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SUMMARY

The relationship between streamline curvature and bed

resistance in shallow water flow with little side constraint,

as

derived in 1970 by H.J; Schoemaker, is reconsidered.

Schoemaker concluded that the bed resistance causes the

curvature of a free streamline to grow exponentially with

the distance along this streamline, thus giving rise to a

destabilizing tendency. The present analysis shows the bed

shear stress to act in a stabilizing way and, as far as it

is
on
be
In
to
It

possible to isolate the influence of the bed resistance
the development of streamline curvature, it is shown to
a damping one.

addition, the applicability of the shallow water equations
the scaling of curved alluvial river models is discussed.

is suggested to introduce additional terms into the stream-—

wise momentum equation, accounting for the advective influence

of

the secondary flow. :
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Introductioen

An impoftant class of problems in hydraulic engineering concerns
steady or gradually varying, nearly horizontal shear flow with a
horizontal length-scale that is much larger than the depth of flow
(shallow rivers, lakes, estuaries and seas).

Physical scalemodels are‘often used to investigate this kind of
problems and in such models a correct representation of the horizontal
flow field is very important. This implies i.a. that the modelling of
the bed resistance, which influences the streamline curvature
(SCHOEMAKER 1970), must be adequate, i.e. some relationship between
the roughness-scale and the length-scales must be satisfied.
SCHOEMAKER (1970) derived a relationship between streamline eurvature
and bed resistance in shallow water. flow with little side constraint.
This relationship forms the basis for Lﬁe scale-law that has to be
satisfied in order to attain a correct modelling of the flow in this
respect.

It follows directly from SCHOEMAKER's relationship that, going along

a streamline of the horizontal flow field, the bed shear stress causes
an increase of the streamline curvature, i.e. the bed shear stress
makes the streamlines curl in the horizontal plane, so it has a
destabilizing effect on the flow. As this is in contrast with the
usually damping and stabilizing character of the bed shear stress in
similar situations (cf. the damping of curvature effects beyond a
shallow river bend (ROZOVSKII, 196i; DE VRIEND, 19735)) » SCHOEMAKER's
relationship was subject to a closer investigation.

Most of the study underlying this report was carried out in 1976. The
results were not published, however, until they appeared to be used
for the derivation of scale laws for alluvial river models (DELFT
HYDRAULICS LABORATORY, 1978). This gave rise to an additional discussion
on the applicability of the present results for this purpose, especially

if bends are included (see chapter 4).



2. Formulation of the problem

As the influence of the bed resistance on streamline curvature

in shallow water flow is considered, it will be attempted to
formulate the problem in such a way, that all other phenomena
influencing streamline curvature (adjacent lateral boundaries o¥
bottom discontinuities, secondary flow induced by curvature, et cetera)
are absent or of negligible importance. Therefore considerations are
limited to steady shallow shear flow of mild curvature over a
horizontal or gently sloping bottom, far from obstacles or lateral
boundaries, i.e. with little side constraint.

In a cartesian coordinate system (x,y,z) with vertical z-axis, this
type of flow can be described by the following set of differential

equations, representing the conservation of mass and momentum:

v v v

X y Z
& + =
X ay 0z 0 (1
avx 3vx avx 1 ap , I arxz
—_— ——— —_— = - — + —
vx oxX vy Yy * V2 3z p 9X p 2dz (2)
v v v 1 1 9T '
X 09X . y 0¥ z 0z p 3y p 0z
- -123p
0 > 5z " B (4)
, where Vs Vy’ v, = turbulence-averaged velocity components in
x-, y- and z-direction, respectively,
Tt Tz = shear stress components (including the Reynolds stress)
p = pressure
p = mass density of the fluid
g = acceleration due to gravity
Only the boundary conditions at the bottom and at the free surface
are relevant to the present problem. These conditions read
Voo vy, v, = 0 at the bottom (z = zb) (5)
st st .
- Tyz, p = 0 and LR P o vy B at the surface (z = Zs) (6)



Equation (4) and the pressure condition at the surface yield

the hydrostatic pressure distribution
P = pelz, - 2) ' (7)

The differential equations (1) through (3) can be integrated over

the depth of flow. Making use of (5) and (6), this leads to :

9 - - _
‘a—x (Vxh) + a—y (Vyh) =0 (8)
s 9z T
) 2 9 s X2z
ax O ey (M T e R T L e
'
— 9z T
9 3 2 s vz
— (v.v h) + — h) = -gh — - —=— 1
% (vt * 55 (k) = g gof - = (10)
b

in which the overbar denotes the depth-averaged value and

h=2z -2z

o p 1S the depth of flow.

If the vertical distribution of the velocity is assumed to be similar
throughout the flow field, the depth-averaged velocity products can
be written as

2 . =2 ;=
Ve SOV F VY Ravwv.i V. "oy (1)

in which a is a constant. If the velocity distribution is logarithmic,

= 8
o 1 + 5.2 _ (12)
Kk C

in which k = Von Karman's constant

C = Chezy's factor
Usually, the second term is small with respect to unity, so that it
can be neglected. This is consistent with neglecting the éffects of the
vertical redistribution of the velocity due to streamwise accelerations
and of secondary flow induced by curvature. If these phenomena are
included, the factor o becomes (DE VRIEND, 1976)
a=1+3=E -2 878 _ (13)

kic? 3



The components of the bad shear stress are assumed to correspond
with Chezy's law for uniform shear flow, so that the depth-

integrated momentum equations become

3 (32 8 == . g _E A =F -2.1f2
% (vxh) +'3y (vxvyh) gh % c2 v (vx + vu) (14)
3 == N P P
'a—x' (VxVyh) C ?—y (Vyh) - -gh a—y—— = —62 Vy (VX + Vy) (]5)

These are rather complicated equations in which the streamline
curvature does not figure explicitly, so that it will be a fairly
complicated task to derive a relationship between this curvature

and the bed resistance from these equations. Therefore the depth-
averaged conservation laws (8), (14) and (15) will be transformed to
a stream-oriented !coordinate system with one vertical axis and

two horizontal axes tangent to the streamlines and the normal lines
in every point of the flow.

If s denotes the distance along a streamline and n is the distance
along a normal line, this (curvilinear) coordinate system can be
indicated by (s,n,z)x). Transformation of equations (8), (14) and (15)

to this coordinate system yields (see Appendix I)

a(vh) _ ' (16)

+ Yh
9s R
n
= 9z
¥ s8-8 2 '
vh 9s gh as 2 v (amn
c .
-2 st
s
where v = total depth-averaged velocity
1/R_ = local streamline curvature (positive when the normal
lines diverge)
l/Rn = local curvature of the normal lines (positive when

the streamlines diverge)

This is a symbolic notation, s and n'not being the actual co-
ordinates of the system (s is not necessarily constant along a

normal line and n may vary along a streamline).



3. Variation of flow curvature along a streamline

In order to derive a relaFionship between streamline curvature

and bed resistance, the water surface z must be eliminated from
the momentum equations (17) and (18). This can be done using the
following rule, that is derived mathematically in Appendix B and

physically in Appendix C:

3 azs 1 azs 3 azs 1 azs
m G50 "R 3 s Gm) R O L

This rule is a representation of the vector identity
curl (g;ad a) 20 _ (20)

holding for any scalar g (KUIPERS EN TIMMAN, 1966). When applied

to z_, the physical interpretation of this identity is that, following
a closed path over the water surface and observing the local water
level, this level will not have changed when returning in the point

of departure, whatever path has been followed.

Equations (17) and (18) can be rewritten as expressions for the

components of the free surface slope

A vav_ v

L =-IZ - (21)
as g 09s C2h

zg 3P | (22)
on gR

9y __1 3 (a3 _3 1d__1__ g (1 , 23 13h
3s &) = ;2 T 3s) { }

Adopting the same simplifying assumptions as SCHOEMAKER (1970),

viz.



all velocity gradients are negligible
. the divergence of the streamlines (and hence the curvature
of the normal lines) are negligible

. the normal gradient of'h in (23) is negligible

,equation (23) reduces to

o (l_.) - -8 1 d (24)

(see also Appendix C), whereas SCHOEMAKER, probably as a consequence

of a sign error, found
w8 p (25)
, which is equivalent to

%g(_) =+_§Lrl<_ | (26)
s Ch s

Expressions (24) and (26) are contradictory, the former stating that

the bed resistance straighténs the streamlines and the latter

stating that the bdd resistance makes the streamlines curl.

Equation (26) may be expected to be wrong on the basis of the

physical argument, that the bed shear stress uses to stabilize the

depth-averaged flow field. In a straight section after a river bend,

for example, the asymmetric distribution of the depth-averaged velocity

caused by the bend is damped by the bed shear stress (ROZOVISKII, 1961);

DE VRIEND, 1978b).

Finally it should be noted that the scale-laws following from

equations (24) and (26) are identical, so that the incompatibility

of these two equations has no repercussions for the physical

modelling of shallow water flow with little side constraint.
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Discussion

On the damping effect of bed resistance

The physical consideratidn that friction usually has a damping and
stabilizing effect corroborates the results of the present mathematical
analysis. As an illustration of this damping influence, an example
concerning shallow water flow is given here.

Consider a long straight section of a shallow rectangular channel,

with a depth of flow h (say 1.00 m) at the downstream end and a

constant channel width B (say 20.00 m), with slipping sidewalls and

a longitudinal slope given by

azb ) QZ

- ©(27)
9xX CZBZhB _

, Q denoting the total discharge. If the slope is chosen this way,

no backwater effects will occur in the fully developed stage of steady
turbulent flow satisfying Chezy's law. Now the transverse distribution
of the inflow velocity is taken asymmetric with respect to the channel
axis and the streamwise variation of the flow is investigated using a
mathematical model based on equations (8), (14) and (15), (see DE VRIEND,
1976 and 1977)™.

The results of the computations, carried out both for a smooth bed

(c =70 m%/s) and for a rough bed (C = 30 m&/s), are shown in figure 1.
The main velocity distribution turns out to adapt smoothly to its fully
developed configuration and the streamline curvature appears to damp

out exponentially, without any tendency to become unstable. In addition,
the adaptation to fully developed flow and the damping of the streamline
curvature occur over a longer distance in case of a smooth bed, as was

to be expected on the basis of equation (24).

This implies that secondary flow, either due to streamline curvature
or due to turbulence in the sidewall regions, is neglected and that
the vertical distribution of the main velocity is assumed to be

similar (for instance: logarithmic) throughout the flow field.
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4.2, Admissibility of the simplifications

In order to arrive at equation (24), two important groups of
simplifications had to be made, viz.:
-~ those leading to the depth-averaged equations for shallow water

flow (equations (8), (14) and (15) or equation (16) through (18)),
- the simplifications needed to reduce equation (23) to equation (24).
The most important simplifications belonging to the first group are
the direct correlation between the bed shear stress and the depth-
averaged velocityx) through Chezy's law and the neglect of the
influence of the secondary flow due to streamline curvature.
DE VRIEND (1978 a, 1978b ) showed that if the streamline curvature
remains over a sufficiently long distance, the secondary flow
influences the vertical and the horizontal distribution of the main
flow. The effect on the vertical distribution establishes over a rather
short distance after the beginning of curvature and it works out in
an increase of the bed shear stress with respect to the values according
to Chezy's law. The effect on the horizontal distribution of the main
flow needs a much longer distance to establish, especially if the convex
boundary is far away. It works out in a tendency of the streamlines to
move away from the centre of curvature. The importance of both effects
depends on the rate of curvature, i.e. the ratio h/Rs.
Even if the distance over which curvature exists is too short for the
direct effect of the secondary flow on the streamline configuration to
become important, the effect on the bed shear stress may be considerable.
In that case the bed shear stress depends, with a certain retardation,
on the streamline curvature and the relation between this curvature and
the bed resistance is greatly complicated.
On the other hand, if the rate of curvature is small enough to have a
negligible effect of the secondary flow on the bed shear stress, but
curvature exists over a long distance, the effect of the secondary flow
on the streamline pattern may grow important. In that case there is no
direct correlation between streamline curvature and bed resistance.
Hence it must be concluded that the present shallow water equations can
only be used for the derivation of a relationship between curvature
and bed resistance if the curvature is small and exists over not too
long distances.

H) The assumption that such a correlation exists is related to the similarity

hypathesis for the vertical distribution of the main flow.



The second group of simplifications, leading from equation (23)

to equation (24), included the neglect of the spatial variations

of the depth-averaged velocity and the depth of flow as well as the
curvature of the normal lines. In general, however, a streamwise
variation of the streamline curvature will involve a variation of the
depth-averaged velocity, so that it is not correct to maintain the
variation of the curvature and neglect the variation of the velocity.
This can be made clear by considering the vorticity of the depth-
averaged flow

6= - -2 (28)
This is a flow property that is produced, transported and dissipated
as other properties, such as momentum, and hence it satisfies a
transport equation.

Adopting the shallow water approximation represented by equations (16)

through (18), this vorticity transport equation reads (see Appendix D)

veh _ _g v
3s  h s “ Czh{z“’*s

oh
+ 35} (29)

<
=<

This can be considered as a rewritten version of equation (23) and if
the spatial variations of v and h are neglected this equation reduces
to equation (24).

According to equation (29), the vorticity has a certain inertia, i.e.
if the flow encounters a change in the production .terms, the
vorticity shows a retarded adaptation to this change (see Appendix D).

The characteristic length Lw of this adaptation is given by

1
N

W C
el (30

0Q

i.e. 50-250 times the depth of flow, according as the bed is rough or
smooth. This does not imply, however, that both the curvature and the
transverse velocity gradient shall vary with a characteristic length Lw’
but only that steeper variations of either quantity are compensated by
opposite variations of the other quantity. .

Therefore equation (24) represents only a very specific case of shallow

water flow, occurring when the transverse velocity gradient varies with



4.3.
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a much larger length scale than the vorticity. In general,

equation (24) should be replaced by an equation concerning the
vorticity rather than the streamline curvature. If the Froude
number is small and the béttom is nearly horizontal, the variations
of h are negligigle and the equation, to be derived from the

vorticity transport equation (29), reads
—a—s——T(2w+§) . (31)

It may become evident from these arguments, that only in very specific
cases of shallow water flow that will not often occur in nature, the
relationship between the streamline curvature and the bed resistance
is as simple as equation (24). Therefore it will be a rather hard,

if not impossible task to verify this equation experimentally.

Applicability of the results for scaling alluvial river models

Some of the results presented in this report, viz. equation (23) and

the vorticity transport equation (29), were used to derive scale laws
for alluvial river models (DELFT HYDRAULICS LABORATORY, 1978). Regarding
the considerations given in section 4.2., the use of these equations is
at least preferable to the use of equation (24), but especially in river
bends the applicability of the shallow water approximation underlying
these equations must be doubted (DE VRIEND, 1976; DE VRIEND AND KOCH,
1977 and 1978).

The main reason why the shallow water approximation fails in this case
is the neglect of the advective influence of the secondary flow on the
main flow, as became evident from a thorough analysis of the main
velocity redistribution in a channel bend (DE VRIEND, 1978a and b).

It is this advective influence that causes the effect of the secondary
flow on the vertical and the horizontal distribution of the main flow

as mentioned in section 4.2,

A set of depth-averaged conservation laws equivalent to (16) through (f8),

but accounting for this advective influence, would read (DE VRIEND, 1979)
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SRl 6

= 3V = By v, w BF L F. = S
hog + oy {FhGgo+ RS) *vh Gt RS) *vFad
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s -2 _
-‘ghsg— ‘a3v (32)
-2 azs
TR, T (18)
S

in which F

the depth-averaged stream function of the secondary flowx),

a, ==V gg /(VF) = the advection factor,

ay = bed shear stress factor.
As the vertical distribution of the main flow tends to become more
uniform under the influence of secondary flow advection, the factof
vz/\_r2 will lie even closer to unity than in case of a logarithmic
distribution. Hence it is consistent with equations (i17) and (18)
to set this factor equal to unity. On the other hand, the bed shear
stress factor ay may become much larger than the "undisturbed'" value
g/cz.
The extended vorticity transport equation to be derived from equations
(32) and (18) reads

- 3w _ v dh _ So0w LW QE ‘E_ E_gh
Vas Ros T T % [%(an YR et R "o Y
_;@E L 9F 0, lah g3 1 12h,
VI 7 "9 'R hoom on ‘R_  h on J
an s s
v v . v 2dh
"o n (PR TR 33
For @, = 0 and ay = g/CZ, this equation reduced to equation (29). In

order :to analyse the differences between these two equations they are

rewritten as

Here F is defined by v_= - L and v_ = S #
‘n 9z z n

Wl"‘l
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dw 1 dh g g v 1 1 3h
— (~-=—+2-2}luw==-2x=(—+—-7) (34)
9s h 9s Czh CZ h 'R h on
and
o F o = — = a
w, %2 dw, | 13n, % oF ,F ,Foan ,,% | _
3s T = an has 'S Gat2F thoa T2w. O[O
v s
3%F  oF 1 1 h, . =23 I 1 3h %3 v . v oh
Yzt & Thw T & v | TR R w63
an s s s
Equation (34) has one real characteristic, coincident with the
streamline. Equation (35) has also one real characteristic, but
it is given by
o
dn _ 2
ds = (36)
v

, 1.e. it does not coincide with the streamline, but tends to deviate
outwards. In practical cases the deviation angle will be small, but if,
starting from a certain point, the secondary flow acts over a
sufficiently long distance, the characteristic through this point
finally deviates considerably from the streamline,

Not only the characterisfic direction, but also the damping factor

and the source term are influenced by the secondary flow advection.

The damping factor is increased near the inner bank and decreased near
the outer bank and the source term is influenced such, that the depth-
averaged velocity tends to decrease near the inner bank and increase
near the outer bank (DE VRIEND, 1978a and 1978b).

It may be evident from the foregoing that it is important to adequately
represent secondary flow advection when modelling rivers of curvilinear

alignment,
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5. Conclusions

The following conclusions can be drawn from the present aﬁalysis
regarding the influence of the bed resistance on the curvature of
streamlines in shallow water flow with little side constraint:

. the bed resistance has a damping influence on the flow and hence
on the curvature of a free streamline,

. the damping is stronger as the resistance is greater,

. the vorticity transport equation for the depth-averaged flow provides
information on the damping influence of the bed resistance; only in
very specific cases this equation reduces to a direct relationship
between streamline curvature and bed resistance,

. experimental verification of the relationship between streamline
curvature and bed resistance will be difficult, as in most flow cases
the curvature is also influenced by other effects that can hardly be
eliminated (velocity gradients, secondary flow).

In addition, the analysis gives rise to the following more general

conclusion as to shallow water flow:

. if the rate of curvature or the distance over which the streamlines
are curved is not small, the original shallow water equations (16)
through (18) must be corrected for the advective influence of the
secondary flow on the main flow; when modelling this type of flow by a
physical scale model, the scale laws to be satisfied must ensure an

adequate representation of this advective influence.
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Appendix A. Conservation laws in streamline coordinates

One of the possibilities to derive depth-averaged conservation laws
equivalent to equations (8), (14) and (15) is to carry out a
transformation from the cartesian coordinate system (X,y,z) to
the streamline-coordinate system (s,n,z).

X

f

o

n
In general, the transformation rules can be written as

> _ 9 dx, 3 dy
ds 9x ds ¥ dy ds (A.1)
9 _93 dx 93 dy
a0 9x dn | 3y dn - » (A2

Since s and n are defined along streamlines and normal lines, the

transformation factors are
ax _Vx oay Yy oax Yy, oy 'x (A.3)
v v v v

Making use of these transformation laws, equations (8), (14) and

(15) can be reduced to

- v v v v
3vh) ~h 52 _x _32_ Y ,357 (X+2
ds ;2 t Vy X Vx oy * vxvy (By * 9x )} LRk
9z =
s . .8 F2_gp
ghgs =727 vh TS (A.5)
dz v v v 3V
8. _h == y =2 x =2 v
—— - — — — — - —_— A.
gh on b {vxvy (ax ay ) * Vy ay X 90X J (A.6)



As2:

Physical considerations lead to the conclusion that the terms
in braces in equations (A.4) and (A.6) must be related to the
divergence and the curvature of the streamlines, respectively.
Therefore it will be attempted to express the radii of curvature

of the streamlines and the normal lines in terms of ;x and v

also DE VRIEND, 1976).

The streamlines of the depth-averaged flow field are defined by

and if the streamline curvature is defined as in chapter 2, i.e.

the curvature is taken positive when the normal lines diverge, it

follows from

_dly
2
1o dx
R 2 3/2
5 o+ 8}
dx

The numerator can be elaborated using (A.8) to yield

y _dv. _ av
dy _4d_ (QZ) -4 (—) = l_.(v I PR
4 2  dx ‘dx dx - =2 " x dx y dx

X v v

X -
Since

. a v
dx x 3 Y
X

expression (A.9) can be written

=2

2 v v v, Vo av
dy 13 Y,5 Y_5 _X_3¥y_X%
d 2 =2 X 39X .y 3y y ox - 9y
X Vx v
X

Substitution of (A.7) and (A.11) leads to

: _— an N A
§; - 33 Ye T T T vy 3y Yy oy x'y 3% )

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)
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The normal lines of the depth-averaged flow field are defined
by

oy Vx
how = al (A.13)
v
y
and their curvature follows from
2
-dy
2
1 dx
0+ @b
In a similar way as described above for the streamline curvature,
the following relation between Rn and ;x an& ;y can be derived
] , V., v v
L. S — . S (- — - — —— k> A
Rn ;3‘( Vx oy Vy X vay y * vxvy 9x ) (A.15)
Then the transformed conservation laws can be rewritten as
a(vh) . vh _
35s TR0 (A.16)
n
2g 3% Ty
—2 =T - _ (A.17)
9s 2h g 9s
st ;2
= - Ei- (A.18)

According to the first equation vh tends to decrease along a streamline‘
when Rn is positive (i.e. when the streamlines diverge), which is
physically correct. The last equation states that the transverse

slope is positive when RS is posigive, i.e. when the normal lines
diverge. This is physically correct, as well. So the signs of Rn and

Rs in the above equations are correct. '

An alternative way to arrive at these equations is to start from the
conservation laws in an orthogonal coordinate system with vertical
z—-axis and general curvilinear horizontal coordinated. If § and n
denote the distances along the horizontal coordinate lines, this system
can be indicated by (£,n,z) and the depth-averaged continuity and

momentum equations read (cf. ROUSE, 1959)



<1

h

v_h
35 3.5 £ ...
3E (th)+3n(vnh)+R +R 0
n 13
_ a_'_g _ a"g vV, Gi 2y o
Vb tVaham TR TR T Bhag Tz Ve
€ n B
_ BGH _ avn GEGH ;é 9z g = =
Vgh-a—g—-+vnh’a_n—+-§n—'—ig=-ghw-;—2-vnv

If the horizontal coordinate lines coincide with the streamlines

and the normal lines of the depth—averaged flow field,

vV, 3V and v =0

3 n

by definition. Equations (A.19) through (A.21) then reduce to
equations (A.16) through (A.18).

(A.19)

(A.20)

(A.21)

(A.22)



Appendix B. Exchange of the sequence of differentiation
in a two-dimensional curvilinear coordinate system

n,¢

If y and ¢ denote the actual coordinates in the streamline coordinate

system (s,n)x, two functions Zl(w,¢) and Zz(w,¢) can be defined such
that

ds = Zl(¢,¢)d¢ and dn = Zz(w,¢)d¢ (B.1)

(see, for instance, KUIPERS EN TIMMAN, 1966). Then the first derivatives
of a smooth scalar function f(y,$), denoted symbolically by %% and

%%, can be written as

of 1 of of of
)

1 1

3s ~ 7. 39 2™ T T %% 5.2
1 2

In a polar coordinate system (¢,r), for instance, Zl = r and 12 =1,

so that ds=rd¢ and dn = dr. Then the first derivatives of a smooth

function f(¢,r) are )

1 of
— TR — — — TR —— » BQS)
9s r 3¢ il an  or ) ( ’

As f(y,4) is a scalar, its second cross-derivative is independent

of the sequence of differentiation, so

2w S (B.4)

i.e. streamlines are lines of constant ¢ and normal lines are lines

of constant .
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The two terms in this equation can be elaborated to

2 YA

2% _ 3 @ 3 o, 1 3f ;2 1 9, 1 8’

5956 ~ 3y 3¢’ ~ 3y L2 , 550 = L2 3y (Zl 39 * I, % 3y - (8.5)
2 YA

2% _ 2 af 2, 1 af g 3 1 ot 1 afPhy

399¢ ~ 3¢ 3y = 33 ¢ I 5 = b1 g ¢ : i I, %y 3% 4B.6)
Then equation (B.4) becomes

FI T TN T Y S W WS U WY T- U I ¥ Wt PN
Zl Y Zz ¢ Zz ¢ ZIZ2 Y Zz ¢ Z] oY Zl oY Z]ZZ ¢

The distance between two adjacent streamlines, measured along a

normal line, is proportional to ZZ. Hence the streamwise variation

of 12 indicates the rate of divergence of the streamlines, which is
related to the curvature of the normal lines. Similarly, the streamline

curvature is related to the divergence of the normal lines, i.e. to

the normal variation of Zl. These relationships can be derived as

follows (see also: ROUSE, 1959).

Ss¥

The similarity of the sectors MSAD and MSBC leads to

BC : AD=MC : MD (B.8)
S S .

or
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: - 1 ; -1
@)y ¢ (de), = R+ 52, d) ¢ (R, =5 1, d¢) (B.9)
(1 +l———azld)-(l —l——alld)—(R +lZ d)'R—lZd ]
1t zag 99 P By mggg 90 = Rgr gl do) 2 (Ro- 5 1, d) (B.10)

Then series expansions of the quotients yield
1+1—£l—d=1+1—-ld +0(d2) (B.11)
TR R, 2 ¢ ,

so that for d¢+0

1
- | (B.12)
R, 7,7, 3% ‘

This result is consistent with the sign convention for the streamline
curvature: the curvature is positive when the normal lines diverge.
A similar expression for the curvature of the normal lines can be

derived in the same way. It reads

Py
r 1 "2
R 1.1 (B.13)

1 1

T =t (D) T T (B.14)

Z, 3 'L, 3¢ 1,3 R 1, 8¢ L, oy | 3 R

or, using the symbolic notation of the derivatives,

5. of, . 1 af _ 3 af _ 1 of |

35 Gn) "R %0 "o s’ TR 9s (B.15)
n s

The above rule can also be derived from the vector identity

curl (grad f) = 0 (B.16)

holding for any scalar £ (KUIPERS EN TIMVYAN, 1966). The curl of a

-> . . .
vector v with components vy and v, 1s defined as
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1 ] 1 9
e g L) = gpeas (v L)
lez Y "' n 2 ZIZZ 9¢ s 1

curl (V) =

or, making use of (B.12) and (B.13),

- N avn L Bvs Ve
curl (V)='—+§—‘ '_-a_n—-R_s

+ .
If the components of the vector grad f are substituted for L

and Vn’ this expression becomes

> 2 _3 f 1 Of _ 3 f _ 1 of
curl (grad £) = = () + R %0 on 3 R_ 3s

When combining this expression with the identity (B.16), equation
(B.15) is found.

(B.17)

(B.18)

(B.19)



Appendix C. Variation of the transverse surface slope

along a streamline

A most essential tool in the derivation of the relationship
between streamline curvature and bed resistance (see chapter 3)
is equation (19), reading

3 azs 9z 9z 9z

S—
an (as ) Rs 9s 9s (Bn ) R on 0 , (c.1)

A strictly mathematical derivation of this rule is given in

Appendix B. In the present appendix a more physical approach is

used to arrive at the same equation.

According to equation (18), the streamline curvature is related to
the transverse surface slope: if v and h are almost conétant, the
curvature is proportional to azS/Bn. So the streamwise variation of
this curvature is determined by the streamwise variation of the
transverse surface slope 93/93s (azs/bn). Therefore this quantity is
subject to a closer investipation. »

Consider an elementary domain DFIG:(see figure), bounded by two
streamlines and two normal lines. The water surface elevation in this
domain, and so along the line FI, is determined uniquely by the
elevation along the line DG and the longitudinal slope in every point.
Hence the transverse surface slopes on DG and FI are related through
the longitudinal slope.

In order to establish this relationship, the following approximations,

holding for small As and An, are introduced:



c.2.

9z
zs(D) B Zs(A) - LDA an A (c.2)
azs
z (C) = zS(A) * Lo 3 N (c.3)
azs (C.4)
26 () = 2,0+ Ly 55| '
st
zs(I) = zs(G) * Loy 3;-}{ (C.5)
st
Let e . = ZS(I) - ZS(F) (C.6)
. (R - ae) 20m
LDG £ (Rn As) Rn (c.7)
2An .
LFI = (Rn + As) i;_ (c.8)
_ pgy 248
LDF & (RS An) Rs (Cc.9)
5 2As
LGI = (Rs + An) ﬁ;_ ~(C.10)

in which LPQ denotes the distance bftween the points P and Q
measured along the streamline or the normal line these point have
in common. '

Making use of these approximations; the relationship between the

transverse surface slopes in A and C can be shown to read

As azs As - An azs
(1 + =) 2An —— = (] = =) 2An —— + (I + =) 2As —— +
Rn on c Rn n |A RS oS H
dz
An ¢ sl
- (1 = =) 248 — (c.11)
R 3s |,
s E
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As for small values of As and An

9z 9z 9z
) —8 & 2.8
on c on A on B
azs azs 3 azs
=2 - =2 =288 (= (=)
on c on A ds 'an B
9z 9z o0z
.5_..5_ + _B—S 2 .a_s
s |y s E s |
9z
25| _ %] = aan (2. (—2))
35 3s on  '9s B
H E
» equation (C.11) leads to
9z 9z 9z
9 S _ 9 s
3s Gn ) * R %0  on Gt

» which is equivalent to (C.1) and equation (19).
In fact, the present derivation is nothing but a finite area
representation of the derivation in Appendix B. Integrating

identity (B.16) over the domain DFIG yields

J I curl (grad z) dA

, where A is the area of DFIG. Then Stokes' theorem leads to

§ (grgd zc) .gds =0

&

» 8 denoting the path along the boundary of the domain.

=0

i
R
s

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)
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Making use of approximations (C.7) through (C.10) and

9z
B > s :
{(grad zs) . 8} oe = LDG e N (c.19)
{(g?ad z) .38} = + L 3ZS (C.20)
s FI FI 9n c '
& & st
{(grad zs) . 8} = + LDF - (C.21)
DF E
N N azs
{(grad zs)-. s} * = Lo 35 (C.22)
GI H

, identity (C.18) can be elaborated to

; As st An azs As azs
- (1 -R—) ZAnE— + (1 -R_) 2AS-5-S—- + (1 +-R—'-) 2An-5-1-1—— +
n A s E n C
9z

An s
(1 +-l—i;) ZASB_S—

|
o

(C.23)
H

This result corresponds with equation (C.11) and, for As and

An + 0, with equation (C.16).

The decreasing tendency of the streamline curvature in case of an
almost uniform velocity field with negligible gradients of the depth
of flow (Schoemaker's assumptions; see chapter 3) is readily shown

by the following simplified version of the present derivation.

zS(D

zS(C)

A

=
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Consider a domain ABDC, bounded by two streamline sections AB

and CD being concentric circles and two straight normal line
sections AC and BD. As a consequence of the assumptions made,

the longitudinal slope is a constant throughout the domain and if
the distance LAC (= LBD) is small, the transverse slope is
approximately constant along AC and along BC. Be IS the longitudinal

slope of the water surface, defined by

Lo (C.24)

» then the surface elevations in B and D are related to those in A and C

ihfough
zS(B) = zS(A) - LABIs (C.25)
zS(D) & zS(C) - LCDIS (C.26)
Hence
azs ) zS(D)-zS(B).—zS(C)<— zs(A) LCD - LAB i BZS ~
an - L N L - Ig L T e
BD BD AC s AC AC
(C.27)

This implies that the transverse slope (and so the streamline
curvature) tends to decrease along a streamline and that the rate

of decrease is proportional to the longitudinal slope.



Appendix D. Vorticity transport equation

The vorticity w of a velocity field is defined as twice the rotation
of the velocity vector (STREETER, 1971). Hence the vorticity of the
depth-averaged shallow water flow considered here has only one non-
zero component, viz. the vertical one, the magnitude of which is given
by

* T
w=:'Vg<_v| (D.1)
This quantity is a property of the flow, so it is independent of the
horizontal configuration of the adopted coordinate system. In the

cartesian system used in chapter 2, the vorticity follows from

v an
w = 3;1 = 3;— (D.2)

and in the streamline coordinate system the expression reads (see also
ROUSE, 1959)

w=- Ty TR ) (D.3)

Starting from the conservation laws for mass and momentum, a transport equati
for the vorticity can be derived by eliminating the pressure from the

momentum equations.
On doing so in the cartesian coordinate system, equations (14) and (15)

lead to (see also KUIPERS AND VREUGDENHIL, 1973)

3—(')+9~(€>=-5%{—3—<v—3’15 (:’i‘:)} (D.4)
ax ox” oy yw -C? 3x  he h )

-2
ay

» which can be elaborated using the equation of continuity (8) and
expression (A.12) for the streamline curvature. Then the following

vorticity transport equation is found:

7w, 5 8 _w o 3 o 2h
X 09X y 9y h X 9X y oy
< 3h _ & ah\}

Yy ax x 3y’ (D'é)
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The equivalent equation in the streamline coordinate system can
be derived from (D.5) by transformation, using the transformation

rules given in Appendix A.

v
R
s

= 2w
¥ =2 -

w h
s h

v 2
t (D.6)

V %S g g 180
C

This equation can also be derived directly from equations (16)

through (18), making use of the identity (B.15). Equations (17) and

(18) can be rewritten as

3 v g v
- 5E) - = o2 o (D.7)
-2 -2 -
0 Vi omb ik iim = ¥
8 on (zs + % - + R 4 = v (D.8)

Substituting this into (B.15) applied to the energy head
z * ;Z/Zg yields

) - By - 0 (D.9)

which can easily be elaborated to (D.6).

This equation can further be simplified by dividing it by v, to yield

Ww, 1% ,% g, __g vl  13h

3s T s T 20 78 & Y% o (D.10)
c“h c s

If w = wg is given in a point s = so of a streamline and

£ (g) = =ik 4 3 B (d.11)

1 h 9s 2 .
c‘h

__g vl 12 ' |
f2(s) C2h(Rs+h n) (D.12)

, the solution of equation (D.10) along this streamline has the form

(see also DE VRIEND, 1976)
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s s s
w = exp {- sfofl(s')ds']lzuo +Sf0 fz(s') exp{s.g f](s")ds"} ds':l (D.13)

or, in another form

. S s s
w = wg éxp{;-gg fl(s')ds'} + g; f2(s') exp{-g, f](s")ds"}ds' (D.14)

As long as f](s) is a positive quantity, as will be the case for the
present class of problems, (D.14) is only a stable form if s - S, is
positive, i.e. downstream of the point Sg° This implies that w in a
point s of a certain streamline is only influenced by what happens
upstream along the streamline. In addition, expression (D.14) shows
the influence of what happens in a point upstream to decrease as the
distance (measured along the streamline) to the point considered

increases.






