
Delft University of Technology
Faculty Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

The PageRank Problem

Thesis submitted on behalf of the
Delft Institute for Applied Mathematics

in partial fulfilment
of the requirements

for the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

M. (Rien) den Besten

Delft, The Netherlands
August 2010

Copyright c© 2010 by Rien den Besten. All rights reserved.

BSc verslag TECHNISCHE WISKUNDE

“Het PageRank probleem”

(Engelse titel: “The PageRank Problem”)

M. (Rien) den Besten

Technische Universiteit Delft

Begeleider

Dr.ir. M.B. van Gijzen

Overige commissieleden

Prof.dr.ir. C. Vuik Dr.ir. H.X. Lin

Dr. J.G. Spandaw

Augustus, 2010 Delft

Preface

This thesis is the result of a bachelor research project about Google’s PageRank. In this project,
an analysis of the hyperlink structure of the World Wide Web was made and a model for web
surfing studied. Based on this model, the usual method to compute the PageRank of web pages
was investigated. Special attention was given to computing PageRanks by using linear systems.
In this respect the IDR(s) method was applied to achieve an efficient computation. Several
numerical experiments were performed in order to compare the efficiency of different methods
in computing PageRanks.

I kindly want to thank Martin van Gijzen for his helpful and pleasant supervision on this project.

Rien den Besten
Delft, 20 August 2010

i

ii

Contents

1 Introduction 1

1.1 Research questions . 1

1.2 Contents . 1

2 Search engines 3

2.1 Searching on the World Wide Web . 3

2.2 Web crawling and indexing . 3

2.3 Sorting search results . 3

2.4 Google’s principle: concepts and definitions . 4

2.5 Remarks . 4

3 Developing models 5

3.1 A simple model of the web structure . 5

3.2 Modeling web surfing as a Markov chain . 6

3.3 The PageRank model . 7

3.3.1 Dangling pages . 7

3.3.2 Teleportation . 8

3.3.3 The Google matrix . 9

3.4 Existence and uniqueness of the PageRank vector 10

4 Computing the PageRank vector: an eigenvalue problem 11

4.1 Power method . 11

4.2 Convergence . 12

5 A linear systems approach 15

5.1 Purpose of rewriting the model . 15

5.2 Basic iterative methods . 15

5.2.1 Convergence . 16

5.3 Jacobi iteration . 18

5.3.1 Convergence . 18

5.3.2 Improvements . 18

5.4 Gauss-Seidel iteration . 19

5.4.1 Convergence . 20

5.4.2 Improvements: modified Gauss-Seidel method 20

5.4.3 Convergence of the modified Gauss-Seidel method 21

5.5 IDR(s) . 22

5.5.1 Modifications and preconditioning . 22

iii

iv CONTENTS

6 Practical aspects 23
6.1 Comparing algorithms . 23

6.1.1 Norms . 23
6.1.2 Matrix-vector calculations . 24

6.2 Matlab implementations . 24
6.2.1 Web crawling . 24
6.2.2 Calculating S and d . 24
6.2.3 The Power, Jacobi and modified Gauss-Seidel method algorithms 25
6.2.4 The modified IDR(s) method algorithms with preconditioning 25
6.2.5 Scripts for algorithm comparison . 26

7 Numerical experiments 27
7.1 Test matrices . 27
7.2 General results . 28
7.3 Comparison of residual norms . 29
7.4 Comparison of matrix sizes . 30
7.5 Rates of convergence . 32

8 Conclusions and recommendations 33

Bibliography 34

A Code of the web crawler surfer 37

B Script for creating S and d 41

C Implementation of the Power method 43

D Implementation of the Jacobi method 45

E Implementation of the modified Gauss-Seidel method 47

F Implementation of the modified IDR(s) method 49

G Script for creating residual graphs 53

H Script for creating graphs of convergence rates 55

Chapter 1

Introduction

The successful advent of search engine Google has drawed a broad attention to the way Google
determines the relevance of web pages in order to sort search results. Google introduced a new
approach: its search engine assigns a so called PageRank to web pages, which is a measure of
the importance of these pages. We call finding the PageRanks of web pages in (a part of) the
World Wide Web the PageRank problem. The calculation of the PageRanks of web pages is
principally based on the hyperlink structure of the World Wide Web. Finding a solution to the
PageRank problem is the main subject of the thesis ad hand.

This thesis forms the conclusion of a bachelor project titled ‘How does Google work?’ and is
one of the bachelor projects in numerical simulations. The description of this bachelor project
can be found at http://ta.twi.tudelft.nl/nw/users/vuik/wi3606/pagerank.pdf (in Dutch only).
The stated assignments in the description comprise (1) modelling the hyperlink structure of
the World Wide Web, (2) calculating PageRanks by approaching the PageRank problem as an
eigenvalue problem and (3) eventually adapting the model.
In working out this bachelor project, the assignments are extended to a broader context of prov-
ing the existence and uniqueness of a solution of the PageRank problem, using a linear systems
approach to solve the PageRank problem, describing several methods to compute PageRank and
proving whether the conditions under which these method generate a solution, are fulfilled.

1.1 Research questions

The following research questions are being discussed in the thesis at hand:

1. Considering the PageRank problem, what is an adequate model of the hyperlink structure
of the World Wide Web?

2. For the given model:

(a) does a unique solution of the PageRank problem exist?

(b) how can PageRanks be computed efficiently?

1.2 Contents

Chapter 2 contains a general introduction to the history and working of search engines as well
as the concepts that search engine Google uses. Chapter 3 describes a model of the hyperlink
structure of the World Wide Web which is extended in a model for web surfing. For this model,

1

2 Chapter 1. Introduction

the existence and uniqueness of a solution to the PageRank problem is proved. Chapter 3 answers
the first research question. The fourth chapter shows how and under which conditions we can
compute PageRanks by approaching the PageRank problem as an eigenvalue problem. Chapter
5 provides a linear systems approach to the PageRank problem and presents several methods
to compute PageRank. The chapters 4 and 5 give an answer to research question 2a. Chapters
6 and 7 describe respectively the performance and results of numerical experiments in order
to find an answer research questions 2b. Finally, conclusions are drawn and recommendations
made in chapter 8.

Chapter 2

Search engines

2.1 Searching on the World Wide Web

The content of this section is mainly taken from [9] and [11].
Since the very first beginning of the existence of the World Wide Web the need of indexing
the larger-growing amount of available data was clear. This was done in different ways: a list
of web servers was available at the CERN web server (at the end of the 1980s) and several
individuals maintained a list of websites sorted by topic. The Internet growed too fast, however,
and maintaining personal lists became soon inadequate. This was the reason for the development
of internet search engines.

The first search engine that helped users to find computer files in internet databases was
developed in Montreal at the McGill University in 1990. This engine, called Archie, visited at
night all known archives and listed the names of the files in these archives into a searchable
database. The content of these files was not indexed by Archie.

The first search engine with which one could search for words or phrases in files and web
pages was WebCrawler, developed in 1994. As its name says, the engine was crawler-based
and it had three main tasks: web crawling, indexing and searching. What these mean will be
explained in the next sections. Many search engines were launched shortly after WebCrawler
appeared, AltaVista, for example, among them. Almost every one of them was based on the
same principles as WebCrawler had and these became standard for the major search engines
since then. Even the search engine Google, which became soon very popular since its appearance
in 1998, is based on these principles.

2.2 Web crawling and indexing

A web search engine crawls and indexes the world wide web, which means that it stores infor-
mation about web pages on the Internet in a large database. The web crawler follows every link
that it finds on a web page. Meanwhile, the content of every single web page that the crawler
visits is analysed and indexed. Key words of each web page are stored in a database. The
crawler also stores in a database which pages are connected to each other via a hyperlink.

2.3 Sorting search results

If a search engine receives a query, it starts a search in the database for all pages that satisfy
the query. The number of found pages can be very large. A search engine’s success depends
on the way is sorts the pages that satisfy a query: relevant pages should be listed first and

3

4 Chapter 2. Search engines

the least relevant ones last. The search engine Google has become very popular for the way it
determines the relevance of web pages: it assumes in general that the relevance of a web page
can be measured by its importance depending on the hyperlink structure of the web that this
page is part of. This principle will be explicated in the next section.

2.4 Google’s principle: concepts and definitions

At first we will formulate some limitations and assumptions:

� The range of a search engine is limited to the World Wide Web consisting of hypertext
documents.

� A citation is a hyperlink on a web page to another web page.

� Search results are the collection of web pages that satisfy a query sent to a search engine.

� The PageRank pr(w) of a web page w determines the importance of that web page.

� The importance of web pages determines the sorting of search results: the most important
page is the first result.

Now, PageRanks can be defined as follows [15]: the PageRank of a page w, pr(w), is a function
of the PageRanks of all other pages:

1. A page w gets a higher ranking as more pages cite w.

2. The higher the ranking of pages citing page w is, the higher pr(w) is.

2.5 Remarks

Although PageRank as defined above clearly forms a basis of the search engine Google and of
many other search engines by now, there is much more Google does to sort search results. Google
uses “overall importance and query-specific relevance” with “Hypertext-Matching Analysis”[8]
besides its PageRank technology. In this thesis, however, we focus on PageRanking only.

Further notice that the way of sorting search results as mentioned, does not guarantee that
the most relevant pages will be listed first. Google assumes that important (and consequently
relevant) pages are much cited pages [8, p. 3]. Although this assumptions seems to be useful in
practice, it principally gives no certainty about relevance, importance or usefulness of pages in
general or in particular. A further discussion on this topic goes beyond the scope of this research
project.

Chapter 3

Developing models

In this chapter we present a simple model of the hyperlink structure of the World Wide Web.
This model will be extended afterwards to a model for web surfing. The Google matrix will be
defined and some properties of it will be mentioned. Several parts of this chapter are based on
or summarised from [11], [13] and [15].

3.1 A simple model of the web structure

The World Wide Web can be represented as a directed graph in which each web page is a node
and where the web page’s hyperlinks are the edges. It is useful to distinguish two kinds of links:
outlinks and inlinks. From web page i’s perspective, an outlink is a hyperlink on i directing to
web page j while a hyperlink on j directing to web page i is called inlink.

In this section this representation of the web is used to explain Google’s definition of a page’s
ranking.

A B

C

D E

A B C D E

1 0.2 0.2 0.2 0.2 0.2
2A 0 0.05 0.05 0.05 0.05
2B 0 0.05 0.25 0.05 0.05
... . . .
2 0.175 0.15 0.3 0.2 0.175
... . . .
∞ 0.148 0.148 0.296 0.185 0.222

Figure 3.1: A simple example of a small web of html-pages with a table of the recursive process
for calculating the PageRank for these pages.

In figure 3.1 a small web S = {A,B,C,D,E} is given. According to Google’s definition, see
section 2.4, the ranking of each page now depends on the number of inlinks and outlinks. This
recursive definition suggests a recursive process to obtain the PageRank of the pages A,B,C,D
and E. According to the definition, a page contributes equally to the PageRank of all the pages
it has outlinks to. This leads to the following recursive process:

1. Start with a uniformly distributed ranking of all pages.

5

6 Chapter 3. Developing models

2. In each step, distribute the current rank of each page equally to all pages the page has
outlinks to.

The first step in the application of this process is taking the PageRank of all pages equal
to 1

5 . In the second step we distribute the rank of each page equally to all pages the page has
outlinks to. This means, for example, that page A contributes 0.2 to pages B,C,D and E and
page B contributes its total ranking to page C (see figure 3.1). Executing this for all pages
completes the second step (see the table in figure 3.1).

A B

C

D E

A B

C

D E

Figure 3.2: Contribution of the PageRank of pages A and B to the other pages.

Repeating the process several times gives a stationary distribution, see the table in figure 3.1.
This distribution gives the PageRank of each pages.

The model given in this section is somewhat loose: we have ignored several characteristics
of the World Wide Web so far. In the next sections we will define a more appropriate model by
approaching web surfing as a Markov chain.

3.2 Modeling web surfing as a Markov chain

In the model we will describe in this section, we focus on the behaviour of a surfer on the World
Wide Web. We assume that this surfer will start at a certain web page of his preference and
surf the web by clicking on hyperlinks at the web page he is currently visiting.
In the previous section we saw that each page in a web graph contributes its rank equally to
all pages it has outlinks to. We will approach web surfing as a Markov chain. To this end we
assume that the probability that a surfer will move from page i to another page by clicking on
a hyperlink is uniformly distributed. Figure 3.3 illustrates this: each edge in the simple web
graph of figure 3.1 denotes the probability of surfing from the page it directs from to the page
it directs to.

The probability matrix belonging to this graph is

S =

0 0 1

2 0 0
1
4 0 0 0 1

2
1
4 1 0 0 1

2
1
4 0 1

2 0 0
1
4 0 0 1 0

 . (3.1)

The first column of S denotes the probability distribution for moving from page A to the
other pages, the second column denotes the probability distribution for moving from page B to
the other pages, etcetera. Notice that each column of the matrix is stochastic, i.e. each element
of the column lies between 0 and 1 and the column sums up to one.

3.3 The PageRank model 7

A B1/4

1/4

1/4

1/2 1

C1/4
1/2

1/2

1/2

D E

1/2

1

Figure 3.3: The small web of html-pages.

In general, matrix SN×N can be defined for a web W = {1, 2, 3, . . . , N} consisting of N ∈ N>0

pages as follows:

S(i, j) =

{
1
li

if there is an outlink from i to j

0 if there is no outlink from i to j
(3.2)

where li ∈ N>0 denotes the number of outlinks on page i ∈W.

The surfer will start at the web page of his preference and surf the web by clicking on
hyperlinks at the web page he is currently visiting. The probability vector πk ∈ [0, 1]N , k ∈ N≥0
denoting the probability that a surfer is currently visiting a website can be found as follows:

πk = Sπk−1 (3.3)

Now consider a general preference probability vector p ∈ [0, 1]N , with only non-negative
components adding up to one, representing the general preference of web surfers for all web
pages in W. Then the surfer starts at

π0 = p. (3.4)

We thus have defined a discrete Markov-chain describing the behaviour of a web surfer at the
WWW. The limit state of this Markov chain can be interpreted as the relative frequency with
which the surfer will visit pages and denotes the PageRank vector π.

π = lim
k→∞

πk = lim
k→∞

Skp. (3.5)

In section 3.4 we will see that this steady state vector π indeed exists and satisfies the
relation π = Sπ.

3.3 The PageRank model

The model described in the last section, does not deal yet with some complexities that can occur
by surfing the World Wide Web. These will be added to the model in this section. After that,
we present the complete PageRank model.

3.3.1 Dangling pages

Recall the example web graph of section 3.1. All the pages in that graph direct to at least one
other page. Suppose now there is a page without outlinks to other pages (see figure 3.4). Pages

8 Chapter 3. Developing models

A B

C F

D E

Figure 3.4: Example of a dangling page.

with no outlinks are called dangling nodes. These pages are not rare: many html-pages direct
to files, such as pdf-files, log files etcetera. These files are all dangling pages. If a surfer visits a
dangling page, we suppose that he starts surfing again by moving to a certain arbitrary page of
his preference.
The matrix corresponding to the example in figure 3.4 is

S =

0 0 1
2 0 0 0

1
4 0 0 0 1

2 0
1
4

1
2 0 0 1

2 0
1
4 0 1

2 0 0 0
1
4 0 0 1 0 0
0 1

2 0 0 0 0

 . (3.6)

We now replace the dangling column containing only entries equal to zero, by the general
preference vector p. In general the dangling columns can be replaced by p by adding to S a
matrix containing the desired dangling columns: S + pdT , d ∈ {0, 1}N with

d(i) =

{
1 if the i-th column of S is a dangling column
0 otherwise.

(3.7)

3.3.2 Teleportation

Our model assumes that a surfer can move only from one page to another by clicking on one of
the hyperlinks of the web page he is currently visiting. This seems not to be realistic: the surfer
can also go to a certain webpage by entering the address of that page in the address bar of the
browser. This is called teleportation. Neglecting teleportation can confuse the page ranking.
The example in figure 3.5 explains this: a surfer can never reach pages F to K if he is currently
at page A,B,C,D or E. As a result of that, the PageRank of pages A to E have no relation
with the PageRank of pages G to K.
We add teleportation to the model by supposing that a surfer moves to a page by clicking with
probability α (with 0 < α < 1) and by teleportation with probability 1 − α. In the case of
teleportation, the probability distribution for moving to a page is that of the general preference
vector p (see [6, p. 350]). Our model can now be described as a convex combination of the
original matrix S + pdT and the teleportation matrix p1T , existing only of columns equal to p,
as follows:

G = α
(
S + pdT

)
+ (1− α)p1T . (3.8)

3.3 The PageRank model 9

A B J K

C F I

D E G H

Figure 3.5: Example of a web graph containing pages that cannot be reached.

3.3.3 The Google matrix

We now have completed our model that describes web surfing as a homogeneous discrete Markov
chain with transition matrix GN×N and state vectors {πk ∈ [0, 1]N , k ∈ N≥0} which satisfy the
relation

πk+1 = Gπk. (3.9)

Given the state vector π0 = p (c.f. (3.4)), denoting the probability distribution for the surfer’s
initial location, the state vector at time i will be

πk = Gkπ0. (3.10)

The limit state of the Markov chain is the PageRank vector π satisfying

π = lim
k→∞

πk = lim
k→∞

Gkp. (3.11)

The matrix G of (3.8) is called Google matrix [11]. For notational reasons we will write the
Google matrix as follows:

G = αH + (1− α)T (3.12)

where H = S + pdT denotes moving to a page via a hyperlink and T = p1T denotes moving to
a page via teleportation.

A choice for α = 0.85 is originally made by Google (see [2]), the value which we will use
henceforth. An explanation of this choice is given in section 4.2. In our model we assume that
the general preference vector is uniformly distributed, i.e.

p(i) =
1

N
∀i ∈ 1, . . . , N. (3.13)

Other choices are possible, but only under the conditions

p(i) ∈ (0, 1)N ∀i ∈ 1, . . . , N, ‖p‖1 = 1. (3.14)

We need these conditions to guarantee important properties of the Google matrix, as we will
see in the next section.

10 Chapter 3. Developing models

3.4 Existence and uniqueness of the PageRank vector

The Google matrix has some important particular properties which are mentioned in the next
two lemma’s.

Lemma 3.4.1. G is a column stochastic1 Matrix.

Proof. Recall G of (3.12). Let us first consider matrix H = S+pdT . We have seen in section 3.2
and 3.3.1 that, according to its definition (3.2), S is a non-negative matrix of which each column
sums up to one, except for the dangling columns. To avoid these dangling columns, we added
pdT to matrix S, with p being stochastic, see (3.14). So, H is column stochastic. Furthermore,
the matrix p1T exists only of columns equal to p, so T is column stochastic too. Finally, scaling
the matrices H and T by α and 1−α, with 0 < α < 1, guarantees us that every column of G is
stochastic. We conclude that G is column stochastic.

Lemma 3.4.2. Each entry of G is strictly positive and smaller than one.

Proof. From lemma 3.4.1 we know that ∀i, j ∈ [1, n] 0 ≤ H(i, j) ≤ 1. Because of (3.14), we also
know that ∀i, j 0 < T (i, j) < 1. Then, since 0 < α < 1 (see section 3.3.2), ∀i, j 0 < G(i, j) =
αH(i, j) + (1− α)T (i, j) < 1 holds.

We are now in the position to prove the existence and uniqueness of the PageRank vector. In
the proof we use the spectral radius of G. The spectral radius of a square matrix is defined as the
maximum of the magnitudes of all eigenvalues of that matrix, i.e. ρ(A) = max {|λ| : λ ∈ λ(A)}
[7, p. 511].

Theorem 3.4.3. The PageRank vector π is the unique stationary distribution of a Markov chain
with transition matrix G and state vectors {πk, k ∈ N≥0}, i.e. π is the eigenvector corresponding
to the simple dominant eigenvalue 1 of G.

Proof. The largest eigenvalue of a row stochastic matrix is one [1, p. 49], so ρ(GT) = 1. But
since the eigenvalues of a matrix and its transpose are equal, ρ(G) = 1. But then Gπ = π holds:
π is the eigenvector corresponding to the eigenvalue 1 ofG and π is a stationary distribution ofG.
Now the Perron-Frobenius theorem [1, p. 27] ensures us that since G is a strictly positive matrix
(lemma 3.4.2), ρ(G) = 1 is a simple eigenvalue of G. This means that the (algebraic) multiplicity
of this eigenvalue is equal to 1 [7, p. 316] and therefore π is the unique eigenvector of G
corresponding to the dominant eigenvalue 1 and consequently the unique stationary distribution
of G.

The sensitivity of the PageRank vector to changes in matrix S, damping factor α, general
preference vector p and to adding inlinks and outlinks to web pages is discussed in [11].

1A real square matrix is column stochastic if all its columns are stochastic and row stochastic if all its rows
are stochastic.

Chapter 4

Computing the PageRank vector: an
eigenvalue problem

We have seen in section 3.4 that the PageRank vector p is the eigenvector of G corresponding to
eigenvalue 1. Therefore, finding this PageRank vector can be regarded as an eigenvalue problem.
A natural choice for computing the eigenvector of G is the Power method, because moving to
a next state in the Markov chain, πk+1 = Gπk (3.9), is equal to the Power recursion. This
recursion was used by Sergey Brin and Larry Page to develop the PageRank algorithm for their
search engine Google [15, pp. 6-8].

4.1 Power method

The Power method produces a sequence of vectors that converge to the eigenvector corresponding
to the dominant eigenvalue, under the following assumptions [7]:

� The square matrix concerned has a dominant eigenvalue.

� The initial vector has a non-zero component in the direction of the eigenvector correspond-
ing to the dominant eigenvalue.

The Google matrix has a dominant eigenvalue equal to one (see theorem 3.4.3). The state
vector π0 ∈ [0, 1]N denoting the probability distribution for the surfer’s initial location should
meet the second assumption. A first algorithm of the Power method for computing the Page-
Rank vector is given below.

Power method

Input: G ∈ (0, 1)N×N ; π0 ∈ [0, 1]N ; α ∈ (0, 1); tolerance ε ∈ (0, 1).
Output: π∗, approximation of PageRank vector such that ‖π∗ −Gπ∗‖ ≤ ε.

1: π∗ ← π0

2: while ‖π∗ −Gπ∗‖ > ε
3: π∗ ← Gπ∗/ ‖Gπ∗‖
4: end while

We can make several improvements to the algorithm for this particular problem. The first
concerns the matrix multiplication. The Power method works efficiently for (large) sparse ma-
trices [7, p. 332]. Because matrix G has not a single entry equal to zero, the given algorithm
will not be very fast. Besides that, there is an important reason why the implementation of the

11

12 Chapter 4. Computing the PageRank vector: an eigenvalue problem

current algorithm is not desirable: storing matrix G requires a lot of memory space, because
N2 elements has to be stored. A sparser matrix would require less memory space. So, we have
to avoid multiplications with matrix G and use a sparser matrix instead. To that end we take
a closer look to the multiplication Gπ∗:

Gπ∗ = αSπ∗ + αpdTπ∗ + (1− α)p1Tπ∗ (4.1)

Matrix S, defined in section 3.2, is very sparse: S may contain a lot of dangling pages, and,
more important, a single web page cites only a very small part of the total web graph. Therefore,
the matrix multiplication Sπ∗ suits the Power method very well. The inner product dTπ∗ (to
prevent dangling pages) is a simple calculation. Furthermore, note that 1Tπ∗ = 1, because π∗

sums up to one. Applying this yields

Gπ∗ = αSπ∗ +
(
αdTπ∗ + 1− α

)
p (4.2)

The initial vector should not have a non-zero element in the direction of eigenvector cor-
responding to the dominant eigenvalue. If we choose as initial vector the general preference
vector, defined as p(i) = 1

n ∀i ∈ 1, . . . , n in section 3.4, we cannot guarantee that this condition
is fulfilled. It is however plausible to assume that this assumption will be met in practice [7, pp.
331-332], [16, p. 312].

The normalisation in step 3 of the algorithm is meant to prevent π∗ from growing too
large [16, p. 308]. But because the initial vector as well as matrix G are stochastic, π∗ will
remain stochastic too. Normalisation is therefore unnecessary. The improved algorithm is given
below.

Power method: improved algorithm for the PageRank problem

Input: S ∈ [0, 1]N×N ; p ∈ (0, 1)N ; d ∈ {0, 1}N ; α ∈ (0, 1); tolerance ε ∈ (0, 1).

Output: π∗, approximation of PageRank vector such that ‖π∗ −Gπ∗‖ ≤ ε.
1: π∗c ← p; π∗p ← 1N

2: while
∥∥π∗c − π∗p∥∥ > ε

3: π∗p ← π∗c
4: π∗c ← αSπ∗p +

(
αdTπ∗p + 1− α

)
p

5: end while

6: π∗ ← π∗c

Note that the while loop condition ‖π∗ −Gπ∗‖ > ε in the second algorithm is replaced by
the equivalent condition

∥∥π∗c − π∗p∥∥ > ε to avoid multiplication with G. Here, π∗c denotes the
current value of π∗ as π∗p denotes the previous value of π∗. In this research project, for the
norms in the Power method algorithms and algorithms in next chapters, the 2-norm is chosen.
However, for the Power method the use of this norm is put into discussion in [22], where another
(efficient) criterion is presented that can guarantee correct ranking.

4.2 Convergence

Recall from section 3.4 that the Google matrix G = αH + (1− α)T with H = S + pdT and
T = p1T has a unique largest eigenvalue equal to one. Consider the sequence of eigenvalues of
G, |λ1| > |λ2| ≥ . . . ≥ |λN |. Now, the convergence speed of the power method depends on the
rate of convergence |λ2(G)| / |λ1(G)| = |λ2(G)| [7, p. 331]. The smaller this rate, the faster the

4.2 Convergence 13

convergence; a smaller second eigenvalue therefore gives a faster convergence. The next theorem
gives a specific bound to the second eigenvalue and consequently on the minimum convergence
speed.

Theorem 4.2.1. The second eigenvalue of the Google matrix satisfies |λ2(G)| ≤ α.

Proof. This proof is based on [10] and [21, pp. 3-4]. Consider the second eigenvalue of G with
the corresponding eigenvector

Gx2 = λ2x2. (4.3)

If a matrix is row stochastic then 1 is an eigenvector of that matrix corresponding to the
dominant eigenvalue one [1, p. 49]. This implies that GT1 = 1 · 1, or, equivalently

1TG = λ11
T . (4.4)

Now, left multiplication of (4.3) with 1T yields

1TGx2 = λ21
Tx2 (4.5)

and right multiplication of (4.4) with x2 yields

1TGx2 = λ11
Tx2. (4.6)

By subtracting (4.6) from (4.5) we obtain

λ11
Tx2 = λ21

Tx2. (4.7)

Since λ1 = 1 is the simple dominant eigenvalue according to theorem 3.4.3, |λ2| < λ1 and
therefore λ2 6= λ1. This together with (4.7) implies

1Tx2 = 0. (4.8)

Now, recalling (3.12), we write (4.3) as

αHx2 + (1− α)Tx2 = λ2x2. (4.9)

Because T = p1T (see section 3.3.3 and (4.8)), Tx2 = p1Tx2 = 0, so (4.9) equals

αHx2 = λ2x2 (4.10)

and

Hx2 =
λ2
α
x2. (4.11)

This means that λ2/α is an eigenvalue of H, satisfying |λ2/α| ≤ 1, since ρ(H) = 1 (see lemma
3.4.1 and theorem 3.4.3). We conclude that |λ2(G)| ≤ α.

We found the convergence rate of the power method directly related to the value of α.
Because 0 < α < 1 (see section 3.3.2) is not bounded to a specific value, we could choose it to be
very small in order to achieve a fast convergence. However, every choice of α directly influences
the PageRank vector. Because T = p1T , a very small value of α would result in a PageRank
vector almost equal to p, which is not realistic, since we then simply neglect the web graph’s
link structure. Further, remember the reason of adding T to G (section 3.3.2): it denotes the
probability that a surfer moves to a page by teleportation. This probability cannot be large.
In general, α is chosen equal to 0.85 [15]. Experimental comparison for different values of α is
done in [5].

14 Chapter 4. Computing the PageRank vector: an eigenvalue problem

Chapter 5

A linear systems approach

5.1 Purpose of rewriting the model

The Power method is useful to approximate the Pagerank vector, as we have seen in the last
chapter. However, there are more and even faster ways to calculate π. One way that opens
up several possibilities, is writing our model as a linear system. This allows us to use iterative
methods, such as Jacobi and Gauss-Seidel to approximate π.

We obtain a linear system of our model as follows [3, pp. 254-255]: recall from theorem 3.4.3
the relation

π = Gπ (5.1)

with G = α
(
S + pdT

)
+ (1− α)p1T . Now, as we saw in section 4.1, we can simplify (5.1) to

π = α
(
S + pdT

)
π + (1− α)p (5.2)

because 1Tπ = 1. We use this to rewrite (5.2) as a linear system:(
I − α

(
S + pdT

))
π = (1− α)p. (5.3)

For reasons of notation, we will write (5.3) as

Aπ = (1− α)p (5.4)

with
A = (I − αH) , H = S + pdT . (5.5)

5.2 Basic iterative methods

This section is partly based on [7, pp. 509-511]. Iterative methods generate a sequence of
approximate solutions {xk} of a linear system Ax = b. The basic iterative methods are based
on a certain splitting of matrix A in a matrix M for which the system My = c is ‘easy’ to solve
and the remaining matrix

R = M −A, (5.6)

which changes the linear system into

Mx = Rx+ b. (5.7)

The corresponding iteration is

Mxk+1 = Rxk + b k ∈ N≥0 (5.8)

15

16 Chapter 5. A linear systems approach

5.2.1 Convergence

The error in the kth iterate is ek = xk − x. Because of (5.8) Mek+1 = Rek and so the error in
xk+1 is

ek+1 = M−1Rek =
(
M−1R

)k+1
e0 k ∈ N≥0. (5.9)

The iteration converges to x = A−1b for nonsingular matrices A and M and for any initial

vector x0 if limk→∞
(
M−1R

)k → 0, which is the case if ρ
(
M−1R

)
< 1, see [7, pp. 336, 511].

Further note that for a matrix QN×N (see [20, p. 13])

lim
k→∞

Qk = 0 if and only if ρ(Q) < 1. (5.10)

In this section we will use the fact that several of the matrices under consideration are nonneg-
ative, i.e. none of the entries of these matrices are negative. To this end we have to define the
following first ([1, p. 26]):

Q ≥ R if ∀i, j Q(i, j) ≥ R(i, j),

Q > R if Q ≥ R and Q 6= R,

O(i, j) = 0 ∀i, j. (5.11)

Theorem 5.2.1. A = (I − αH) is a nonsingular matrix and A−1 > O.

Proof. Since H is a column stochastic matrix and ρ(H) = 1 (see lemma 3.4.1 and theorem
3.4.3) and since 0 < α < 1 (see section 3.3.2), ρ(αH) < 1 and, consequently, limk→∞(αH)k = 0.
Under this condition is I − αH nonsingular [19, p. 55].

The following part of this proof is based on [1, p. 133]. Consider the identity

(I − αH) (I + αH + . . .+ (αH)r) = I − (αH)r+1 r ≥ 0. (5.12)

Now, if we let r approach infinity, the left hand side of (5.12) changes to

lim
r→∞

(1− αH)
r∑

s=0

(αH)s = (I − αH)
∞∑
r=0

(αH)r (5.13)

and because ρ(αH) < 1, according to (5.10) the right hand side of (5.12) changes to

lim
r→∞

I − (αH)r+1 = I. (5.14)

Finally, (5.13) and (5.14) yields

(I − αH)

∞∑
r=0

(αH)r = I (5.15)

and since H > 0 (H is column stochastic) and α > 0,

A−1 = (I − αH)−1 =
∞∑
r=0

(αH)r > O. (5.16)

5.2 Basic iterative methods 17

Theorem 5.2.2. If M−1 exists with M−1 ≥ 0 and if R ≥ 0 and A−1 ≥ O then iteration (5.8)
converges for any initial vector x0.

Proof. The splitting A = M − R with M nonsingular, M−1 ≥ 0 and R ≥ 0 is called a regular
splitting of matrix A [20, p. 88]. If A = M − R is a regular splitting and A−1 ≥ O then
ρ
(
M−1R

)
< 1 and the iteration (5.8) converges for any initial vector x0 [20, p. 89]. We already

know that A−1 ≥ O (c.f. theorem 5.2.1), so in our case it is sufficient to prove that M is
nonsingular with M−1 ≥ 0 and R ≥ 0.

Another property of matrix A concerns its main diagonal. Define

ri(Q) =

N∑
j=1
j 6=i

|Q(i, j)| , (5.17)

the sum of all elements of the i-th row of N ×N matrix Q except for the element that is part
of the main diagonal of Q. Then, Q is strictly diagonally dominant [7, p. 120] if

|Q(i, i)| > ri(Q) ∀i ∈ {1, . . . , N}. (5.18)

Theorem 5.2.3. Matrix AT = I − αHT is strictly diagonally dominant.

Proof. The following holds for all i ∈ {1, . . . , N}:
We have to prove that |A(i, i)| =

∣∣AT (i, i)
∣∣ > ri(A

T). Because H is column stochastic (see
lemma 3.4.1), we know that

0 ≤ ri(HT) ≤ 1. (5.19)

Notice that
ri(A

T) = ri(I − αHT) = αri(H
T). (5.20)

Now (5.19) and (5.20) yield
0 ≤ ri(AT) ≤ α. (5.21)

Furthermore,
A(i, i) = 1− αH(i, i) (5.22)

and since H is column stochastic

H(i, i) = 1− ri(HT). (5.23)

Now, substituting (5.23) into (5.22) yields

A(i, i) = 1− α+ αri(H
T) (5.24)

and substituting (5.20) into (5.24) yields

A(i, i) = 1− α+ ri(A
T). (5.25)

Since 0 < α < 1 (see section 3.3.2), (5.25) implies that

A(i, i)− ri(AT) = 1− α > 0 (5.26)

and we conclude that
A(i, i) > ri(A

T). (5.27)

18 Chapter 5. A linear systems approach

5.3 Jacobi iteration

The Jacobi iteration is a splitting of A with M a diagonal matrix with the main diagonal of A:
MJ = diag(A), which means

MJ(i, j) = diag(A)(i, j)

{
A(i, i) if i = j
0 otherwise.

(5.28)

An algorithm with Jacobi iteration for the system (5.4) is given below.

Jacobi method

Input: H ∈ [0, 1]N×N ; π0 ∈ RN ; α ∈ (0, 1); p ∈ (0, 1)N ; tolerance ε ∈ (0, 1).
Output: π∗, approximation of PageRank vector such that ‖b−Aπ∗‖ ≤ ε.

1: A← I − αH
2: MJ ← diag(A)
3: RJ ←MJ −A
4: π∗ ← π0

5: b← (1− α)p
6: while ‖b−Aπ∗‖ > ε

7: π∗ ←M−1J (RJπ
∗ + b)

8: end while

5.3.1 Convergence

In order to show that π∗ of the given Jacobi method algorithm converges to the PageRank vector
π = A−1b, recall from theorem 5.2.2 that we have to prove that MJ is nonsingular, M−1J ≥ 0
and RJ ≥ 0. Note that since RJ = diag(A) − A = diag(I − αH) − I + αH = αH − diag(αH)
and H > 0 (H is column stochastic, see lemma 3.4.1 and theorem 3.4.3) it follows that RJ ≥ 0.
The other conditions are proved below.

Theorem 5.3.1. MJ = diag(A) is a nonsingular matrix and M−1J ≥ O.

Proof. Since MJ is a diagonal matrix, MJ is nonsingular if its main diagonal is non-zero.[cite]
Because H is a column stochastic matrix, all elements of its main diagonal are not larger than
1, and so all elements of diag(αH) are smaller than 1. But then MJ = diag(A) = diag(I − αH)
(see 5.4) has a non-zero main diagonal.
Now M−1J (i, i) = 1/MJ(i, i) = 1/A(i, i) ∀i ∈ {1, . . . , N}. Further, (5.21) and (5.27) yield
A(i, i) ≥ 0 ∀i and we conclude that M−1J (i, i) ≥ 0 ∀i ∈ {1, . . . , N}.

5.3.2 Improvements

For the same reason as mentioned in section 4.1, we will make several improvements to the
algorithm of section 5.3. To that end, let us take a closer look to the matrices MJ and RJ :

MJ = diag(A) = I − diag(αS)− diag(αpdT), (5.29)

5.4 Gauss-Seidel iteration 19

see (5.5). For reasons of implementation, it is useful to calculate diag(αS) and diag(αpdT)
separately. Now, recalling (5.5) and (5.6),

RJ = MJ −A = I − diag(αS)− diag(αpdT)− I + αS + αpdT

= αS − diag(αS) + αpdT − diag(αpdT)

= R′J + αpdT (5.30)

with

R′J = αS − diag(αS)− diag(αpdT). (5.31)

Rewriting (5.8) with (5.29) and (5.30) then yields

πk+1 = M−1J

(
R′Jπk + αpdTπk + b

)
. (5.32)

Like in section 4.1, we choose p as initial vector. Finally, recalling (5.5), we rewrite the while
loop condition to

‖b−Aπ∗‖ =
∥∥αSπ∗ + αpdTπ∗ + b− π∗

∥∥ . (5.33)

The improved algorithm is given below.

Jacobi method: improved algorithm for the PageRank problem

Input: S ∈ [0, 1]N×N ; p ∈ (0, 1)N ; d ∈ {0, 1}N ; α ∈ (0, 1); tolerance ε ∈ (0, 1).

Output: π∗, approximation of PageRank vector such that ‖b−Aπ∗‖ ≤ ε.
2: MJ ← I − diag(αS)− diag(αpdT)

2: RJ ← αS − diag(αS)− diag(αpdT)
4: π∗ ← p
5: b← (1− α)p

6: while
∥∥αSπ∗ + αpdTπ∗ + b− π∗

∥∥ > ε

7: π∗ ←M−1J

(
R′Jπ

∗ + αpdTπ∗ + b
)

8: end while

5.4 Gauss-Seidel iteration

The Gauss-Seidel iteration is based on a splitting of A in a lower and upper triangular part:

MG = diag(A) + lower(A), (5.34)

where lower(A) is defined as

lower(A)(i, j) =

{
A(i, j) if i > j
0 otherwise.

(5.35)

upper(A) can be defined analogously:

upper(A)(i, j) =

{
A(i, j) if i < j
0 otherwise.

(5.36)

Now,

RG = MG −A = diag(A) + lower(A)−A = −upper(A). (5.37)

20 Chapter 5. A linear systems approach

An algorithm with Gauss-Seidel iteration for the system (5.4) is given below.

Gauss-Seidel method

Input: H ∈ [0, 1]N×N ; π0 ∈ RN ; α ∈ (0, 1); p ∈ (0, 1)N ; tolerance ε ∈ (0, 1).
Output: π∗, approximation of PageRank vector such that ‖b−Aπ∗‖ ≤ ε.

1: A← I − αH
2: MG ← diag(A) + lower(A)
3: RG ← −upper(A)
4: π∗ ← π0

5: b← (1− α)p
6: while ‖b−Aπ∗‖ > ε

7: π∗ ←M−1G (RGπ
∗ + b)

8: end while

5.4.1 Convergence

To show that π∗ of the given Gauss-Seidel method algorithm converges to the PageRank vector
π = A−1b, we have to prove that MG is non-singular, M−1G ≥ 0 and RG ≥ 0 (theorem 5.2.2).
Note that since RG = −upper(A) = −upper(I − αH) = upper(αH) and H > 0 (H is column
stochastic, see lemma 3.4.1 and theorem 3.4.3) it follows that RG ≥ 0. The other conditions are
proved below.

Theorem 5.4.1. MG = diag(A) + lower(A) is a non-singular matrix and M−1G ≥ O.

Proof. Note that MG = diag(I − αH) + lower(I − αH) = I − diag(αH) − lower(αH) (see
5.4). Now, according to theorem 5.3.1, all elements of diag(αH) are smaller than 1, so the
main diagonal of diag(MG) = I − diag(αH) consists only of non-zero elements. But since the
eigenvalues of a triangular matrix are the entries on its main diagonal [16, p. 289], the number
of non-zero eigenvalues of MN×N

G is equal to N . Under this condition is MG non-singular [16,
p. 290].
Now, let MG = I − diag(αH) − lower(αH) = I − αHD+L with HD+L = diag(H) + lower(H).
The eigenvalues of HD+L are the entries on its main diagonal [16, p. 289]. Since H is column
stochastic (see lemma 3.4.1), all elements of H are smaller than or equal to 1. Consequently all
entries on the main diagonal of αHD+L are smaller than 1 (note that α < 1) and we conclude
that ρ(αHD+L) < 1. Then, the proof that M−1G ≥ O is analogous to the second part of the
proof of theorem 5.2.1. This can be seen by replacing H by HD+L and A by MG in equations
(5.12) up to (5.16).

5.4.2 Improvements: modified Gauss-Seidel method

As with the Jacobi iteration, we want to improve the Gauss-Seidel algorithm. This cannot be
achieved in the same way as in section 5.3.2, because RG cannot easily be separated in a matrix
R′G and αpdT as in (5.30). As a solution to this problem we introduce a modified Gauss-Seidel
iteration, in which we exclude the dangling nodes from the lower triangular part:

MGM
= diag(A′) + lower(A′) (5.38)

with A′ = I − αS, which we can simplify to

MGM
= I − diag(αS)− lower(αS). (5.39)

5.4 Gauss-Seidel iteration 21

Consequently, the upper triangular part will be (recall (5.5) and (5.6))

RGM
= MGM

−A = I − diag(αS)− lower(αS)− I + αS + αpdT

= upper(αS) + αpdT = R′GM
+ αpdT (5.40)

with R′GM
= upper(αS). Rewriting (5.8) with (5.39) and (5.40) now yields

πk+1 = M−1GM

(
R′GM

πk + αpdTπk + b
)
. (5.41)

Finally, p is chosen as initial vector again and as while loop condition we use (5.33). The im-
proved algorithm is given below.

Modified Gauss-Seidel method

Input: S ∈ [0, 1]N×N ; p ∈ (0, 1)N ; d ∈ {0, 1}N ; α ∈ (0, 1); tolerance ε ∈ (0, 1).

Output: π∗, approximation of PageRank vector such that ‖b−Aπ∗‖ ≤ ε.
2: MGM

← I − diag(αS)− lower(αS)
2: R′GM

← upper(αS)

4: π∗ ← p
5: b← (1− α)p

6: while
∥∥αSπ∗ + αpdTπ∗ + b− π∗

∥∥ > ε

7: π∗ ←M−1GM
(R′GM

π∗ + αpdTπ∗ + b)

8: end while

5.4.3 Convergence of the modified Gauss-Seidel method

The given modified Gauss-Seidel method converges to the PageRank vector π = A−1b if MGM

is non-singular, M−1GM
≥ 0 and RGM

≥ 0 (theorem 5.2.2). Note that since RGM
= upper(αS)

and S > 0 (see 3.2) it follows that RGM
≥ 0. The other conditions are proved below.

Theorem 5.4.2. MGM
= I − diag(αS)− lower(αS) is a non-singular matrix and M−1GM

≥ O.

Proof. Note that all elements of diag(αS) are smaller than 1, because all elements of S are
smaller than or equal to 1 (see 3.2) and α < 1. The main diagonal of diag(MGM

) = I−diag(αS)
thus consists only of non-zero elements. But since the eigenvalues of a triangular matrix are the
entries on its main diagonal [16, p. 289], the number of non-zero eigenvalues of MN×N

GM
is equal

to N . Under this condition is MGM
non-singular [16, p. 290].

Now, let MGM
= I −diag(αS)− lower(αS) = I −αSD+L with SD+L = diag(S) + lower(S). The

eigenvalues of SD+L are the entries on its main diagonal [16, p. 289]. All elements of S are
smaller than or equal to 1 (see 3.2). Consequently all entries on the main diagonal of αSD+L

are smaller than 1 and we conclude that ρ(αSD+L) < 1. Then, the proof that M−1GM
≥ O is

analogous to the second part of the proof of theorem 5.2.1. This can be seen by replacing S by
SD+L and A by MGM

in equations (5.12) up to (5.16).

22 Chapter 5. A linear systems approach

5.5 IDR(s)

Besides basic iterative methods, there are several other methods for solving linear systems.
Among them are the Krylov subspace methods, like Bi-CG, Bi-CGSTAB and GMRES, which
are popular because of their fast convergence [17, chapters 6 and 7]. In this research project
we focus on another, new Krylov method for large nonsymmetric linear systems called IDR(s).
These method is based on the induced dimension reduction (IDR) theorem. IDR(s) behaves
like an iterative method, but computes the true solution using at most N +N/s matrix-vector
multiplications, where the parameter s denotes the codimension of a fixed subspace. For a
further explanation of this and a prototype for the implementation of the IDR(s) algorithm, see
[18].

5.5.1 Modifications and preconditioning

IDR(s) solves the system Aπ = b. But as earlier mentioned in this chapter and for the same
reason as mentioned in section 4.1, we will split A as follows:

A = A′ − αpdT (5.42)

with
A′ = I − αS. (5.43)

Now, to obtain a faster implementation, we let IDR(s) solve A′π = b, but in each iteration we
add αpdTπ∗ to the calculated approximation π∗.

Recall from section 5.2 the splitting of the linear system Ax = b in

Mx = Rx+ b. (5.44)

We can write (5.44) as (M −R)x = b and use M−1 to obtain

AM−1y = b (5.45)

with
y = Mx. (5.46)

This procedure is called preconditioning and here matrix M is called the right preconditioner
[12, p. 159], [17, p. 252]. We can use MJ and MG as preconditioners for the IDR(s) method.

Chapter 6

Practical aspects

6.1 Comparing algorithms

In the previous sections, we have discussed several algorithms to calculate the PageRank vector.
We want to investigate which of these has the fastest converge. What ‘fastest’ means, is not
clear immediately. We could say that the algorithm that converges with the smallest number of
iterations is the fastest one. But then we ignore the fact that a single iteration step of different
algorithms could take different times. On the other hand, one could compare the times that the
execution of the algorithms takes. But these times depend largely on how well the algorithms
are implemented. In performing experiments we should consider both the number of iterations
and the execution time. We assume that an algorithm is faster than another one if it completes
in less iterations and if there is a reasonable match between the difference in execution times
and the difference between the numbers of iteration.
Furthermore, a suitable investigation of different algorithms requires that we use the same
starting vector, the same value of α, the same tolerance and the same norm. Finally, in each
iteration step should the number of matrix-vector multiplications be equal. These aspects will
be discussed in the next sections, considering that we will compare the following algorithms:

1. The improved Power method algorithm of page 12.

2. The improved Jacobi method algorithm of page 19.

3. The modified Gauss-Seidel method algorithm of page 21.

4. The modified IDR(s) algorithm, see page 22.

5. The modified IDR(s) algorithm with Jacobi preconditioning.

6. The modified IDR(s) algorithm with Gauss-Seidel preconditioning.

6.1.1 Norms

The improved Power method uses as stopping criterion∥∥π∗c − π∗p∥∥ = ‖π∗ −Gπ∗‖ , (6.1)

see page page 12. The other algorithms use

‖b−Aπ∗‖ =
∥∥αSπ∗ + αpdTπ∗ + b− π∗

∥∥ , (6.2)

23

24 Chapter 6. Practical aspects

see (5.33) and section 5.4.2. Now, (6.1) and (3.12) yield∥∥π∗ − αSπ∗ − αpdTπ∗ − (1− α)p1Tπ∗
∥∥ . (6.3)

Since 1Tπ∗ = 1 (see page 12) and b = (1− α)p (see page 18), (6.3) equals∥∥π∗ − αSπ∗ − αpdTπ∗ − b∥∥ (6.4)

and because (6.1) and (6.4) are equal, we conclude that the used norms are the same.
The 2-norm is used for the numerical experiments.

6.1.2 Matrix-vector calculations

The iteration in the improved Power method algorithm of page 12 contains one matrix-vector
multiplication Sπ∗. The improved Jacobi method algorithm of page 19 has one matrix-vector
multiplication with the sparse R′J and a multiplication with the inverse of diagonal matrix MJ .
The modified Gauss-Seidel method algorithm of page 21 contains one matrix-vector multiplica-
tion with the sparse triangular matrix R′G and one multiplication of the inverse of the triangular
matrix M with a vector, which can be calculated via back substitution. Consequently, the total
costs for the improved Power, Jacobi and the modified Gauss-Seidel algorithms are one matrix-
vector operations in each iteration step. The IDR(s) algorithms also requires 1 matrix-vector
operation in each step [18, pp. 1040-1041].

We can conclude that we are able to make a straight comparison of the mentioned algorithms
on basis of the number of iterations and the residuals in each iteration.

6.2 Matlab implementations

6.2.1 Web crawling

For the purpose of executing numerical experiments we need test matrices that contain informa-
tion about which pages of (parts of) the World Wide Web are linked to each other. To obtain
these matrices, we have to investigate the hyperlink structure of the World Wide Web. Such an
investigation is done by a web crawler called surfer, written by Cleve Moler [14] but modified
for our experiments. The crawler starts on a given web page and investigates all web pages that
it finds via hyperlinks on that websites. It returns an adjacency matrix B of a size to choose
with B(i, j) = 1 if page j has a hyperlink to page i. See appendix A for the Matlab code. The
function surfer requires as input the number of pages that has to be investigated and a root
URL at which surfer will start its search. Besides matrix B, surfer returns a list with the
URL’s of all investigated pages.

6.2.2 Calculating S and d

The algorithms mentioned in section 6.1 require five parameters: matrix S, vectors p and d,
damping factor α and tolerance ε. We have already made a choice for the values of p and α
(see for example sections 4.1 and 4.2). However, S and d have to be calculated. In order to
create matrix S (c.f. 3.2) given a test matrix B, we have to multiply it with a diagonal matrix
containing the sum of each column of B:

S = BD (6.5)

6.2 Matlab implementations 25

with

D(i, i) =

{
1
li

if li > 0

0 if li = 0
(6.6)

where li =
∑N

j=1B(i, j) denotes the number of outlinks on page i. Now, recall from section 3.3.1

d ∈ {0, 1}N with

d(i) =

{
1 if the i-th column of S is a dangling column
0 otherwise.

(6.7)

In order to calculate d with given B we rewrite this as

d(i) =

{
1 if li = 0
0 otherwise.

(6.8)

An implementation of what has been stated above is done in the file create d s.m, see appendix
B. The Matlab function create d s requires as parameter matrix B as defined in section 6.2.1
and has S, d and n as output variables, where n× n is the size of matrices B and S.

6.2.3 The Power, Jacobi and modified Gauss-Seidel method algorithms

The improved Power method algorithm of page 12, the improved Jacobi method algorithm of
page 5.3.2 and the modified Gauss-Seidel algorithm of page 5.4.2 have been implemented in
respectively the files pr power.m, see appendix C, the file pr jacobi.m, see appendix D and the
file pr mod gauss seidel.m, see appendix E. All three algorithms have the following parameters:
adjacency matrix B, damping factor α and tolerance ε. The output is

� π∗, an approximation of the PageRank vector for the given matrix B,

� a vector with the residual norms at each iteration,

� the number of executed iterations,

� a vector with the total elapsed time (s) after each iteration.

6.2.4 The modified IDR(s) method algorithms with preconditioning

A numerically stable implementation of the modified IDR(s) method (c.f. section 5.5) is given
in [4]. This implementation is modified for the PageRank problem in the file pr mod idrs.m,
see appendix F. The algorithm has the following parameters:

� adjacency matrix B,

� damping factor α,

� tolerance ε,

� the parameter s of the IDR(s) method,

� a value which specifies whether preconditioning should be applied: no preconditioning or
Jacobi or Gauss-Seidel preconditioning.

The output is

� π∗, an approximation of the PageRank vector for the given matrix B,

26 Chapter 6. Practical aspects

� a vector with the residual norms at each iteration,

� the number of executed iterations,

� a vector with the total elapsed time (s) after each iteration.

6.2.5 Scripts for algorithm comparison

The appendices G and H contain the code of scripts for the comparison of the different algorithms
and for creating graphs of the convergence rates. The scripts choose α = 0.85 and tolerance
ε = 10−10. The rates of convergence ck in the kth iterate are

ck =
‖ek‖
‖ek−1‖

, (6.9)

recalling (5.9). Because the used norms in the different methods are equal as explained in section
6.1.1, the rates of convergence can be computed by dividing the residual norm in the kth iterate
by the residual norm in the k − 1st iterate.

Chapter 7

Numerical experiments

This chapter presents the results of numerical experiments that has been performed in order
to compare the different methods that compute the PageRank vector as described in the last
chapter. The creation of test matrices and all algorithm comparisons are performed on a PC
with a 2 Ghz CPU and 1 GB RAM. The results are being discussed in each section particularly.

7.1 Test matrices

The following test matrices are generated by the web crawler Surfer :

name size root URL

B tu 10k 10,000 × 10,000 http://www.tudelft.nl

B sf 10k 10,000 × 10,000 http://www.stanford.edu

B nl 10k 10,000 × 10,000 http://www.huisdiereninfo.nl

B jp 10k 10,000 × 10,000 http://www.kantei.go.jp

B tu 5k 5,000 × 5,000 http://www.tudelft.nl

B sf 5k 5,000 × 5,000 http://www.stanford.edu

B nl 5k 5,000 × 5,000 http://www.huisdiereninfo.nl

B jp 5k 5,000 × 5,000 http://www.kantei.go.jp

B tu 1k 1,000 × 1,000 http://www.tudelft.nl

B sf 1k 1,000 × 1,000 http://www.stanford.edu

B nl 1k 1,000 × 1,000 http://www.huisdiereninfo.nl

B jp 1k 1,000 × 1,000 http://www.kantei.go.jp

Table 7.1: Test matrices generated by Surfer

The sparsity patterns of two of these matrices are given in figure 7.1 and 7.2. There is a
notable difference in the patterns of the matrices B sf 10k and B jp 10k. The average number
of hyperlinks on pages in B sf 10k turns out te be much larger than the average number of
hyperlinks on pages in B sf 10k.
The crawler surfer (see section 6.2.1) searches in the pages it visits for parts of the text containing
the string ‘http:’, expecting a hyperlink at that certain position in the text. Then its checks
whether these found hyperlinks are existing ULR’s. This takes a lot of time. A defect in the
crawler is the large number of hyperlinks that are skipped, for example links containing the
characters ‘?’ and ‘!’. The reason for this is that it is hard to find out whether hyperlinks

27

28 Chapter 7. Numerical experiments

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of non−zero elements: 792105

Figure 7.1: Sparsity pattern of B sf 10k

0 2000 4000 6000 8000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of non−zero elements: 319987

Figure 7.2: Sparsity pattern of B nl 10k

containing these characters point to an existing web page. As a result, hyperlinks containing
parameters are being neglected. However, a lot of HTTP or PHP pages are being called with
the use of parameters.
Creating the test matrices with size 10,000 × 10,000 took about 7 hours per matrix. As a result,
no test matrices larger than these were created. But investigating 10,000 gives only an indication
of the hyperlink structure of the World Wide Web, considering the large amount of pages in it.

7.2 General results

The comparison of the different algorithms is done with the four largest test matrices. The
smaller matrices are used to examine the influence of the matrix size on the convergence speed.
The main results are listed below.

test matrix B tu 10k B sf 10k B nl 10k B jp 10k

iterations, time iterations, time iterations, time iterations, time
Power 98, 164 ms. 100, 231 ms. 96, 149 ms. 99, 152 ms.
Jacobi 96, 247 ms. 85, 330 ms. 87, 223 ms. 84, 210 ms.

Gauss-Seidel 61, 198 ms. 56, 269 ms. 59, 190 ms. 64, 189 ms.
IDR(1) 40, 136 ms. 38, 174 ms. 38, 163 ms. 40, 138 ms.
IDR(2) 39, 139 ms. 38, 173 ms. 38, 126 ms. 36, 152 ms.
IDR(4) 38, 145 ms. 35, 179 ms. 38, 134 ms. 38, 136 ms.

IDR(1), Jacobi 44, 142 ms. 36, 171 ms. 38, 126 ms. 40, 143 ms.
IDR(2), Jacobi 36, 138 ms. 38, 176 ms. 36, 127 ms. 41, 135 ms.
IDR(4), Jacobi 39, 155 ms. 39, 189 ms. 37, 136 ms. 40, 142 ms.

IDR(1), Gauss-Seidel 24, 138 ms. 28, 177 ms. 22, 124 ms. 24, 126 ms.
IDR(2), Gauss-Seidel 24, 135 ms. 24, 171 ms. 23, 136 ms. 24, 128 ms.
IDR(4), Gauss-Seidel 24, 139 ms. 24, 179 ms. 24, 130 ms. 23, 132 ms.

Table 7.2: Main results of algorithm comparison

7.3 Comparison of residual norms 29

The table contains the number of iterations together with the average execution time of the
different algorithms. Each algorithm has been executed ten times to reduce the influence of
changes in available memory and CPU speed on the computer that performed the tests. The
execution of the Jacobi and Gauss-Seidel methods takes much more time than the execution of
the Power method, while both finish in less iterations. This finds its reason in the way these
methods compute the residual norms. The power method calculates

∥∥π∗c − π∗p∥∥ (see section

4.1) and both Jacobi and Gauss-Seidel calculate
∥∥αSπ∗ + αpdTπ∗ + b− π∗

∥∥ (see sections 5.3.2
and 5.4.2). We see that the Jacobi and Gauss-Seidel methods calculate one more matrix-vector
calculation than the Power method in each iteration. Considering this, we can conclude that
the execution times of the algorithms do not differ very much. This means that we can focus
on the number of iterations and the residual norms.

7.3 Comparison of residual norms

We will compare the residual norms generated by the algorithms for the four largest test matrices.
See the figures below.

0 10 20 30 40 50 60 70 80 90 100
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_tu_10k

Power
Jacobi
Gauss−Seidel
IDR(1)
IDR(1) Jacobi
IDR(1) Gauss−Seidel

Figure 7.3: Convergence of several methods
for B tu 10k

0 20 40 60 80 100 120
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m
Convergence for B_sf_10k

Power
Jacobi
Gauss−Seidel
IDR(1)
IDR(1) Jacobi
IDR(1) Gauss−Seidel

Figure 7.4: Convergence of several methods
for B sf 10k

0 10 20 30 40 50 60 70 80 90 100
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_nl_10k

Power
Jacobi
Gauss−Seidel
IDR(1)
IDR(1) Jacobi
IDR(1) Gauss−Seidel

Figure 7.5: Convergence of several methods
for B nl 10k

0 10 20 30 40 50 60 70 80 90 100
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_jp_10k

Power
Jacobi
Gauss−Seidel
IDR(1)
IDR(1) Jacobi
IDR(1) Gauss−Seidel

Figure 7.6: Convergence of several methods
for B jp 10k

30 Chapter 7. Numerical experiments

The behaviour of the methods does not differ much for the four test matrices. IDR(1) with
Gauss-Seidel preconditioning clearly performs the best. IDR(1) without preconditioning and
IDR(1) with Jacobi preconditioning behave almost the same. Further note that the performance
of the Gauss-Seidel method is much better than the Jacobi method. All methods outperform
the Power method. Now, let us investigate the differences in performance of IDR(1), IDR(2)
and IDR(4). See the figures below.

0 5 10 15 20 25 30 35 40 45
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_tu_10k

IDR(1)
IDR(2)
IDR(4)

Figure 7.7: Convergence of IDR(s) for
B tu 10k

0 5 10 15 20 25 30 35 40
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_sf_10k

IDR(1)
IDR(2)
IDR(4)

Figure 7.8: Convergence of IDR(s) for
B sf 10k

0 5 10 15 20 25 30 35 40
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_nl_10k

IDR(1)
IDR(2)
IDR(4)

Figure 7.9: Convergence of IDR(s) for
B nl 10k

0 5 10 15 20 25 30 35 40 45
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_jp_10k

IDR(1)
IDR(2)
IDR(4)

Figure 7.10: Convergence of IDR(s) for
B jp 10k

The three methodss IDR(1), IDR(2) and IDR(4) have almost the same convergence rate.
None of them is the fastest one for all four test matrices. It is clear that preconditioning makes
a difference, where the choice of s does not.

7.4 Comparison of matrix sizes

We will investigate whether choosing another size of the matrices changes the convergence. See
the figures on the next page.

7.4 Comparison of matrix sizes 31

0 10 20 30 40 50 60 70 80 90 100
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m
Convergence for B_sf_1k

Power
Jacobi
Gauss−Seidel
IDR(1)
IDR(1) Jacobi
IDR(1) Gauss−Seidel

Figure 7.11: Convergence of several meth-
ods for B sf 1k

0 20 40 60 80 100 120
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_sf_5k

Power
Jacobi
Gauss−Seidel
IDR(1)
IDR(1) Jacobi
IDR(1) Gauss−Seidel

Figure 7.12: Convergence of several meth-
ods for B sf 5k

0 10 20 30 40 50 60 70 80 90 100
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_nl_1k

Power
Jacobi
Gauss−Seidel
IDR(1)
IDR(1) Jacobi
IDR(1) Gauss−Seidel

Figure 7.13: Convergence of several meth-
ods for B nl 1k

0 10 20 30 40 50 60 70 80 90 100
10−12

10−10

10−8

10−6

10−4

10−2

100

Number of iterations

R
es

id
ua

l n
or

m

Convergence for B_nl_5k

Power
Jacobi
Gauss−Seidel
IDR(1)
IDR(1) Jacobi
IDR(1) Gauss−Seidel

Figure 7.14: Convergence of several meth-
ods for B nl 5k

Comparing the figures above with figure 7.4 and 7.5, it is clear that the size of the matrices
hardly matters. If we look at the patterns of the matrices, figures 7.1 and 7.2, we see that the
hyperlink structure of the first 1,000 web pages, of the first 5,000 web pages and of the whole
matrix does not differ much. We cannot conclude in general, however, that the matrix size does
not change the convergence. A very large test matrix, although having the same root URL, may
contain other parts of the World Wide Web that have another hyperlink structure.

32 Chapter 7. Numerical experiments

7.5 Rates of convergence

Finally, we will look at the convergence rates of the Power method and the basic iterative
methods.

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

R
at

e
of

 c
on

ve
rg

en
ce

Convergence for B_tu_10k

Power method
Jacobi method
modified Gauss−Seidel
0.85

Figure 7.15: Convergence rates for
B tu 10k

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

R
at

e
of

 c
on

ve
rg

en
ce

Convergence for B_sf_10k

Power method
Jacobi method
modified Gauss−Seidel
0.85

Figure 7.16: Convergence rates for
B sf 10k

0 10 20 30 40 50 60 70 80 90 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of iterations

R
at

e
of

 c
on

ve
rg

en
ce

Convergence for B_nl_10k

Power method
Jacobi method
modified Gauss−Seidel
0.85

Figure 7.17: Convergence rates for
B nl 10k

0 10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of iterations

R
at

e
of

 c
on

ve
rg

en
ce

Convergence for B_jp_10k

Power method
Jacobi method
modified Gauss−Seidel
0.85

Figure 7.18: Convergence rates for
B jp 10k

After a small number of iterations, the convergence rates of all methods stabilises. The
theoretical value of the convergence rate of the Power method, α = 0.85 (see section 4.2),
matches the convergence rate that we find in these results.

Chapter 8

Conclusions and recommendations

In chapters 2 and 3 we have seen the description of an adequate model for the hyperlink structure
of the web, which has been adapted to a model for web surfing. With this model the existence
and uniqueness of the PageRank vector, which is the solution to the PageRank problem, has
been proved.
Several methods for computing the PageRank vector have been mentioned in chapters 4 and 5.
For these methods it has been proved that they converge to the PageRank vector. The theo-
retical value of the convergence speed of the Power method, α, matches the convergence speed
that we found in the numerical experiments.

The results of our numerical experiments show that we are able to compare the described
algorithms well by the required number of iterations. The way these methods are implemented
does not bias our experiments.
The numerical experiments further show that IDR(s) efficiently computes the PageRank vector
and in this respect outperforms the Power method and the basic iterative methods, in numbers
of iteration as well as in execution time. For which value of s IDR(s) performs best, depends
on the choice of the matrix. For the tested matrices, IDR(s) with Gauss-Seidel preconditioning
gives the best performance.

Further research to the subject of this thesis is useful, for two reasons:

1. even more interesting than comparing the Power method and the basic iterative methods
to IDR(s), may be comparing IDR(s) with other Krylov subspace methods such as Bi-CG,
Bi-CGSTAB and GMRES.

2. there is a need for better test matrices: the used web crawler has some important defects,
as mentioned in section 7.1. But above that, the used matrices are too small. Numerical
experiments should be executed with much larger and more realistic test matrices.

33

34 Chapter 8. Conclusions and recommendations

Bibliography

[1] Abraham Berman and Robert J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, Academic Press, London, 1979.

[2] Sergey Brin and Lawrence Page, The anatomy of a large-scale hypertextual web search
engine, in: Seventh International World-Wide Web Conference (WWW 1998), April 14-18,
1998, Brisbane, Australia.

[3] Gianna M. Del Corso, Antonio Gulĺı, and Francesco Romani, Fast PageRank computation
via a sparse linear system, Internet Mathematics Vol. 2, No. 3, 2005, pp. 251 - 273.

[4] Martin B. van Gijzen and Peter Sonneveld, An elegant IDR(s) variant that efficiently ex-
ploits bi-orthogonality properties, Delft University of Technology, Reports of the Department
of Applied Mathematical Analysis, Report 08-21, 2008.

[5] David F. Gleich, Leonid Zhukov and Pavel Berkhin, Fast parallel PageRank: A linear system
approach, Yahoo! Technical Report, 2004.

[6] David F. Gleich, Andrew P. Gray, Chen Greif and Tracy Lau, An inner-outer iteration for
computing PageRank, SIAM J. Sci. Comput. Vol. 32, No. 1, 2010, pp. 349 - 371.

[7] Gene H. Golub and Charles F. Van Loan, Matrix Computations, Third edition, The Johns
Hopkins University Press, Baltimore (Maryland), 1996.

[8] Google Inc., Corporate Information - Technology overview, 2010, available at
http://www.google.com/corporate/tech.html.

[9] Richard T. Griffiths, History of the Internet, Universiteit Leiden, 2001, available at
http://www.leidenuniv.nl/letteren/internethistory/index.htm.

[10] Taher H. Haveliwala and Sepandar D. Kamvar, The Second Eigenvalue of the Google Matrix,
Technical report 2003-20, Stanford University, 2003.

[11] Ilse C.F. Ipsen and Rebecca S. Wills, Mathematical properties and analysis of Googles
PageRank, Bol. Soc. Esp. Mat. Apl., vol. 34, 2006, pp. 191 - 196.

[12] Jos van Kan, Guus Segal and Fred Vermolen, Numerical methods in scientific computing,
VSSD, Delft, 2005.

[13] Chris P. Lee, Gene H. Golub and Stefanos A. Zenios, A two-stage algorithm for computing
PageRank and multistage generalizations, Internet Mathematics Vol. 4, No. 4, 2007, pp. 299
- 327.

[14] Cleve Moler, Numerical Computing with MATLAB, electronic edition, The MathWorks
Inc., 2004, available at http://www.mathworks.nl/moler/ncmfilelist.html.

35

36 BIBLIOGRAPHY

[15] Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd, The PageRank Citation
Ranking: Bringing Order to the Web, Technical Report, Stanford InfoLab, 1999.

[16] David Poole, Linear Algebra, A Modern Introduction, Brooks/Cole, Pacific Grove, 2003.

[17] Yousef Saad, Iterative Methods for Sparse Linear Systems, Second Edition, SIAM, Philadel-
phia, 2003.

[18] Peter Sonneveld and Martin B. van Gijzen, IDR(s): a family of simple and fast algorithms
for solving large nonsymmetric linear systems, SIAM J. Sci. Comput. Vol. 31, No. 2, 2008,
pp. 1035 - 1062.

[19] Gilbert Stewart, Matrix Algorithms, Volume 1: Basic decompositions, SIAM, Philadelphia,
1998.

[20] Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, New Jersey,
1962.

[21] James H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, Oxford,
1965.

[22] Rebecca S. Wills and Ilse C. F. Ipsen, Ordinal ranking for Google’s PageRank, SIAM J.
Matrix Anal. Appl., Vol. 30, No. 4, 2009, pp. 1677 - 1696.

Appendix A

Code of the web crawler surfer

1 function [U,B] = surfer(root,n)
2

3 % SURFER Create the adjacency graph of a portion of the Web.
4 % [U,B] = surfer(root,n) starts at the URL root and follows
5 % hyperlinks until it forms an adjacency graph with n nodes.
6 % U = a cell array of n strings, the URLs of the nodes.
7 % B = a sparse square matrix denoting the webgraph
8 % with B(i,j) = 1 if page j is linked to page i.
9 %

10 % Example: [U,B] = surfer('http://www.harvard.edu',500);
11 %
12 % This function currently has two defects. (1) The algorithm for
13 % finding links is naive. We just look for the string 'http:'.
14 % (2) An attempt to read from a URL that is accessible, but very slow,
15 % might take an unacceptably long time to complete. In some cases,
16 % it may be necessary to have the operating system terminate MATLAB.
17 %
18 % With size n = 10000, about 700 MB of free memory is required.
19 % Key words from such URLs can be added to the skip list in surfer.m.
20 %
21 % Written by Cleve Moler.
22 % Modified by Rien den Besten, June - August 2010
23

24 % Initialize
25

26 disp(['Surfer will crawl the web starting at <a href = "',...
27 deblank(root), '">', deblank(root), ' and investigate ', ...
28 num2str(n), ' web pages.']); fprintf('\n')
29

30 tic;
31 U = cell(n,1);
32 Pages = cell(n,1);
33 hash = zeros(n,1);
34 B = logical(sparse(n,n));
35 m = 1;
36 U{m} = root;
37 hash(m) = hashfun(root);
38

39 try
40 Pages{m} = urlread(root);
41 catch
42 error(['Unable to read root page ', root]);
43 end

37

38 Appendix A. Code of the web crawler surfer

44

45 j = 1;
46 while j < n
47

48 % Follow the links from the open page.
49 page = Pages{j};
50 for f = findstr('http:',page);
51

52 % A link starts with 'http:' and ends with the next quote.
53

54 e = min([findstr('"',page(f:end)) findstr('''',page(f:end))]);
55 if isempty(e), continue, end
56 url = deblank(page(f:f+e-2));
57 url(url<' ') = '!'; % Nonprintable characters
58 if url(end) == '/', url(end) = []; end
59

60 % Look for links that should be skipped.
61

62 skips = {'.gif','.jpg','.jpeg','.css', '.js','.mwc','.ram','.cgi',...
63 'lmscadsi','cybernet','w3.org','yahoo','.png','google',...
64 'scripts','netscape','shockwave','webex','doubleclick'};
65 skip = any(url=='!') | any(url=='?');
66

67 k = 0;
68 while ¬skip & (k < length(skips))
69 k = k+1;
70 skip = ¬isempty(findstr(url,skips{k}));
71 end
72 if skip
73 continue
74 end
75

76 % Check if page is already in url list.
77

78 hashcurrent = hashfun(url);
79 i = 0;
80 for k = find(hash(1:m) == hashcurrent)';
81 if isequal(U{k},url)
82 i = k;
83 break
84 end
85 end
86

87 % Add a new url to the graph there if are fewer than n and the url
88 % can be read
89

90 if (i == 0) && (m < n)
91 try
92 [newpage, status] = urlread(url);
93 catch
94 continue
95 end
96 if status == 0
97 continue
98 end
99 m = m+1;

100 U{m} = url;
101 Pages{m} = newpage;
102 hash(m) = hashcurrent;
103 i = m;
104 end

39

105

106 % Add a new link.
107

108 if i > 0
109 B(i,j) = 1;
110 end
111 end
112

113 Pages{j} = [];
114

115 j = j+1;
116

117 if mod(j,10) == 0
118 minutes = floor(toc / 60);
119 seconds = toc - minutes * 60;
120 disp(['Currently investigated: ', num2str(j), ' pages of ', ...
121 num2str(n), ' in ', num2str(minutes), ' minutes and ', ...
122 num2str(round(seconds)), ' seconds; ', num2str(m), ...
123 ' pages found.']);
124 end
125 end
126 %------------------------
127

128 function h = hashfun(url)
129 % Almost unique numeric hash code for pages already visited.
130 h = length(url) + 1024*sum(url);

40 Appendix A. Code of the web crawler surfer

Appendix B

Script for creating S and d

1 function [S, d, n] = create d s(B)
2

3 % CREATE D S is a function that creates a probability matrix for a
4 % given web graph matrix and lists the dangling nodes in a vector.
5 %
6 %
7 % PARAMETERS:
8 % B a sparse square adjacency matrix denoting the web graph
9 % with B(i,j) = 1 if page j is linked to page i.

10 %
11 %
12 % RETURNS:
13 % S probability matrix
14 %
15 % d vector denoting the positino of dangling nodes
16 %
17 % n size of matrices B and S
18 %
19 %
20 % Rien den Besten
21 % Copyright (c) August 2010
22

23 [n,n] = size(B);
24

25 d = zeros(1,n);
26 D = sparse(n,n);
27

28 for j = 1:n
29 %Find indices of non-zero elements in column j of B:
30 B column indices{j} = find(B(:,j));
31

32 %Count number of non-zero elements in column j of B:
33 LO column indices(j) = length(B column indices{j});
34

35 % Fill d and D:
36 if LO column indices(j) > 0 % column j is no dangling column
37 D(j,j) = 1 / LO column indices(j);
38 else % column j is a dangling column
39 d(j) = 1;
40 end
41 end
42 S = B * D;

41

42 Appendix B. Script for creating S and d

Appendix C

Implementation of the Power
method

1 function [pi, resvec, iter, tmvec] = pr power(B, alpha, tol)
2

3 % PR POWER is an implementation of the Power method
4 % for the PageRank problem.
5 %
6 %
7 % PARAMETERS:
8 % B a sparse square matrix denoting the web graph
9 % with B(i,j) = 1 if page j is linked to page i.

10 %
11 % alpha the damping factor.
12 %
13 % tol the tolerance of the method.
14 %
15 %
16 % RETURNS:
17 % pi approximation of the PageRank vector for the given matrix B.
18 %
19 % resvec vector of the residual norms at each iteration.
20 %
21 % cnt the number of iterations.
22 %
23 % tmvec vector of the total elapsed time (s) after each iteration.
24 %
25 %
26 % Rien den Besten
27 % Copyright (c) August 2010
28

29 tic;
30

31 [S, d, n] = create d s(B);
32 alphaS = alpha * S;
33 p = ones(n,1)/n;
34

35 % Starting values
36 pi c = p;
37 iter = 0;
38 r = p - alphaS*p - (alpha*dot(d,p) + 1 - alpha)*p;
39 normr = norm(r);
40 resvec = [normr];

43

44 Appendix C. Implementation of the Power method

41 tmvec = [toc];
42

43 % Power iteration
44 while normr > tol
45 pi p = pi c;
46

47 pi c = alphaS*pi p + (alpha*dot(d,pi p) + 1 - alpha)*p;
48

49 r = pi c - pi p;
50 normr = norm(r);
51

52 resvec = [resvec; normr];
53 tmvec = [tmvec; toc];
54 iter = iter + 1;
55 end
56 pi = pi c;

Appendix D

Implementation of the Jacobi
method

1 function [pi, resvec, iter, tmvec] = pr jacobi(B, alpha, tol)
2

3 % PR JACOBI is an implementation of the Jacobi iteration method
4 % for the PageRank problem.
5 %
6 %
7 % PARAMETERS:
8 % B a sparse square adjacency matrix denoting the web graph
9 % with B(i,j) = 1 if page j is linked to page i.

10 %
11 % alpha the damping factor.
12 %
13 % tol the tolerance of the method.
14 %
15 %
16 % RETURNS:
17 % pi approximation of the PageRank vector for the given matrix B.
18 %
19 % resvec vector of the residual norms at each iteration.
20 %
21 % cnt the number of iterations.
22 %
23 % tmvec vector of the total elapsed time (s) after each iteration.
24 %
25 %
26 % Rien den Besten
27 % Copyright (c) August 2010
28

29 tic;
30

31 [S, d, n] = create d s(B);
32 alphaS = alpha * S;
33 p = ones(n,1)/n;
34 b = (1 - alpha) * p;
35 Diag alpha p d = diag(sparse(alpha / n * d));
36

37 % Create M and Rt
38 M J = speye(n) - diag(diag(alphaS)) - Diag alpha p d;
39 Rt J = alphaS - diag(diag(alphaS)) - Diag alpha p d;
40

45

46 Appendix D. Implementation of the Jacobi method

41 % Starting values
42 pi = p;
43 iter = 0;
44 r = b - pi + alphaS*pi + alpha*p*dot(d,pi);
45 normr = norm(r);
46 resvec = [normr];
47 tmvec = [toc];
48

49 % Jacobi iteration
50 while normr > tol
51

52 pi = M J \ (Rt J * pi + alpha*p*dot(d,pi) + b);
53

54 r = b - pi + alphaS*pi + alpha*p*dot(d,pi);
55 normr = norm(r);
56

57 resvec = [resvec; normr];
58 tmvec = [tmvec; toc];
59 iter = iter + 1;
60 end

Appendix E

Implementation of the modified
Gauss-Seidel method

1 function [pi, resvec, iter, tmvec] = pr mod gauss seidel(B, alpha, tol)
2

3 % PR MOD GAUSS SEIDEL is an implementation of the modified Gauss-Seidel
4 % iteration method for the PageRank problem.
5 %
6 %
7 % PARAMETERS:
8 % B a sparse square adjacency matrix denoting the web graph
9 % with B(i,j) = 1 if page j is linked to page i.

10 %
11 % alpha the damping factor.
12 %
13 % tol the tolerance of the method.
14 %
15 %
16 % RETURNS:
17 % pi approximation of the PageRank vector for the given matrix B.
18 %
19 % resvec vector of the residual norms at each iteration.
20 %
21 % iter the number of iterations.
22 %
23 % tmvec vector of the total elapsed time (s) after each iteration.
24 %
25 %
26 % Rien den Besten
27 % Copyright (c) August 2010
28

29 tic;
30

31 [S, d, n] = create d s(B);
32 alphaS = alpha * S;
33 p = ones(n,1)/n;
34 b = (1 - alpha) * p;
35

36 % Create M and Rt
37 M Gm = speye(n) - tril(alphaS,0);
38 Rt Gm = triu(alphaS,1);
39

40 % Starting values

47

48 Appendix E. Implementation of the modified Gauss-Seidel method

41 pi = p;
42 iter = 0;
43 r = b - pi + alphaS*pi + alpha*p*dot(d,pi);
44 normr = norm(r);
45 resvec = [normr];
46 tmvec = [toc];
47

48 % Modified Gauss-Seidel iteration
49 while normr > tol
50

51 pi = M Gm \ (Rt Gm * pi + alpha*p*dot(d,pi) + b);
52

53 r = b - pi + alphaS*pi + alpha*p*dot(d,pi);
54 normr = norm(r);
55

56 resvec = [resvec; normr];
57 tmvec = [tmvec; toc];
58 iter = iter + 1;
59 end

Appendix F

Implementation of the modified
IDR(s) method

1 function [pi, resvec, iter, tmvec] = pr mod idrs(B, alpha, tol, s, prec)
2

3 % PR MOD IDRS is an implementation of the Induced Dimension Reduction
4 % method for the PageRank problem.
5 %
6 %
7 % PARAMETERS:
8 % B a sparse square adjacency matrix denoting the web graph
9 % with B(i,j) = 1 if page j is linked to page i.

10 %
11 % alpha the damping factor.
12 %
13 % tol the tolerance of the method.
14 %
15 % s specifies the dimension of the 'shadow space'. Normally,
16 % a higher s gives faster convergence, but also makes
17 % the method more expensive.
18 %
19 % prec specifies which preconditioner should be used: 0 for no
20 % preconditioning, 1 for Jacobi preconditioning and
21 % 2 for Gauss-Seidel preconditioning.
22 %
23 % RETURNS:
24 % pi the PageRank vector for the given matrix B.
25 %
26 % resvec vector of the residual norms at each iteration.
27 %
28 % iter the number of iterations.
29 %
30 % tmvec vector of the total elapsed time (s) after each iteration.
31 %
32 % Written by Martin van Gijzen and Peter Sonneveld
33 % Copyright (c) December 2008
34 %
35 % Original code in idrs.m, availabe at
36 % http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
37 %
38 % Modified for the PageRank problem by Martin van Gijzen en Rien den Besten
39 % June - August 2010
40

49

50 Appendix F. Implementation of the modified IDR(s) method

41 tic;
42

43 % Create A and b, set parameters
44 [S, d, n] = create d s(B);
45 A = speye(n) - alpha*S;
46 p = ones(n,1)/n;
47 b = (1 - alpha) * p;
48 maxit = min(2*n,1000);
49 rand('state', 0);
50 Q = rand(n,s);
51 Q = orth(Q);
52 angle = 0.7;
53

54 % Set preconditioning
55 if(prec == 1) % Jacobi
56 P = diag(diag(A));
57 prec = 1;
58 elseif(prec == 2) % Gauss-Seidel
59 P = tril(A,0);
60 prec = 1;
61 else % No preconditioning
62 P = [];
63 prec = 0;
64 end
65

66 % Check for zero rhs:
67 if (norm(b) == 0) % Solution is nulvector
68 iter = 0;
69 resvec = 0;
70 info = 0;
71 err = 0;
72 return
73 end
74

75 % Compute initial residual:
76 pi = p;
77

78 r = b + alpha*p*dot(d,pi) - A*pi;
79 normr = norm(r);
80 resvec=[normr];
81

82 if (normr ≤ tol) % Initial guess is a good enough solution
83 iter = 0;
84 info = 0;
85 err = 0;
86 return
87 end
88

89 G = zeros(n,s); U = zeros(n,s); M = eye(s,s);
90 om = 1;
91

92 % Main iteration loop, build G-spaces:
93 iter = 0;
94 tmvec = [toc];
95

96 while (normr > tol && iter < maxit)
97

98 % New righ-hand size for small system:
99 f = (r'*Q)';

100 for k = 1:s
101

51

102 % Solve small system and make v orthogonal to Q:
103 c = M(k:s,k:s)\f(k:s);
104 v = r - G(:,k:s)*c;
105 if (prec)
106 v = P\v;
107 end
108

109 U(:,k) = U(:,k:s)*c + om*v;
110 % Compute G(:,k) = A U(:,k)
111 G(:,k) = A*U(:,k) - alpha*p*dot(d,U(:,k));
112 %
113 % Bi-Orthogonalise the new basis vectors:
114 for i = 1:k-1
115 beta = (Q(:,i)'*G(:,k))/M(i,i);
116 G(:,k) = G(:,k) - beta*G(:,i);
117 U(:,k) = U(:,k) - beta*U(:,i);
118 end
119 % New column of M = Q'*G (first k-1 entries are zero)
120 M(k:s,k) = (G(:,k)'*Q(:,k:s))';
121 %
122 % Make r orthogonal to q i, i = 1..k
123 gamma = f(k)/M(k,k);
124 r = r - gamma*G(:,k);
125 pi = pi + gamma*U(:,k);
126

127 iter = iter + 1;
128 normr = norm(r);
129 resvec = [resvec;normr];
130 tmvec = [tmvec; toc];
131 if (normr < tol | | iter == maxit)
132 break
133 end
134

135 % New f = Q'*r (first k components are zero)
136 if (k <s)
137 f(k+1:s) = f(k+1:s) - gamma*M(k+1:s,k);
138 end
139 end
140

141 % Now we have sufficient vectors in G j to compute residual in G j+1
142 % Note: r is already perpendicular to Q so v = r
143 v = r;
144 if (prec)
145 v = P\v;
146 end
147 t = A*v - alpha*p*dot(d,v);
148 om = omega(t, r, angle);
149 %
150 r = r - om*t;
151 pi = pi + om*v;
152 normr = norm(r);
153 resvec = [resvec;normr];
154 tmvec = [tmvec; toc];
155 iter = iter + 1;
156

157 end; %while
158

159 err = norm(b - A*pi + alpha*p*dot(d,pi));
160 if (err < tol)
161 info = 0;
162 elseif (iter == maxit)

52 Appendix F. Implementation of the modified IDR(s) method

163 info = 1;
164 else
165 info = 2;
166 end
167

168 return
169

170 %%%
171

172 function om = omega(t, s, angle)
173

174 ns = norm(s);
175 nt = norm(t);
176 ts = dot(t,s);
177 rho = abs(ts/(nt*ns));
178 om=ts/(nt*nt);
179 if (abs(rho) < angle)
180 om = om*angle/abs(rho);
181 end
182

183 return

Appendix G

Script for creating residual graphs

1 % Script to compare iterative solvers for the PageRank problem
2 %
3 % Default parameters are:
4 %
5 % - Tolerance: 1e-10
6 % - Alpha: 0.85
7 %
8 % Written by Rien den Besten, August 2010.
9 %

10 % With thanks to Martin van Gijzen: the code is based on it solve.m
11 % written by Martin van Gijzen, which is availabe at
12 % http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
13 %
14

15 clear all; close all;
16

17 tol = 1e-10;
18 alpha = 0.85;
19

20 [filename, pathname] = uigetfile('*.mat','Choose a matrix');
21 S = load([pathname filename], '*');
22 fn = fieldnames(S);
23

24 [dum, name] = fileparts(filename);
25 choice = 1;
26

27 c = [119 192 215; 0 64 64; 161 0 88; 102 188 170; 173 198 16; 204 102 0]/255;
28 k = 0;
29 method = char('Power','Jacobi','Gauss-Seidel','IDR(1)','IDR(1) Jacobi', ...
30 'IDR(1) Gauss-Seidel', 'IDR(2)','IDR(2) Jacobi', ...
31 'IDR(2) Gauss-Seidel', 'IDR(4)','IDR(4) Jacobi', 'IDR(4) Gauss-Seidel');
32 methods = [];
33 number of items = 13;
34

35 while (choice ≤ number of items)
36

37 choice = menu('Choose a solver: ', 'Power','Jacobi','Gauss-Seidel',...
38 'IDR(1)','IDR(1) Jacobi', 'IDR(1) Gauss-Seidel', ...
39 'IDR(2)','IDR(2) Jacobi', 'IDR(2) Gauss-Seidel', ...
40 'IDR(4)','IDR(4) Jacobi', 'IDR(4) Gauss-Seidel', 'STOP');
41

42 if (choice == number of items)

53

54 Appendix G. Script for creating residual graphs

43 close all;
44 return
45 end
46

47 k = k + 1;
48 if k > 6
49 k = 1;
50 end
51

52 solver = method(choice,:);
53 disp(['Iterative solution with ',solver,'...'])
54

55 tic;
56 if (choice == 1)
57 [x, resvec, iter] = pr power(S.(fn{1}), alpha, tol);
58 elseif (choice == 2)
59 [pi, resvec, iter] = pr jacobi(S.(fn{1}), alpha, tol);
60 elseif (choice == 3)
61 [pi, resvec, iter] = pr mod gauss seidel(S.(fn{1}), alpha, tol);
62 elseif (choice == 4)
63 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 1, 0);
64 elseif (choice == 5)
65 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 1, 1);
66 elseif (choice == 6)
67 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 1, 2);
68 elseif (choice == 7)
69 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 2, 0);
70 elseif (choice == 8)
71 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 2, 1);
72 elseif (choice == 9)
73 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 2, 2);
74 elseif (choice == 10)
75 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 4, 0);
76 elseif (choice == 11)
77 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 4, 1);
78 elseif (choice == 12)
79 [pi, resvec, iter] = pr mod idrs(S.(fn{1}), alpha, tol, 4, 2);
80 end
81

82 disp(['Iterations: ', num2str(iter)]);
83 disp(['Elapsed time: ', num2str(toc), ' s.']);
84 disp(['Resvec(1): ', num2str(resvec(1))]);
85 disp(' ');
86

87 xas = [1:1:length(resvec)];
88 if (choice == 1)
89 semilogy(xas, resvec,'--','Color', c(1,:), 'LineWidth', 2);
90 else
91 semilogy(xas, resvec,'Color', c(k,:), 'LineWidth', 2);
92 end
93

94 xlabel('Number of iterations');
95 ylabel('Residual norm');
96 title(['Convergence for ' name], 'interpreter', 'none');
97 methods = [methods; solver];
98 legend(methods);
99 grid on;

100 hold on;
101

102 end

Appendix H

Script for creating graphs of
convergence rates

1 % Script to compare the rates of convergence of the Power, Jacobi and
2 % Gauss-Seidel method in calculating the PageRank vector.
3 %
4 % Default parameters are:
5 %
6 % - Tolerance: 1e-10
7 % - Alpha: 0.85
8 %
9 % Written by Rien den Besten, August 2010.

10 %
11

12

13 tol = 1e-10;
14 alpha = 0.85;
15

16 [filename, pathname] = uigetfile('*.mat','Choose a matrix');
17 S = load([pathname filename], '*');
18 fn = fieldnames(S);
19

20 [dum, name] = fileparts(filename);
21 choice = 1;
22

23 c = [119 192 215; 0 64 64; 161 0 88; 0 43 96; 173 198 16; 102 188 170]/255;
24

25 [pi, resvec, iter] = pr power(S.(fn{1}), alpha, tol);
26 [pi, resvec j, iter] = pr jacobi(S.(fn{1}), alpha, tol);
27 [pi, resvec g, iter] = pr mod gauss seidel(S.(fn{1}), alpha, tol);
28

29 xas = [1:1:(length(resvec)-2)];
30 xas j = [1:1:(length(resvec j)-2)];
31 xas g = [1:1:(length(resvec g)-2)];
32

33 valpha = ones(length(xas))*alpha;
34

35 diff resvec = xas';
36 diff resvec j = xas j';
37 diff resvec g = xas g';
38

39 for i = 2:1:(length(resvec)-1)
40 diff resvec(i-1) = resvec(i+1)/resvec(i);

55

56 Appendix H. Script for creating graphs of convergence rates

41 end
42 for i = 2:1:(length(resvec j)-1)
43 diff resvec j(i-1) = resvec j(i+1)/resvec j(i);
44 end
45 for i = 2:1:(length(resvec g)-1)
46 diff resvec g(i-1) = resvec g(i+1)/resvec g(i);
47 end
48 hold on;
49 plot(xas, diff resvec,'Color', c(1,:), 'LineWidth', 2);
50 plot(xas j, diff resvec j,'Color', c(2,:), 'LineWidth', 2);
51 plot(xas g, diff resvec g,'Color', c(3,:), 'LineWidth', 2);
52 plot(xas, valpha,'--','Color', c(5,:), 'LineWidth', 2);
53 legend('Power method','Jacobi method','modified Gauss-Seidel', '0.85');
54

55 xlabel('Number of iterations');
56 ylabel('Rate of convergence');
57 title(['Convergence for ' name], 'interpreter', 'none');
58 grid on;

