly(ethy1ene oxide) in DzO. The quantity X for 
various degrees of polymerization: (+I PE015; (A) PEOBOO, (0) 
PE0350. 

Figure 5. Poly(ethy1ene oxide) in DzO. D, times degree of 
polymerization vs cp for various degrees of polymerization: (+) 
PE015; (A) PE0200; (0) PE0350. 

Figure 4. Poly(ethy1ene oxide) in DzO. q over degree of 
polymerization vs cp for various degrees of polymerization: (+) 
PE015; (A) PE0200; (0) PE0350. 

than the exponent of 0.64 would indicate and curves 
asymptotically toward the salt-free value of 0.5. 

Discussion of PSS Results 
In the following analysis of the NaPSS results, we will 

assume that a direct transposition is possible from polymer 
to polyelectrolyte systems in the sense that generic 

i 

c p  (monoM) 

Figure 6. Poly(ethy1ene oxide) in DzO. The principal relaxation 
time T proportional to AqiV/ckBT: (+) PEOlS; (A) PE0200; (0) 
PE0350. 

polymeric features remain invariant despite introducing 
electrostatic interactions in the system.12J3 In particular, 
since we are dealing with intrinsically flexible polyelec- 
trolytes at concentrations which are not exceptionally low, 
we expect that R2 - M to a good approximation. 

Salt-Free Systems. Dependence on Molar Mass. 
Because X does not depend on the molar mass, we conclude 
that the chains behave as independent elastic units (see 
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Table 11. Zero Shear Viscosity Increment, Chain Self-Diffusion Coefficient. and X versus Monomer Concentration 

0.250 
0.161 
0.110 
0.070 

0.250 
0.163 
0.110 
0.074 

0.437 
0.384 
0.295 
0.233 
0.217 
0.178 
0.150 
0.146 
0.125 

0.497 
0.437 
0.383 
0.300 
0.234 
0.207 

1.72 
1.33 
1.04 
0.74 

4.99 
3.72 
2.97 
2.23 

16.66 
14.72 
11.94 
10.07 
9.48 
8.3 
7.32 
6.88 
6.51 

21.99 
19.10 
16.71 
13.09 
10.38 
9.17 

2.95 
3.20 
3.51 
3.65 

0.98 
1.14 
1.24 
1.28 

3.35 
3.47 
3.86 
4.30 
4.64 
4.92 
4.98 
5.10 
5.27 

2.91 
3.03 
3.23 
3.73 
4.48 
4.77 

(a) PSS3l (No Added Salt) 
12.4 0.049 
10.4 0.036 
8.9 0.022 
6.6 

(b) PSS88 (No Added Salt) 
11.9 0.049 
10.3 0.035 
9.0 0.021 
7.0 0.014 

(c) PS177 (No Added Salt) 
13.6 0.105 
12.4 0.097 
11.2 0.073 
10.5 0.072 
10.7 0.048 
9.9 0.047 
8.9 0.036 
8.5 0.035 
8.3 0.027 

(d) PSS177 (C, = 0.01 M) 
15.6 0.159 
14.1 0.123 
13.1 0.098 
11.9 0.085 
11.3 0.052 
10.6 0.040 

(e) PSS177 (C. = 0.1 M) 
0.389 13.99 4.55 15.6 
0.348 12.04 4.93 14.4 
0.304 9.94 5.51 13.3 

20 
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w 

X 
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cp (monoM) 
Figure 7. Poly(styrenesulfonate) in water. The scaling variable 
X for various degrees of polymerization. Salt free: ( 0 )  PSS31, 
(A) PSS88, (0) PSS177. cm = 0.01 M (+) PSS177. The dotted 
line represents a power fit with exponent 0.5. In the inset the 
concentration regime between 0 and 0.1 monoM is expanded. 

theoretical section). A transient network consisting of 
local entanglements is an ineffective model for the global 
dynamics of NaPSS chains in salt-free solutions. 

Concentration Dependence. A precise analysis of the 
concentration dependence of X for polyelectrolytes is much 
more difficult than in the case of neutral polymers, since 
the Kuhn segment length, the segment interactions, and 
the segment friction all depend on the ionic strength. 
Furthermore, electrohydrodynamic dissipation due to the 
strong coupling of counterion flow with the motion of the 
polyelectrolyte network is very poorly understood. Nev- 
ertheless, some progress can be made. 

To account for additional contributions to the dissi- 
pation in polyelectrolyte solutions, we introduce a di- 
mensionless function hl in the expression for the viscosity 

0.57 
0.47 
0.35 

1.72 
1.44 
1.12 
0.89 

5.80 
5.29 
4.44 
4.65 
3.47 
3.62 
3.17 
3.00 
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5.12 
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1.07 

5.44 
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6.10 
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6.37 
6.58 
8.85 
9.80 
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4.4 
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5.7 
4.7 
3.3 
2.3 

7.7 
7.2 
6.3 
6.6 
5.1 
5.6 
5.0 
4.6 
4.3 

9.2 
8.3 
7.9 
6.5 
5.5 
4.8 

0.261 8.39 6.14 12.5 
0.216 6.49 6.99 11.0 
0.174 4.89 8.21 9.8 

20 
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w 
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0.00 0.10 0.20 0.30 0.40 0.50 

cp (monoM) 
Figure 8. Poly(styrene8ulfonate) in water. The scaling variable 
Xw the concentration cP Symbols are as in Figure 8 but together 
with results for PSS177 in 0.1 M NaCl (+). The dotted line 
represents X - cpo.81 and serves as a guide to the eye. 

increment 

Aq = hlE7 (5) 
It is reasonable to assume hl depends on the monomer 
concentration but not on the molar mass. In effect, the 
electrostatic interactions are local. 

Since we find that u - M-l, we naturally assume that 
in salt-free solutions the deformation of single chains 
determines the elastic response. Hence, we write. 

with It2 a dimensionless function depending on c and 
describing a possible electrostatic contribution, c = CpNav- 

lo3 the monomer concentration of dimension ma, cp the 
usual monomer concentration in monoM (lo3 mol.ma), 
and Nav Avogadro's number. 
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persistence lengths and the calculated persistence 
lengths16J7 are given as a function of the concentration. 

Principal Relaxation Time. Since the chains are the 
independent elastic units and h = 1, the concentration 
dependence of 7 can be represented by plotting NAq/ kBTc 
versus cp. The result is depicted in Figure 12 for PSS177. 
For concentrations smaller than approximately 0.05 mon- 
OM, we have 7 - C ~ - O , ~ .  In the concentration regime 
between 0.05 and about 0.2 monoM 7 is virtually inde- 
pendent of the polyelectrolyte concentration. 

(ii) Analysis Using a Specific Model for the Per- 
sistence Length. The ansatz h = 1 may be unrealistic. 
To make headway, we next let the Kuhn segment length 
vary with the ionic strength as f 0 1 l o w s : ~ ~ ~ ~ ~  

20 

0""""""""""""' 
0 00 0.10 0 20 0.30 0.40 0 50 

cp (monoM) 

Figure 9. Poly(styrenesulfonate) in water. Kuhn segment length 
b vs the concentration cp as determined from X. Zero additional 
dissipation (h = 1). Salt free: (+) Pss31, (m) Pss88, (A) Pss177. 
ca = 0.01 M. (0) PSS177. The dotted line represents the curve 
b = bo + bl/c,with bo = 0.9(f0.1) 8, and bl = 0.6(f0.1) A-mo1.L-l. 
The dashed line represents b = bl/c,'/2 with bl = 1.6(*0.1) 
A-moLL-1. 

We further suppose that the static conformation of the 
polyelectrolyte chains is essentially wormlike and Gauss- 
ian. The mean square end-to-end distance of a long ideal 
wormlike chain is given by 

R2 N bL (7) 
where b is the Kuhn segment length equal to twice the 
total persistence length Ltl* and L is the chain length. 
Note that we completely disregard excluded volume effects 
like those conjectured above c**.13 From the definition 
for X (eq 4) and eqs 3 and 5-7, we have 

X N hbac = hbacJV,103 (8) 

with a the monomer length (upss = 2.5 A). The dimen- 
sionless function h E hlhz = h(cP) where 1 is a length scale 
which itself is a function of other microscopic length scales 
(see below). 

In order to analyze the concentration dependence of X 
we next adopt two different scenarios depending on the 
type of starting assumption. Obviously, they are meant 
to be illustrative only. 

(i) Additional Dissipation May Be Neglected, Le. b 
= 1. Persistence Length. The concentration dependence 
of the total persistence length Lt is then readily determined 
from X. The values for the Kuhn segment length b = 2Lt 
as calculated from eq 8 are given in Figure 9 as a function 
of the concentration. From X - cp0.5 it follows that b - 
cp-0.5 for concentrations up to about 0.2 monoM. We next 
assume that the intrinsic and electrostatic contributions 
to the chain stiffness are additive, that is, b = bo + b,(cp). 
The Kuhn segment length will approach the intrinsic Kuhn 
segment length bo a t  high ionic strength b,(c,) 1 0 for 
large cp. At higher concentrations, the dependence of the 
Kuhn segment length is best represented by the form b 
= bo + bl/c, given the experimental accuracy. This is 
shown in Figure 10. The best fit gives bo = 0.9(*0.1) A 
and bl = 0.6(*0.1) X mol.m-2. The intrinsic Kuhn 
segment length of poly(styrenesulfonate) is 24 Our 
value of bo implies a prefactor of about 25 in the scaling 
relation for X. The origin of this relatively large prefactor 
is not yet understood. The value of 25bl = 0.15 x 
mol.m-2 is to be compared with the theoretically calculated 
value blcdc = 2/(16Q?raN~,lO~) (m01.m-~).~~7~' In water a t  
room temperature the Bjerrum length Q = 7 A and blcdc 
= 3.8 X 10-lo mol.m-2. In Figure 11 the corrected 

bl  b = b o + ,  
K 

(9) 

in which bl is a constant equal to 1/2Q and K is the inverse 
Debye screening length. This model was developed to 
describe the electrostatic stiffening of a single polyelec- 
trolyte chain in the local stiffness approximation (AT >> 
l ) . 1 3  In Figure 13 we show the Kuhn length according to 
eq 9 where the screening from uncondensed counterions 
is also taken into c~nsideration.'~ End effects are not 
accounted for in the present analysis. 

Elasticity Modulus E a n d  the Function h. We first 
determine the concentration dependence of the product 
hlE from X using eqs 4, 5, 7, and 9 which is shown in 
Figure 14 for PSS177. Next, Figure 15 exhibits the 
concentration dependence of the function h which is 
evaluated from eqs 8 and 9. For cp < 0.05 monoM, it is 
found that h increases with concentration. For cp larger 
than about 0.2 monoM, h decreases with concentration. 

Principal Relaxation Time T. By using the scaling 
relation (1) for the self-diffusion coefficient and eqs 7 and 
9, we ascertain the concentration dependence of the 
principal relaxation time T shown in Figure 16 for the 
fraction PSS177. Similarly to the first scenario, for 
concentrations smaller than 0.2 monoM, T increases 
strongly with decreasing concentration. For cp larger than 
0.2 monoM, the relaxation time increases with the con- 
centration only slightly. 

Systems with Added Salt. We have to know the 
dependence of X on the molar mass in order to establish 
the nature of the elastic response. Owing to time limi- 
tations we have been able to determine X for only one 
sample (PSS177) with added salt. (However, we have 
managed to verify that the mass dependence of D, is not 
very strong in a similar concentration regimeI8.) Never- 
theless, Figure 8 proves that the addition of even 0.1 M 
NaCl merely shifts the X(cp) curve with respect to the 
scaling curve valid a t  zero salt. This implies the mechanism 
behind the elastic response is modified a bit a t  most, so 
it is reasonable to assume the individual chains remain 
the elastic units. 

C, = 0.01 M. The behavior of X is indistinguishable 
from that of salt-free solutions down to concentrations as 
low as 0.02 monoM. By contrast, the constitutive quan- 
tities D, and v start deviating from those for salt-free 
NaPSS a t  concentrations as high as 0.2 monoM.l* This 
value is what one would expect from a consideration of 
uncondensed counterions (the effective ionic strength of 
a 0.2 monoM salt-free NaPSS solution is 0 .2426  cv 0.03 
monoM, so it is increased a bit by the addition of 0.01 M 
NaC1). The invariance of X(cp) between 0.02 and 0.2 
monoM is remarkable because we know the excluded 
volume effect and the functions hl and h2 should be 
sensitive to added salt. 
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Figure 10. Poly(styrenesulfonate) in water. (a) Scaled Kuhn length bc, vs the concentration cp. The dotted line representa a linear 
fit bc, = b,,c, + bl with bo = 0.9(f0.1) A and bl = O.S(h0.l) A.mo1.L-1. (b) bcp1i2 vs c , ~ / ~ .  The dotted and dashed lines re resent linear 
fib bc,1/2 = b,,c,1/2 + bl with bo = -O.Ol(hO.OS) A, bl. = 1.6(iO.l) A.moWL-1/2 and bo = -0.4(hO.l) A, bl. = 1.7(*0.2) !-rn~l~/~.l-l~~, 
respectively. 
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Figure 11. Poly(styrenesulfonate) in water. Corrected Kuhn 
segment length b ,  vs cp. Zero additional dissipation (h = 1). 
The solid line is the Kuhn length according to eq 9. 

0.00 
0.00 0.10 0.20 0.30 0.40 0.50 

cp (monoM) 

Figure 12. Poly(styrenesulfonate) in water. Principal relaxation 
time T proportional toNAq/c&BTfor PSS177. Salt free (scenario 
I, zero additional dissipation (h = 1)). 

C, = 0.1 M. Electrostatic screening is now effective 
under excess salt conditions (or almost so). We than 
recover basically the neutral polymer case, so it is plausible 
to set h l= :  1 and h2 zz 1, since they are now independent 
of the concentration. The volume fraction of NaPSS is 
quite low, so we can use classic scaling analysis for 
semidilute  polyelectrolyte^.^^ The relation R2 - 
then implies X - cP3l4 which is close to the experimental 
form X - C ~ O . ~ .  Remnant uncondensed counterions would 
tend to lower the exponent 3/4 a bit. Hence, the difference 
between the two exponents is not worrisome. 

500 I 

10 ' I 
0.01 0 1  0.5 

cp (monoM) 

Figure 13. Poly(8tyrenesulfonate) in water. Theoretical values 
for the Kuhn segment length as a function of cp calculated 
according to eq 9 (solid) salt free; (dashed) C~ = 0.01 M (dotted) 
cI = 0.1 M. 
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Figure 14. Poly(8tyrenesulfonat.e) in water. Elasticity modulus 
times the function h.1 as determined from X for PSS177. Salt 
free (scenario II). 

Additional Remarks 
(a) Local entanglementa appear to be ineffective in the 

global dynamics of NaPSS chains in salt-free solutions. In 
both scenarios T starts to increase significantly with 
decreasing polyelectrolyte concentration for cp smaller than 
about 0.15 monoM. This behavior of T is reflected in 
several dynamic features.' In addition, i t  is expected that 
shear thinning effects become more pronounced with 
decreasing concentration which is borne out by experi- 
ment.lB 
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we hope this work will lead to more insight into macro- 
molecular dynamics. 
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Figure 15. Poly(styrenesu1fonate) in water. The function h vs 
cp for PSS177. Salt free (scenario 11). 
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Figure 16. Poly(styrenesulfonate) in water. Principal relaxation 
time calculated from the self-diffusion coefficient assuming ideal 
chain conformations. Salt free (scenario 11). 

Tentatively, we identify a crossover when the persistence 
length is of the same order of magnitude as the average 
distance between contact points of neighboring chains. 
This transition was f i s t  proposed in a static scaling analysis 
of semidilute salt-free systems and denoted by c**.13 Note 
that the behavior of salt-free solutions of NaPSS with 
decreasing concentration resembles the behavior of PEO 
in water with increasing concentration (which was reported 
in the previous section). This paradoxical disparity arises 
because electrostatic screening changes dramatically with 
the polyelectrolyte c~ncentration.'~ 

(b) It is quite remarkable that the curve X(c,) is almost 
universal, i.e. independent, even of the charge! The two 
scaling forms (Figure 3 (PEO) and Figure 8 (NaPSS with 
and without added salt)) are quite close to each other. 

Concluding Remarks 
We have shown that our dynamic scaling hypothesis 

can be confirmed purely on empirical grounds. In fact, 
for both PEO and salt-free NaPSS, the quasi-static 
quantity X proves to be independent of the molar mass 
whereas the viscosity and the self-diffusion exhibit complex 
mass dependences. In both cases, the chains themselves 
form the individual elastic units involved in the elastic 
response just after a slight perturbation of the solution 
away from equilibrium. We can draw additional conclu- 
sions only by making further suppositions of a less general 
nature. We have outlined several possible scenarios for 
charged and uncharged systems although we have pur- 
posely refrained from discussing detailed mechanisms for 
the dynamics of the chains. Despite this limited objective, 
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Appendix 

The scaling hypothesis yielding eq 4 is consistent with 
four disparate dynamical theories. 

(I) Kirkwood-Riseman. For a dilute solution of linear 
flexible polymers of concentration c ,  the number of Kuhn 
segments per unit volume, we have in the nondraining 
limit14 

Aq q,cR3/N (AI) 
Ds kBT/q$ ( A 3  

where N is the number of Kuhn segments in a chain. 
Equation 4 gives 

v 3 c / N  (A31 
i.e. v is to be identified with the number of chains per unit 
volume, as it should, for in dilute solution the individual 
chains are the dynamic units and E is the osmotic 
compressibility. 

(11) Rouse Dynamics. For instance, in a concentrated 
polymer solution the viscosity q is much greater than 90. 
From Doi and Edwards (=DE) we have2 

q Aq C @  (DE 7.33) 644) 
kBT 

Ds Nf (DE 4.31) 

where lis the friction coefficient of a Kuhn segment. Hence, 
from eq 4 we should have 

v = c/N (A6) 
which is again the number of chains per unit volume. 
Indeed, in the Rouse model the chains themselves form 
the individual dynamic units in the transient gel. 

(111) Reptation in a concentrated polymer solution ( q  
>> 10) 

9 Aq N31b2~(b/a)4  (DE 7.43,7.46,7.47) (A7) 

D, N k B T a 2 / P l b 2  (DE 6.40) (A81 
where b is the Kuhn length and a is the diameter of the 
effective tube. Equation 4 yields 

v cb2/a2 (A91 
which is precisely the number of segments between two 
dynamic entanglements per unit volume in view of the 
fact that the entanglement number Ne 
(IV) Blob Model for Semidilute Solutions. This is 

a rescaled version' of the reptation model (111). From eq 
4 we would have v identical with the number of blobs 
between dynamic entanglements per unit volume. 

In conclusion, the empirical quantity X is a direct probe 
of the effective density of dynamic entanglements or units 
within four different theoretical frameworks. 

a2/b2. 
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