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Macromolecular chains are oriented in a wide range of 
materials. Important examples include polymer liquid 
crystals, grafted chains, ordered copolymers, polymer 
crystals, and fibers. Orientational order may occur on 
more than one level. For instance, in micellar systems the 
alkyl chains are oriented because they are densely packed, 
yet on a mesoscopic level semiflexible micelles themselves 
may align into nematic or hexagonal phases. Anisometric 
bundles of ordered chains are often formed when polar- 
izable colloidal particles aggregate in strong external fields. 
Apparently, Flory was the first to recognize the way density 
couples to the degree of orientational order in a polymeric 
crystal.’ de Gennes expressed this as a differential 
conservation law in a discussion on lipid organization.2 In 
these problems the director has a uniform orientation in 
space. Later, de Gennes introduced a similar though not 
identical expression relating the segment density with the 
fluctuation in the director in a polymer nemat i~ .~  Implicit 
in this analysis is the spatial invariance of the degree of 
orientational order. In general, however, an oriented 
polymer is described by three experimentally accessible 
fields depending on position i: the director it(?), the 
segment density p ( i ) ,  and the orientational order SI(?). 
The object of this paper is to establish their connection 
by a straightforward generalization of refs 2 and 3. 

For definiteness, we let the polymer sample consist of 
monodisperse chains which adopt wormlike configurations 
(a particular chain i is described by the radius vectorRi(si) 
with si the contour distance from one end; the contour 
length is L). They are fairly highly oriented so for the 
moment we assume they are directed; i.e., the sample is 
free of hairpins. Furthermore, the chains are so long that 
our sample contains no free ends, at  least in the bulk. This 
idealized situation is depicted in Figure 1. This may be 
one particular realization in an ensemble (for instance, if 
the sample is in (local) thermal equilibrium as in a liquid 
crystal) or a quenched configuration (for instance, if our 
material is a fiber). 

Next, we argue that a hydrodynamic description4 is 
possible. We spatially average over the microscopic 
variables in Figure 1 and retain appropriate macroscopic 
fields ( i t t i ) ,  p ( i ) ,  SI(?)) which vary slowly in comparison 
with the original variables. In order to render the 
hydrodynamic analogy exact, N pointlike particles are 
allowed to flow from left to right along each curve in Figure 
1. The particles are spaced equidistantly; ultimately, we 
wish to take the continuum limit with Nincreasing without 
bound. For convenience we set the mass of each particle 
equal to unity. Finally, the particles are given a constant 
speed w. Accordingly, on the left, particles are created at 
a constant rate wNL-’ per chain; on the right, they are 
annihilated at the same absolute rate. 

We now introduce a macroscopic velocity field depend- 
ing on time t but which is stationary in the continuum 
limit. 

The volume average of the particle velocity 6k is effected 
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Figure 1. Oriented polymer consisting of wormlike chains 
without hairpins. Particles are added on the left (+), flow in the 
direction of the arrows, and are removed on the right (-), 

over all MA particles k enclosed within a volume Q A  of 
order X3 centered around point P (Figure 1). Such a coarse 
graining makes sense only if X greatly exceeds the typically 
rapid microvariation of the chains yet is much s p l l e r  
than the scale of variation of the hydrodynamic field V(i , t ) .  
In addition, we have irk = &i(sk(t))/dt = wa&(sk)/ask 
w&(sk) for particle k situated at contour distance Sk on 
chain i. Hence, we have in the continuum limit 

where the volume average is now over all unit vectors ii 
within &. 

In a similar fashion we define a macroscopic number 
density of particles 

(3) 

provided X is again an appropriate mesoscopic scale. The 
density d( i , t )  becomes essentially a stationary quantity 
d ( i )  as N becomes larger and larger. In the continuum 
limit we have for the segment density p(P) = L d ( i ) / N A  
with A the segment length. 

We may now write an equation of continuity for our 
fluid of  particle^.^ 

In the continuum limit (N -. m), we have ad/& = 0, so eq 
4 implies 

for the macroscopic fields p ( i )  and o(i) of the oriented 
polymer. 

The field 8(i) by itself is an elusive quantity. Hence, 
it is expedient to introduce the director it(?) and the 
variable SI(?) defining the degree of segment order with 
respect to the director. Both it and SI are independently 
measurable fields. 

In view of the fact that it2 = 1, we have 

Equation 5 becomes 

which expresses a connection between three experimen- 
tally attainable fields and generalizes refs 2 and 3. It is 
important to stress that it(?) is here a polar vector field, 
by definition. Thus, SI(?) is not to be confused with the 
usual order parameter. 
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would hold (dfldt = 0). In our case, there is an external 
forceA(i) f ixi ici)  whichmust beperpendiculartoii because 
it represents the way particles accommodate to the 
changing director but also perpendicular to B since the 
particles flow along wormlike curves at constant speed 80 
that the magnitude of their momentum is conserved. If 
there were no collisions, our fluid would behave almost 
like a collisionless gas of electrons in a spatially varying 
magneticfield.l0 Note that the term involving the external 
force vanishes for a uniaxial distribution f(i,B*fi(P),t). In 
general, Ccf, is exceedingly complicated. If the chains 
were ideal, the particles would still follow wormlike paths. 
In the annealed case Ccf, would reduce to a term 
proportional to d2f/dfi2 (see ref 5). In the quenched case 
we might introduce a second gas of hypothetical particles 
which collide with the original particles so that they do 
follow the prescribed paths at constant speed. A sys- 
tematic theory of colliding chains or paths is difficult to 
set up. 

Whatever the form of CO, particles are not lost by 
collisions, although they may change the direction of their 
momentum. An integration of eq 13 over all B then yields 

Sdfifi-Vf = 0 (14) 

It can be shown that the term involving the external force 
vanishes. Furthermore, in the continuum limit the 
distribution is stationary (#/at = 0). Defining the reduced 
distribution d(F) and the hydrodynamic velocity field V ( i )  

d ( i )  E Sd6 f(i,fi) (15) 

/- 

6) 
Figure 2. (a) Oriented polymer containing hairpins and chain 
ends in the bulk. (b) Equivalent sample of directed chains; 
particles flow as in Figure 1. 

For a highly oriented polymer it is possible to simplify 
eq 8 further. First, in a large class of materials the polymer 
is uniaxially ordered so we may introduce an orientational 
distribution function f(i ,S-ii( i)).  Next the distribution is 
sharply peaked and may be approximated by a Gaussian 

fee) - - exp[-(1/2)a(i) e2] (0 I e I (1 /2 )~ )  (9) 

(10) 
where &ii(i) cos 6 N 1 - (1/2)d2 with 0 the angle between 
an infinitesimal segment and the director. The parameter 
a( i )  is much larger than unity and is postulated to vary 
slowly on the scale of A. Equation 9 may be interpreted 
in two ways: (1) the vector (ii - j2) is a superposition of 
independent random vectors so that the central limit 
theorem holds; (2) eq 9 is a Boltzmann distribution of a 
chain segment in a harmonic potential which itself is a 
second-order Taylor expansion of some mean potential. 
Hence, eq 8 reduces to the expression 

ff 

2* 

S , ( i )  - 1 - a% 

f%[p(l- a-l)i i]  = 0 (11) 

A readily accessible quantity is the birefringence, which 
in this case is proportional to the usual order parameter 
Sz(i)  = (Pz(cos e))?. Equation 11 is convenientiyrewritten 
in terms of SZ 

(12) 

It is illuminating to analyze the fluid of particles in the 
context of kinetic theory. We introduce a distribution 
function5 f(i,b,t) in terms of the generalized coordinates 
i of a particle and its generalized momentum 5. The 
transport equation is5 

% [ p ( S ,  + 2)iil = 0 

where the total time derivative is defined along the phase 
path. Here, C@ represents a collision integral. If C were 
zero, the gas would be collisionless and Liouville's theorem5 

Sd6 C f ( i , B )  

Sdfi f(i,6) 
(16) 

we thus regain the stationary form of the continuity 
equation (4) from the transport equation (13). 

Equations 8 and 12 are valid for a sample free of chain 
ends and hairpins. In the general case in Figure 2a we can 
again set up a hydrodynamic theory for directed chains 
provided we break up the hairpins in the manner shown 
in Figure 2b. If particles are allowed to flow along the 
chains as before, we now have to create and annihilate 
them in the bulk as well. The total density of + ends 
where particles are formed is p + ( i ) ,  which may differ from 
p - ( i ) ,  the total density of - ends where particles are 
destroyed. The rates of creation and annihilation per end 
are identical. It is straightforward to show that the 
equation of continuity is modified to 

V*(pSiii) = A-'(p+ - p - )  (17) 
This generalizes an expression first derived by Meye$ for 
perfectly aligned rods in a splay field (i.e., with SI 1). 
For related discussions, see refs 7-9. Equation 17 allows 
us to estimate when we may disregard chain defects. 

Equations 8 and 12 should be useful in analyzing the 
degree of orientational order in a well-aligned polymer 
sample free from macroscopic defects. The director fi(P) 
will often be fixed by the confining geometry, and p ( f )  is 
proportional to the absorption of suitable radiation. In 
particular, eq 12 would then yield an estimate of the spatial 
variation in the birefringence for a highly oriented polymer. 
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(10) In a magnetoactive plasma, the electric field may be negligible 
so that a h r e n t z  force proportional to fia&t) is exerted on 
an electron moving with velocity 6, in a slowly varying magnetic 
field &?I. Furthermore, if the p h m a  is highly conducting, 
the magnetic linea of force are frozen in the fluid and &i) is 
aligned along the hydrodynamic velocity field v,(i) or vice 
versa (nee ref 5). The analogy ( B  - B*; li(i) +. &P); t(i) - 
ve(i)) is not exact because, here, B hae a constaut magnitude 
W. 


