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SUMMARY

The relationship between streamline curvature and bed

'resistanee ~n shallow wäter flow with little side constraint,

as derived in 1970 by H.~. Schoemaker, is reconsidered.

Schoemaker concluded that the bed resistance causes the

curvature of a free streamline to grow exponentially with

the distance along this ~streamline, thus giving rise to a

destabilizing tendency; The present analysis shows the bed

shear stress to act in a stabilizing way and, as far as it

~s possible to isolate the influence of the bed resistance J

on the development of streamline curvature, it is shown to

be adamping one.

In addition, the applicability of the shallow water equations

to the sealing of curved alluvial river models is discussed.

It is suggested to introduce additional terms into the stream­

wise momentum equation, accounting for the advective influence

of the secondary flow.
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1. Tr,~ roduc t i.on

An imp~~tant class of problems in hydraulic engineering concerns

steady or gradually v3rying, nearly horizontal shear flow with a

horizontal Length+sc aLe that is much larger than the depth of flow

(shallow rivers, lakes, estuaries and seas).

Physical scalemodels are often used to investigate this kind of

problems and in such models a correct representation of the horizontal

flow field is very important. This implies i.a. that the modelling of

the bed resistance, which influences the streamline curvature

(SCHOEMAKER 1970), must be adequate, i.e. some relationship between

the roughness-scale and the length-scales must be satisfied~

SCHOEMAKER (1970) derived a relationship between streamline aurvature

and bed rèsistance in shallow water. flow with little side constraint.

This relationship forms the basis for the scale-law that has to be

satisfied in order to attain a correct modelling of the flow ~n this

respect.

It follows directly from SCHOEMAKER's relationship that, going alang

a streamline of the horizontal flow field, the bed shear stress causes

an increase of the streamline curvature, i.e. the bed shear stress

makes the streamlines curl in the horizontal plane, so it has a

destabilizing effect on the flow. As this is in contrast with .the

usually damping and stabilizing character of the bed shear stress ~n

similar situations (cf. the damping of curvature effects beyond a
'I

shallow river bend (ROZOVSKII, 196i; DE VRIEND, 1978b», SCHOEHAKER's

relationship was subject to a closer investigation.

Most of the study underlying this report was carried out Ln 1976. The

results were not published, however, until they appeared to be used

for the derivation of scale laws for alluvial river models (DELFT

HYDRAULICS LABORATORY, 1978). This gave rise to an additional discussion

on the applicability of the present results for this purpose, especially

if bends are included (see chapter 4).

'.',
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2. Formulation of the problem

As the influence of the bed resistance on streamline curvature

~n shallow water flow ~s considered, it will be attempted to

formulate the problem ~n such a way, that all other phenomena

influencing streamline curvature (adjacent lateral boundaries or

bottom discontinuities, secondary flow induced by eurvature, et cetera)

are absent or of ne.gligible importance. Therefore considerations are

limited to steady shallow shear flow of mild curvature over _~

horizontal or gently sloping bottom, far from obstacles or lateral

boundaries, i.e. with little side constraint.

In a cartesian coordinate system (x,y,z) with vertieal z-axis, this

type of flow ean be described by the following set of differential

equations, representing the eonseryation of mass and momentum:

..

dV dV dV
x _y + __ z = 0-- +

oX oy oz

dV oV oV
_ _!_ lP. 1 d.

___! + x x + xz
v v -- + v ----
x dX y dY z dZ p ox p oz

dV dV oV dp o.
v _y_ + v _y_ + v _y_ = - -- + _!_ _E
x ox. y oy z oZ p oy p oz

o =
__ op ..:. g

p oz

(1)

(2)

(3)

(4)

where v , v , vx y z
turbulence-averaged velocity components in

x~, y- and z-direction, respectively,

'xz' ·yz = shear stress components (including the Reynolds stress)

p = pressure

p mass density of the fluid

g = acceleration due to gravity

Only the boundary conditions at the bottom and at the free surface

are relevant to the present problem. These eonditions read

v v v = 0 at the bottom (z = zb) (5)
x' y' z

oZ dZ
o and

__ s + s at the surface (z z ) (6)r r p = v = v v =
xz' yz' z x dX y dy s
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Equation (4) and the pressure conditio!! at the.surface yield

the hydrostatic pressure distribution

p = pg(z - z)
S

(7)

The differential equations (1) through (3) can be integrated over

the depth of flow. Making use of (5) and (6), this leads to:

a (v h) a (; h) 0+- =ax x ay y

a (v2h) d -- dZ LS XZ+ - (v v h) = -gh dX -dX x dy.. x Y p rz
, b

a a (v2h)
dZ

LYZI(vvh) . h s+ - -g --ax x y ay y dY P z
b

(8)

(9)

(lO)

1n which the overbar denotes the depth-averaged value and

h = Zs - zb is the depth of flow.

If the vertical distribution of the velocity is assumed to be similar

throughout the flow field, the depth-averaged velocity produets can

be written as

2" -2
v = av ;'x x

..
v v av v .
x y x y'

-2 -2v = avy y (11 )

1n which a is a constant. If the velocity distribution 1S logarithmic,

a = (12)

1.nwhich K Von Karman's constant

C = Chezy's factor

Usually, the second term is small with respect co unity, so that it

can be neglected. This is consistent with neglecting the effects of tha

vertical redistribution of the velocity due to streamwise accelerations

and of secondary flow induced by curvature. If these phenomena arè

included, the factor a becomes (DE VRIEND, 1976)

= 1 + 3 -g_ - 2 gig
Cl 2 2 .3 3

K C K C
( 13)
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The components of ti-te bed shaar stress are a s surncd to c.orrespond

with Chezy's law for uniform shear flow, sa that the depth­

integrated momentum equations become

a (y2h) +l_
Clz -2 y2)1/2(y V. h) s g-gh-

~2
v (v +ax x Cly x y Clx x x y.

a a -2 az -2 y2)1/2(v v h) s ~+ a (v h) -gh- v (v +<lx x Y _'y Y <ly c2 Y x Y

These are rather complicated equations ~n which the streamline

(14)

(15)

curvature does not figure explicitly, so that it will be a fairly

complicated task to derive a relationship between this curvature

and the bed resistance from these equations. Therefore the depth­

averaged conservation laws (8), (14) and (15) will be transformed to

a stream~o:i:ientedi.coordinatesystem with one vertical axis and

two horizontal axes tangent to the streamlines and the normal lines

~n every point of the flow.

If s denotes the distance along a streamline and n ~s the distance

along anormal line, this (curvilinear) ~oordinate system can be

indicated by (s,n,z)~). Transformation of equations (8), (14) and (15)

to this coordinate system yields (see Appendix I)

a(vh) + vh ;; 0
as Rn

(16)

- ávvh -...as

azs-gh­
as ( 17)

-2v h_- -- =Rs

azs-gh­ Cln
( 18)

where v = total depth-averaged velocity

I/R local streamline curvature (positive when the normals
lines diverge)

I/R local curvature of the normal lines (positive whenn
the streamlines diverge)

H
This is a symbolic notation, s and n'not being the actual co-

ordinates of the system (s is not necessarily constant along a

normal line and n may vary along a streamline).
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3. Variation of flow curvature along a streamline

In order to derive a relationship between streamline eurvature

and bed resi5tanee, the water surfaee z must be eliminated froms
the momentum equations (In and (18). This ean be done using the

following rule, that is derived mathematieally ~n Appendix Band

physieally in Appendix C:

az s+ ----R ass

az
____ 5=0

R an
n

(J 9) .

This rule is a representation of the vector identity

-+ -+eurl (grad a) - 0 (20)

holding for any scalar a (KUIPERS EN TIM}~, 1966). When applied

to z , the physieal interpretation of this identity is that. following
s

a elosed path over the water surface and observing the local water

level, this level will not have changed when returning in the point

of departure, whatever path has been followed.

Equations (17) and (18) ean be rewritten as expressions for the

components of the free surface slope

az s
as

v av= - ---
g as

(21)

az -2s v
ari = gR

s

(22)

Substituting these expressions into (19) yields

a (_I)
as Rs

I a (v av)
- -2 (ln as

v

3 av-----
R - ass v

R R
s n

.!. ah}
h an

(23) .

Ad op t ing the same simplifying assumptions as .~GHOEl1AKER(1970),

viz.



- 6 -

all veloeity er3dients are negligible

. the divergence of the streamlines (and hence the curvature

of the normallines) are negligible

• the normal gradient of'h in (23) is negligible

,equation (23) reduees to

a (_1)
as Rs

(24)
.,

(see also Appendix C), whereas SCHOEHAKER, probably as a consequenee

of a sign error, found

aR;
s

as (25)

, whieh is equivalent to

a (_1)
as Rs

(26)

Expressions (24) and (26) are eontradietory, the former stating that

the bed resistanee straightèns the streamlines and the latter

stating that the bed resistance makes the streamlines eurl.

Equation (26) may be expeeted to be wrong on the basis of the

physieal argument, that the bed shear stress uses to stabilize the

depth-averaged flow field. In a straight section after a river bend,

for example, the asymmetrie distribution of the depth-averaged velocity

eaused by the bend is damped by the bed shear stress (ROZOVISKII, 1961);

DE VRIEND, 1978b).

Finally it should be noted that the scale-laws following from

equations (24) and (26) are identieal, so that the ineompatibility

of these two equations has no repercussions for the physical

modelling of shallow water flow with little side constraint.
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4, Dlscussion
__ ~MM __ ~_'~ __

4.1. On the damping effect of bed resistance

The physical considerat~on that friction usually has adamping and

stabilizing effect corraborates the results of the present mathematical

analysis. As an illustration of this damping influence, an example.
concerning shalLow water flow is given here.

Consider a long straight section of a shallow rectangular channel,

with a depth of flow h (say 1.00 m) at the downstream end and a

constant channel width B (say 20.00 m), with slipping sidewalls and

a longitudinal slope.given by

~ (27)

, Q denoting the total discharge. If the slope is chosen this way,

no backwater effects will occur in the fully developed stage of steady

turbulent flow satisfying Chezy's law. Now the transverse distribution

of the inflow velocity is taken asymmetric with respect to the channel

axis and the streamwise variation of the flow is investigated using a

mathematical model based on equations (8), (14) and (15), (see DE VRIEND,

1976 and 1977)~~.

The results of the computations, carried out both for a smooth bed

(C = 70 m!/s) and for a rough bed (C = 30 m!/s), are shown ~n figure 1.

The main velocity distribution turns out to adapt smoothly to its fully

developed configuration and the streamline curvature appears to damp

out exponentially, without any tendency to become unstable. In addition,

the adaptation to fully developed flow and the damping of the streamline

curvature occur over a longer distance in case of a smooth bed, as was

to be expected on the basis of equation (24).

H) Th~s' li h t d fl 'tl cl t t Li hL ~mp ~es t asecon ary ow, e~ ler ue 0 s ream ~ne curva~ure

or due to turbulence in the sidewall regions, is neglected and that

the vertical distribution of the main velocity is assumed to be

similar (for instanee: .logarithmic) throughout the flow field.
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4.2. Admissibility of the simplifications

In order to arrive at equation (24), two important groups of.

simplifications had to be made, viz.:

those leading to the d~pth-averaged equations for shallow water

flow (equatio~s (8), (14) and (15) or equation (16) through (18»,

- the simplifications needed to reduce equation (23) to equation (24).

The most important simPtifications belonging to the first group are

the direct correlation between the bed shear stress and the depth-
H .

averaged velocity ) through Chezy's law and the neglect of the

influence of the secondary flow due to streamline curvature.

DE VRIEND (1978 a, 1978 b ) showed that if the streamline curvature

remains over a sufficiently lorigdistance, the secondary flow

influences the vertical and the horizontal distribution of the ma in

flow. The effect on the vertical distribution establishes over a rather

short distance after the beginning of curvature and it works out in

an increase of the bed shear stress with respect to the values according

t~ Chezy's law. The effect on the horizontal distribution of the main

flow needs a much langer distance to establish, especially if the convex

boundary is far away. It works out in a tendency of the streamlines to

move away from the centre of curvature. The importance of bath effects

depends on the rate of curvature, i.e. the ratio h/R •
s

Even if the distance over which curvature exists is toa short for the

direct effect of the secondary flow on the streamline configuration to

become important, the effect on the bed shear stress may be considerable.

In that case the bed shear stress depends, with a certain retardation,

on the streamline curvature and the relation between this curvature and

the bed resistance ~s greatly complicated.

On the other hand, if the rate of curvature is small enough to have a

negligible effect of the secondary flow on the bed shear stress, but

curvature exists over a long distance, the effect of the secondary flow

on the streamline pattern may grow important. In that case there is na

direct correlation between streamline curvature and bed resistance.

Hence it must be concluded that the present shallow water equations can

only be used for the derivation of a telationship between curvature

and bed resistance if the curvature is small and exists over not toa

long distances.

K)
The assumption that such a correlation exists is related to the similarity

hyp~thesis for the vertical distribution of the main flow.
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The seeond group of simplifieatiol1s, leading from equation (23)

to equation (24), included the negleet of the spatial variations

of the depth-averaged veloeity and the depth of flow as well as the

curvature of the normallines. In general, however, a streamwise

variation of the streamline ~urvature will involve a variation of the

depth-averaged veloeity, so that it is not correct to maintain the

variation of the curvature and negleet the variation of the veloeity.

This ean be made elear by eonsidering the vorticity of the depth­

averaged flow

J
W

-av v
as Rs

(28)

This is a flow property that is produced, transported and dissipated

as other properties, such as momenturn, and hence it satisfies a

transport equation.

Adopting the shallow water approximation represented by equations (16)

through (18), this vorticity transport equation reads (see Appendix D)

= - 1L '!... {2w + -Rv + '!... ah}
2 h h anc s

(29)

This can be considered as a rewritten vers ion of equation (23) and if

the spatial variations of v and hare neglected this equation reduces

to equation (24).

According to equation (29), the vorticity has a certain inertia, i.e.

if the flowencounters a change in the production .terms, the

vorticity shows a rctarded adaptation to this change (see Appendix D).

The characteristic length L of this adaptation is given by
w

(30)

i.e. 50-250 times the depth of flow, according as the bed is rough or

smooth. This does not imply, however, that both the curvature and the

transverse velocity gradient shall vary with a characteristic length L ,w
but only that steeper variations of either quantity are compensated by .

opposite variations of the other quantity.

Therefore equation (24) represents only a very specific case of shallow

water flow, occurring when the transverse velocity gvadient varies with
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a much larger length scale than the vorticity. In general,

equation (24) should be replaced by an equation concerning the

vorticity rather than the'streamline curvature. If the Froude

number is small,and the bottom is nearly horizontal, the variations

of hare negligible and the equation, to be derived from the

vorticity transport equation (29), r~ads

dW-=as (31 )

It may become evident from these arguments, that only ~n very specific

cases of shallow water flow that will not often occur ~n nature, the

relationship between the streamline curvature and the bed resistance

~s as simple as equation (24). Therefore it will be a rather hard,

if not impossible task to verify this equation experimentally.

4.3. Applicability of the results for sealing alluvial river models

Some of the results presented in this report, viz. equation (23) and

the vorticity transpor~ equation (29), were used to derive scale laws

for alluvial river models (DELFT HYDRAULICS LABORATORY, 1978). Regarding

the considerations given in section 4.2., the use of these equations is

at least preferable to the use of equation (24), but especially in river

bends the applicability of the shallow water approximation underlying

these equations must be doubted (DE VRIEND, 1976; DE VRIEND AND KOCH,

1977 and 1978).

The main reason why the shallow water approximation fails in this case

is the neglect of the advective influence of the secondary flow on the

main flow, as became evident from a thorough analysis of the main

velocity redistribution in a channel bend (DE VRIEND, 1978a and b).

It is this advective influence that causes thc effect of the secondary

flow on the vertical and the horizontal distribution of the main flow

as mentioned in section 4~2.

A set of depth-averaged conservation laws equivalent to (16) through (18),

but accounting for this advective influence, would read (DE VRIEND, 1979)
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a(vh)
as

vh+ - = 0
Rn

( 16)

- F- ah} 1._+ V - J-an

(32)

(18)

-in which F the depth-averaged stream function of the secondary flow*),
-af --

- v az /(vF) = the advection factor,

u3 = bed shear stress factor.

As the vertical àistribution of the ma in flow tends to become more

uniform under the influence of secondary flow advection, the factor

v2/v2 will lie even closer to unity than in case of a logarithmic

distribution. Hence it is consistent with equations (17) and (18)

to set this factor equal to unity. On the other hand, the bed shear

stress factor u3 may become much larger than the "undisturbed" value
2g/C •

The extended vorticity transport equation to be derived from equations

(32) and (18) reads

- aw v ahv----was )) as
- -

w (aF. + !_ + ! ah) +
an R h ans

v v v ah
- u3 h (2w + R + h an)

s
(33)

For u
"L

2= 0 and u3 = g/C , this equation reduces to equation (29). In·

order ,to analyse thc differences between these two equations they are

rewritten as

Here F is defined by v =·n
aF and vaz z

aF F·-+-an Rs
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dW +
dS

{_ 1 dh + 2 _jL} W =
h as C2h

and

dW o.i dW [
as + -- -a-n+ -

v

0.2 - - -1 ah + _ (2.! + 2 !_ + ! ah) +
h as dn R h dnv s

-
dF (_1 + L dh) + F L
an R h an ans

(_1 + _!_ ah)]
R h ans

(34)

(lJ-=

0.3
(Y..

h. R
s

+ Y..~)
h an (35)

Equation (34) has one real characteristic, coincident with the

streamline. Equation (35) has also one real characteristic, but

it is given by

dn
ds -v (36)

, i.e. it does not coincide wi t.hthe streamline, but tends to deviate

outwards. In practical cases the deviation angle will be small, but if,

starting from a certain point, the secondary flow acts over a

sufficiently long distance, the characteristic through this point

finally deviates considerably from the streamline.

Not only the characteristic direction, but also the damping factor

and the souree term are influenced by the secondary flow advection.

The damping factor is increased near the inner bank and decreased near

the outer bank and the source term is influenced such, that the depth­

averaged velocity tends to decrease near the inner bank and increase

near the outer bank (DE VRIEND, 1978a and 1978b).

It may be evident from the foregoing that it is important to adequately

represent secondary flow advection when modelling rivers of curvilinear

aligiunent.
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5,. Conclusions

The following conclusions can be drawn from the present analysis

regarding the influence of the bed resistance on the curvature of

streamlines in shallow water flow with Li.ttl,e side constraint:

· the bed resistance has adamping influence on the flow and hence

on the curvature of a free streamline, '

· the damping is stronger as the resistance ~s greater,

· the vorticity transport equation for the depth-averaged flow provides

information on the damping influence of the bed resistance; only in

very specific cases this equation reduces to a direct relationship

between streamline curvature and bed resistance,

experimental verification of the relationship between streamline

curvature and bed resistance will be difficult, as in most flow cases

the curvature is also influenced by other effects that ean hardly be

eliminated (velocity gradients, secondary flow).

In addition, the analysis gives rise to the following more general

concIusi.on as to shallow water f Low;

· if the rate of curvature or the distanee over whieh the streamlines

are curved is not small, the original shallow water equations (16)

through (18) must be corrected for the advective influence of the

secondary flow on the main flow; when modelling this type of flow by a

physical scale model, the scale laws to be satisfied must ensure an

adequate representation of this adveetive influence.
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Appendix A. Conservation laws in streamline coordinates

One of the possibilities to derive depth-averaged conservation laws

equivalent to equations (8), (14) and (15) is to carry out a

transformation from the cartesian coordinate system (x,y,z) to

the strearnline-coordinate system (s,n,z).

X

n
Irr general, the transformation rules can be written as

2_ = 2_ dx + 2_ dy
dS dX ds dy ds

(A. 1)

-=
dn

!_ dx + 2_ ~
dX dn dy dn

(A.2)

Since s and nare defined along strearnlines and normal lines, the

transforrnation factors are

v v - v
dx x dy J... . dx _'2 dy x
-= = = =
ds ds ' , dn dn

v v v , v.
(A.3)

Making use of these transformation laws, equations (8), (14) and

(15) can be reduced to

d(vh) h -2 dV -2 dV dV dV
{- x __:j_ x __:j_) };....

-=-2 v v + v v (-- +
dS Y dX x dy x Y dy dX

v
dZ -2 - dVs -~gh-= v - vh-
dS C2 dS

(A.4)

(A.5)

az sgh­ an

-
Clv

h {~v ( x
x y ax

-Cl...,
ClyY)

-
-2 Clvx

+ v y Cly

-dil
-2 y}v -­x Clx

(A.6)
v



Physical considerations lead to the conclusion that the terms

in braces in equations (A.4) and (A.6) must be related to the

divergence and the curvature of the streamlines, respectively.

Therefore it will be attempted to express the radii of curvature

of the streamlines and the normal lines in terms of v and ~ (seex y
also DE VRIEND, 1976).

The streamlines of the depth-averaged flow field are defined by

(A.7)
vx

and if the streamline eurvature LS defined as in chapter 2, i.e.

the eurvature is taken positive when the normal lines diverge, it

follows from

I
Rs

(A.8)2 3/2
{I + (dy) '}

dx

The numerator can be elaborated using (A.8) to yield

v -
d2 d' (dy) d y 1 dv dv

(~ _J__ - x~=- (-=:-) v -)2 dx dx dx -2 x dx Y dxdx v v
x x

Sinee

(A.9)

'd v_=L+J.L
dx ax -: ayvx

(A. 10)

,.'expression (A.9) ean b~ written

- -
2 dV dV dV5!..x = _1_ f,~ _J_ + ~ _J_ _ ~ ~_
2 -2 ~ x dX Y dY Y dXdx vx

-2 -
v dV
....L~)
- dYv
x

(A.. 1 1 )

Substitution of (A.7) and (A.ll) leads to

Rs

- -
1 -2 dVv dV -2 dVX _ _ avx

( V ___L + v v __J_ - v -- -- v v --)
-3 x ax x y dy Y 3y x Y dXv

(A.12)-=



A.3.

The norma1 1ines of the depth-averaged flow field are defined

by

~
v
x=dx vy

and their curvature fo110ws from

d2-~
1 dx2
R d 2 3/2n { 1 (_l) }+ dx

(A.13)

(A.14)

In a sirniLar ,.,ayas described above for the stream1ine curvature,

the following re1ation between R and v and V' can be derived
11 x y.

~ - -
1 2 dV -2 dV dV dV

- -3' (- ~ _j_- x x - - ,y: (A. 15)
R

v -- + v v -- + v v --)
x dY Y dX x Y dy x y dX

n v

Then the transformed conservation 1aws ean be rewritten as

-
d(vh) + vh 0dS R

n

dZ -2 -
s v v dV--= - ---

dS C2h
g dS

dZ -2
s v=

dn. gR
s

CA.16)

(A.I7)

(A.18)

-According to the first equation vh tends to decrease a10ng a stream1ine

when R H positive (i.e. when the- streamlines diverge), which isn
physical1y correct. The last equation states that the transverse

slope is positive when R is positive, i.e. when the normal liness
diverge. This is physical1y correct, as weIl. So the signs of Randn
R in the above equations are correct.
s

An alternative way to arrive at these equations ~s to start from the

conservation 1aws in an orthogona1 coordinate system with vertical

z-axis and general curvl1inear horizontal coordinateg. If tand n

denote the distances a10ng the horizontal eoordinate lines, this system

can be indicated by Ct,n,z} and the dcpth-averaged continuity and

momentwn equations read (cf. ROUSE, 1959)
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dZ
s g -­-gh --- - -- v vaç; C2 ç;

dZ s g -­-gh --- - -- v v
dn C2 n

If the horizontal coordinate lines coincide with the streamlines

and the normal lines of the depth-averaged flow field,

and v _ 0
n

•
by definition. Equations (A.19) through (A.21) then reduce to

equations (A.16) through (A.18).

(A.19)

(A.20)

(A.21)

(A.22)
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Appendix B. Exchange of the sequer..ce of dif:f.c.r:.e.u.ti.ati on
in a two-dimensional curvilinear coordinate system

Ijl=Ijl0-
<fJ=CPO-d<jl

CP=<jlO

n,<j>

If Ijl and <jldenote the actual coordinates in the streamline coordinate
:iEsystem (s,n) , two functions Lj(IjI,<jl)and l2(IjI,CP)can be defined such

that

and (B. j)

(see, for instanee, KUIPERS EN TI~·urn, 1966). Then the first derivatives
af

of a smooth scalar function f(IjI,<j»,denoted symbolically by as and

2!. can be \..ritten as
an'

and af
an

(B.2)

.In apolar coordináte system (cp,r). .for instanee, Lj = rand L2 = l ,
so that ds = rd ~ and dn = dr. Then the first derivatives of a smooth

function f(cp,r) are

af I af-=--as r aep
and

af af (B.3)-:::
an ar

As f(IjI,<jl)is a scalar, its second cross-derivative is independent

of the sequence of differentiation, so

(B.4)

H i.e. streamlines are lines of constant epand normal lines are lines

of constant Iji.
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The two terms 1n this equation can be elsborated to

(B.5)

~B.6)

Then equation (B.4) becomes

(B.7)

The distance between two adjacent streamlines, measured slong a

normal line, is proportional to L2• Hence the streamwise variation

of L2 indicates the rate of divergence of the streamlines, which is

related to the curvature of the normal lines. Similarly, the streamline

curvature is related to the divergence of the normallines, i.e. to

the normal variation of L1• These relationships can be derived as

follows (see also: ROUSE, 1959).

S,lj!

n,~
-- -- \

\--------- ---
The similarity of the sectors M AD and M BC leads tos s

BC (B.8)AD = M Cs HDs

or
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(B.9)

(R
s

1-2 Z2 d~) (B.I0)

Then series expansions of the quotients yield

1+­Rs
(B. 11)

so that for d<j>+0

.,

1 a i 1
1: __

R 2-12-2 ê<j>s
(B. 12)

This result is consistent with the sign convention for the streamline

curvature: the curva~ure is positive ~hen the normal lines diverge.

A similar expression for the curvature of the normal lines can be

derived in the same way. It reads

(B.13)

Now equation (B.7) can be rewritten as

(B.14)

or, using the symbolic notation of the derivatives,

(B. 15)

The above rule can also be derived from the vector identity

+ +curl (grad f) _ 0 (B.16)

holding f or any s caIar f {KUIPERS EN TH'\YAN, 1966). T11e cur I of a
+ . clvector v w1th components v an vs 11

is clefined as
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-+ -+
curl (v) (B. f7)

or, making use of (B.12) and (B.13),

-+ -+
curl (v)

av vs s--_-_an Rs
(B.IS)

-+
If the components of the vector grad f are substituted for v s
and v , this expression becomes

n

-+ -+
curl (grad f) af

(B.19)R ass

When combining this expression with the identity (B.16), equation

(B.15) is found.
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Appendix C. Variation of the transverse surface slope

along a streamline

s

n

A most essential tooI in the derivation of the relationship

between streamline curvature and bed resistance (see chapter 3)

is equation (19), reading

az____ s=o
R an
n

(C. 1)

A strictly mathematical derivation of this rule is given in

Appendix B. In the present appendix a more physical approach is

used to arrive at the same equation.

According to equation (18), the streamline curvature is related to

the transverse surface slope: if v and hare almost constant, the

curvature is proportional to azs/an ..So the streamwise variation of

this curvature is determined by the.streamwise variation of the.
transverse surface slope alas (az lan). Therefore this quantity iss
subject to a closer investifation,
Consider an elementary domain DFIG·(see figure), bounded by two

streamlines and two normallines. Thè water surface elevation in this

domain, and so along the line FI, is dete~~ined uniquely by the

elevation along the line DG aud the longitudinal slope in every point.

Rence the transverse surface slopes on DG and FI are related through

the longitudinBJ slope.

In order to establish this relationship, the following approximations,

holding for small t.sand t,n,are introduced:
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dZ
z (0) z (A) - s- LOA an (C.2)s s A

dZ
z (G) z (A) +

5~ LAG ar;:- (C.)S 5 A

dZ I
(C.4)z (F) ~ Z (0) + L 51

5 s OF dS E

dZ
z ():) Z (G) +

s
(C.S)~ LGI äSS 5

H

dZ
5

Z (I) - Z (F)LFI an ~ (C.6)
C s s

LOG (R - /),s) 2/),n
(C.7)'" n R

Ï1

LFI (R + /),s)2/),n (C.8)~
n Rn

LDF (R - /),n)2/),s (C.9)~
5 Rs

LGI (R '+ /),n)2/),s (C.IO)~
s Rs

in whieh LpQ denotes the d istance b,etween the po int s Pand Q

rneasured along the strearnline or the normal line these point have

in eornrnon.

Making use of these approxirnations; the relationship between the

transverse surf ace slopes in A and C ean be shown to read

dZ
(1 + /),8) 2 s

R /),n an
n C

dZ
(1 + ~E.) 2/),s S

R dSs
-I-

H

_ (1 - /:'n) 2AR LIS
S

(C. 11 )
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As for small values of !J.sand !J.n

az az az
s + s 2 san ::: (C.12)

C an A aU. B

az az
{~

azs s 2!J.s s- -- ::: (~)} (C.13)aU. C aU. A as B

az az azs + s 2~ (C.14):::
as H as E as B

az az 2!J.n
a azs

(C.IS)s s ::: {an'(äS)}
as H '(l.sE B

, equation (C.11) leads to

az
+ s=

R ann

az aza (_s) + s
an as R as""s

(C.16)

, which is equivalent to (C.I) and equation (19).

In fact, the present derivation is nothing but a finite area

representation of the derivation in Appendix B. Integrating

identity (B.16) over the domain DFIG yields

J J
A

-+ -)-
curl (grad z ) dAs = 0 (C.17)

, where A ~s the area of DFIG. Then Stokes' theorem leads to

o (C.18)

s

, s denoting the pnth along the boundary of the àomain.
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Making use of approximations (C.7) through (C.IO) and

dZ
"'-L __s

DG an A (C.19)

-+ -+
{(grad Z ) • s}

S FI

dZ
S

'" + LF1 dn (C.20)
C

-+ -)-
{(grad Z ) • s}

S DF

dZ
S

::::+ LDF dS (C.21)
E

-+ -+
{(grad Z )'. s}

S GI

dZ
"'-L __s

GI dS H (C.22)

• identity (C.18) can be elaborated to

dZ dZ
_ (I - t,s)nn-s + (I _ t,n)2ós S

Rn dn A Rs dS E

dZ
+ (I + ~) 2Ón __ s

R dnn C
+

dZ
_ (I + t,n)2ós S = 0

R dS
S H

(C.23)

This result corresponds with equation (C.II) and, for &s and

t,n+ 0, with equation (C.16).

The decreasing tendency of the streamline curvature 1n case of an

almost uniform velocity field with negligible gradients of the depth

of flow (Schoemaker's assumptions; see chapter 3) is readily shown

by the following simplified version of the present derivatión.

Z (C)s

M A C
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Consider a qomain ABDC, bounded by two streamline sections AB

and CD being concentric circles and two straight normal line

sections AC and BD. As a consequence of the assumptions made,

the longitudinal slope is a constant throughout the domain and if

the distance LAC (= LBD) is small, the transverse slope is

approximately constant along AC and along BC. Be I the longitudinals
slope of the water surface, defined by

Is

oZs- --oS (C.24)

, then the surface elevations 1n Band D are related to those 1n A and C

through

(C.25)

(C.26)

Hence

oz z (D) - z (B) z (C)-- z CA) LCD - LAB oZ
s ·S s s s I s I fl4>::: -- - ::: -an LBD LAC s LAC 'drl AC sBD

(C.27)

.
This implies that the transverse slope (and so the streamline

curvature) tends to decrease along a strearnline and that the rate

of decrease is proportional to the longitudinal slope.
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Vorticity transport e_g_1.!..é!-ti._on

-+
Tbe vorticity w of a velocity field is defined as twice the rotation

of the velocity vector CSTREETER, 1971). Hence the vorticity of the

depth-averaged shallow water flow considered here has only one non­

zero component, viz. the vertical one, the magnitude of which is given

by

(D. 1)

Tbis quantity ~s a property of the flow, so it is independent of the

horizontal configuration of the adopted coordinate system. In the

cartesian system used in chapter 2, the vorticity follows from

-av
w = ___1.

ax

-avx
CD.2)ay

and ~n the streamline coordinate system the expression reads Csee also

ROU SE , 1959)

w dV v
an Rs

(D.3)

Starting from the conservation laws for mass and momentum, a transport_equati,

for the vorticity can be derived by eliminating the pressure from the

momentum equations.

On doing so in the cartesian coordinate system, equations (14) and (15)

lead to (see also KUIPERS AND VREUGDENHIL, 1973)

a (v w) + ~ (v w)
ax x é'ly y

-x : v v= g {_o; C.....x.....)- 2" é'lx h­
·e

(D.4)

, which can be elaborated using the equation of continuity (8) and

expression (A.12) for the streamlïne curvature. Then the following

vorticity transport equation is found:

aw dWv -+ V -
X ax y ay

w (v dh + v .ah) _
h x dX y ay

.& y_ {')w' -+ y_2 h - . R
C s

..!. 1 Cv ah _;; B~·\}
h y dX x öy'

(D.5)
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The equivalent equation 1.nthe streamline coordinate system can

be derived from (D.S) by transformation, using the transformation

rules given in Appendix A.

(D.6)

This equation can also be derived directly from equations (16)

through (18), maki.nguse of the identity (B.IS). Equations (17) and

(18) can be rewritten as

-2
a (z +~)g as s 2g (D.7)

-2
a (z + v )

g an s 2g
~2 a~

+ - + - = - vw
R ans

(D.8)

Substituting this into (B.IS) applied to the energy head
-2z + v /2g yieldss

a
as (vw)

+ vw
R
n

-2 -2
g a (~) g v
c2 an h. - c2 hRs

o (D.9)

which can easily be elaborated to (D.6).

This equation can further be simplified by dividing it by v, to yield

g v (_I +.!_ ah)
- c2 h Rs h an

(D. 10)

Hw = Wo 1.Sg1.ven 1n a point s = So of a streamline and

f 1 (s) = _ .!_ ah + 2 _g_
h as C2h

(D. 11)

g v (_1 +.!_ ah)
- c2 h Rs h an

(D. 12)

, the solution of equation (D.lO) along this streamline has the form

(see also DE VRIEND, 1976)
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w

or, in another farm

f 1(s") ds"} ds J (D. 13)

w =
. s s s
exp I> J fl(s')ds'} + f, f2(s') exp{- t, f (s")ds"}ds' (D.14)"o "o s I

As long as fl(s) is a positive quantity, as will be the case for the

present cLàss of problems, (D.14) is only a stable f orm if s - s iso
positive, i.e. downstream of the point so. This implies that w in a

point s of a certain streamline is only influenced by what happens

upstream álong the streamline. In addition, expression (D.14) shows

the influence of what happens in a point upstream to decrease as the

distance (measured along the strearnline) to the point considered

increases.




