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Abstract

In this paper a novel framework capable of both accurate predictions and classifications of dynamic
images is introduced. The proposed technique makes of use of a novel combination of sparse coding,
a feature extraction algorithm, and three-way weight tensor conditional restricted Boltzmann machines,
a form of deep learning. Experiments performed on both the prediction and classification of various
images show the efficiency, accuracy, and effectiveness of the proposed technique.

1 Introduction
Vision robotics is an important and challenging task. Perception of the world using eyes is one of the most
important source of information for humans and many animal species. Robots equipped with cameras
should also be able to access this information. Despite a large amount of research in vision and the avail-
ability of vision libraries such as OpenCV, human level object recognition using camera images cannot yet
be achieved. Nevertheless, for single images good results can sometimes be achieved.

In robot vision the task of identifying objects becomes even more challenging. Firstly, the robot’s per-
ception is changing because of its actions, such as moving around in the world. Secondly, the environment
in which a robots operates is often dynamic. Thirdly, robots often have only limited processing power
available for a timely process of a stream of images. To address these issues, we propose to use a sequence
of images instead of single images as the basis robot vision. We investigate an architecture based on a
Three-Way Factored Conditional Restricted Boltzmann Machine [6] which we feed with a sequence of the
last n camera images. The Boltzmann machine is used for three tasks:

1. To predict the next image in the sequence of image.

2. To classify the object in the image.

3. To predict the position and size of the object in the next image.

To improve the quality of the results, we investigate the method of preprocessing the images using Sparse
Coding [10, 12]. Sparse Coding enables the extraction of the main features of an image.

The proposed architecture as been evaluated through two series of experiments. First, we investigate
the use of Sparse Coding. Next we investigated the use of a Three-Way Factored Conditional Restricted
Boltzmann Machine. The Boltzmann machine uses a history of images as input and produces as output (1)
a prediction of the next image, (2) a classification of the object in the image, and (3) a predication of the
position and size of the object. Based on the results of the first series of experiments, the sparse coding of
the images in the history, instead of the images themselves, are as inputs of the Boltzmann machine.



Outline The next section starts with providing the necessary background for the remainder of the paper.
Section 3 describes the architecture that we propose. Section 4 describes the experiments used to evaluate
the performance of the proposed architecture, and discusses the experimental results. Conclusions and
future work are described in Section 5.

2 Background
This section provides background knowledge needed by the reader to understand the remainder of the
paper.

2.1 Sparse Coding
In most real-world applications data availability is problematic. Therefore, if decisions are to be made
autonomously, these have to be based on a small amount of data. To remedy this problem, a relatively new
trend in machine learning has been sought. More precisely, the focus has shifted from collecting more data
to the generation and discovery of more informative features [12, 13]. Sparse coding is an unsupervised
algorithm for finding a succinct representation of an unlabeled data set. Given only unlabeled input data,
it learns basis functions that capture high-level features in the inputs [10, 12]. Formally, given a data
set D = {x(i)}ni=1, where x(i) ∈ Rd, the question is to represent x(i) as a combination of basis vectors
b1,b2, . . . ,bl, where bj ∈ Rd, and sparse activations a(i) ∈ Rl such that x(i) ≈ ∑l

j=1 bja
(i)
j . The basis

set can be overcomplete, where l > d, and therefore can capture a large number of patterns in the input
data. Sparse coding aims at solving the following optimization problem:
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, is the sparsity regularization, with Λ(·) being the penalty function, and β ∈ R is

a constant. Different, sparsity functions (i.e., Λ) can be used. The one used in this paper is the L1 norm,
which has been shown to induce sparse activations and is robust to irrelevant features [12].

Assuming the usage of the L1 penalty as the sparsity function, the optimization problem is convex in
the bases, while holding the activations fixed, and convex in the activations when holding the bases fixed.
However, the problem is not convex in both the activations and bases simultaneously [10, 13]. Different
methods for solving the optimization problem have been proposed. In this paper the algorithms proposed
in [10] are adopted. The solution of the above problem is twofold. Firstly, the bases are fixed, and the
activations are determined. Given the activation, the second step commences to solve for the bases. More
information about solving the optimization problem can be found in [10].

2.2 Restricted Boltzmann Machine
Restricted Boltzmann Machines (RBM) [1] are energy-based models for unsupervised learning. These
models are stochastic with stochastic nodes and layers, making them less vulnerable to local minima [14].
Further, due to their multiple layers and their neural configurations, RBMs possess excellent generalization
capabilities [3].

Formally, an RBM consists of visible and hidden binary layers. The visible layer represents the data,
while the hidden layers increases the learning capacity by enlarging the class of distributions that can be
represented to an arbitrary complexity [14]. This paper follows standard notation where i represents the
indices of the visible layer, j represents those of the hidden layer, and wi,j denotes the weight connection
between the ith visible and jth hidden unit. Further, vi and hj denote the state of the ith visible and jth



hidden unit, respectively. According to the above definitions, the energy function of an RBM is given by:

E(v, h) = −
∑
i,j

vihjwij −
∑
i

viai −
∑
j

hjbj (2)

where ai and bj represent the biases of the visible and hidden layers, respectively. Because of the spe-
cific structure of RBMs, visible and hidden units are conditionally independent given one-another. The
joint probability of a state of the hidden and visible layers can be given: P (v, h) = exp (−E(v, h))/Z
with Z =

∑
x,y exp (−E(x, y)). To determine the probability of a data point represented by a state v,

the marginal probability is used. This is determined by summing out the state of the hidden layer as:
p(v) =
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/Z. Parameters are fitted by

maximizing the likelihood function. Many algorithms can be used to learn the parameters of RBM, such
as Contrastive Divergence, maximum pseudo-likelihood, ratio matching. Interested readers are referred to
[8, 9] for a more comprehensive discussion of learning algorithms for RBM. .

3 Proposed Architecture
In this section the proposed architecture is discussed in detail. The architecture aims at

1. predicting the next image in a consistent sequence of images,

2. classifying the object in the image,

3. predicting the position and size of the object in the next image.

The idea behind the proposed architecture is to use a sequence of images instead of a single image. A
sequence of images contains more information because each image is slightly different. We hope that
this additional information improve the quality of the classifications. A sequence of image also contains
information about the movement of the object, its change in size in the next image, and the face of object
that will be visible in the next image.

To realize the above mentioned objectives a Three-Way Factored Conditional Restricted Boltzmann
Machine (3BM), similar to that proposed in [6], is used. The energy function is modified by adding a
new components including a three-way weight tensor to capture the correlations among the input, output,
and hidden variables. But this three-way tensor increase the parameters to cubic, thus motivates the use
of factors to decrease the parameters. The the three-way weight tensors are divided into three types of
pairwise interactions: the connections between output units and factors, connections between hidden units
and factors, and connections between input units and factors. The 3BM is a modified version of a FCRBM
[11], which aims to make use of a factored three-way weight tensor to reason about the relations between
the provided images. Figure 1 gives an illustration of the 3BM we are using.

Formally, define V<t = [v
(i)
<t, . . . , v
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<t ], with n1 being the number of units in the history layer. Further,
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t ], with n2 being the number of nodes in the hidden layer. Finally, define
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t ], with n3 being the number of units in the present layer. In the history and present

layers, a Gaussian distribution is adopted, with a sigmoid distribution for the hidden. The energy function
is given by:
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where, f is the number of factors used for factoring the three-way weight tensor among the layers, and σi
is the variance of the Gaussian distribution in the history layer. Furthermore, WVtif , WHjf , and WV<t

kf are the
factored tensor weights of the history, hidden, and present layer, respectively. Finally, a(i) and b(j) are the
biases of the history and hidden layers, respectively.



Parameters of the model can be learned by maximizing the log likelihood, which is given by 4, while
the derivative of log likelihood at parameter ω is given by 5.

ω∗ = argmaxL(ω) (4)
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The angled brackets in Equation 5 represent expectations under the distribution specified by the subscripts,
and ω is a generic parameter in the model. To learn the parameters, a Contrastive Divergence discussed in
[8, 9] method is used.

The quality of the results returned but the 3BM depends of course on the quality of the input data; i.e.,
the history of images. To improve the quality of the input data, we investigate the use of Sparse Coding
(SC) as a preprocessing step. SC [2, 10] has been proven to be a powerful form of feature extraction.
It is able to learn the most informative features of a set of images, and can subsequently describe new
images in terms of the learned feature space. As we will demonstrate in a classification experiment, see the
Subsection 4.1, SC is able to learn features that improve the quality of classification task.

Figure 2 show the whole architecture. Images are fed into the sparse coding module, which extracts the
relevant features. The history of features of images are stored in the history layer of the 3BM. The position,
and the size of the object is also provided as inputs. After training the 3BM using the features of the current
images, including position and size, and also including a classification of the object in the images, the 3BM
can be used to predict the features of the next image, the class of the object and the position and size of the
object.

The proposed architecture is not able to handle more than one object at the time. Therefore, we in-
troduced an image segmentation step [4] that selects a sub-image containing the object to be identified by
the propose architecture. Of course, the history of sub-images should all contain the same object. The
proposed architecture can help in selecting the correct sub-image using the predicted position and size of
the object in the whole image.

4 Experiments
To test the efficiency and effectiveness of the proposed architecture two series of experiments have been
performed. These involved both classification and prediction of different objects in a robotics environment.
Data collection and image segmentation was performed in V-rep, a robotics simulator1. Firstly, a set con-
sisting of sequences of images for several objects were collected. Each sequence shows an object from
different angles. In this experiment, there were 8 classes of objects, including 3 kind of chairs, 3 kind of
tables, and 2 kind of shelves. About 200 images are captured for each class: 50 of them are reshuffled as the
training data for computing bases of sparse coding, from which informative features using sparse coding
were discovered. The others are left for the classification in 4.1, and recognition task in 4.2 by keeping
their original orders. The benefits of using the sparse coded images was investigated in the first series of
experiments. In the second series of experiments, a history of informative features was first used to train
the 3BM and was subsequently evaluate the predictions and the classification of the 3BM.

4.1 The benefits of using sparse coding
To evaluate the benefits of extracting informative feature using sparse coding, a classification experiment
using a Support Vector Machine (SVM) named C-support vector classification (C-SVC) [5] with a linear
kernel was carried out. To solve the quadratic minimization problems, an SMO-type decomposition method
proposed in [7] was taken. The classification by the SVM also provides a benchmark to compare the
classification results of the proposed architecture.

In the experiment, eight different kinds of objects were present in the robotic environment. 50 images
of each category of objects were used as training data for sparse coding. About 2000 images were split into

1http://www.coppeliarobotics.com/
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tional restricted Boltzmann machine in
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Figure 2: The overall framework of
the proposed prediction technique.
Given a history of images (i.e.,
{Imt−n, Imt−n−1, . . . , Imt−1}) and a
present image (i.e., Imt), sparse coding
is first performed to discover high-level
and informative features. These fea-
tures are then passed to the proposed
Boltzmann machine for prediction and
classification.

a training set and a test set for classification. Different amounts of training images are selected to train a
classifier, then the classification accuracy were computed by applying it on the test set. We compared the
classification results when using original images and sparse coded images respectively. Figure 3 shows the
classification results of the SVM with and without first extracting informative feature using sparse coding.
Figure 4 presents a comparison between the training time of the SVM when using the original images and
the training time when using the sparse coded representation.

From Figures 3 and 4 the following three conclusions can be arrived at:

Conclusion I The usage of SC representation of an image leads to better classification results than the
usage of the original images.

Conclusion II The accuracy of classification using SC representation decline smoothly when the number
of training data decreases, while it drops significantly with the usage of the original images.

Conclusion III The time need to train a classifier using SC representations of image is more or less con-
stant in the number of images, and outperforms the usage of the original images. The time to train a
classifier using the original images increases linearly in the number of images.



5101520253035404550
40

45

50

55

60

65

70

75
The accuraacy of classffication

Number of training images

A
cc

ur
ac

y 
of

 c
la

ss
ifi

ca
tio

n 
(%

)

 

 
original images
sparse coded images

Figure 3: The accuracy of classification results by us-
ing the original images and the sparse coded repre-
sentation.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2
The runtime of training

Number of training images

R
un

tim
e 

of
 tr

ai
ni

ng
 (

se
co

nd
s)

 

 

original images
sparse coded images

Figure 4: The time of training classifier.

4.2 Evaluation of proposed architecture
To evaluate the benefits of architecture proposed in Section 3, the SVM in the first series of experiments
was replaced with the 3BM. Instead of individual images, the data set used here are several sequences of
successive images. Each sequences recorded a period of an object in transformation. Figure 5 shows two
instances of sequence with length of 5 frames. The features provided by the sparse coding were extended
with information coming from the image segmentation about the position and size of the object. Here the
position represents the center coordinate of the object in a single image, while the size is a vector denoting
the width and length of the object. A difference between the SVM an the the 3BM is that the 3BM will
do the classification and the prediction the same time. That means, we don’t need to train a large number
of labeled data to gain a classier. First we used 10 to 50 sequences of length n as the training data. For
the labeled n images, directed connections between the history (the first n− 1 frames in the sequence) and
current units (the last frame in the sequence) are computed. Then it is used to predict the next frames of 10
to 50 test sequences. All the images have a original resolution of 64 ∗ 64.

After training the 3BM, we evaluated the proposed architecture with respect to (1) prediction the fea-
tures of the next image, (2) classifying the object in the image, and (3) predicting the position and size
of the object in the next image. We evaluated the output of the architecture based on different sequence
lengths n.

Figure 5: Two images sequences for
training and test with the 3BM.

Table 1 and Table 2 shows the results of our experiments with and without preprocessing by using
sparse coding respectively, where the accuracy of predicted features, positions and sizes are measured by
Euclidean distance in pixels. Table 3 shows the comparison of classification accuracy between SVM and
the 3BM (by making use of sparse coding).

The experimental results show that the proposed architecture performs very well on all aspects. There-



Experiment with sparse coding
n 50 30 20 10 5
Classification 98% 95% 95% 96% 94%
Features 1.02 0.91 0.92 0.80 0.74
Position 0.11 0.16 0.29 0.36 0.30
Size 0.06 0.07 0.08 0.09 0.06
Training time(seconds) 5.75 3.47 2.31 1.16 1.09

Table 1: The accuracy of the predicted features of the next image, accuracy of the classification
of the object in the image, the accuracy of the predicted position of the object, and the accuracy
of the predicted size.

Experiment without sparse coding
n 50 30 20 10 5
Classification 99% 99% 99% 98% 98%
Features 0.83 0.97 0.65 0.61 0.87
Position 0.13 0.19 0.22 0.21 0.28
Size 0.04 0.08 0.07 0.04 0.06
Training time(seconds) 3.01× 103 2.16× 103 1.46× 103 0.89× 103 0.72× 103

Table 2: The experiment results by using the original images (without progressing the images
by sparse coding)

Comparison of classification accuracy
n 500 200 100 50 10
SVM 97% 96% 89% 72% 68%
3BM 98% 95% 96% 94% 94%

Table 3: The accuracy of classification by using SVM and the 3BM based on different number
of training images(with spars coding)

fore the following conclusions can be drawn:

Conclusion IV The proposed architecture is capable of correctly learning the relations between the images
in a sequence.

Conclusion V The proposed architecture is capable of making accurate predictions.

Conclusion VI The proposed architecture is capable of making very good classification. Compare to the
SVM, whose performance shows downtrend as the amount of training samples decreases, the 3BM
shows a relatively stable tendency.

Conclusion VII The experiments show that the 3BM without preprocessing the images using sparse cod-
ing preforms slightly better than with using sparse coding. However, the use of sparse coding signif-
icantly reduces the training time. This reduction in the training time can be attributed to the lower
dimension of input data of the 3BM.

5 Conclusions and Future Work
In this work a new architecture capable of classifying objects as well as predicting the next image of a se-
quence of images, has been presented. The approach made use of sparse coding, and a Three-Way Factored



Conditional Restricted Boltzmann Machine, a form of deep learning, to achieve the results. Experiments
performed on both the use of sparse coding and the Three-Way Factored Conditional Restricted Boltzmann
Machine show the effectiveness of proposed architecture.

There are many interesting directions for future research. Implementing the proposed method on real-
world robotics constitute an interesting future research direction. Furthermore, other forms of deep learning
techniques, such as deep belief networks can be introduced. Finally, image segmentation in an environment
containing many object has to be investigated.
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