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Abstract

Software testing is as old as software development itself – they could not exist
one without the other. However, are they equally important? Do software develop-
ers devote an equivalent amount of time to both produce software and to test it? An
ongoing study of the TestRoots project aims to examine and improve the state of the
art of software testing and answer those questions, by observing developers’ everyday
behavior.

In order to support this effort, we evolved WatchDog, a single-platform software,
to become the scalable, multi-platform and production-ready tool which assesses de-
veloper testing activities in multiple integrated development environments (IDEs). We
further used WatchDog platform to perform a small-scale study in which we examined
testing habits of developers who use IntelliJ IDEA and compared them to those of the
Eclipse IDE users. Finally, we were able to confirm that IntelliJ users, similarly to the
Eclipse users, do not actively practice testing inside their IDEs.
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Chapter 1

Introduction

In this chapter we provide a motivation for this study, define research questions and outline
the thesis structure.

1.1 Motivation

More than 40 years ago Frederick Brooks published his famous book on software engineer-
ing and project management – “The Mythical Man-Month” [7]. Many ideas and conclusions
from this influential work are widely quoted and discussed even today, such as “adding man-
power to a late software project makes it later” and “fixing a defect has a substantial chance
of introducing another”. However, there is one statement regarding software testing that has
not received any follow-up – he estimated that among examined projects “most did indeed
spend half of the actual schedule for that purpose (testing)”. This hypothesis survived the
whole evolution of software engineering during the last four decades and was taken “as is”
ever since. However, software engineering has changed tremendously during that time –
new programming languages were created (e.g. C++, C#, Python, Java, JavaScript, PHP)
and new integrated development environments – IDEs – have been developed, starting from
historical Maestro I (first IDE, presented in the same year as Brooks’ book) and Softbench
(1989), to modern, intelligent platforms, such as Visual Studio, Eclipse, NetBeans and Intel-
liJ IDEA. Furthermore, new engineering practices and programming paradigms (structured
programming, object-oriented programming), as well as new development methodologies
(globally distributed or test-driven software development) have also been established during
this period. In the light of these advances, the topic of software testing has to be reinvesti-
gated thoroughly in order to examine whether Brooks’ observation still stands.

To challenge Brooks’ claim, a prototypical Eclipse plugin called WatchDog has been
developed [4] and tested, first among students and then with developers all over the world
[3]. However, the presented results lacked generalizability – the major limitation of the
experiment setup arose from the fact that it relied only on one IDE, Eclipse. In order to
confirm those findings, it was necessary to perform a large-scale study and to extend the
research and include other environments and settings. This gave a starting point and clear
motivation for this work – implement WatchDog for another IDE. Choosing the next IDE
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1. INTRODUCTION

was not a hard decision – in recent years, many developers have started switching from
Eclipse to the then recently open-sourced IntelliJ IDEA, which is now the second most used
Java IDE in the market which was also confirmed by the input we got from our potential
users. Furthermore, not only differences between IDEs mattered, but also similarities – both
Eclipse and IntelliJ are built using Java and both support testing out-of-the-box. Finally, we
cannot disregard the fact that IntelliJ IDEA is just one among a few other JetBrains’ IDEs1

for different languages, such as Ruby, Python and JavaScript, so the plugin developed for
one of these has a potential to cover others as well with minor effort.

Following our idea to develop the same plugin for another IDE, another problem emerged
– how to use the existing plugin, tightly-coupled with a specific IDE, and create a solution
that could be easily extended to even more platforms? Every IDE is specific and indepen-
dent, and there is no easy way just to reuse an existing plugin in new environment. This
problem introduced some new challenges, but also the opportunity to fully explore the tool
building process in software engineering research and to give some guidelines for future
use.

1.2 Research questions

The work presented in this thesis has two objectives - the first is to report on our expe-
riences in building a multi-platform, production-ready tool used in software engineering
research (G1); the second is to perform a replication study of the previous experiment [3]
and compare results produced by the same tool, but in different environments (G2).

From the perspective of a (scientific) software engineer, it is essential to come up with
a solution that is efficient, easily maintainable and expandable, platform independent, and,
preferably, free of bugs. Because of the limited resources (having typically less than one
full-time developer available at any given time), building a stable and scalable platform is
an ongoing challenge in academic software development we have already faced and upon
which we want to reflect by sharing our experiences and guidelines.

In order to test the newly created platform, we perform the initial analysis of the col-
lected data from IntelliJ users and compare our findings to the results of Eclipse users, pre-
sented in the previous work [3]. This small-scale replication study will be used to generalize
the previous findings by comparing and contrasting results of the same experiment executed
in different environments. Moreover, with this study, we also verify our experiment process
and design, which can strengthen the validity of the original work. Although our data-set is
significantly smaller than the one in the original work, we still decided to re-use the main
research questions from that study. Those research questions are the following:

RQ1 When and Why Do Developers Test?

RQ2 How and Why Do Developers Run Tests?

RQ3 How Do Developers React to Test Runs?

1https://www.jetbrains.com/
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1.3. Thesis outline

RQ4 Do Developers Follow Test-Driven Development (TDD)?

RQ5 How Much Do Developers Test?

1.3 Thesis outline

The thesis is organized as follows – in the chapter following this introduction, we provide
background information regarding software testing and discuss related work (Chapter 2).
In Chapter 3 we explain the implementation and evolution of our tool and give guidelines
for multi-platform plugin development. Following up we address experiment design and
explain our approach in Chapter 4. The experiment and its results are presented and dis-
cussed in Chapter 5, while in Chapter 6 we conclude with a summary of our findings and
contributions and propose future work.

3





Chapter 2

Background And Related Work

In this chapter we explain the fundamentals of software testing and give overview of the
related work. Furthermore, we also explain basic concepts of software tool building, espe-
cially the development practices for IDE plugins, and provide definitions of essential terms
used in this thesis.

2.1 Software testing

Software testing. The purpose of software testing and analysis is either to assess software
qualities or else to make it possible to improve the software by finding defects [30]. It
follows from this definition that software testing is a very broad topic – indubitably, it is as
old as software development itself. To illustrate the age of this subject, we should look at
the classification proposed by Gelperin and Hetzel [13] which divides software testing into
five phases:

• Until 1956 Debugging oriented, when software testing was tightly coupled with de-
bugging;

• 1957 - 1978 Demonstration oriented, when debugging was distinguished from test-
ing, which had to show that software satisfies the requirements;

• 1979 - 1982 Destruction oriented, in which the goal was to find errors;

• 1983 - 1987 Evaluation oriented, when software testing had to provide product eval-
uation and quality measurement;

• From 1988 Prevention oriented, when testing aims to demonstrate that a product
satisfies its specifications and to detect and to prevent faults in it.

Although each of the five directions can be observed as a separate part, all of them are
driven by the same goal – achieve the highest quality of the software by removing defects
from it. Software under test should at least meet the following conditions: to adhere to the
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2. BACKGROUND AND RELATED WORK

defined requirements, both by design and stakeholders; to execute correctly within accept-
able time and with an appropriate input; to be sufficiently usable and resistant to errors and
failures; and to be easily deployable to the designated environments [29]. This list can cer-
tainly be extended with many other conditions and as large as it gets, the number of possible
testing scenarios for every single software product is even bigger, possibly infinite, making
it practically impossible to have a 100% tested product. Therefore, various testing meth-
ods and approaches were defined, usually dependent on the whole software development
process and the level of the testing needed in a particular case.

By the broadest classification software testing can be divided into two categories – static
and dynamic testing. Static testing implies methods such as (code)reviews, inspections and
verification (correctness proof), whereas dynamic testing means that a set of test cases is
executed against the software under assessment. Depending on the level on which those
test cases are executed, we can divide testing into white- and black-box testing [21]. White-
box testing is intended for internal structures of the observed software and knowing its
implementation is required for writing test cases. On the other hand, in black-box testing
software is observed as a “black box”, and its functionality is tested from the perspective of
a user – without any knowledge of internal implementation. There is also a hybrid approach
of the previous two, called grey-box testing, when system is tested as a whole (like black-
box), but with knowledge of its internal structure.

Finally, fine-grained classification of software testing defines the following levels (low-
est to highest):

• Unit testing;
• Integration testing;
• Acceptance testing;
• Refinement testing;
• System testing.

Unit testing, also known as component testing, is the representative of the white-box
testing practices. It is firmly related to production code and it covers code paths (code
branches, edge cases), but also individual components and functions. Interactions between
those components are covered by integration tests, which are a form of grey-box testing.
Acceptance tests belong to the black-box group of testing and they ensure that user’s paths
through the system function correctly and meet client’s requirements. In addition to them,
refinement tests consider end-user experience and ensure its usefulness, usability and value.
Finally, system testing, a typical example of black-box testing, aims to cover the system as
a whole and catch regressions.

Due to the nature of black-box approach, writing tests for these purposes does not re-
quire knowledge about implementation and it does not have to involve people who worked
on software development – often, there are teams of testers, designers, user-experience ex-
perts or project owners, responsible for that. On the contrary, writing white- and grey-box
tests requires extensive knowledge and understanding of the production code. People who
are most familiar with code are those who write it – software developers. Since our study
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2.1. Software testing

aims to examine how much software developers test, unit and integration testing are subjects
under scrutiny in our experiment, while we explicitly leave out external means of testing.

2.1.1 Software testing in IDEs

For building software products, programmers use a software application which provides
various functions to facilitate the development process. This application is called the Inte-
grated Development Environment (IDE) and its purpose is to maximize the developers’ pro-
ductivity by supplying them with all the necessary tools to build software, such as compiler,
debugger or deployment mechanism. From our point of view, one of the most important
functionalities in the IDE is a tool for testing – nowadays, most modern IDEs come already
equipped with such a tool. Since IDEs are generally intended for developers, the focus is on
the white-box forms of testing, namely unit testing and integration testing to some extent.

To illustrate this, we can look into two popular IDEs [8, 10], Eclipse and IntelliJ IDEA,
for the popular programming language, Java [9, 11]. Java’s testing framework, called JU-
nit1, is an open-source project distributed as a library which can be included at compile-time
in any Java project. This framework can be used for writing both unit and integration tests
and both Eclipse Java Development Tools edition (JDT) and IntelliJ IDEA come with in-
tegrated JUnit support, which facilitates writing and running test cases in IDE. Namely,
JUnit tests are first-class citizens in these IDEs, so it is possible to automatically create test
case classes (in the same way it is possible to create Java classes, interfaces or packages),
together with method stubs for setting up and tearing down the state of classes under test.
Furthermore, running the test suite is enabled in the same way as normal or debugging ex-
ecutions, by providing developer with a dedicated screen for examining the results. Beside
JUnit, IDEs also support other testing frameworks, such as Mockito2 and Powermock3,
which come as extensions to JUnit and facilitate mock based testing, when it is necessary
to mock needed dependencies.

2.1.2 Empirical software testing

Software testing has also been the subject of various research in computer science. Back in
2006 Runeson performed a survey of unit testing practices in several companies [24]. In this
survey participants discussed unit testing definitions, strengths and weaknesses according
to their companies’ internal policies. The results of this questionnaire show the importance
of clear and shared understanding of unit testing. The need to understand testing practices is
further expressed in Bertolino’s influential work [6] which provides a roadmap for software
testing research by discussing current and future challenges. Pinto et al. [22] and Zaidman
et al.[31] studied tests evolution at the commit level, namely creation, deletion and modifi-
cation of tests in practice (former) and test suite co-evolution with production code (latter).
While these two efforts have many similarities with our research, there is also a significant
difference: the subjects of observation were projects from version control systems (software

1http://junit.org/
2http://mockito.org/
3https://github.com/jayway/powermock
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2. BACKGROUND AND RELATED WORK

repositories), which means that they only learned from history and differences between ver-
sions, while we want to examine developers’ testing behavior in real-time and understand
how they actually test.

Kochhar at al. [16] studied more than 20,000 non-trivial open-source software projects
and found that 61.65% of them contained at least one test case. The similar study has been
performed multiple times by a software analytics company Takipi4 that analyzed usages
of Java libraries in GitHub. In their first research [25] that was comprised of 10,000 most
popular projects, they found that JUnit held the first place with 30.7% share, while Mockito
had 6.83%. In their second study [26], when they analyzed library import statements of
5,216 Java projects, 64% out of 11,939 unique libraries imports were set on JUnit, while
there was also extensive use of the Mockito framework (10.72%).

On the other hand, software testing was also examined in various surveys. LaToza et al.
[17] conducted a set of questionnaires and interviews among Microsoft engineers about their
work habits, in which 79% of the participants indicated the use of unit tests. Despite many
experiments in this area during the last decade, a lot of questions still remain unanswered.
In empirical software engineering, they appear as the second most interesting topic, as it
was concluded by another survey conducted in Microsoft about current challenges [2] in
software engineering.

2.2 Data collection and reporting software tools

For many computer science experiments that involve collecting real-world data, first it is
necessary to build a software tool to fulfill that purpose and then to deploy that tool to an
appropriate environment. While many tools are stand-alone applications which do not re-
quire to be delivered to end users (mining software repositories, for example), there are also
plenty of distributed platforms which demand user acquisition and further effort to collect
data from them. In academic research it is common to provide study participants with the
feedback on the data they provide – although some authors tend to notify them about the
published work and results, this generally comes a bit late, usually a few months after the
data collection phase. Another way would be to apply immediate data analysis and give
them real-time feedback, which can require investing more time into tool building, but can
also prove beneficial in obtaining users, especially if the results are useful to them. Since
many developers spend most of their time working in an IDE, data collection process can
easily be attached to it. Furthermore, modern IDEs are powerful software platforms that en-
able background data analysis in real-time and graphical user interface (GUI) components
to support displaying statistics directly in them. They are also designed having extensibility
in mind, due to specific users’ needs. This feature comes in a form of plugins, which are
made either by creators of an IDE or by third-party developers. Many tasks can be achieved
with plugins – automation of procedures, monitoring user’s behavior and enhancing devel-
opment process, data collection and analysis. Numerous tools that instrument the IDE to
assess development activity in vivo have been developed [3] and can be divided into two
groups: 1) data-collecting plugins, made in academic setting, for research purposes, and 2)

4https://www.takipi.com/
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2.2. Data collection and reporting software tools

commercial plugins, which offer general reporting to developers regarding their behavior.
Both these groups are of interest to our study, since our plugin has an intermediate position,
as it allows both functionalities.

1) Data-collecting cools. Collecting data about events in IDE is not a novel thing –
Spyware [23], an Eclipse plugin, instruments the IDE to perceive code changes as first-class
citizens and accurately model software evolution in real-time. Following up on this concept,
Hattori et al. developed a plugin for the same IDE called Syde [14], which aimed to ease
team collaboration in software projects by making developers mutually aware of source
code changes. While Robbes et al. used single-developer approach, Syde extended Spy-
ware’s change-based software evolution model by introducing multi-developer approach
and client-server architecture (similar approach was taken in our research, which will be
discussed in the following chapter). With another family of Eclipse plugins CodingTracker
and CodingSpectator, Negara et al. [20] collected code editing events and used them with a
proposed refactoring inference algorithm to analyze manual and automatic, IDE-supported,
code refactorings (differences in time needed to perform operations, quantity and size of op-
erations, clustering). The “Change-Oriented Programming Environment”5 broadly captures
all IDE interactions, targeting the small audience of developers employing TDD [3]. Their
research is, beside ours, one of a very few that covers both Eclipse and IntelliJ IDEs. Minelli
et al. [19] investigated usage of IDE’s graphical user interface (GUI) from a program com-
prehension point of view, for example: how much time is spent on reading versus editing
code, or navigating through project files. Finally, the “Eclipse Usage Data Collector”6 was
a framework run by the Eclipse Foundation from April 2008 to February 2011 and its large
data set was primarily used for collecting fine-grained and Eclipse-specific data in order to
gather information about how the community was making use of the Eclipse technology.

2) Reporting tools. Formerly QuantifiedDev, now 1self.co7 aims to provide develop-
ers with a full-fledged analysis platform on their development practices compared to their
general habits. This platform collects data from various sources, such as IDEs (IntelliJ,
Visual Studio), software repositories, social networks, sensors and applications from mo-
bile phones, and connects disparate events from all sources. In IDEs they analyze general
user’s activity supplemented by specific events, such as software build status, and correlate
that with, for example, the temperature information from the mobile phone and behavior
on social network. Codealike8 has a similar program comprehension focus as the work
of Minelli et al., and provides users with advanced reports on their development behavior.
However, even though they are monitoring many crucial IDE activities (editing, reading,
debugging and building), testing is left out. Other examples of activity monitoring plugins
are Codeivate9 and WakaTime10. Both tools are introduced as time-tracking plugins, which
collect information about how much time developers spend writing code, accompanied by
some high-level information, such as project or file names and programming languages, but

5http://cope.eecs.oregonstate.edu
6https://eclipse.org/epp/usagedata
7http://www.1self.co
8https://codealike.com
9http://www.codeivate.com/

10https://wakatime.com
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2. BACKGROUND AND RELATED WORK

both lack fine-grained intervals that previous tools have. The only minor difference between
them is that Codeivate, which is closed-source, currently supports Sublime Text Editor and,
recently, JetBrains’ family of IDEs, while WakaTime provides 31 commercial, open-source,
text editors and IDE plugins.

2.3 TestRoots

In order to fill the knowledge gap, dive deeply into the topic of software testing and under-
stand how software developers test their products in the real world, the TestRoots11 team
developed an IDE plugin called WatchDog, on which basis this thesis is built upon. Back
in 2013, WatchDog used to be a prototypical plugin, made for Eclipse IDE, that was able
to monitor single developer’s programming behavior. However, this prototype had not been
made to scale up to more, possibly hundreds or even thousands of users, so further devel-
opment was needed before releasing it publicly. The release candidate version was used for
examining testing practices of 40 students during a programming course at TU Delft, which
resulted in the initial ICSE NIER paper [4]. This experiment and its results were enough
for a proof of concept, so WatchDog was ready to be released publicly and developers all
over the world got a chance to use it. Having more diverse users from real world resulted
in another, large-scale research [3] that analyzed testing behaviors of 416 developers who
worked on 460 unique projects. However, being a plugin that supports only one IDE, “more
[...] research in different environments and settings is needed”, as noted by the reviewers.
For various reasons already mentioned in Section 1.1, we made the decision to implement
WatchDog for JetBrains’ IntelliJ IDEA and refactor it into the multi-IDE platform which
we present in this thesis and in demonstration paper [5].

11http://testroots.org/
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Chapter 3

Building A Research Software Tool:
WatchDog Implementation Process

Creating a software platform to facilitate the academic research can be very different from
usual, industry, software development. For many reasons, listed later in this chapter, the
process would probably face a lot of challenges, especially when taking novel approaches
and creating solutions that are likely among the first of their kind. In this chapter we present
the process of building a multi-platform IDE plugin, called WatchDog (G1). During this
process, we took a novel approach of creating the platform-specific tools on the top of the
common shared module and here we give advice to academic and industrial software devel-
opers on how to create a family of multi-IDE plugins on the basis of our own experiences
with WatchDog. We do this by describing its evolution from the prototype version to the
multi-platform research software tool, scalable up to thousands of simultaneous users.

3.1 Eclipse plugin

The very first version of the WatchDog was created in 2012 by Wouter Willems. This pro-
totype consisted of the monolithic Eclipse plugin which had been monitoring developers’
behavior, while creating and locally storing the output in XML format. Its requirements
were defined on the basis of companies involved in the research, which were using a spe-
cific configuration for the development process, namely programming language Java, JUnit
testing framework and Eclipse IDE. The produced output files had to be sent manually by
developers who were using the plugin, which significantly limited the scalability of the tool
– the first research study covered data from only 9 developers.

Starting from this initial prototype, in 2014 Software Engineering Research Group
(SERG) at TU Delft evolved WatchDog into an open-source and production-ready Eclipse
plugin [4]. To fulfill the primary requirement – to have a reliable transfer logic that would
utilize internet connection in order to collect usage data automatically – WatchDog had to
adopt a new client-server architecture, following the same idea from Spyware and Syde
[23, 14]. The complete internal logic is explained in detail in Chapter 4, whereas in this
chapter we give a high-level overview and brief explanation of WatchDog, while we point

11
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PROCESS

out its development and evolution process.
WatchDog plugin is available for download from the Eclipse Marketplace1 and Test-

Roots update site2. When users download it and install in the IDE, they are asked to register
themselves and fill in a survey regarding their own estimation of programming habits about
currently open workspace(s). For clarification, while Eclipse considers projects as modules
belonging to a single workspace, in our study we observe a single workspace as a project
without further granulation into modules, so in the remaining of the thesis we equate both
terms (workspace and project). Users who register accounts can associate them with as
many projects as they want. In that way, each developer will have their own unique user ID,
while each of their project registrations creates a separate project ID. A choice whether or
not WatchDog should be active for each of their projects is left to them – upon opening or
creating a new workspace they are asked to opt in or out. After the registration, assuming
that they opted for using WatchDog in the current project, they can continue with their usual
development activities, while WatchDog is running silently in the background.

The client of the application, the Eclipse plugin, is activated during every start-up of
the IDE and, in this phase, it creates listeners to receive internal IDE and UI events. These
events, based on their type, are grouped into intervals which describe user’s behavior in
the IDE. In addition to their type, intervals also contain information specific for the events
included in them. Records about these events and intervals are transferred to our server,
while we also store them locally so we can provide real-time statistics from the last devel-
opment hour to our users, as shown in Figure 3.1. Furthermore, upon the completion of the
first research study, developers were promised a full development report, generated through
our data analysis framework, which will compare their activity with fellow WatchDog users
around the world.

For a research project that relies on data analysis, user acquisition is a very important
aspect. However, a few months after WatchDog public release, statistics showed that the
number of registered users exceeded the number of registered projects, although it would
be expected otherwise – that a single user registers at least one or, probably, more projects.
Although it is questionable what can be the exact explanation for it, one possible reason
could be the length of the initial survey – users were asked to complete two registration
processes after plugin installation, first to register themselves and afterwards their project,
and it is likely that a user will simply quit after the first registration and ignore the latter.
To address this issue, it was necessary to facilitate a survey process and make it shorter and
more convenient, which was achieved by merging two registration wizards into one, and
making the length of it twice shorter than the previous two together3.

While we identified several reasons for the difficult user acquisition, such as privacy-
concerns, a lack of an incentive to use a tool without immediate benefit and use of other
IDEs[4], we chose to give even more immediate insights to our users as a next step. There-
fore, we introduced two additional real-time statistic overviews for our users: Eclipse per-
spective activity overview, which shows how much time developers spend in the most com-
mon Eclipse perspectives (Java, Debug, etc.); and testing execution overview, which shows

1https://marketplace.eclipse.org/
2http://updatesite.testroots.org
3https://github.com/TestRoots/watchdog/issues/150
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Figure 3.1: WatchDog real-time statistics window.

statistics about successful and failed test executions, followed by their durations4. Further-
more, time intervals for live statistics were extended, so we made it possible to select time
periods of up to eight hours, which enabled developers to analyze their behavior at the end
of the work day5. The newly added features are displayed in Figure 3.2. In the following
period, we observed that our effort in the newest update affected the discrepancy between
the number of users and the number of project registrations – it made the growth of both
types of registrations consistent, at even higher rate than before.

Although WatchDog already had hundreds of users by the end of 2014, all of them
were using the Eclipse IDE for development, which was previously identified as one of the
problems for user acquisition. This revealed a space for expansion – first by conquering
another popular Java IDE - IntelliJ, and, second, by creating a solution that can be ported
to even more platforms. Starting from the WatchDog version 1.3.0, we began migrating the
existing solution to the IntelliJ IDE.

4https://github.com/TestRoots/watchdog/issues/142
5https://github.com/TestRoots/watchdog/issues/144
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Figure 3.2: WatchDog real-time statistics window after refactoring.

3.2 Migration from the Eclipse plugin

In this section we explain the process of creating a functional WatchDog prototype of the
IntelliJ plugin, based on the implementation of the existing Eclipse plugin.

The initial investigation of the IntelliJ plugin development consisted of gathering as
much information as possible from the various sources in order to get familiar with the
internal implementation of IntelliJ IDEA and recommended practices for its development
and extension. As anticipated, good starting points for this step are JetBrains website6,
official listing of the IntelliJ Platform Software Development Kit (SDK)7 and the source
code of the IntelliJ IDEA Community Edition8.

IntelliJ IDEA is mostly written in Java, following its coding style and conventions. How-
ever, code and API documentation (Javadoc, for example) are scarce. Until the version
13.0.0 (dated December 2013) IntelliJ IDEA source code was available on GrepCode9, which
provided a better and more systematic look into internal implementations. However, since
then, many APIs have been changed or deprecated, so beside the official website and the
community discussion board, exploration of the IntelliJ source code is necessary upon every
new release.

As we explored the IntelliJ SDK and compared it to the Eclipse implementation, we
came up with two possible approaches for the IntelliJ plugin implementation: the first would

6https://www.jetbrains.com/help/idea/2016.1/plugin-development-guidelines.html
7http://www.jetbrains.org/intellij/sdk/docs/
8https://github.com/JetBrains/intellij-community/
9https://goo.gl/ALJXZy

14

https://www.jetbrains.com/help/idea/2016.1/plugin-development-guidelines.html
http://www.jetbrains.org/intellij/sdk/docs/
https://github.com/JetBrains/intellij-community/
https://goo.gl/ALJXZy


3.2. Migration from the Eclipse plugin

be to implement a new plugin from scratch, independently of the existing solution. The
second approach implied an implementation that would be as similar as possible to the
Eclipse plugin. While the first method could possibly facilitate the use of IntelliJ API, the
second method, which assumed slow and careful code migration and adaptation to the new
environment, appeared to be the better choice for the following reasons:

• The existing Eclipse plugin was stable, in production, and the code quality was high.
The whole plugin was covered with unit tests;

• The logic would stay the same, thus facilitating future maintenance and establishing
the basis for future expansions;

• The same server application would be able to handle both client plugins simultane-
ously.

The possible drawbacks of this approach were the potentially large amount of code
clones, different APIs (some functions that exist in Eclipse are either not available or behave
differently in IntelliJ), and the implementation of the logic that was not reusable.

3.2.1 Code organization

While we will not go further into the WatchDog logic in this chapter, we still need to give
a brief overview of its code organization in order to be able to discuss the process of its
implementation. Initially, WatchDog consisted of the WatchDog Server and the WatchDog
Eclipse plugin, which had two parts – plugin production code and unit tests. Production
code had three packages: logic, which accommodated the whole back-end logic; ui, which
enclosed all necessary user interface elements; and util, which provided various utility func-
tionalities.

Back-end logic of the plugin was divided into four smaller packages: document, which
contained classes responsible for file analysis; interval, accountable for creating, managing,
storing and transferring WatchDog intervals; network, in charge of communication with the
server; and ui, which kept the IDE-monitoring logic (such as observing reading, writing and
other types of events).

3.2.2 IntelliJ plugin prototype

The implementation of the new plugin started by studying thoroughly the infrastructure of
IntelliJ IDEA and by comparing it to Eclipse. By finding similarities and differences between
the two IDEs, it was easier to identify parts of the plugin which had to be adapted to the
new environment.

The first step of creating an IntelliJ plugin prototype was to migrate low-level code from
Eclipse plugin, such as enum types and data classes, followed by the platform-independent
code, that is, classes which do not import nor rely upon any Eclipse API. After that, we had
to implement listeners for capturing user’s actions in IntelliJ in the same manner as we do
it in Eclipse. Together with the interval management logic, at this point of time we were
already able to execute basic functionalities of WatchDog on IntelliJ platform.
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The biggest issue that we have encountered in the IntelliJ plugin development phase was
a “ClassLoader issue”: plugins have their own class loaders (in order to allow the usage
of different versions of a same library between plugins and IDE), and this class loader was
incompatible with reflection-enabled libraries, in our case MapDB, which we use for storing
our collected data locally. Therefore, we had to wrap every operation from this library with
the following two methods, in order to exchange the class loader manually:

protected void replaceClassLoader() {
oldClassLoader = Thread.currentThread().getContextClassLoader();
Thread.currentThread()

.setContextClassLoader(WatchDogStartUp.class.getClassLoader());
}

protected void resetOldClassLoader() {
Thread.currentThread().setContextClassLoader(oldClassLoader);

}

Building our solution continued by enriching our application with the rest of necessary
features, first being network logic for transferring collected data to our server. We continued
by adding plugin start-up logic and implementing graphical user interface (GUI). These GUI
components: registration wizards, preferences page (for managing plugin settings) and in-
IDE statistics display, had to be created completely from scratch because IntelliJ uses Java’s
Swing10 library for graphical components, while Eclipse is built with The Standard Widget
Toolkit (SWT)11. Finally, we finished this prototype12 by releasing its first stable version
(0.9.1) on JetBrains plugin repository13.

3.3 New architecture

The successful implementation of the WatchDog IntelliJ plugin prototype was enough to
prove that the same concept, which already existed for Eclipse, can be applied to the other
IDEs. However, following the same approach – migrating a plugin from one platform to
another – could easily be considered as unnecessary and over-engineering, while we should
not disregard the amount of possible code clones as well.

Given the fact that resources for tool development are limited in academia, but also in
the open-source community and smaller companies, creating an easily maintainable soft-
ware platform can be a significant challenge. This is exactly what we had experienced with
our tool which, at that moment, consisted of the server application and two, seemingly, in-
dependent plugins with a lot of code clones. To ease the future maintenance, but also to
open space for new development efforts and potential expansions to other IDEs, we had to
change WatchDog’s architecture and refactor both plugins.

10https://docs.oracle.com/javase/7/docs/api/javax/swing/package-summary.html
11https://www.eclipse.org/swt/
12https://github.com/TestRoots/watchdog/issues/187
13https://plugins.jetbrains.com/plugin/7828
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Our next step was obvious – extract all code that exists in both plugins, make it com-
pletely platform-independent and build it as a separate “core” project, available in compile-
time for both plugins14. While we could have regarded this common project, named Watch-
DogCore, as a separate library, developed it independently of plugins and simply imported
it as a JAR library, we opted for another, novel approach: we set up WatchDogCore to be
both Eclipse and IntelliJ project at the same time and available to both plugins in compile-
time as another module. In practice, this meant that we could open both IDEs at the same
time and have this project available in both of them simultaneously: a change of code in one
IDE would be immediately available in another, thus significantly easing the maintenance
of both plugins at the same time. The benefits of this approach were evident shortly – it
notably facilitated the architecture refactoring process.

While for the majority of the classes it was easy to determine whether they belong to the
Core or to the platform-specific project, there were a few classes which would, logically,
belong to the Core, although they were tightly coupled with the specific IDE. For these
classes, we made use of object-oriented paradigm and design patterns [12], such as Class
Adapter pattern and Template Method pattern (which was applied to mitigate our “Class-
Loader issue” in IntelliJ), where we abstracted over platform-specific code and made Core
classes platform-independent, while each plugin project is able to override them with its
own implementations.

The reasonable concern can be the question: what would happen if we wanted to de-
velop a plugin for an IDE that would not support importing our WatchDogCore project into
it? While our approach implies project import, creating a stand-alone library, which can
be used in any IDE, can always be an option – even though the Core module is packed
separately in our production releases.

3.3.1 Automating build process and Continuous Integration

As it was already mentioned, the initial WatchDog Eclipse plugin was equipped with a
thorough test suite. Other than using the IDE to deploy the plugin, it could also be built with
the Maven build automation tool, which at the same time included static code analysis and
test execution. Being an open-source platform with a public repository available on GitHub,
WatchDog also utilizes Continuous Integration (CI) practices, such as code merging through
pull-requests, code reviews and automated builds with test executions on external CI engine,
Travis CI.

On the other hand, the first version of IntelliJ plugin lacked many of these features, so
the refactoring process was also a good opportunity to fill this void. While the unit tests,
still placed within the Eclipse plugin, were easily adapted to cover Core module as well,
configuring Maven to automatically build the whole project and output the production-ready
versions of both plugins was not a straightforward task.

The first step in configuring our build process was to define a set of pom.xml files
(Project Object Model, containing the configuration for a project and its dependencies). The
initial version of Eclipse plugin consisted of one top-level POM file which had four mod-
ules – WatchDog implementation, unit tests and two Eclipse-required components, Feature

14https://github.com/TestRoots/watchdog/issues/194
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and p2updatesite. These two components are specific to plugin development and they pro-
vide some high-level functionalities, such as grouping of plugins and creating a deployable
version for an update site. Furthermore, at run-time Eclipse uses OSGi standard, a set of
specifications that defines a component and service model for Java, which means that every
plugin for Eclipse should be an OSGi Bundle [28]. A bundle, which is the smallest unit of
modularization in OSGi, can be dynamically managed in the run-time, which means that
OSGi will automatically load other required dependencies that come in a form of bundles.
This aspect led us to the logical conclusion to define our WatchDog Core module as an
OSGi bundle as well. While this approach proved useful for Eclipse, we could not benefit
from OSGi when it comes to IntelliJ, because plugins for this IDE may not be defined as
OSGi bundles, so we had to use Maven for dependency resolution.

Another important aspect to consider was an IDE dependency – for the building process,
it was necessary to provide source codes of both IDEs. While Tycho15, Eclipse’s Maven
tool for building plugins and OSGi bundles, automatically provides sources of all necessary
Eclipse versions, getting the IntelliJ source code has to be done manually. This task consists
of downloading the latest IntelliJ Community Edition source code, building it and installing
it to the local Maven repository.

The result of the full Maven build are production-ready IDE plugins, both packed in-
dependently – the Eclipse plugin in a form of an update site from which the plugin can be
downloaded and installed, and the IntelliJ plugin as a ZIP archive, which can be distributed
via the JetBrains plugin repository. The outputs are the same as if they were generated man-
ually, directly from the IDEs. Furthermore, we also digitally sign our Eclipse plugin JAR
files before each release16, in order to verify the integrity of the distributable plugin version.

Finally, we provide appropriate shell scripts which are used to automate the whole pro-
cess on our Travis CI build server. We use Travis CI to inspect every pull request to our
production repository on GitHub and passing all checks successfully is the first necessary
condition for accepting them.

3.4 Building multi-platform tool: Summary

In this section, we classify and summarize the technical and organizational challenges that
the creation of a multi-platform architecture poses, by the example of the development of
the new WatchDog architecture for IntelliJ and Eclipse, which are the first objective of this
thesis (G1). Then we share our experiences and solutions on how we solved these problems,
which were also published in a workshop article [5].

3.4.1 Challenges

Below, we outline the technical and organizational challenges that we experienced while
creating a family of IDE plugins.

15https://eclipse.org/tycho/
16https://github.com/TestRoots/watchdog/issues/185
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The Plugins Must Be Easy to Maintain (C#1). If plugins are independent forks, every
change needs to be ported. Inconsistently changed clones are one of the biggest threats to
the development of multiple plugins [15].

The Host IDEs Differ Conceptually (C#2). While IDEs share many design commonal-
ities, such as the editor model in which developers read and modify code, they also feature
profound differences. As one example, IntelliJ does not have a workspace concept, based
on which the Eclipse user could en- or disable WatchDog, while on the other hand, IntelliJ
offers a lot more user actions which can be observed by a plugin, although these actions can
be invoked in many different ways.

The Host IDEs Differ Technically (C#3). In practice, technical differences between
IDEs and their tooling might be more problematic than conceptual ones. As an example,
Eclipse employs the open OSGi framework for plugin loading and dependency management
and the Maven Tycho plugin for building. For rendering its user interface, it uses SWT. By
contrast, IntelliJ has a home-grown plugin and build system, and is Swing-based.

The Data Format Evolves (C#4). As researchers, we are eager to receive the first data
points as early as possible. However, especially in the early stages of plugin development,
changes to the data format are frequent and unforeseeable. Moreover, data structure from
different plugins might deviate slightly, for example, because Eclipse requires additional
fields for its perspectives.

The Project Has Few (Development) Resources (C#5). For example, we developed
WatchDog with less than one full-time developer at any given time point.

3.4.2 Guidelines

Following up on the previous challenges, we now give concrete guidelines based on our own
experiences with designing a multi-platform architecture for WatchDog. The guidelines link
to concrete solutions in WatchDog that tool smiths can re-use in their own projects.

Assess the Expected Degree of Commonality (GL#0). Before starting the plugin design
or refactoring, tool creators should assess the amount of features (and, thus, code) that can
be shared between two different IDEs.

Create a mutually shared core (GL#1). Figure 3.3 introduces WatchDog’s 3-layer ar-
chitecture. In its client layer, both plugins extend one common core. This alleviates the
maintenance difficulties of two forks. Functionality that cannot be shared resides in Watch-
Dog for Eclipse (right-hand side) and WatchDog for IntelliJ (left-hand side).

We strongly recommend to set up a dynamic project dependency to the core in each
of the IDEs. A traditional approach would be to develop the core as a plain-old jar library.
This scales well when we expect only changes from the library (core) to the plugins (clients),
and not vice versa. However, since we expect frequent changes to the core from within the
plugins, we need a dynamic solution; the source code of the core should be available as a
shared component in the development space of both IDEs. This way, changes to the core
from within one IDE are automatically pulled into the development project in the other.
Plugin creators can import our Eclipse17 and IntelliJ18 project directories to have a starting

17https://goo.gl/tC0iiV
18https://goo.gl/2CgHsN
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example of how to setup such a development environment with minimal overhead.
Find Functional Equivalents (GL#2). A feature in one IDE can 1) exist equivalently in

the other, e.g. the similar code editors in Eclipse and IntelliJ, 2) approximate another, e.g.
Eclipse’s workspace and IntelliJ’s Project model, or 3) be missing. For example, Eclipse’s
concept of perspectives is not present in IntelliJ. In the last case, one can also try to add the
functionality over the plugin.

Abstract over Technical Differences (GL#3.1). Technical differences can limit the amount
of commonality in the core. Ideally, we want the plugins to be as shallow as possible and
the core to contain all logic. One problematic example is that IntelliJ’s home-grown plugin
class loader is incompatible with reflection-enabled libraries such as MapDB, which we use
as our cache. Caching should not differ per plugin, thus it is implemented in the core (see
GL#1). As a result, we needed to prefix every cache method in IntelliJ to replace its current
class loader with our own implementation, and switch back afterwards. We abstracted over
this IntelliJ-specific technicality through the template method pattern.

Regarding how to build a deployable plugin, we were able to design a Maven module
that automatically builds our IntelliJ plugin. While the Maven models for IntelliJ and Eclipse
are very different internally, they can be built with the same Maven command from the
outside. Our Maven POM files19 can serve as examples of how to create such a uniform
project build setup.

19https://goo.gl/Ajc9oJ, https://goo.gl/sE6E17
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Figure 3.3: WatchDog’s three layer architecture (source: [5]).
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Refactor away from the client (GL#3.2). On a higher level, we pushed the main part of
our analytics in figure 3.3 to the back-end layer, which is agnostic of the clients and connects
directly to the server: It starts with filtering data (for example, from pre-release versions or
students), and then branches off to 1) generate computation-intensive nightly reports for our
users, which are accessible over the server layer, and 2) extract data for our own research
purposes. The server and analytics layer would not need to change if we added support for,
e.g., Visual Studio or Netbeans.

Use a schema-free database (GL#4). Our Mongo database’s NoSQL format allowed
for rapid prototyping and different data format versions without migration issues. Our per-
formance tests show that the WatchDog server, run on a four CPU 16-Gigabyte desktop
machine, can handle a load of more than 50,000 users simultaneously.

When analyzing data from a schema-free database, in practice, a base format is required.
As an example, WatchDog was not originally intended as a multi-platform architecture.
Thanks to MongoDB, we could introduce the “IDE” field to differentiate between the plugins
later. We did not need to perform a data scheme translation, and, most importantly, we can
still accept the previous versions of the data format.

Use Automation & Existing Solutions (GL#5) Instead of relying on a heavy-weight ap-
plication server, we use the free Pingdom service20 to monitor the health of our services and
an adapted supervise script21 to restart it in case of crashes. To minimize server costs, a
backup of the database is time-synchronized on the cloud via the standard Unix-tools rsync
and rdiffbackup.

We heavily rely on the use of Continuous Integration (Travis CI) to execute our static
and dynamic analyses. No release may be published without all indicators being green. Our
static analysis include manual code reviews in pull requests,22 but are mainly automated:
FindBugs, PMD, Teamscale, and CoverityScan in the client layer and CodeClimate for de-
fect and test coverage control in the server layer. We found these tools easy to setup and
free to use.

The whole WatchDog project (all layers in figure 3.3) accounted for little more than
20,000 Lines of Code (LoC) on November 19th, 2015. We were able to achieve this level of
conciseness by following GL#2 and GL#3.2. and building our technology stack on existing
solutions. As an example, the WatchDog server (layer 2 in Chapter 3.3) is a minimalist
Ruby application (200 LoC) that uses Sinatra for its REST API and unicorn to enable the
parallelism.

20https://www.pingdom.com/
21http://cr.yp.to/daemontools.html
22E.g., https://github.com/TestRoots/watchdog/pull/150
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Chapter 4

Study Design

In the previous chapter, we reflected on our experiences and practices in the development
process of building a research tool, which we explain in detail in this chapter. We first give
its overview from the user’s perspective, and then explain the logic behind it. Finally, we
explore various aspects of our study design and describe the experiment process in details.

4.1 Practitioner’s perspective

In order to observe developers’ behavior and study our research questions we use the pre-
viously described tool to automatically collect the real-world data. WatchDog’s design and
methodology can be explained by the following use case scenario:

Jenny is an open-source developer who wants to monitor how much she is testing dur-
ing her daily development activities inside her IDE. Since Jenny uses Eclipse, she installs
the WatchDog plugin from the Eclipse Marketplace. Once WatchDog is installed, a dialog
guides Jenny through the registration process which has been mentioned in the previous
chapter. During this process, we assign one user ID and at least one (or possibly more)
project ID, in order to identify and group the collected data. Furthermore, we ask Jenny
several questions regarding her development habits, although we have recently offered an
option to perform an anonymous registration1, during which we do not collect the survey
data, but still assign user and project IDs. Afterwards Jenny continues to work on her
project using Eclipse as usual while WatchDog is silently recording her testing behavior in
the background.

When Jenny starts Eclipse, WatchDog creates three intervals: EclipseOpen, Perspec-
tive, and UserActive (1). She plans to refactor the production code, so she executes the
unit tests to ensure the desired behavior of that code, triggering the creation of a JUnit-
Execution interval, enriched with the test result “Passed” (2) and test execution duration.
Having browsed the source code of the file (3) to understand which parts need to change (a
Reading interval is triggered), Jenny then performs the necessary changes (recorded by a
Writing interval). A re-execution of the unit tests shows Jenny it fails after her modification

1https://github.com/TestRoots/watchdog/issues/209
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Figure 4.1: Exemplary workflow visualization with intervals (source: [3]).

(4). She steps through the test with the debugger (5) and fixes the error. The final re-
execution of the test (6) succeeds.

After this development task, Jenny wants to know how much of her effort was devoted
to testing, and whether she followed the test-driven development (TDD) practice. She can
retrieve two types of analytics: the immediate statistics inside the IDE (marker 1 in figure
4.2), and her personal project report (2). Then, she opens the statistics view and selects 10
minutes as the time window to monitor. WatchDog will automatically analyze the recorded
data and generate the view depicted in Figure 4.2. The immediate statistics view provides
information about production and test code activities within the selected time frame. Sub-
graph 1 in Figure 4.2 shows Jenny that she spent more time (over one minute) reading
than writing (only a few seconds). Moreover, of the two tests she executed (marker 2),
one was successful and one failed. Their average execution time was only 1.5 seconds.
Finally, Jenny observes that the majority (55%) of her development time has been devoted
to engineering tests (3), not unusual for TDD [3].

While the immediate statistics view provides an overview of recent activities inside the
IDE, the Project Report can be used to analyze global, and more computationally expen-
sive statistics for a given project throughout the whole project history. Jenny accesses her
report through a convenient link in the IDE, or through the TestRoots website2, entering the
project’s ID. Jenny’s online project report summarizes her development behavior in the IDE
over the whole recorded project lifetime. By analyzing this general report, Jenny observes
that she spent over 195 hours of working time in total for the project under analysis, corre-

2http://testroots.org/report.html
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1

2 3

Figure 4.2: WatchDog’s immediate statistics view in the IDE (source: [27]).

sponding to 36 minutes per day on average (marker 1 in the Figure 4.3). She was actively
working with Eclipse in 58% of the time the IDE was actually opened. The time spent on
writing Java code corresponds on average to 55% of the total time. She spent the remaining
45% reading Java code. When registering the project, Jenny estimated the working time she
would spend on testing to equal 50%. Using the generated report, she figures out that her
initial estimation was quite precise since she actually spent 44% of her time working on test
code.

Project Report3 also provides the TDD statistics for the project under analysis (marker 2
in the Figure 4.3). Moreover, anonymized and averaged statistics from the large WatchDog
user base allow Jenny to put her development practices into perspective, comparing them to
those of other developers. This way, project reports foster comparison and learning among
developers. In TDD, programmers systematically co-evolve production and test code, while
constantly cycling between the states of succeeding and failing test cases. To measure to
what extent developers follow it, we use an approach based on textual matching with regular
expressions: in a nutshell, the analytics pipeline chronologically orders a stream of IDE
activities. Then, it matches regular expressions modeling TDD against this stream. The
portion of the matches in the whole sequence gives a precise indication to which extent a
developer applied TDD. This method [3] has been already used to answer “how common

3Example report: http://goo.gl/k9KzYj

25

http://goo.gl/k9KzYj


4. STUDY DESIGN

2

1

Summary of your Test-Driven Development Practices

You followed Test-Driven Development (TDD) 38.55% of your development changes 
(so, in words, quite often). With this TDD followship, your project is in the top 2 (0.1%) 
of all WatchDog projects. Your TDD cycle is made up of 64.34% refactoring and 
35.66% testing phase.

Description Your value Mean

Total time in which WatchDog was active 195.8h 79h

Time averaged per day 0.6h / day 4.9h / day

Detailed Statistics 
In the following table, you can find more detailed statistics on your project.


General Development Behavior Your value Mean

Active Eclipse Usage (of the time Eclipse was open) 58% 40%

Time spent Writing 13% 30%

Time spent Reading 11% 32%
Java Development Behaviour Your value Mean

Time spent writing Java code 55% 49%

Time spent reading Java code 45% 49%

Time spent in debug mode 0% (0h) 2h

Testing Behaviour Your value Mean

Estimated Time Working on Tests 50% 67%

Actual time working on testing 44% 10%

Estimated Time Working on Production 50% 32%

Actual time spent on production code 56% 88%

Test Execution Behaviour Your value Mean

Number of test executions 900 25

Number of test executions per day 3/day 1.58/day

Number of failing tests 370 (41%) 14.29 (57%)

Average test run duration 0.09 sec 3.12 sec

Figure 4.3: WatchDog’s project report (source: [5]).

is TDD in practice?” The new feature, embedded in project reports, enables all WatchDog
users to individually examine their own testing style and conformance with TDD.

Migration to another IDE. Jenny wants to migrate her project developed using Eclipse
to IntelliJ without losing the testing statistics already collected by WatchDog. Since Watch-
Dog is a multi-IDE solution, Jenny can easily migrate by installing the WatchDog plugin for
IntelliJ available from the JetBrains Plugin repository. Jenny selects the alternative registra-
tion procedure available for already registered users. Using her personal user and project ID
after migration, she can continue collecting data on the same project and the project report
would provide joint results from the both IDEs.
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4.2 Backend logic and metrics

While developers use the IDE for their regular, everyday activities and only retrieve their re-
ports on demand, WatchDog constantly records their development behavior and periodically
transfers collected data to WatchDog Server. On the lowest level of the WatchDog’s back-
end logic, we have various event listeners, instantiated on every start-up of the IDE, which
observe the user’s actions. Every single action (e.g. scroll, mouse click, typing text, etc.) is
registered as a WatchDog Event, and propagated further to our EventManager which cre-
ates appropriate WatchDog Intervals. These intervals consist of one or many subsequent
observed events, grouped together by our IntervalManager. The overview of the intervals
is given in Table 4.1 and their UML diagram in the Figure 4.4. We should note that the
bright yellow color is used for the classes which belong to the WatchDog Core, while the
grey color represents classes from the specific plugin, particularly WatchDog for IntelliJ.

Figure 4.4: WatchDog’s intervals.

Intervals concerning the user’s activity (Reading, Typing, and other general activity)
are backed by an inactivity timeout, so that we only record them when the user is actively
working in the IDE.

However, if we detect that the IDE lost the focus (end of IDEActive interval), or the
user switched from writing file X (Typing) to reading file Y (Reading), we immediately
end the currently opened interval. Intervals may overlap. For example, Typing or Reading
intervals are wrapped inside a user activity (which is again wrapped within the IDEActive,
Perspective and IDEOpen interval). However Reading and Typing intervals are by nature
mutually exclusive. We refer to an IDE session as the time span in which the IDE was open
and not closed or interrupted, for example because the developer suspended the computer.
All intervals that belong to one IDE session are hence wrapped within one IDEOpen interval,
as is shown in Figure 4.1 (1).

Depending on the type of the interval, we enrich it with different numerical and categor-
ical information: in the Reading or Typing interval, we store whether the underlying file is
a Java class, a hash of its file name, its length in source lines of code without whitespaces
(SLOC), and whether it is production or test code. Additionally, for Typing intervals, we
calculate the Levensthein edit distance [18] between the content of the file before and after
the modification in the interval. This gives us an indication of the size of the changes made
in the Typing interval. If it is a Java class, we rate the file that the developer accesses in
a Reading or Typing interval as either production or test code. We classify any other file
type, for example an XML configuration file, as unknown.
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Table 4.1: Overview of WatchDog intervals (based on:[3]).

Interval Type Description

JUnitExecution Interval creation invoked through the IDE-integrated JUnit runner (also working for Maven projects).
Each test execution is enriched with the SHA-1 hash of its test name (making a link to a Reading or
Typing interval possible), test result, test duration and child tests executed.

Reading Interval in which the user was reading in the IDE. Backed by inactivity timeout. Enriched with an
abstract representation of the read file, containing the SHA-1 hash of its file name, its SLOC, and an
assessment whether it is production code, or test code. A test can further be categorized into a test (1)
which uses JUnit and is therefore executable in the IDE; (2) which employs a testing framework; (3)
which contains “test” in its filename; (4) or contains “test” in the project file path (case-insensitive).
Backed by inactivity timeout.

Reading Interval in which the user was reading in the IDE. Backed by inactivity timeout. Enriched with an
abstract representation of the read file, containing the SHA-1 hash of its file name, its SLOC, and an
assessment whether it is production code, or test code. A test can further be categorized into a test (1)
which uses JUnit and is therefore executable in the IDE; (2) which employs a testing framework; (3)
which contains “test” in its filename; (4) or contains “test” in the project file path (case-insensitive).
Backed by inactivity timeout.

Typing Interval in which the user was typing in the IDE. Backed by inactivity timeout.

UserActive Interval in which the user was actively working in the IDE (evidenced for example by keyboard or
mouse events). Backed by inactivity timeout.

IDEActive* Interval in which the IDE had the focus on the computer. *) Not shown in figure 4.1.

Perspective Interval describing which perspective the IDE was in (Debugging, regular Java development, ...). Spe-
cific only to Eclipse, since IntelliJ does not support the concept of perspectives.

IDEOpen Interval in which the IDE was open. If the computer is suspended, the IDEOpen is closed and the
current session ends. Upon resuming, a new IDEOpen interval is started, discarding the time in which
the computer was sleeping. Each session has a random, unique identifier.

We have different recognition strategies to recognize test classes (see table 4.1): in
order to designate the file as a test that can be executed inside the IDE, we require the
presence of at least one JUnit import together with at least one method that has the @Test
annotation or that follows the testMethod naming convention. This way, we support both
JUnit3 and JUnit4. Furthermore, we recognize imports of common Java test frameworks
and their annotations (Mockito, PowerMock). As a last resort, we recognize when a file
contains “Test” in its file name or the project file path. It seems a common convention
to pre- or postfix the names of test files with Test [31], or to place all test code in one
sub-folder. For example, the standard Maven directory layout mandates that tests be placed
under src/test/java.4 Thereby, we can identify and differentiate between all tests that
employ standard Java testing frameworks as test runners for their unit, integration, or system
tests, test-related utility classes, and even tests that are not executable. We consider any Java
class that is not a test according to this broad test recognition strategy to be production code.

To further explain the logic and implementation, we can relate to Figure 4.5. Here,
InitializationManager (1) creates IDE listeners (2), which use EventManager (3) to reg-
ister the observed WatchDog events (4) of various types (5). EventManager (3) notifies
IntervalManager (6) which groups the events into intervals, as we have already explained.
All intervals are stored locally for a period of up to ten hours (by default), or longer, if
necessary, until they are transferred to our server (e.g. when a user is connected to the inter-

4http://maven.apache.org/guides/getting-started
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net again). For storing them, our IntervalPersister (7) utilizes the MapDB library 5, which
caches intervals in memory, but also stores them on disk and ensures their persistence across
sessions. Stored intervals are used for displaying real-time statistics inside the IDE, by using
IntervalStatistics (8) which further makes use of JFreeChart 6 library for graph drawing.

Finally, IntervalTransferManager (9) is responsible for the repeated transferral of all
closed intervals to the server by using REST API. While we try to transfer them every
three minutes, we also handle edge cases such as a transfer on exiting of the IDE and
back off when user is offline. On successful transfer, we remove intervals from MapDB
instance, although they are still available on disk, when we use them for displaying the
in-IDE statistics overview.

4.2.1 Data collection and analysis pipeline

All transferred intervals, upon sanity checking, are stored in a no-SQL database MongoDB
on WatchDog Server. This set-up allows for scaling up to thousands of simultaneous con-
nections, but also further changes in data format which would ease backward compatibility.
All data on the server are processed in analytics pipeline – a set of R scripts made for data
analysis which generate project reports on a daily basis. Beside these scripts, another batch
of R scripts was made in order to investigate testing habits of Eclipse users [3]. Since we
made our IntelliJ plugin fully compatible with the existing infrastructure, we are able to re-
use these scripts in the research of IntelliJ users, which we present in the following chapter.

4.3 Study participants

While WatchDog Eclipse plugin has been advertised in various ways [3], we have also tried
to acquire IntelliJ users by:

• Updating our project website.7

• Enhancing our project reports which are generated daily.

• Utilizing social media channels to promote it.

• Contacting open-source developers who previously expressed the interest in Watch-
Dog, but were not using Eclipse.

• Publishing the plugin on the official JetBrains plugin repository.8

During the observation period of five months, we had 33 active users from 15 different
countries who transmitted their data to our server, nearly half of them being from the United
States and China (eight from each country). Although the number of WatchDog IntelliJ users
is significantly smaller than the number of Eclipse users who participated in the previous

5http://www.mapdb.org/
6http://www.jfree.org/jfreechart/
7http://www.testroots.org
8https://plugins.jetbrains.com/plugin/7828
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study (416 users), we still gathered enough data to perform the initial analysis, answer the
research questions and compare the results.

Similar to Eclipse users, our IntelliJ users (figure 4.6) mostly use some version of Win-
dows OS (57%), followed by Mac OS (37%), while only two of them are Linux users (6%).
Their programming experience is normally distributed, mainly between three and six years
(28%), while ranges of 1-2 years and 7-10 years both amount for 21% each. These 33 par-
ticipants registered 48 unique projects and, in total, we observed 847 hours of working time
in which IntelliJ IDE was open, during which we observed 1,334 distinct IDE sessions.
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Figure 4.6: Operating system developers use and their programming experience.
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Chapter 5

Analysis And Discussion Of The
Research Questions

The WatchDog for IntelliJ has been added to the ongoing study which assess software testing
and which already produced results with Eclipse [3, 4]. Since its release on the JetBrains
plugin repository, it has been used to collect the real-world data and perform analysis on it.
In this thesis we address a period of five months, from the initial release in the beginning of
September 2015, until the end of January 2016, when the further development effort started,
going beyond the scope of this work.

The goal of this experiment (G2) is to perform a replication study of the work that
was presented in the previous work of TestRoots [3] (referred to as the original study in
the remainder of this chapter) and which addressed developers who use Eclipse. While
using the same approach and methodology from the original study, we analyze the testing
behavior of IntelliJ developers in this work and, furthermore, we compare the results from
both studies and detail our conclusions with respect to the defined research questions.

5.1 Analysis of the research questions

In this section we detail our results per each research question and make a parallel to the
results of the original study.

5.1.1 RQ1: When and why do developers test?

As in the original study, we analyze the first research question by assessing the following
sub-questions:

RQ1.1 How common is testing?
By applying the broadest recognition of test classes as described in Chapter 4 (detecting

test classes based on the name of files and importing statements), 27 of the 48 analyzed
projects contain tests that a user either read or modified. Hence, for 44% of projects, we
could not detect work on tests in the IDE, neither to execute, nor to read or modify them,
which does not significantly deviates from 57% in Eclipse.
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By narrowing down the recognition of tests to JUnit tests only, which can be executed
inside the IDE, we find that 25 projects have such tests. This is in accordance with the results
obtained in the registration survey, since 27 developers claimed to have been using JUnit.
Although this implies that our method of identifying testing frameworks performs mostly
correctly, in the original study it emerged a discovery that for only 47% of projects which
claimed to have JUnit tests in the survey it was possible to detect them in the processed
data. On the other hand, we detected tests in 73% of the IntelliJ projects which allegedly
have them (note that we detected JUnit tests in some projects for which developers did not
claim or did not know they have them).

Our second sub-research question is:
RQ1.2 How frequently are tests executed?

From 25 projects, we observed test executions in the IDE in 17 projects (68%), which
is slightly smaller than in Eclipse (85%). Developers of these 25 projects contributed 1,184
sessions and ran 990 test executions. Compared to the original study, which had 3,424 ses-
sions and 10,840 test runs, we have the first sign that the tests are performed less frequently
in IntelliJ than in Eclipse, or, at least, in smaller amount.

Moreover, out of 1,184 sessions, in 134 of them (11.3%) at least one test was run,
similarly to 15% (527/3,424) in Eclipse. This led to the significantly small average number
of the executed tests per any session (0.82), but also to the small average number of tests per
sessions in which at least one test was run (7.33). These averages are in accordance with the
original study (3.2 and 20.7 respectively), coming as a consequence of the smaller number
of single test executions.

RQ1.3 and following should give an indication as to why and when developers test,
based on their behavior. It is expected that when developers change the testing code, they
are likely to execute those tests more to inform themselves about the current execution status
of the test they are working on. This is examined in the following sub-questions:

RQ1.3 Do developers test their test code changes?
The correlation between test code churn and the number of test runs yields a weak

Spearman rank-order (ρ) correlation coefficient, ρ = 0.41 in our dataset. While there is an
obvious relationship between the two variables, the correlation does not imply a causation
or a direction. Therefore, we cannot say with confidence that developers executed more
tests because they changed more test code, although this might be one of the possibilities.

A logical next step is to assess whether the same holds for modifications to production
code: Do developers assert that their production code still passes the tests?

RQ1.4 Do developers test their production code changes?
This correlation is significantly weaker, in fact negligible, with ρ = 0.27, which means
that we could hardly detect test executions after production code refactoring. This is in
accordance with Eclipse, where the correlation was just a little bit higher, but still weak
(ρ = 0.38).

Finally, we examine in how many cases do developers modify their tests when they
change their production code (or vice versa):

RQ1.5 Do developers co-evolve test and production code?
A weak ρ = 0.44 suggests that tests and production code have some tendency to change
simultaneously, but it is certainly not the case that developers modify their tests for every
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Table 5.1: Descriptive statistics for important variables. Histograms are in log scale.

Variable Unit Min 25% Median Mean 75% Max Histogram

JUnitExecution duration Sec 0.002 0.54 1.37 51.66 4.23 20,610

Tests per JUnitExecution Items 1 1 1 1.32 1 142

Time to fix failing test Min 0.22 0.87 4.78 15.17 17.22 190.9

production code change, and vice versa. The similar correlation, although a bit weaker
(ρ = 0.35), was observed in Eclipse, so we could confirm that production code and tests do
not necessarily evolve together.

5.1.2 RQ2: How and why do developers run tests?

Software developers usually waste a lot of time for the maintenance processes, such as the
compilation of large projects, building and re-building solutions and deployments. Because
of the potential duration of these tasks, they are often shifted to some continuous integration
service, which will perform full project build in the background and report results, while
developers will execute them irregularly. Executing tests can also be observed as one of
those long-lasting tasks, which is usually the part of the build process.To be able to explain
how and why developers execute tests inside the IDE, we must therefore first know how
long developers have to wait before they see a test run finish:

RQ2.1 How long does a test run take?

For a 50% of all test executions it takes one second and a half to finish, which is almost three
times longer than in Eclipse. On the other hand, in both IDEs, test executions generally do
not take long to complete – 75% are finished within five seconds (see Table 5.1). Interesting
observation is that the percentage of executions which last longer than one minute and two
minutes are almost the same in both IDEs (7.4% and 4.8% of runs respectively).

Having observed that most test runs are short, our next step is to examine whether short
tests facilitate testing:

RQ2.2 Do quick tests lead to more test executions?

In the original study the hypothesis that the short test executions could potentially lead to
a higher number of runs per session was not proven correct. This came as a conclusion from
the lack of correlation between the two distributions, which we further confirm in IntelliJ.
Moreover, while for the proof of the hypothesis we would expect a negative correlation
between the test duration and the number of test executions, in IntelliJ we detect a weak
positive correlation (ρ = 0.42) between those values, which could imply the opposite –
short tests are executed less frequently.

While the original study addressed the issue of test selection, the small data-set in this
work and a small number of executed tests in general are limiting our analysis, so we are
not able to address this matter in the adequate way.
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Figure 5.1: The immediate reactions to a failing test.

5.1.3 RQ3: How do developers react to test runs?

While we have examined the test execution behavior in the previous research questions, we
will now assess consequences of those executions:

RQ3.1 How frequently do tests pass and fail?
Following the fail-fast strategy, everything but the successful completion of a test exe-

cution is considered a failure. These failures can come as a consequence of three possible
scenarios: compilation errors, an uncaught and an unexpected run-time exception is thrown
during the test case execution, or a test assertion is not met.

An interesting finding is that in our replication study we observed almost identical per-
centage – 65.35% (647 out of 990) of failed executions – as in the original study (65%,
7,047 out of 10,840). Even with the smaller data-set, we are able to confirm that the test
runs fail almost two times more frequently than they succeed.

As test failures are apparently a situation developers are often facing, we ask:
RQ3.2 How do developers react to a failing test?

Following the original study approach, for each failing test case we create a sequence of
consecutive intervals (ordered by their start time) and we analyze the following developers’
reactions for a period of up to five minutes (300 seconds), as shown in Figure 5.1.

The common behavior of both Eclipse and IntelliJ users is that they read the production
code within the first few seconds following the failing test (over 60% in Eclipse and over
50% in IntelliJ). While in the original work the second most common reaction is to read the
test code first with 17%, we found that IntelliJ developers shortly after failure switch the
focus of their IDE windows (in more than 20% cases), whereas they read the test code in
slightly less than 15%.

Similarly to the Eclipse users, switching focus away from the IDE after five seconds
becomes the primary reaction, which coincides with users becoming inactive inside their
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IDE, while reading the production code curve decreases to the almost half of its initial
value. During the first minute, we notice that the activity on the test code slowly decreases,
while users mostly remain or become inactive, or deal with the production code. Likewise
in Eclipse, after two minutes all reactions asymptotically reach their overall distribution,
with a little variability.

In the RQ3.2 we saw the reactions to a failing test, while in RQ3.3 we examine the
consequences of these reactions, namely:

RQ3.3 How long does it take to fix a failing test?
Among 647 failed executions we detected 145 unique test cases (according to their file

name hash). For these 145 tests we observed at least one successful execution for 92 (63%),
which means that 37% of tests were never fixed during our observation period, which is
slightly more than 30% of unfixed tests in Eclipse.

For the 92 failing tests that we know have been fixed later, we examine how long did it
take to fix them and get the following interesting result – while in Eclipse 50% of test repairs
happen within 10 minutes, in IntelliJ 50% fixes are applied in under half of that time. IntelliJ
developers appear to be faster at fixing tests, with 75% of test fixed within 17 minutes (see
Table 5.1).

5.1.4 RQ4: Do developers follow TDD?

Test-Driven development (TDD) is a software development process originally proposed by
Beck [1], which assumes that developers first write test cases based on requirements, fol-
lowed by the production code which should pass these tests. Original study introduced two
ways of recognizing TDD patterns – strict TDD and lenient TDD. The strict TDD pattern
follows the TDD life cycle by definition, starting with the successful test execution (to en-
sure initial state of the code) and followed by test edits with failing executions, after which
developers edit production code until the test execution succeeds. In practice it is usually
very difficult to follow strict TDD for various reasons (lack of just-in-time compilation,
co-evolution of production and test code). Because of this, a new pattern, lenient TDD,
assumes that developers may immediately start with editing test code and allows for modi-
fications of production code along with test code. Finally, while these two patterns reflect a
process of developing a new functionality, refactoring the existing code can also follow the
TDD practice, ensuring that the tests are successfully executed before and after code modi-
fications. RQ4 examines the adoption of TDD in practice, by identifying interval sequences
which match the defined TDD patterns.

While in Eclipse there were 10 developers (2% of all developers in the study, or 15%
of developers who executed tests) who followed strict TDD, in IntelliJ we could not detect
any developer who followed this pattern, which can potentially be caused by the size of our
data-set. On the other hand, we successfully detected 4 users who, at some level, followed
lenient TDD pattern (12% of all developers in the study, 31% of developers who executed
tests). Only one among them followed lenient TDD in 19% of his time, while others did
that for less than 5% of their intervals. We should note that 44.7% of lenient TDD intervals
comes from the code refactorings, which is also the pattern that one user made the highest
compliance with, following it with 97%.
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In the original study, there were generally more developers who followed lenient TDD
(33, 8% of all developers, or 49% of developers who executed tests), with 20% of them
following this pattern in more than 10% of their intervals. It is a common finding that only
more experienced users are following any kind of TDD – 67% of Eclipse developers have
experience of >7 years, which is also the case for all 4 IntelliJ developers who followed
lenient TDD (2 of them having more than 10 years of experience).

5.1.5 RQ5: How much do developers test?

Previous research questions were mostly based on test executions, while in this question we
examine the developers’ behavior during the code development phase. To answer this ques-
tion, we follow the same approach as in the original study: we consider Reading and Typing
intervals, and further split the two intervals according to the identified type of the document
a developer works on: either a production or a test class. We can safely neglect test execu-
tions in this part, since we already saw that their duration is insignificant, especially when
compared to the reading and writing code, and since developers can also work in the IDE
at the same time. When registering new projects, developers had a chance to estimate the
time they spend on testing in the project. While in the original study all participants had to
fill the registration survey in order to use WatchDog, we have recently enabled anonymous
registrations which allowed users to use our plugin without stepping through the whole pro-
cess. Even though this approach could facilitate user acquisition, a known tradeoff we had
to accept was to have less survey data, which we will use to compare to developers’ actual
testing behavior.

In Figure 5.2 we can see the difference of actual time invested in production compared to
developers’ estimations per each project. Likewise in the original study, a value of 0 means
the estimation was accurate, and a value of 100 denotes that the programmer expected to
only work on tests, but in reality only worked on production code (the opposite stands for
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Figure 5.2: The delta between estimation and reality.
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Table 5.2: Actual and estimated time distributions

Actual
(per project)

Estimated
(per project)

Actual
(per dataset)

Estimated
(per dataset)

Production Eclipse 77% 63% 75% 52%
Test Eclipse 23% 37% 25% 48%

Production IntelliJ 60% 64% 64% 71%
Test IntelliJ 40% 36% 36% 29%

Table 5.3: Reading and Writing distributions

Production Code Test Code
Reading 52.28% 38.72%
Typing 47.72% 62.28%

a value of -100). While the Eclipse developers showed a tendency to overestimate the time
they devote to testing by, on average, 14% per project, IntelliJ users were more realistic –
they underestimated testing time by only 4% on average. We give the complete results in
Table 5.2, columns marked as per project.

In the previous approach we evaluated the measured and the estimated times on a per-
project-basis, so now we take another method and evaluate the whole dataset, by averaging
across project and not normalizing for the contributed development time. While Eclipse
developers in general also overestimated the time they spent engineering tests, IntelliJ de-
velopers appear to be more self-aware, by making their predictions deviate less from reality
– they actually test 7% more than they anticipated. Furthermore, they spent less time engi-
neering production code and more developing tests than the Eclipse users. In Table 5.2 we
see the complete results in the columns per dataset. Finally, we also observed that for the
production code users spent less than 5% more time reading it than typing it, whereas they
wrote tests significantly more than they read them (61% versus 39%), see Table 5.3.

5.2 Discussion

In this section we clarify our results and compare them to the interpreted conclusions from
the original study (see Table 5.4).

Even though we detected percentage-wise a bit more testing activities in IntelliJ than in
Eclipse, that does not depart from the conclusion of the original study: the testing is not
actively practiced (C.1). Even though we expected more testing-oriented users in our study,
almost half of the projects did not contain any test.

For 65% of the projects we did not observe a single test execution, which leads to
the conclusion C.2. Even when developers execute them, they usually have around 7 test
executions per session on average, which is not as much as in Eclipse, but still not negligible
– this comes as a consequence of three times smaller number of test executions in IntelliJ
than in Eclipse. We can only assume that the tests are executed by using some external tool
on developers’ machines, or pushed back to the CI servers which will automatically execute
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them and notify developers about execution results. While we might expect that production
code and test code evolve together, our findings do not firmly support this claim, since we
have not observed a strong correlation between them (C.3).

Similarly to Eclipse, test executions inside the IDE are finished very fast (C.4), three
quarters of them being finished in under five seconds. That, however, did not lead to more
test executions, which the original study found that it was due to the test selection practice,
when developers select only certain test cases to execute (C.5). Unfortunately, except for
the fact that majority of IntelliJ test executions consists of a small number of tests, due to
the small data-set size, we were not able to further examine this. On the other hand, we
detected a small correlation between the test run duration and the number of test executions
which could indicate that long tests are executed more frequently. If we assume that tests
which take longer to finish are more complex, developers probably executed these tests
more frequently to assure the correctness of some larger functionality. Other possibility is
that it took more executions for these tests to assure their correctness.

Interestingly, the failing tests are observed two times more than successful test execu-
tions in both studies – 65% of the test executions fail (C.6). While Eclipse developers mostly
check production code after a test failure, for IntelliJ developers production code is relevant
only in the first seconds following the execution – afterwards, they showed a tendency to
switch focus from IDE window, probably exploring the reason for the error in some external
tool (or revert code changes using version control) or find the solution on the internet (C.7).

We found that TDD is not widely practiced, quite the contrary, we have not detected a
single developer following it strictly (C.8). We were, however, able to observe some lenient
use of it, although these developers followed it only during the small amount of their time.
As expected, developers who practiced it have rather large programming experience.

In this study, we observed that IntelliJ developers spend a bit more time engineering tests
than Eclipse users. They are also more self-aware – while Eclipse developers overestimated
the time they spend on testing, IntelliJ users slightly underestimated that time (C.9). Consid-
ering the other analysis results and the survey input, in general we found that IntelliJ users
tend to give more accurate and self-reflecting answers in the registration process(C.10),
which was not the case in the original study.

5.3 Threats to validity

The original study introduced four possible types of threats and limitations that could affect
the research process:

• IDE limitation: observing events only inside the IDE.

• Construct validity: integrity of WatchDog infrastructure and its correct functionality.

• Internal validity: threats inherent to the study, such as profile of the developers who
contributed their data.

• External validity: generalizability of the results.
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5.3. Threats to validity

All of these threats refer to our research as well and in the remainder of the section we
explain how we addressed them, finally coming to the conclusion C.11 from Table5.4.

IDE limitation. Identically to the original work, one of the main limitations is that
we can only capture events that happen inside the IDE, that is, we are not able to capture
work outside the IntelliJ, such as external compilation and test execution or changes which
come from the version control systems (git or svn, for example). However, observing the
absolute time was not the part of any of our research questions – we motivate our research
by observing the proportion between time spent on production and test activities. Since
external activities can include both production and test code engineering in the same amount
as inside the IDE, we can assume that the ratio between them would be the same in both
cases. Furthermore, it appears that another limitation can arise – many companies have
dedicated quality assurance departments which only develop the test code, while developers
write production code exclusively. However, this is out of the scope of this study, since we
specifically examine how much developers test.

Construct validity. This threat concerns possible errors made in our study design,
namely in the way WatchDog plugin works. Before the original study, the plugin was thor-
oughly tested and verified. IntelliJ plugin further contributes to this effort – although the
results are not completely identical (which is expected), the majority of them raised the
same conclusions. To further confirm the desired functionality of the plugins, we have also
examined the scenarios in which the same routine is performed in both IDEs and we asserted
the equal behavior and results in both cases.

Internal validity. This threat involves the problems with the collected input, such as
tampered data and intentional misuse of our plugin, or unconsciously biased data. Because
of the relatively small dataset, we were able to manually perform certain checks to ensure
that the data reflects the real-world behavior. We did not observe any suspicious misuse
of our plugin, nor the unusual activity from any user. However, since our plugin assesses
testing behavior, we most likely have users to whom the testing is not the unfamiliar activity,
hence we can conclude that our findings are probably an overestimation of the real testing
practices. Finally, awareness of participants that they were being a part of an experiment
and that they were being observed with respect to their testing habits can lead to slightly
increased number of testing activities.

External validity. Ability to generalize the results was identified as a threat not only in
the original study, but was also mentioned in the reviews of the work. While this study aims
directly at that point, by extending the whole experiment to another IDE, a very obvious
limitation of this work is the dataset size, which is significantly smaller than in the original
study and which we have already mentioned multiple times. Nevertheless, this study is just
a part of the whole TestRoots research effort which will eventually extend beyond Eclipse
and IntelliJ IDEs.

41



5. ANALYSIS AND DISCUSSION OF THE RESEARCH QUESTIONS

Table 5.4: Comparison of Eclipse and IntelliJ conclusions

Eclipse
(original study)

IntelliJ
(replication study)

C.1 The majority of projects and users
do not practice testing actively.

Testing is not actively practiced in
IntelliJ either.

C.2 Developers largely do not run tests
in the IDE. However, when they do,
they do it heftily.

Developers mostly do not execute
tests in the IDE and when they do,
they run them moderately.

C.3 Tests and production code do not co-
evolve gracefully.

There is no significant correlation
between production and test code
changes.

C.4 Tests run in the IDE take a very short
amount of time.

Test runs in IntelliJ last equally short
as in Eclipse.

C.5 Developers frequently select a spe-
cific set of tests to run in the IDE. In
most cases, developers execute one
test.

Not assessable in this study.

C.6 Most test executions in the IDE fail. Two thirds of test executions in the
IDE fail.

C.7 The typical immediate reaction to a
failing test is to dive into the offend-
ing production code.

The typical immediate reaction to a
failing test is to either explore pro-
duction code, or be inactive inside
the IDE.

C.8 TDD is not widely practiced. Pro-
grammers who claim to do it, nei-
ther follow it strictly nor for all their
modifications.

TDD is rarely practiced.

C.9 Developers spend a quarter of their
time engineering tests in the IDE.
They overestimated this number
twofold.

Developers spend a bit more than a
third of their time on testing activ-
ities. They slightly underestimated
this amount.

C.10 Observed behavior often contra-
dicted survey answers.

The actual results mostly reflect the
survey answers.

C.11 Our conclusions are drawn from the
precisely-defined and scoped setting
of developer testing. To draw a com-
plete picture of the state of testing,
more multi-faceted research in dif-
ferent environments and settings is
needed.

While the largest threat to validity in
our study is the size of the dataset,
we further address identified threats
from the original study.
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Chapter 6

Conclusions And Future Work

In this chapter we give an overview of the thesis’s contributions and conclusions, followed
by the ideas for future work.

6.1 Conclusions and contributions

Beyond describing WatchDog’s architecture, we presented our experience with developing
a family of IDE plugins for the WatchDog platform. We highlighted the benefits of light-
weight, readily available solutions for software created by academic and start-up toolsmiths,
often characterized by intermittent development and a low amount of available resources,
both personal and financial. We also shared our concrete practical solutions so others can
profit from the mature open-source WatchDog infrastructure.

In order to demonstrate its use, with release 1.5, we introduced the WatchDog IntelliJ
plugin with the common core architecture described in this thesis in practice.1 We used
it to perform a small-scale study which assessed software testing practices of IntelliJ users
and compared the results with the study of Eclipse users. We can safely conclude that users
of different IDEs behave similarly, although IntelliJ users were more aware of their testing
habits.

The main contributions of the work presented in this thesis are the following:

1. We explain the building process of a multi-platform, production-ready tool, developed
in academic environment and used in software engineering research.

2. We perform a replication study of the previous TestRoots work [3] and compare re-
sults from different environments.

3. We set up a ground to facilitate and expand the existing research in the area of soft-
ware testing.

Our contributions can be particularly beneficial for the following:

1https://github.com/TestRoots/watchdog/issues/193
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6. CONCLUSIONS AND FUTURE WORK

Researchers can utilize our methodology and approach in developing the multi-platform
research software in academic environment. They should also be aware of the impor-
tance of testing, especially in scientific researches, and they should not allow them-
selves to underestimate it, like many engineers do.

Software developers , users of Eclipse and IntelliJ, can profit from WatchDog by obtaining
1) immediate and 2) aggregated feedback on their testing practices. If their results
show the lack of testing activities, they should consider improving their testing prac-
tices. Furthermore, our open-source project can serve them as a model for building
their own multi-platform tools.

IDE creators can consider improving the testing support inside the IDEs. On the top of
the already made ideas[3], they can also add tools for automatic test generation, silent
execution and provide the results of executions by using the “push” strategy (instead
of “pull”, when developers inquire the execution and the results).

Even though we only present results from the small data-set, this study is essentially
just a part of an open-ended, longitudinal field study which will most likely run for a period
of several years and examine developers’ habits and patterns in detail. In this opportunity
we can identify the third contribution of this thesis – it enables TestRoots team not only
to gather more data, but also to easily expand their research to another IDEs and possibly
other areas. Furthermore, we also propose some ideas for the future work in the following
section.

6.2 Future work

The long-term TestRoots study of the software testing practices can be further enriched
with the data from another programming languages and platforms. This includes, but is not
limited to:

• Mobile applications development – Android (Java) and Android Studio can be taken
as a very good example and first step. Android Studio is based on the IntelliJ IDE and
applying WatchDog plugin to it should be straightforward, while Android uses Java
programming language which we already support.

• The next step could be another IDEs from the JetBrains product family, such as
RubyMine (the IDE for the programming language Ruby), PhpStorm (the IDE for
PHP language) or PyCharm (the IDE for Python).

• Finally, the most challenging task would be to examine a completely different plat-
form, such as .NET framework, with Visual Studio IDE and C# language.

Furthermore, it would be interesting to separately observe some seemingly special
cases, such as the testing practices (or TDD patterns) for the new projects (a project which
a developer starts writing from scratch) and compare the results with the projects which
already have large code base. Additionally, we could also examine build automation files
and get the tentative approximation of the usage of other tools to execute test executions.
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Appendix A

Travis Scripts For Building
WatchDog Plugins

In this appendix we give the listings of our bash scripts for building WatchDog plugins. The
first script executes the building process for the whole platform – WatchDog Server, Core,
IntelliJ plugin and Eclipse plugin. The second script prepares IntelliJ SDK sources and it is
executed during the main build, before the compilation of our sources.

#!/bin/bash
echo
echo Build WatchDogServer
echo
cd WatchDogServer
bundler
if [ ! -e config.yaml ];
then
cp config.yaml.tmpl config.yaml

fi
rake
SERVER_STATUS=$?
cd ..

echo
echo Build WatchDogCore
echo
cd WatchDogCore/
mvn clean install
CORE_STATUS=$?
cd ..

echo
echo Build WatchDogIntelliJPlugin
echo
sh WatchDogIntelliJPlugin/fetchIdea.sh
cd WatchDogIntelliJPlugin/
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A. TRAVIS SCRIPTS FOR BUILDING WATCHDOG PLUGINS

mvn clean verify
INTELLIJ_CLIENT_STATUS=$?
cd ..

echo
echo Build WatchDogEclipsePlugin
echo
cd WatchDogEclipsePlugin/
mvn integration-test -B
ECLIPSE_CLIENT_STATUS=$?

exit $(($SERVER_STATUS + $CORE_STATUS + $INTELLIJ_CLIENT_STATUS +
$ECLIPSE_CLIENT_STATUS))
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The following listing is the script for fetching IntelliJ IDEA source code, re-packing it,
and installing it into the local Maven repository.

#!/bin/bash

idea_version="15.0.5"
idea_zip="ideaIC-$idea_version.tar.gz"
idea_URL="http://download.jetbrains.com/idea/$idea_zip"
build_dir="build_cache"

mkdir -p $build_dir
cd $build_dir

# Cache IntellIJ download. If not available, download anew (big!)
if [ ! -f $idea_zip ];

then
echo "File $idea_zip not found. Loading from the Internetz ..."
wget http://download.jetbrains.com/idea/$idea_zip

fi

# Unzip IDEA
tar zxf ideaIC-${idea_version}.tar.gz

idea_path=$(find . -type d -name ’idea-IC*’ | head -n 1)

if [ ! -f ${idea_path}.zip ];
then
# Compress to ZIP file
cd $idea_path
zip -r ../${idea_path}.zip *
cd ..

fi

cd ..

# Install IDEA to Maven repo
mvn install:install-file -Dfile=$build_dir/${idea_path}.zip

-DgroupId=org.jetbrains -DartifactId=org.jetbrains.intellij-ce
-Dversion=${idea_version} -Dpackaging=zip
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Appendix B

Maven POM Files

In this appendix we provide the most relevant Maven POM (Project Object Model) files,
which are used for dependency management and build process of WatchDog plugin. Here,
we only present top-level build files, for each of the projects (Core, Eclipse plugin, IntelliJ
plugin) while we omit the module specific POM files, but we make them available online1.
The presented files are important for establishing the automatic build process in the multi-
platform environment, while the omitted files do not contain anything specifically relevant
for this approach.

First, we have the POM file of WatchDog Core project:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>nl.tudelft</groupId>
<artifactId>parent</artifactId>
<version>1.6.0</version>
<packaging>pom</packaging>
<modules>

<module>WatchDog</module>
<module>WatchDogCoreFeature</module>

</modules>

<properties>
<tycho.version>0.22.0</tycho.version>

</properties>

<build>
<sourceDirectory>src/</sourceDirectory>

<plugins>

1https://github.com/TestRoots/
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<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>tycho-maven-plugin</artifactId>
<version>${tycho.version}</version>
<extensions>true</extensions>

</plugin>

<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>target-platform-configuration</artifactId>
<version>${tycho.version}</version>

</plugin>

<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>tycho-compiler-plugin</artifactId>
<version>${tycho.version}</version>

</plugin>
</plugins>

</build>
</project>

We continue with the WatchDog Eclipse plugin main POM file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>nl.tudelft</groupId>
<artifactId>parent</artifactId>
<version>1.6.0</version>
<packaging>pom</packaging>
<modules>

<module>WatchDog</module>
<module>WatchDogUnitTests</module>
<module>WatchDogFeature</module>
<module>p2updatesite</module>

</modules>

<properties>
<tycho.version>0.22.0</tycho.version>
<indigo-repo.url>http://download.eclipse.org/releases/indigo</indigo-repo.url>
<juno-repo.url>http://download.eclipse.org/releases/juno</juno-repo.url>
<kepler-repo.url>http://download.eclipse.org/releases/kepler</kepler-repo.url>
<luna-repo.url>http://download.eclipse.org/releases/luna</luna-repo.url>

</properties>
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<repositories>
<repository>

<id>indigo</id>
<url>${indigo-repo.url}</url>
<layout>p2</layout>

</repository>
<repository>

<id>juno</id>
<url>${juno-repo.url}</url>
<layout>p2</layout>

</repository>
<repository>

<id>kepler</id>
<url>${kepler-repo.url}</url>
<layout>p2</layout>

</repository>
<repository>

<id>luna</id>
<url>${luna-repo.url}</url>
<layout>p2</layout>

</repository>
</repositories>

<build>
<plugins>

<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>tycho-maven-plugin</artifactId>
<version>${tycho.version}</version>
<extensions>true</extensions>

</plugin>

<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>target-platform-configuration</artifactId>
<version>${tycho.version}</version>
<configuration>

<environments>
<environment>

<os>linux</os>
<ws>gtk</ws>
<arch>x86</arch>

</environment>
<environment>

<os>linux</os>
<ws>gtk</ws>
<arch>x86_64</arch>

</environment>
<environment>
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<os>win32</os>
<ws>win32</ws>
<arch>x86</arch>

</environment>
<environment>

<os>win32</os>
<ws>win32</ws>
<arch>x86_64</arch>

</environment>
<environment>

<os>macosx</os>
<ws>cocoa</ws>
<arch>x86_64</arch>

</environment>
</environments>

</configuration>
</plugin>

<plugin>
<groupId>org.eclipse.tycho</groupId>
<artifactId>tycho-compiler-plugin</artifactId>
<version>${tycho.version}</version>
<configuration>

<compilerArgument>-warn:+discouraged,forbidden</compilerArgument>
</configuration>

</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-site-plugin</artifactId>
<version>3.4</version>
<configuration>

<reportPlugins>
<plugin>

<groupId>org.codehaus.mojo</groupId>
<artifactId>findbugs-maven-plugin</artifactId>
<version>3.0.0</version>
<configuration>

<effort>Max</effort>
<threshold>High</threshold>

</configuration>
</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-pmd-plugin</artifactId>
<version>3.2</version>

</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
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<artifactId>maven-surefire-report-plugin</artifactId>
<version>2.17</version>

</plugin>
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jxr-plugin</artifactId>
<configuration>

<linkJavadoc>true</linkJavadoc>
</configuration>
<version>2.4</version>

</plugin>
</reportPlugins>

</configuration>
</plugin>

</plugins>
</build>

</project>

Finally, with the IntelliJ POM file we show how we manage the dependency to IntelliJ
IDEA sources by using the extracted sources from the previous appendix.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<relativePath>../pom.xml</relativePath>
<groupId>nl.tudelft</groupId>
<artifactId>parent</artifactId>
<version>1.6.0</version>

</parent>

<artifactId>nl.tudelft.WatchDog</artifactId>
<packaging>jar</packaging>

<dependencies>

<dependency>
<groupId>org.jetbrains</groupId>
<artifactId>org.jetbrains.intellij-ce</artifactId>
<version>15.0.1</version>
<type>zip</type>
<scope>provided</scope>

</dependency>
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<dependency>
<groupId>nl.tudelft</groupId>
<artifactId>nl.tudelft.WatchDogCore</artifactId>
<version>1.6.0</version>
<scope>provided</scope>

</dependency>

<dependency>
<!--We leave out other dependencies in this listing due to their

length.>
</dependency>

</dependencies>

<build>
<sourceDirectory>src/</sourceDirectory>
<resources>

<resource>
<directory>resources/</directory>
<excludes>

<exclude>zip.xml</exclude>
</excludes>
<filtering>true</filtering>

</resource>
</resources>
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>2.3</version>
<executions>

<execution>
<id>unpack-intellij</id>
<goals>

<goal>unpack-dependencies</goal>
</goals>
<configuration>

<includeArtifactIds>org.jetbrains.intellij-ce</includeArtifactIds>
<outputDirectory>${project.build.directory}/IntelliJ-IDEA-CE</outputDirectory>
<includes>**/*.jar</includes>

</configuration>
</execution>

</executions>
</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
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<version>2.5.1</version>
<configuration>

<compilerArguments>
<extdirs>${project.build.directory}/IntelliJ-IDEA-CE/lib/</extdirs>

</compilerArguments>
</configuration>
<executions>

<execution>
<id>analyze-compile</id>
<phase>compile</phase>
<goals>

<goal>compile</goal>
</goals>

</execution>
</executions>

</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<executions>

<execution>
<id>copy-dependencies</id>
<phase>prepare-package</phase>
<goals>

<goal>copy-dependencies</goal>
</goals>
<configuration>

<outputDirectory>${project.build.directory}/lib</outputDirectory>
<excludeArtifactIds>org.jetbrains.intellij-ce</excludeArtifactIds>
<excludeTransitive>true</excludeTransitive>
<overWriteReleases>false</overWriteReleases>
<overWriteSnapshots>false</overWriteSnapshots>
<overWriteIfNewer>true</overWriteIfNewer>

</configuration>
</execution>

</executions>
</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<configuration>

<outputDirectory>${project.build.directory}/lib</outputDirectory>
<archive>

<manifest>
<addClasspath>true</addClasspath>

</manifest>
</archive>
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</configuration>
</plugin>

<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.5.5</version>
<configuration>

<descriptors>
<descriptor>resources/zip.xml</descriptor>

</descriptors>
</configuration>
<executions>

<execution>
<id>make-zip</id>
<phase>package</phase>
<goals>

<goal>single</goal>
</goals>

</execution>
</executions>

</plugin>
</plugins>

</build>

</project>
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