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Chapter 1

Introduction

1.1 Background: The evolution of ultrashort pulses

This thesis is written in the year 2010, which marks the 50th anniversary of the birth of the laser.
In 1960, Theodore H. Maiman constructed the first laser at Hughes Research Laboratories, Malibu,
California [1]. The first laser used a solid-state flash lamp-pumped ruby crystal to produce red light
at 694 nm. Later in 1960, Ali Javan, and William R. Bennett constructed the first gas laser, using
helium-neon, that was capable of continuous operation [2]. In 1970, Zhores Alferov in the USSR,
Izuo Hayashi and Morton Panish of Bell Telephone Laboratories, independently developed the first
room-temperature, continuous operation diode laser with a heterojunction structure [3, 4]. In the
following 40 years, lasers are being used in carrying out business, health care and communication
all over the world. Nowadays, we use lasers to read and write CDs and DVDs, to guide commercial
aircrafts, and provide worldwide communications. All these applications take advantage of the dis-
tinctive properties of laser light: monochromatic, directional and coherent.

One of the most important development in the history of the laser is the invention of short pulsed
lasers. Unlike continuous wave lasers, pulsed lasers emit very narrow pulses where very high peak
powers can be achieved. An ultra short pulsed laser is a laser that emits ultrashort pulses, whose
durations are on the order of the femtosecond (10−15 s). In the 1970’s, a few hundred femtosecond
pulses were generated in passively mode-locked dye lasers [5]. In the 1980 and 1990’s, Ti:Sapphire
crystal became the most widely used source of ultra short pulsed lasers and pulses could be gener-
ated from a few hundreds of femtoseconds to a few tens of femtoseconds, depending on the con-
figuration of the laser [6]. Titanium Sapphire has not only good thermal and mechanical properties,
but also tuning range as large as 500 nm. Alongside this, new mode-locking mechanisms were de-
veloped. Kerr lens mode locking was first reported in 1991 and in a few years, pulses as short as
a few femtoseconds were generated [7]. In 1999, the self-referenced phase stabilization technique
was first reported by two groups simultaneously [8, 9]. In 2005, the Nobel prize was awarded to
Theodor W. Hänsch and John L. Hall who were the key people in each of these groups which made
this discovery. A phase-stabilized femtosecond laser generates a long train of pulses who have fixed
inter-pulse distances and phase relations. This stabilized pulse train corresponds to a frequency
comb in the spectrum, with very narrow and accurate comb lines. The invention of the frequency
comb opened up a new era of ultrafast measurement techniques.

1



2 Chapter 1 Introduction

1.2 Frequency comb metrology: A ruler on frequency, time and distance

To most people in the world, one second is simply a "tick" on the clock. But to the physicist, the def-
inition of this "tick" has never been easy. Before the 1960s, the definition of the second was based
on the motion of the earth: one second was defined as 1/86400 of the average time required for the
earth to complete one rotation about its axis or a day. However, the definition of "a day" is not easy.
Astronomical observations revealed that the period of earth’s rotation is also changing slightly over
the years. Thus the motion of the earth can not be considered a suitable standard to define the unit
of time.

At the 13th General Conference on Weights and Measures in 1967, the second obtained a new def-
inition taking advantage of the invention of atomic clocks. A second was defined as "the duration
of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine
levels of the ground state of the cesium 133 atom". Up to now, the best cesium fountain atomic
clock is NIST-F1, located at the National Institute of Standards and Technology in the United States
of America. Its accuracy is better than one second in more than 60 million years [10].

A frequency comb allows a direct link from the microwave frequency of a cesium clock to optical
frequencies. A stabilized frequency comb has a wide spectrum spanning an octave of wavelengths,
with equidistant lines separated by the repetition frequency of the laser. All the frequencies in the
comb are tracable to the reference clock. A frequency comb can thus be used as an optical ruler to
measure:

• Optical frequency If the comb frequencies are known, any optical frequency that falls within
the bandwidth of the comb can be measured by measuring the beat frequency of the un-
known optical frequency and the frequency comb. The beat notes reveal the difference in
frequency between the unknown frequency and the comb frequencies [8, 11–13].

• Time interval Most events in atoms and molecules occur on fs and ps time scales. Ultrafast
spectroscopy involves studying ultrafast events that take place in a medium by using ultra-
short pulses and delays for time resolution. Here the femtosecond laser works as a super high
speed illumination and detection system, which diagnoses and resolves ultrafast phenomena,
such as the dynamics of biological molecules [14, 15].

• Distance In the 17th General Conference on Weights and Measures in 1983, the meter is de-
fined as the distance traveled by light in free space in 1/299792458 of a second. The con-
nection between the definition of meter and the cesium clock makes the frequency comb a
promising tool for distance measurement [16, 17].

1.3 Distance measurements using lasers

In distance measurement, accuracy, ambiguity range, coherence length of the source, complexity of
the system, measurement speed and absolute or incremental characters, are all important consid-
erations during the selection of a certain technique. Since the laser could be used for measuring
distances, a huge range of applications led to many different techniques depending upon the ap-
plications. For example, measuring the distance between satellites in low earth orbit needs high
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accuracy, absolute measurement and most important, with a simple system because the room on
a satellite is dramatically limited. The frequency sweeping interferometry is more fit for this task
since it uses only one laser. For long distance measurements in atmosphere, the complexity of the
system becomes less important, but the turbulence of the refractive index of air has to be taken
into account. Thus multiple wavelength interferometry becomes more powerful for its large choice
of synthetic wavelengths. The white light interferometry can achieve nanometer accuracy, but the
coherence length of the source is very short. This makes it especially good for measuring the rough-
ness of the sample surface, normally in the order of micrometers.

When the femtoseond frequency comb laser was invented, the combination of femtosecond tech-
nique with the traditional interferometry opened up a new chapter on distance metrology. On one
hand, the femtosecond frequency comb can be viewed as a multi-wavelength source. There are
around 105 stabilized wavelengths equally spanning a whole frequency range. The ambiguity range
is the inter-pulse distance, around 1 m for a typical femtoscond pulse laser. On the other hand, be-
cause of the broad spectrum, the femtosecond laser can also be considered as a white light source,
but with very long coherence length [18]. The line width of the femtosecond laser is less than 10 kHz
for a normal Ti:Sapphire laser, corresponding to a coherence length of more than 10 km [18, 19].

1.4 Inter-satellite distance metrology

In recent times, many science missions are being proposed and carried out in outer space. For this,
satellites have to fly in formation in space. The launching, deployment and final commissioning of
these satellites plays huge demands on the metrology systems.

1.4.1 Grace

Satellite arrays are used for instruments that are too large to fit on a single satellite. By using a com-
bination of metrology and closed loop control of the formation, it becomes possible to form a much
larger, virtual structure. Very high accuracy distance measurements are needed for some satellites
that fly in close formation and cooperate constantly. One of the great successes is the Grace mission,
launched in 2002, which tries to measure the gravitational field of the earth [20]. The mission used
a microwave ranging system to accurately measure changes in the speed and distance between two
identical spacecraft flying in a polar orbit about 220 kilometers apart, 500 kilometers above Earth.
The ranging system is so sensitive it can detect separation changes as small as 10 µm, about one-
tenth the width of a human hair over a distance of 220 kilometer.

1.4.2 Darwin/TPF

An intriguing question is whether there are earth-like planets outside of our solar system. Tradi-
tional ways to find exo-planets are normally indirect detection methods, such as measuring the
Doppler shift in the optical spectrum of the star. Direct detection methods to find the exo-planet
are difficult, mainly because the planet is much smaller and darker than its parent star. Darwin is
the planned space mission from the European space agency (ESA) to investigate exo-planets using
aperture synthesis in the far infrared [21]. In the Darwin mission, three free-flying space telescopes,
each three to four meters in diameter, will fly in formation as an astronomical interferometer. These
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telescopes will collect light from distant stars and planets and recombine it interferometrically onto
a fourth spacecraft, which would carry the beam combiner, spectrometers, and cameras. In 2002,
National agency National Aeronautics and Space Administration (NASA) proposed a similar mission
called TPF (Terrestrial Planet Finder). Multiple small telescopes on a fixed structure or on separated
spacecraft floating in precision formation would simulate a much larger, very powerful telescope.

1.4.3 Lisa/BBO

High accuracy distance measurement among satellites are required when the scientific mission is to
detect the gravitational wave. The Laser Interferometer Space Antenna (LISA) mission is to detect
and observe, in detail, gravitational waves from astronomical sources [22]. LISA is intended to mea-
sure gravitational waves by using laser interferometry over astronomical distances. It will use three
spacecraft arranged in an equilateral triangle to form a giant Michelson interferometer with arms
about 5 million kilometers long. When a gravitational wave disturbs the space-time field between
two of the spacecraft, small differences in the relative lengths of the arms should be measurable. A
proposed successor of LISA will be the Big Bang Observer (BBO), who will observe the gravitational
waves from the time shortly after the Big Bang. The proposed instrument is a collection of four in-
struments like LISA, each composed of three spacecraft flown in a triangular pattern.

1.5 Goal of our research and the outline of this thesis

In this thesis, we will investigate the possibility for long distance measurement by using a stabilized
femtosecond pulsed laser. The expected accuracy is in the order of 10−8. During this thesis, we
measured a path length up to 100 m on a 50 m bench in the lab of VSL. The accuracy is around
one micron, limited by the influnce of air turbulence. The phenomenon of propagating ultra short
pulses in dispersive media will be investigated.

We start from an overview of all the coherent distance measurement techniques in Chapter 2. In
Chapter 3, we will give an introduction to ultrashort pulses and investigate the possibility to use
the stabilized femtosecond pulses as a tool for long distance measurement. Chapter 4 is a general
description for linear measurement techniques for ultrashort pulses. This is the most important
part of this thesis because it will bring us to two different measurement methods, based on mea-
suring cross correlations and spectral interferograms respectively. The experiments will be further
discussed and tested in Chapter 5 and Chapter 6 for the two methods. Chapter 7 contains the con-
clusion and discussion.



Chapter 2

Distance Measurement Interferometry

An optical interferometer is an optical instrument which combines two or more light waves to give
interference. The interference can be achieved by using different optical configurations, for exam-
ple, Mach-Zehnder, Michelson, Sagnac or Twymann-Green interferometers. The most commonly
used interferometer for displacement measurement is the Michelson interferometer. It is composed
of a single beam splitter which is used for dividing the beam into two arms: a fixed reference arm
and a movable measurement arm. The two beams travel over two different paths and recombine
at the detector. The quasi-monochromatic continuous wave laser such as HeNe laser is often used
as the source of the Michelson interferometer. However, compact and low-cost Michelson inter-
ferometers were developed by using stabilized laser diodes as light sources, normally with shorter
coherent lengths.

Optical Interferometer can provide extreme precise measurements of distance, displacement and
shapes of surfaces [23, 24]. Interferometry has been very important for precise distance measure-
ment. The high accuracy is provided by interference giving rise to periodic variation of intensity
with optical path changes, for example from the displacement of a mirror in the interferometer.
The period of the variation corresponds to a change in optical path by one wavelength, λ, which is
about 1/2 µm when visible light is used. By careful measurement and analysis of the interference
fringes, measurement uncertainties of less than 1/1000 of a fringe can be achieved. However, the
accuracy will be further limited by the practical realizations, e.g., the interferometer alignment or
the drift of optical components.

2.1 Laser interferometry

2.1.1 Single wavelength interferometry

Although most lasers generate Gaussian beams, we will approximate the beam by a plane wave to
simplify the calculation. The complex form of a plane wave before entering the interferometer is,

E(t )|l=0 = 2|E |e−i (ω0t+φ0) (2.1)

where |E | is the scalar amplitude, ω0 is the optical frequency and φ0 is the initial phase. Suppose the
distance of the reference arm and the measurement arm is lr and lm respectively, and the intensities

5



6 Chapter 2 Distance Measurement Interferometry

of both arms are equal. Ignoring the absorption of the media, we have,

Em(t , lm) = |E |e−i (ω0t−2klm+φ0) (2.2)

Er (t , lr ) = |E |e−i (ω0t−2klr +φ0)

where k is the wave vector. Here the factor 2 comes from the back and forth propagation of the
light. Within this thesis, we always use small l to denote the length of an arm of the interferometer
and capital L to denote the path length of the light, or the path length difference in a Michelson
interferometer.

k = 2πn0/λ0 (2.3)

with λ0 the wavelength in vacuum and n0 the refractive index at λ0 . The detected combined inten-
sity is,

I (L) = |Em +Er |2 = 2|E |2(1+cos∆φ0) (2.4)

Here the phase difference of the two beams returning from both arms is,

∆φ0 = 2k(lm − lr ) = 2πn0L

λ0
(2.5)

where L = 2(lm − lr ) is the path-length difference between the two arms. Substitute Eq. 2.5 into
Eq. 2.4, we have,

I (L) = 2|E |2 [1+cos(2πn0L/λ0)] (2.6)

The intensity will therefore depend on the optical path difference between the two arms of the in-
terferometer.

Due to the short wavelengths of visible light, the sensitivity of a single wavelength interferomet-
ric measurement using visible light is very high. Accuracy better than 10 nm can be obtained by
using commercially available interferometers. One disadvantage of such interferometers is that the
non-ambiguity range is also limited to the optical wavelength. The consequence of the short non-
ambiguity range is the incremental manner of measuring: the reflector has to be moved over the
entire length to be measured and must remain fairly accurately in the required path during the
movement. This may sometimes be inconvenient or difficult, particularly at very long distances.

2.1.2 Multiple wavelength interferometry

An excellent solution to increase the non-ambiguity range is performing the measurement at more
than one wavelength [25]. The true distance is then obtained by comparing the measurement re-
sults of different wavelengths. Let us first consider an interferometer that uses two different wave-
lengths at λ1 and λ2. Suppose the initial beams of wavelength λ1 and λ2 are,

E1(t )|l=0 = 2|E1|e−i (ω1t+φ1) E2(t )|l=0 = 2|E2|e−i (ω2t+φ2) (2.7)

where, |E1|, ω1 and φ1 are the scalar amplitude, optical frequency and the initial phase correspon-
ding to λ1. The symbols |E2|, ω2 and φ2 have the same for wavelength λ2. Suppose the beam splitter
is 50-50% and the absorption is ignored, the light coming back from both arms are,

E1r (t , lr ) = |E1|e−i (ω1t+φ1−2k1lr ) E1m(t , lm) = |E1|e−i (ω1t+φ1−2k1lm ) (2.8)

E2r (t , lr ) = |E2|e−i (ω2t+φ2−2k2lr ) E2m(t , lm) = |E2|e−i (ω2t+φ2−2k2lm )

where k1 and k2 are the wave vectors corresponding to λ1 and λ2. Both reflected beams are focused
onto a slow detector. The averaged interference signal becomes

I (lr , lm) = 〈|E1r +E1m +E2r +E2m |2〉= 〈
(E1r +E1m +E2r +E2m) (E1r +E1m +E2r +E2m)∗

〉
(2.9)
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The brackets <> denote the time average. The expansion of Eq. 2.9 contains 16 terms. But due to
the time averaging, all the cross terms containing both wavelengths, such as E1r E∗

2r or E2mE∗
1r , are

zero. Eventually, we have,

I (L) = 2|E1|2(1+cos∆φ1)+2|E2|2(1+cos∆φ2) (2.10)

where,
∆φ1 = 2πn1L/λ1 ∆φ2 = 2πn2L/λ2 (2.11)

Here n1 and n2 is the refractive index at λ1 and λ2 respectively. Eq. 2.10 is simply the incoherent
superposition of the individual interference signals for λ1 and λ2. The intensity I (L) shows a beat
frequency of the optical path difference. To see this, we suppose the wavelength λ1 and λ2 are close
to each other, let us define,

2

λ0
= 1

λ1
+ 1

λ2
(2.12)

If |E1| = |E2| = |E |, then Eq. 2.10 becomes,

I (L) = 4|E |2 +2|E |2 (
cos∆φ1 +cos∆φ2

)= 4|E |2
[

1+cos

(
∆φ1 +∆φ2

2

)
cos

(
∆φ1 −∆φ2

2

)]
(2.13)

By substituting Eq. 2.11 into Eq. 2.13, we have,

I (L) = 4|E |2
{

1+cos

[
πn0L

(
2

λ0

)]
cos

[
πn0L

(
1

λ1
− 1

λ2

)]}
(2.14)

Here n0 is the refrective index at λ0. By defining the synthetic wavelengths,

2

Λ0
=

∣∣∣∣ 1

λ1
− 1

λ2

∣∣∣∣ (2.15)

we can write,
I (L) = 4|E |2 [1+cos(2πn0L/λ0)cos(2πn0L/Λ0)] (2.16)

Here, the phase difference is sensitive to a new synthetic relatively long wavelength Λ0, rather than
the optical wavelength λ1 and λ2. Therefore, compared with the single wavelength interferometer,
the non-ambiguity length is now increased to the synthetic wavelength, which is longer than both
optical wavelengths. Figure. 2.1 shows the interference signal as a function of L for two wavelengths
at λ1=800 nm and λ2=850 nm. The beat signal is shown in Fig. 2.1-c).

However, the sensitivity of the measurement is reduced when the measured length L/2 is calcu-
lated by only using the synthetic wavelength. To overcome this problem, it is effective to use the
synthetic wavelength for calculation of the fringe order of the optical wavelengths and benefit from
the lower uncertainty of the latter for the length measurement. In this case the measurement un-
certainty with the synthetic wavelength must not exceed one quarter of the optical wavelength to
get the correct fringe order. The maximum possible synthetic wavelength is therefore limited.

The non-ambiguity length can be further increased by adding lasers with more wavelengths [26].
For more than three wavelengths, suppose the amplitude of the n-th wavelength is En , the optical
frequency is ωn , the initial phase is φn and the wave vector is kn , Eq. 2.9 can be now written as,

Iω(lr , lm) =
(

N∑
n=1

|En |e iφn e i (ωn t−2kn lr ) +
M∑

n=1
|En |e iφn e i (ωn t−2kn lm )

)
(2.17)(

N∑
n=1

|En |e−iφn e−i (ωn t−2kn lr ) +
N∑

n=1
|En |e−iφn e−i (ωn t−2kn lm )

〉
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where N is the total number of wavelengths used. The expansion of Eq. 2.18 has N 2 terms, but sim-
ilarly as in the two wavelengths case, the slow detector reads only the averged interference signal,
which leaves only 4×N non-zero terms,

〈I (L)〉 = 2
N∑

n=1
|En |2(1+cos∆φn) (2.18)

where

∆φn = 2πn(λn)L/λn (2.19)

Within this thesis, the frequency mode number is always labelled by n. The refrective index always
appears with footnotes or as a function of the frequency ω or wavelength λ hence can always be
distinguished with the mode number. Again, L = 2(lm −lr ) is the path length difference between the
two arms.

Normally speaking, for more than three wavelengths, there are many synthetic wavelengths. Start-
ing from the longest one, each synthetic wavelength is used to get the fringe order of the next shorter
one and finally that of the optical wavelength. But there are some practical difficulties with using
more than two lasers. The system becomes complex and the multiplex detection of different wave-
lengths is difficult.

Figure 2.1: (a) Interference signal as a function of the optical path difference L using one wavelength at
800 nm, (b) Interference signal using one wavelength at 850 nm and (c) Interference signal obtained by using
both wavelengths.

2.1.3 Frequency sweeping interferometry

In multiple wavelength interferometry, the synthetic wavelength is generated using two or more op-
tical wavelengths. Another way to solve the ambiguity problem of the single wavelength interferom-
etry is using a tunable laser as source. This technique is called frequency-sweeping interferometry
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(FSI). The key difference between the frequency sweeping interferometry and the two wavelength
interferometry is that, in frequency sweeping interferometry, the phase φ is measured continuously
during the frequency sweeping from λ1 to λ2. Unwrapping this phase yields the full phase differ-
ence ∆φ without any modulo 2π uncertainty. Compared to the multiple wavelength interferometry,
FSI relies only on a tunable laser and a frequency-sweep range measurement subsystem. If the
change of the refrective index can be ignored, the maximum synthetic wavelength Λ is inversely
proportional to the frequency sweep range ∆ω:

Λ= 2πc

nc ·∆ω
(2.20)

where nc means the refractive index at the center of the sweeping range. Normally, the frequency
sweep range is measured by a Fabry-Perot interferometer by counting the resonances of the cavity.
The sweep begins from a particular cavity mode and during the sweeping, the number of reso-
nances is detected and counted. The frequency sweep range is given by,

∆ω= 2πr ·F SR (2.21)

where F SR is the free spectral range of the Fabry-Perot cavity and r is the number of FSR detected.
While the frequency is swept, detection electronics counts the number of fringe periods and also
the remaining fractional part. The measured length is given by

L

2
=

(
N0 + φ

2π

)
·Λ

2
(2.22)

where N0 is an integer and φ is the remaining fringe phase. By substituting Eq. 2.18 into Eq. 2.20,
we have,

L

2
=

(
N0 + φ

2π

)
· c

2r ·F SR ·nc
(2.23)

The optical path length difference is determined directly by counting the interference fringes as the
laser wavelength is scanned through a known change. To implement this technique with high ac-
curacy, it needs a laser to offer continuous tuning over a wide wavelength range. Solid state and
dye lasers usually have a large tuning range. Recently, the highly coherent and tunable diode lasers
have been made more compact, efficient and reliable. They have been successfully used to measure
absolute distances [27, 28].

The main drawback of frequency-sweeping interferometry is that, the technique is sensitive to vari-
ations of distance drift during the sweep. During the measurement, the fringes in the detector are
generated by frequency sweeping, but also, by the changes in distance caused by drift. A path length
change of a single optical wavelength during the frequency sweep could therefore be misinterpreted
as a path length change of one synthetic wavelength. This will cause the noise error to be multiplied
by the amplification factor Λ/λ. This factor could be as large as 104 in a normal frequency sweep-
ing interferometry, which means a drift of 1 nm in the measurement arm will introduce an error
of 10 µm in the measurement. A first order correction for this was given by Swinkels and cowork-
ers [29]. This drawback makes the frequency sweeping interferometry difficult for measuring a long
distance in air because the fringes will be washed out due to the turbulence.
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2.2 White-light interferometry

2.2.1 Coherence length

So far we only considered perfectly monochromatic waves. However, even the single mode laser
sources have an average emission spectrum which is confined to a narrow band centered about
the central frequency. The coherence length can be used for quantifying the degree of temporal
coherence as the propagation length over which coherence degrades significantly. The coherence
length is related to the spectrum width as,

Lc = c ·τc = 2πc

∆ω
(2.24)

where τc is known as coherence time and ∆ω is the line width of the light source. The coherence
length of the light source is important in an interferometer because it determines the maximum
path length difference between the two arms where pronounced interference fringes can be ob-
served.

2.2.2 White-light interferometry

A white light source refers to a light source with a broad optical bandwidth. The light source does
not necessarily operate in the visible spectral range, really generating white light. The white light
source can be a super luminescent diode, or can be obtained by launching light from a bulb into a
single-mode fiber. White-light interferometers are widely used in non-contact surface height mea-
surements on 3D structures. From Eq. 2.22, we can see that, the coherence length of a white light
source is fairly small. This means that only when the two arms of the interferometer are close to
each other, the coherent fringes can be observed [30]. In order to obtain interference, the white light
interferometer is normally made by two independent interferometers. The first one is called the
sensing interferometer which has a path-length difference to be measured, which is much longer
than the coherence length of the white light source. In the second so called receiver interferometer,
the path length difference is compensated and the output light beams are interfered. Suppose the
path length differences of the sensing and receiver interferometers are Ls and Lv respectively, we
have Ls >> Lc and Lv >> Lc , but |Ls −Lv | < Lc . When Ls = Lv the interference reaches its maxi-
mum, then the measured distance, such as the surface height can be monitored by measuring the
change of Lv . The interferogram is then scanned, either mechanically in the temporal regime or
electronically with a photo diode array in the spatial regime.

2.2.3 White-light channeled spectrum interferometer

In 1995, Schenell proposed to use the white light source combined with a spectral interferome-
ter [31]. Figure. 2.3 shows the principle of their measurement. The distance L/2 to be measured is
the difference between the two arms of the Michelson interferometer formed by a beam splitter (BS)
and two plane mirrors. The beam of the white-light source (WLS) is collimated into the interferom-
eter and the output light is reflected by a diffraction grating. The diffracted beam is then focused by
the lens onto a linear photo diode array (PDA). Suppose the spectrum of the white light source is
Ê(ω), the spectral interference observed by the PDA should be,

S(ω) = 2|Ê(ω)|2 [
1+cos

(
ϕm −ϕr

)]
(2.25)

where ϕr and ϕm refer to the spectral phase of both arms. The phase difference is given by,

ϕ(ω) =ϕm −ϕr =ωn(ω)L/c (2.26)
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Figure 2.2: Schematic of the experimental setup of the white light interferometer

Figure 2.3: Schematic of the experimental setup of the white light channeled spectrum interferometer for
absolute distance measurement using a diffraction grating and a photo diode array
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with n(ω) the refractive index as a function of ω and L the path length difference between the two
arms. If the refractive index n(ω) can be approximated by a constant nc , then ϕ(ω) is a linear func-
tion of ω and the absolute distance L is directly obtained from the slope dϕ/dω through

L = c

nc

dϕ

dω
(2.27)

A typical spectrum interference signal is shown in Fig. 2.4-(a). The spectral amplitude of the white
light source is simulated as a Gaussian function, centered at 3.7474×1014 Hz (800 nm) with a band-
width (Full width half maximum) of 1×1014 Hz (217 nm). This corresponds to a coherence length
of 3 µm. Figure. 2.4-(b) and Fig. 2.4-(c) show the spectral interferences at L equals to 10 µm and
20 µm respectively. We can see that, the modulation depths drop significantly as the measured dis-
tance exceeds the coherence length of the white light source. Using a narrower bandwidth white
light source can make it possible to measure a longer distance, but more than 1 mm distance can
hardly be achieved without using the receiving interferometer.

Figure 2.4: (a) Simulation of the power spectral density of a typical white light source. (b) The interference
signal at L = 10 µm and (c) the interference signal at L = 20 µm. The modulation depths drop as the measured
distance exceeds the coherence length of the white light source.

2.3 Determination of the refractive index

2.3.1 Refractive index of air

In most distance measurement interferometers, the wavelengths of the light in air are the basic
length scales. The wavelength in air is related to the vacuum wavelength by the refractive index,

λ=λ0/nai r (2.28)

The refractive index of normal air differs from 1 by about 2.7×10−4. For interferometric length mea-
surements in air nai r has to be determined very accurately. However, uncertainties of the air re-
fractive index smaller than 10−8 are only possible under well-defined laboratory conditions using
sophisticated instruments for either measurement of environmental parameters together with ap-
propriate equations or optical refractometers.

The physical background of the refractive index of air is based on the Lorenz-Lorentz equation for
the refractive index of a mixture of gases [32]:

n2
ai r −1

n2
ai r +2

=∑ 4

3
π

(
NA

Mi

)
αiρi (2.29)

where NA is the Avogadro’s number, Mi is the molecular weight, αi is the polarizability and ρi is
the partial density of the i th component of the mixture. To calculate the partial density of each
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T (◦C) 10 15 20 25 30
SVP (mmHg) 9.21 12.79 17.54 23.76 31.8

Table 2.1: The saturated vapor pressure (SVP) of water in air at different temperatures.

component in moist air requires an accurate measured set of the environmental parameters as air
pressure, temperature and humidity.

Alternatively to the above-mentioned formalism, there exist a number of empirical equations for
the refractive index of air which are called Edlén equations, published by Bengt Edlén in 1966 [33].
K. P. Birch and M. J. Downs added further corrections to the Edlén’s equation in 1993 [34] and again
in 1994 [35]. The basis of these specialized equations are the precise measurements of the refractive
index of air under well-defined laboratory standard conditions, that is, these equations may not be
valid in other environmental parameters (e.g., in geodetically length measurement) where Ciddor
equation is mandatory [36–38]. In our experiments, we used the Edlén’s equations because the ex-
periments were performed in controlled laboratory conditions. According to K. P. Birch and M. J.
Downs, the revised form of the Edlén’s equations are,

(nai r −1)t p = p(nai r −1)s

96095.43
× 1+10−8 × (0.601−0.00972T )p

1+0.0036610T
(2.30)

where the unit of pressure is Pa and temperature is ◦C. (n −1)t p is the refractivity of air at tempera-
ture T and atmospheric pressure p and (n −1)s is given by the revised dispersion equation,

(nai r −1)s ×108 = 8342.54+2406147× (130−σ2)−1 +15998× (38.9−σ2)−1 (2.31)

where σ is the vacuum wave number in µm−1. For the difference in the refractive index of moist air,
containing a partial pressure f of water vapour, and dry air at the same total pressure the following
revised expression has been obtained,

nt p f −nt p =− f (3.7345−0.0401σ2)×10−10 (2.32)

Here the humidity is measured by the partial pressure f . The amount of water vapor in the air at
any given time is usually less than that required to saturate the air. The relative humidity is the
percent of saturation humidity, generally calculated in relation to saturated vapor density.

Rel ati ve Humi di t y = Actur al vapor densi t y

Satur ati on vapor densi t y
×100% (2.33)

and the saturation vapor density is linked to the partial pressure. Table.2.1 shows the saturated va-
por pressure (SVP) at different temperatures around 20◦C. In Fig. 2.5 we show a typical variation
of nai r as a function of frequency at standard environmental conditions, of 20 ◦C, 1013.25 hPa and
45% humidity.

The uncertainty associated with the Edlén’s equations is 1×10−8 [39]. Normal fluctuations in condi-
tions such as temperature and air pressure will cause a variation of not much over 10−6. TABLE 2.2
shows the sensitivity of the air refractive index to changes of environmental parameters at standard
conditions. A slightly change on enviromental conditions will influence the measured distance. In
cases where the distances are so long that variation of n along the path would cause a significant er-
ror, then the temperature, pressure and humidity must be measured along the path as well as at the
end points. For some distance measurements, instead of a direct determination of n, use is made of
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Figure 2.5: Typical variation of nai r as a function of frequency at standard environmental conditions, of 20 ◦C,
1013.25 hPa and 45% humidity.

Influence Change Sensitivity in n Fluctuations at 100 m
Temperature 0.1 ◦C -0.95e-7 +9.46 µm

Pressure 1 hPa +2.70e-7 -26.9 µm
Relative Humidity 1% -0.08e-7 +0.8 µm

Table 2.2: Sensitivity of the air refractive index to changes of environmental parameters at standard condi-
tions.

a technique whereby one compares the longer distance with a known standard short length through
the atmosphere, thus eliminating to first approximation the need for considering n, which tend to
be the same over the standard and measured length. For open paths of more than one kilometer,
interferometry can hardly be used because rapid fluctuations in the atmospheric density cause the
fringes to wash out. Instead, amplitude or polarization modulation of a light beam is used.

2.3.2 Refractive index of other media

In case in one of the arms of the interferometer other kinds of dispersion media, such as water or
glass (BK7, flint glass, etc.) are placed, the appropriate refractive index relations have to be used.
In this thesis, we performed some typical simulations using BK7. The refractive index equations of
BK7 has been taken from the Sellmeier equation [40].
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Stabilized femtosecond ultrashort pulse

3.1 Time and frequency domain pictures of a pulse train

An ultrashort pulse is an electromagnetic field whose time duration is of the order of femtoseconds
or even less [41]. Neglecting the spatial dependence, the electric field of an unchirped pulse is given
by,

E(t ) =
√

I (t )e−i (ωc t−φ0) (3.1)

where ωc is the carrier frequency, φ0 is the initial phase and I (t ) is the pulse intensity. Here, we
decomposed an ultrashort pulse into an envelope function and a continuous carrier wave with fre-
quency ωc . We call the pulse unchirped when the phase of the electric field depends linearly on
time. A pulse has a power spectrum that is the shifted Fourier transform of its envelope function so
that it is centered at the optical frequency of its carrier. Generally, the width of the spectrum will be
inversely proportional to the temporal width of the envelope.

Ê(ω) =
√

S(ω)e−iϕ(ω) (3.2)

Here, S(ω) is the power spectral density and ϕ(ω) is the spectral phase.

For a train of identical pulses, separated by a fixed interval Lpp in vacuum, the spectrum is a comb
of regularly spaced frequencies, with a mutual separation equal to the repetition frequency fr =
c/Lpp , where c is the speed of light in vacuum. Considering the initial phase of a pulse φ0, there is
a phase shift between the peak of the envelope and the closest peak of the carrier wave. As a train
of pulses propagates in a dispersive media, the difference between the group and phase velocity
will cause a phase increment ∆φ from pulse to pulse. This phase shift results in an offset frequency
f0, generally referred to as the carrier-envelope offset (CEO) frequency. The CEO and the repetition
frequency are related by f0 = (∆φ/2π) fr . This is illustrated in Fig. 3.1. The comb lines can be written
as,

fn = n· fr + f0, (3.3)

with n the mode number of the frequency comb.

15
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Figure 3.1: a) Illustration of the carrier-envelope phase shift in the time domain. A pulse to pulse phase
shift ∆φ is observed. b) Corresponding optical frequency spectrum with f0 the offset frequency due to the
carrier-envelope phase shift, and fr the pulse repetition rate

3.2 Femtosecond pulse generation

3.2.1 A brief history of mode locking

In general, a multimode continuous wave laser oscillates in many spacially different modes. The
phases of these modes are unrelated. Since the invention of the solid state laser in the 1960’s, peo-
ple realized that, if the oscillating modes can be forced to have frequencies that are separated by a
multiple of a given (repetition) frequency fr , such that at some instant in time and place they are all
in phase, then the mode amplitude will add constructively, resulting in an intensity maximum [42].
The result then is a periodic sequence of short mode-locked pulses separated by time interval 1/ fr .
The width of the pulses will be approximately equal to the inverse of the total bandwidth of the
laser output, or 1/N fr , where N is the total number of oscillating laser modes. Mode locking re-
quires a mechanism that results in a higher net gain for short pulses as compared to continuous
wave (cw) operation. This mechanism can be either active or passive. Active mode locking means
inserting some elements into the laser cavity that sinusoidally modulates the amplitude of the pulse,
either by acousto-optic modulation or electro-optic modulation [43]. Because of the limitation of
the electronics, active mode-locking can hardly go faster than nanosecond domain. On the other
hand, passive mode-locking means inserting some material, e.g. a saturable absorber, into the laser
cavity that favors only high intensities [44,45]. The weak pulses are suppressed and the strong pulse
is shortened and amplified. The ultimate limit on minimum pulse duration in such a mode-locked
laser is due to the interplay between the passive medium, the net gain bandwidth and the group-
velocity dispersion (GVD).

Remarkable progress in the generation of femtosecond pulses with solid state lasers has made due
to the discovery of the Kerr-lens mode locking (KLM) with a Ti:sapphire crystal in 1991 [6, 7]. The
Kerr-lens effect is a phenomenon that a medium’s refractive index depends on the light intensity. If
the pulse is more intense in the center, it induces a lens. If a pulse experiences additional focusing
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due to high intensity and the nonlinear refractive index, and we align the laser for this extra focus-
ing, then a high-intensity beam will have better overlap with the gain medium. In the cavity, losses
are too high for a low-intensity cw mode to lase, but not for high intensity femtosecond pulse. This
technique makes it possible to generate stable femtosecond pulses [8].

Figure 3.2: The femtosecond laser cavity in VSL. The cavity has a butterfly design, with specially coated
chirped mirrors.

3.2.2 The Ti:Sapphire mode locked femtosecond laser

In this section we will introduce the Ti:Sapphire mode locked laser in the laboratory at VSL1, which
we used for all the experiments described in this thesis. The heart of the femtosecond laser is a
titanium-doped sapphire crystal, pumped with a single frequency green laser, with the power of
5.5 W. The cavity of our laser has a design as shown in Fig. 3.2. The Ti:Sapphire crystal generates a
pulse train with pulse widths as short as 40 fs. The output pulse spectrum is a frequency comb, cen-
tered at 820 nm with a width of 20 nm. The output repetition frequency fr equals to approximately
1 GHz. The CEO frequency f0 is around 180 MHz. The mirrors inside the cavity are specially coated
chirped mirrors, in order to compensate the group velocity dispersion.

In order to obtain a stable output frequency comb, both fr and f0 have to be stabilized. The sta-
bilization of both fr and f0 is achieved because one of the high-reflector mirror is mounted on
a piezoelectric transducer tube that allows both tilt and translation. Measurement of fr can be
achieved by simply detecting the pulse train’s repetition rate with a fast photodiode. By compar-
ing a high harmonic of the pulse repetition rate with the output of a high-stability radio frequency
synthesizer, a feedback loop can lock the repetition rate fr by translating the mirror. The mea-
surement of f0 is more complicated and requires an interferometric measurement. The ultrashort
pulses are first sent through a special nonlinear dispersive optical fiber to broaden the spectrum
of the mode-locked laser into an octave. Inside the fiber, nonlinear processes including self-phase
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modulation and group velocity dispersion take place. The offset frequency is obtained by taking the
difference between 2 fn and f2n . This is done by shining the output of the nonlinear optical fiber
onto a nonlinear crystal and combing the doubled signal with f2n on a photo detector. The result-
ing RF heterodyne beat is 2 fn − f2n = 2(n fr + f0)− (2n fr + f0) = f0, which is just the offset frequency.
Because the pulse spectrum is spatially dispersed across the high reflector mirror, tilting of this mir-
ror provides a linear phase change with frequency, thereby controlling the CEO frequency f0. The
experimental setup for locking the carrier-envelope offset is shown in Fig. 3.3.

Figure 3.3: Experimental setup for locking the carrier-envelope relative phase. The femtosecond laser is lo-
cated inside the shaded box. The high-reflector mirror is mounted on a transducer to provide both tilt and
translation.

3.3 Femtosecond pulse propagation

3.3.1 Group velocity dispersion

The expression in Eq. 3.1 is only correct for a non-chirped pulse. When a pulse propagates in a
dispersive medium, the low frequencies will move faster (or slower) than the high frequencies. The
pulse will therefore be broadened and chirped. This effect is called group velocity dispersion [32,
46]. In this section, we will explain this effect for a Gaussian shapes pulse. In the time domain, a
normalized nonchirped Gaussian shaped pulse can be written as,

Ei n(t ) = e−(t/2τHW )2
e−iωc t+φ0 (3.4)

where, τHW is the half width at 1/e maximum of the pulse envelope, ωc is the carrier frequency and
φ0 is the initial phase. In the frequency domain,

Êi n(ω) = e−(ω−ωc )2/2σ2
(3.5)

where, σ is the spectrum width with σ = 1/τ. After propagating a distance L in a homogeneous
medium, the electric field is

Êout (ω) = Êi n(ω)e−α(ω)Le−i k(ω)L (3.6)
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where, α(ω) is the absorption coefficient at angular frequency ω and k(ω) is the wave number. We
can expand the k vector into its Taylor series around the central frequency,

k(ω) = k(0)(ωc )+k(1)(ωc ) (ω−ωc )+ 1

2!
k(2)(ωc ) (ω−ωc )2 + 1

3!
k(3)(ωc ) (ω−ωc )3 +·· · (3.7)

where

k(1)(ωc ) = dk

dω
|ωc k(2)(ωc ) = d 2k

dω2 |ωc k(3)(ωc ) = d 3k

dω3 |ωc (3.8)

The zero-th item is the propagation of the carrier frequency,

k(0)(ωc ) = n(ωc ) ·ωc /c (3.9)

where the phase velocity of the carrier frequency is,

vp =ωc /k(0)(ωc ) = c/n(ωc ) (3.10)

Now let us see the effect of the term that depends linearly on the frequency, i.e the term k(1)(ω)(ω−
ωc ). By substituting k(ω) = k(0)(ωc )+k(1)(ωc )(ω−ωc ) into Eq. 3.6. We obtain,

Êout = e−(ω−ωc )2/2σ2
e−i[k(0)+k(1)(ω−ωc )]L (3.11)

and the inverse Fourier transform of Eq. 3.11 is,

Eout = e(t−k(1)L)2
/2τ2

HW e−iωc (t−k(0)L) (3.12)

Let vg = 1/k(1)(ωc ), then Eq. 3.12 becomes,

Eout = e

(
t− L

vg

)2
/2τ2

HW e
−iωc

(
t− L

vp

)
(3.13)

It is clear that the envelope and the carrier phase propagate with different speeds, when L is equal
to one cavity length Lpp , the difference, Lpp /vg −Lpp /vp is called carrier-envelope offset, which has
been discussed in last section.

Now we consider also the term in Eq. 3.7 that depends quadratically on ω−ωc . If we substitute
k(ω) = k(0)(ωc )+k(1)(ωc ) (ω−ωc )+ 1

2! k
(2)(ωc ) (ω−ωc )2 into Eq. 3.6, we get,

Êout = e(ω−ωc )2/2σ2
e−i[k(0)+k(1)(ω−ωc )+k(2)(ωc )(ω−ωc )2/2]L (3.14)

Please notice that Eq. 3.14 is a complex Gaussian function and that its inverse Fourier transform is,

Eout = e
1
4

α

α2+β2

(
t− L

vg

)2

e
− 1

4
βi

α2+β2

(
t− L

vg

)2

e
−iωc

(
t− L

vp

)
(3.15)

where

α=−1

4
τ2

HW β= 1

2

d 2

dω2 k(ω)|ωc L (3.16)

The first factor at the right of Eq. 3.15 is the broadened Gaussian amplitude and the third factor is
the carrier wave. The second factor is called the phase chirp because different frequencies propa-
gate at different speeds. For this reason the quadratic term in Eq. 3.7 is also called group velocity
dispersion(GVD). The GVD determines the width of the output pulses. Inside the Ti:Sapphire cavity,
the GVD introduced by air must be compensated by the special chirped high reflection mirrors.
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Envelope width is unchanged.
k(1)(ωc ) Carrier-Envelope offset appears L/vp −L/vg .

Maximum fringe propagates at vg .
Envelope width is broadened.

k(2)(ωc ) Carrier phase is linear chirped.
Maximum fringe propagates at vg .
Envelope shape is changed.

k(3)(ωc ) Carrier phase is nonlinear chirped.
Maximum fringe propagates NOT at vg .

Table 3.1: Comparison of the first, second and third orders of the expansion of the k vector in a dispersive
medium.

For the higher orders of k(ω), we presently do not have an analytic solution. But from simulations
it can shown that the envelope function will change from a Gaussian to much complicated form.
At the same time, the carrier is nonlinearly chirped and the definition of the group velocity of the
envelope does not work [47]. The peak of the pulse intensity does not propagate with the group
velocity defined as vg = dk

dω (ωc ). In Table.3.1 we give a summary of the effect of the first three orders
in Eq. 3.7. Let us give an example by considering a well-known dispersive medium: air. At a center
wavelength of 800 nm, k(0) = 7.86×106, k(1) = 3.34×10−9, k(2) = 2.13×10−29 and k(3) = 1×10−44. Now
we simulate a Gaussian spectrum, centered at 3.7474× 1014 Hz (800 nm) with a bandwidth (Full
width half maximum) of 1×1014 Hz (217 nm) as shown in Fig. 3.4-(a). The pulse shape is also taken
to be a Gaussian function with the pulse width of around 10 fs, as shown in Fig. 3.4-(b). In Fig. 3.5-
(a),(b),(c) shows this pulse propagating 1 m in air (calculated by using the group refractive index
of 800 nm at 1 atm ng = 1.000279955) by considering the first, second and third order expansion
of the wavenumber k respectively. The refractive index of air is calcualted by the updated Edlén’s
Equation [39].

Figure 3.4: (a) Simulated Gaussian shaped spectral amplitude, centered at 3.7474×1014 Hz (800 nm) with a
bandwidth (Full width half maximum) of 1×1014 Hz (217 nm). (b) The Gaussian shape pulse corresponding
to the spectrum shown in (a)

In this section we used the slowly varying envelope approximation, originally introduced by Born
and Wolf [32]. The temporal field behavior is separated into the product of a slowly varying en-
velope function and an exponential phase term, whose angular frequency is centered about some
characteristic frequency ωc of the pulse. Hong Xiao and Kurt E. Oughstun showed that, for pulses
less than 10 fs, this approximation is not valid [48, 49]. A more complicated asymptotic description
has to be used.
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Figure 3.5: Group delay dispersion of a 10 fs pulse propagation in air. The original pulse is Gaussian shaped
shown in Fig. 3.4-(b). (a) The pulse after propagating 1 m in air by considering the first order expansion of the
k vector only. (b) The pulse after propagating 1 m in air by considering the first and second order expansion
of the k vector. (c) The pulse after propagating 1 m in air by considering the first, second and third order
expansion of the k vector.

3.3.2 Self-phase modulation

The self-phase modulation (SPM) is another effect when strong pulses pass through a dispersive
medium, for example a fiber. The pulse will induce a varying refractive index of the medium due to
the optical Kerr effect.

n(I ) = n0 +n2 · I (3.17)

Here, I is the pulse intensity. n0 is the linear refractive index and n2 is the second order nonlinear
refractive index of the medium. This variation of refractive index will produce a phase shift in the
pulse, leading to a change of the pulse’s frequency spectrum. For the work performed as a part of
this thesis, the pulses mainly propagate in air where SPM can be ignored.

3.4 Femtosecond pulse characterization

3.4.1 Field autocorrelation

The ultrashort pulse measurements can be mainly categorized as either test-pulse-referencing or
as self-referencing. Test-pulse-referencing measurement means the unknown pulse is character-
ized against a well-known reference pulse, normally by building an interferometer. In the self-
referencing measurement the reference pulse is a spectrally or temporally shifted replica of the pulse
itself. In this section, we only consider the self-referencing measurements.

The most simple pulse measurement technique is the Fourier transform spectrometer. This setup
is directly derived from a Michelson interferometer, except one arm is periodically displaced. In
this case, the electric field transmitted through the device is a sequence of two pulses. The signal
recorded as function of the time delay τ between the two arms and is well known to be the first-
order autocorrelation of the incident electric field,

I (τ) =ℜ
∫ ∞

−∞
E(t )E∗(t −τ)d t (3.18)

This quantity is also called the field autocorrelation or the field interferogram. In Fig. 3.6 the schematic
of the experimental setup of the Fourier transform spectrometer and the field autocorrelation are
shown. The field autocorrelation is simulated from a 10 fs Gaussian shaped pulse as shown in
Fig. 3.4-(b). The x-axis is the separation between the two interfering pulses, which is equivalent
to twice the displacement of the reference arm. To measure a pulse, it is sufficient to measure its
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intensity and phase in either the time or frequency domains. Unfortunately, the field autocorrela-
tion gives no information on the spectral phase. The Fourier transform of the field autocorrelation
is simply the power spectral density (PSD), a result known as the Wiener-Khinchin theorem. Be-
sides the power spectral density, the field autocorrelation does not give us more information. The
number of ambiguities associated with the measurement of only the pulse spectrum is downright
humorous because we lack all knowledge of the spectral phase. This class of problems is called the
one-dimensional phase-retrieval problem and it is unsolvable. The Fourier transform spectrome-
ter is a linear measurement technique. Here, ’linear’ refers to measurements with linear optics and
slow detectors, such as photo diodes, photo diode arrays, and CCD panels. Measurements are also
possible with "‘non-linear optics"’ such as second harmonic generation. The linear techniques, es-
pecially the test-pulse-referencing linear techniques, play an important role in this thesis and we
will consider it in more detail it in Chapter 4.

Figure 3.6: (a) Schematic of the experimental setup for measuring the field autocorrelation (b) A typical field
autocorrelation.

3.4.2 Intensity autocorrelation

If the reflected beams from both arms of the Fourier transform spectrometer are spatially over-
lapped into a nonlinear-optical medium, such as a second-harmonic generation crystal, the gener-
ated second harmonic field has intensity proportional to the product of the intensities of the two
input pulses,

A(τ) =
∫ ∞

−∞
I (t )I (t −τ)d t (3.19)

The quantity is called the second-order autocorrelation or the intensity autocorrelation, or some-
times the background free autocorrelation [50]. The intensity correlation and a schematic of a typi-
cal measurement setup is shown in Fig. 3.7. It is clear that an intensity autocorrelation yields some
measurement of the pulse length, for example, the RMS (root mean square) length of the pulse will
be the square root of two times the width of the intensity autocorrelation. But generally, if we need
both the intensity and the phase, either in time or frequency domain, we need at least two inde-
pendent measurements: The intensity autocorrelation is only one measurement. This is another
one-dimensional phase retrieval problem and ambiguities always remains. To obtain the full width
half maximum of the pulse, a guess must be made as to the pulse shape. For example, a Gaussian
intensity yields an intensity autocorrelation that is

p
2 = 1.41 times wider.



3.4 Femtosecond pulse characterization 23

Figure 3.7: (a) Schematic of the experimental setup for measuring the intensity autocorrelation (b) A typical
intensity autocorrelation.

3.4.3 Fringe resolved autocorrelation

In Fig. 3.7, the reflected beams from the two arms of the interferometer are not co-linear. If the
autocorrelation is measured with collinear beams, then, combined quantities related to the inten-
sity autocorrelation and the field autocorrelation are measured in a single data trace, as shown in
Fig. 3.8. This kind of autocorrelation is called the interferometric autocorrelation or fringe-resolved
autocorrelation (FRAC), or sometimes phase-sensitive autocorrelation [51].

IF R AC (τ) =
∫ ∞

−∞

∣∣[E(t )−E(t −τ)]2
∣∣2

d t (3.20)

=
∫ ∞

−∞
[
I (t )2 + I (t −τ)2]d t −2

∫ ∞

−∞
[I (t )+ I (t −τ)]ℜ[

E(t )E∗(t −τ)
]

d t

+
∫ ∞

−∞
ℜ[

E(t )2E∗(t −τ)2]d t +4
∫ ∞

−∞
I (t )I (t −τ)d t

The FRAC contains four items: a constant which is the intensity of both pulses; the "modified in-
terferogram" with an additional factor, I (t )+ I (t − τ); the interferogram of the pulse second har-
monic and the intensity autocorrelation;. The FRAC is always symmetrical and the ideal peak-to-
background ratio in a FRAC trace is 8. Similarly as the background free autocorrelation, the FRAC
itself is not enough to characterize a pulse because it is again a one-dimensional phase retrieval
problem. Also, there is no direct links between the pulse width and the width of the interferometic
autocorrelation in general.

Figure 3.8: (a) Schematic of the experimental setup for measuring the interferometric autocorrelation (b) A
typical interferometric autocorrelation.
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3.4.4 SPIDER

As square law detectors are not sensitive to the phase, the measurement of the intensity (whether
it is spatial or spectral) is an easy task but the measurement of the phase needs indirect solutions.
SPIDER (spectral phase interferometry for direct electric-field reconstruction) is a technique which
characterizes the spectral phase of ultrashort optical pulses, based on shearing interferometry in the
optical frequency domain [52, 53]. The SPIDER only gives you the spectral phase. To characterize a
pulse, the power spectral density (PSD) need to be measured independently.

3.4.5 FROG

In the most common configuration, FROG (Frequency-resolved optical gating) is simply a background-
free autocorrelator followed by a spectrometer [54, 55]. The two-dimensional nature of the FROG
trace allows the extraction of the uniquely determined waveform intensity and phase. Compared to
SPIDER, the FROG technique measures a two-dimensional representation of the one-dimensional
field and consequently requires the collection of a relatively large amount of data. The algorithm
needed to invert the data and reconstruct the field is thereby more sophisticated. The advantage of
FROG is of practical nature as it does not require a new apparatus since in most cases an autocor-
relator and spectrometer are readily available in general optical laboratories.

3.5 Using the femtosecond frequency comb for distance interferometry

In the recent past, there have been many proposals to implement the femtosecond frequency comb
laser source for distance measurement. In 2004, Ye published the first scheme to measure an ab-
solute distance using this laser [17]. Similar schemes were also proposed by other groups. This
method relies not only on the stability of the pulse repetition frequency, but also on the stability of
the optical phase with respect to the pulse train. The idea is simply to use the frequency comb laser
as the source for a Michelson interferometer. If the path length difference of the two arms of the
interferometer is an integer multiple of the cavity length of the laser, the local and the delayed pulse
will interfere and form a so called cross-correlation trace. In theory, this would allow determining a
distance to within one optical fringe over distances as large as the coherence length of the laser.

Another scheme for using the femtosecond frequency comb laser as a tool of distance measure-
ment based on white light interferometers was proposed in 2006 by Joo and coworkers [56, 57]. The
inspiration comes from the white light channeled interferometrical techniques. Instead of the cross
correlation functions, the beams from both arms of the interferometer combined onto a spectral
interferometer. The modulated spectrum are recorded and path-length difference between the two
arms is obtained by using Eq. 2.24.

A scheme based on multiple wavelength interferometry using the frequency comb laser was pub-
lished in 2008 by Salvade and colleagues [58]. His group selected two individual frequencies from
the comb in order to accurately lock two independent continuous lasers, forming the source of a
two wavelength interferometer. The continuous lasers are necessary because the energy of each
frequency line of the femtosecond laser is very weak. For a typical output power of a Ti:Sapphire
laser of 1 W, there are 105 individual frequencies and each of these has only a power of around
10 µW.

In 2009, S.Hyun and co-authors published a fourth technique based on frequency sweeping using
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the frequency comb [59]. They used a tunable laser to make a frequency sweeping interferometer.
Instead of the Fabry-Perot cavity, they locked the output frequencies of the tunable laser to the rep-
etition frequencies of a femtosecond laser. Then the sweeping range can be accurately known by
counting the modes of the repetition frequencies of the femtosecond laser.

Another distance measurement using frequency comb has been reported in 2009 by Coddington
and coworkers [60]. This work used two frequency comb lasers and was based on the laser radar
(LIDAR) principle. Distances were measured by pulse propagation in 1.14 km of fiber. The authors
report that their data mimic those needed to make remote measurements of the pointing of a satel-
lite, or the angle of a machined surface.

Most of these publications were proposals or measurements of distances less than 1 m or in fiber
[61, 62]. Very few experiments had been done for long distances in air [63]. During this thesis, we
will give the first experimental demonstration for a measurement of distances by free propagation
of upto 50 m in air.
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Chapter 4

Linear Technology of ultrashort pulse
detection

4.1 General introduction to linear measurement techniques

In this chapter, linear techniques for short pulse characterization is discussed [64]. The conclusions
in this chapter will be very important in understanding the experiments in Chapter 5 and 6. Fig-
ure.4.1 is a schematic for a general setup for linear experiments. The incident beam is sent into a
linear device, which is characterized by its response function, R(t ) in the time domain or R̂(ω) in
the frequency domain. The transmitted pulses are then sent into a time-integrating detector. Let us
call E(t ) the electric field of the incident light beam and Ê(ω) its Fourier transform.

Ê(ω) =
∫ ∞

−∞
E(t )e−iωt d t (4.1)

and

E(t ) =
∫ ∞

−∞
Ê(ω)e−iωt dω (4.2)

Here the factor 1/2π before the integral has been ignored. The electric field transmitted through the
linear device is,

E
′
(t ) =

∫
E(t

′
)R(t − t

′
)d t

′
(4.3)

or
Ê

′
(ω) = Ê(ω)R̂(ω) (4.4)

Here, E
′
(t ) and Ê

′
(ω) is the electric field of the transmitted pulses in the time and frequency domain.

From the assumption of time-integrated detection, it follows that the detected signal is simply the
pulse energy, which is also the frequency-integrated power spectrum,

I =
∫

|E ′
(t )|2d t =

∫
|Ê ′

(ω)|2dω (4.5)

A good example of linear measurement is the dispersive spectrometer. The dispersive spectrometer
simply measures the spectrum by using a prism or a grating and a line CCD. The Fourier transform
spectrometer introduced in chapter 3 is another example of a linear device. In both spectrometers,
only the power spectrum density (PSD) is measured. The spectral phase is lost. To see this, consider
an example of how the spectral phase determines a pulse shape. Let us use the symmetric Gaussian
shape PSD introduced in Chapter 3 section 3.1. The center of the PSD is 3.7474×1014 Hz (800 nm).

27
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Figure 4.1: General Linear measurement setup

The width (Full width half maximum) of the PSD is 0.7×1014 Hz. The repetition frequency is 30 GHz,
corresponding to 1 cm inter-pulse distance in vacuum. The offset frequency, f0 is ignored because it
only gives a constant phase shift, as will be shown in chapter 4 section 3.1. The PSD is plotted with
respect to f in Fig. 4.2-(a) and the autocorrelation is plotted in Fig. 4.2-(b). The autocorrelation
and the PSD are related by the Wiener-Khinchin theorem. Figure.4.3-(a) shows the corresponding
Gaussian shape pulse of the PSD in Fig. 4.2. We observe that Gaussian PSD does not guarantee a
Gaussian pulse shape, because the pulse shape is also determined by the spectral phase. For ex-
ample, after 2 m propagation in air, the pulse shape changes to Fig. 4.3-(b), but the PSD does not
change if the absorption of air is ignored. Similarly, Fig. 4.3-(c) shows the pulse shape after 1 cm
propagation in BK7. Although the pulse shape can change dramatically due to dispersion, if there is
no absorption and the PSD remains unaltered, the autocorrelation also remains the same, as shown
as in Fig. 4.3-(b).
Although the linear devices are never sufficient to fully characterize a pulse, but this does not mean

Figure 4.2: (a) A symmetric Gaussian shaped PSD (b) The corresponding autocorrelation function

that linear techniques are not useful for femtosecond pulse applications. Consider an interferom-
eter with incident beam 2E(t ), we divide this into two beams and then recombine the two light
beams associated with two different electric fields, Er (t ) and Em(t ), corresponding to the reference
and measurement arm respectively. Ignoring the absorption, we have,

Figure 4.3: Three different pulse shapes corresponding to the autocorrelation shown in Fig. 4.2-(b). (a) Gaus-
sian shaped pulse (b) Pulse from Fig. 4.3-(a) after 2 m propagation in air (c) Pulse from Fig.4.3-(a) after 1 cm
propagation in BK7.
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Êr (ω) = |Ê(ω)|e i (ϕ0+ϕr ) (4.6)

and
Êm(ω) = |Ê(ω)|e i (ϕ0+ϕm ) (4.7)

A time-integrating detector will be sensitive to only the power spectrum of the sum of the two elec-
tric fields,

S(ω) = |Êr (ω)+ Êm(ω)|2 (4.8)

which includes a crossed term Ê∗
r (ω)Êm(ω). Therefore the signal will be sensitive to the phase dif-

ference, ϕr (ω)−ϕm(ω). If Êr and Êm were derived from an incident pulse through linear devices,
the phase of the incident pulse would appear as an additive factor in both ϕr and ϕm , so that it
would cancel out and only the difference between the two arms is left.

Another unique advantage of linear interferometry is sensitivity. If we were to use a standard non-
linear technique, the detected signal would be proportional to E 4 for second-order techniques. In
contrast, linear interferometry yields a signal proportional to E 2.

4.2 First order cross correlations: linear detection in time

One example of linear measurement device is the unbalanced Fourier transform spectrometer, as
shown in Fig. 4.4, with the sample located inside one of the arms. This "sample" could be any
linear phase object, such as a piece of glass, mirrors or in general some cause of a path-length
differences. The imprint of the sample will be seen on the cross correlation function. Let us use the
PSD of Fig. 4.2 and show how the cross correlation function changes due to the difference between
the two arms. Figure. 4.5-(a) is the autocorrelation, which is uniquely determined by the PSD. We
would like to refer to the three different pulse shapes in Fig. 4.3. Figure. 4.5-(b) shows the cross
correlation function between Fig. 4.3-(a) and Fig. 4.3-(b), where one pulse is unchirped, and the
other has propagated 2 m in air. The cross correlations between Fig. 4.3-(a) and Fig. 4.3-(c) is given
in Fig. 4.5-(c). This time, the "sample" is 1 cm of BK7. The respective dispersion relations have been
explained earlier in chapter 2.

4.2.1 Mathematical analysis of the cross correlation

In this section, we study how to use the unbalanced Fourier transform interferometer for distance
measurement. We take each comb frequency into account, and give a mathematical relation be-
tween cross correlations and the path length difference in air. In an unbalanced Michelson interfer-
omter, only when the path length difference between the two arms is very close to a multiple of the
inter-pulse distance can we see a correlation. Hence for non-zero correlations we should have, in
good approximation,

lm = lr +m · lpp/2, (4.9)

where, lm and lr represent the distances of the long measurement arm and the short reference arm
respectively. Here m is a non-negative integer number. In this thesis, the inter-pulse distance, or
the cavity length, is denoted to Lpp , and we use another symbole lpp/2 to denote the half of the
inter-pulse distance, or equivalently, half cavity length. The inter-pulse distance is in a dispersive
medium a somewhat arbitrary notion. We explicitly define it by,

Lpp = c/(ng · fr ), (4.10)
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Figure 4.4: Schematic of the experimental setup of an unbalanced Fourier transform spectrometer

Figure 4.5: Crosscorrelations arising from the pulses shown in Fig. 4.3. (a) The autocorrelation of pulse shown
in Fig.4.3-(a). (b) The cross correlation function between the pulses shown in Fig. 4.3-(a) and Fig. 4.3-(b),
where one pulse is unchirped, and the other has propagated 2 m in air. (c) The cross correlations between
the pulses shown in Fig. 4.3-(a) and Fig. 4.3-(c), where one pulse is unchirped, and the other has propagated
1 cm in BK7.
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where ng is the group refractive index at the central wavelength of the spectrum and fr is the repe-
tition frequency. Here, the "center wavelength" is obviously defined as the wavelength at which the
Gaussian PSD is maximum, but this definition is only valid for a spectrum which is symmetric.

For the most simple case where the two pulse trains after the beam splitter are equal and can be
written as:

ℜE(t ) =ℜ
{

N∑
n=1

|En |e iφn e iωn t

}
(4.11)

where Ên is the spectral amplitude and φn is the spectral phase. ReE(t ) means the real part of E(t )
and the angular frequencies of the comb are represented by,

ωn =ω0 +nωr , (4.12)

where ω0 is the offset angular frequency. If the refractive index in both arms are equal, after propa-
gating two different arms in air, whose length are labeled as lr and lm respectively, we have

ℜEr (t , lr ) =ℜ
{

N∑
n=1

|En |e iφn e i (ωn t−2kn lr )

}
(4.13)

ℜEm(t , lm) =ℜ
{

N∑
n=1

|En |e iφn e i (ωn t−2kn lm )

}
.

Here kn is a real function of ωn , determined by the Edlï£¡n’s equation [35]. The absorption of the air
has been ignored.

The instantaneous intensity for the field cross correlation is,

Iω(t , lr , lm) = (ℜEr +ℜEm)2 (4.14)

The intensity that is measured by a slow detector, after time averaging, is equal to,

〈Iω(t , lr , lm)〉 = 〈
(Er +Em)(Er +Em)∗

〉
(4.15)

By substituting Eq. 4.14 into Eq. 3.17, we get,

〈I (L)〉 = 2
N∑

n=1
|En |2 {1+cos[ωnn(ω)L/c]} (4.16)

where L = 2(lr − lm) is the path length difference. Now, compare Eq. 4.16 to Eq. 3.17, we recognize
that the cross correlation function is only the heterodyne signal of all the repetition frequencies,
when the fs laser is considered as a multiple wavelength source. We have shown here that, the field
cross correlation is determined by the PSD and the path length difference between the two arms.

4.2.2 The cross correlation functions of a symmetric power spectral density

Using the PSD shown in Fig. 4.2-(a), we calculate the cross correlation functions at different path-
length differences in air, as shown in Fig. 4.6. We observe that, because of the dispersion, the widths
of the cross correlations increase with increasing path length difference. The chirp acquired by the
pulse is clearly seen after 10 m propagation. Figure. 4.7-(a) shows the relation between the propa-
gation distance and the widths. It is interesting to see that, even if we start from a Gaussian shape
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PSD and a Gaussian shaped pulse, the shape of the cross correlation functions can vary a lot after
propagating a long distance. To demonstrate this effect, let us consider RHW to be the half-width
on the right of the full-width at half maximum and LHW to be the left half width at the full width at
half maximum. We define the chirp ratio as RHW /LHW . In Fig. 4.7-(b), we show the chirp ratio as a
function of path length differences.

If we define the "inter-pulse distance" by Eq. 4.10, then, the position of the maximum of the cross

Figure 4.6: Simulated cross correlations of a pulse propagating in air, in an unbalanced Michelson interfer-
ometer. We have used the symmetric power spectral density for the pulse. The path length difference are
indicated with each cross correlation.

correlation function does not overlap with the distance of a multiple of cavity length. The difference
is caused by the nonlinear property of the refractive index of air, as introduced in Chapter.3.3.1. This
difference is very small, and is plotted in Fig. 4.8. as the function of the path length difference. This
has consequences when we extract the distance from cross correlation functions. We will discuss
this further in the following chapters.
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Figure 4.7: The relation between the path length difference and the properties of the cross correlation for
a pulse having a symmetric PSD. (a) The widths of the cross correlations as a function of the path length
difference. (b) The chirp ratio of the cross correlations as a function of the path length difference.

Figure 4.8: The difference between the position of the maximum of the cross correlation function and the
multiple of the inter-pulse distance, as a function of the path length difference. Here we have used a pulse
having a symmetric PSD.
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4.2.3 The cross correlation functions from an asymmetric power spectral density

When the PSD is asymmetric, the situation is more complex. Now, not only the nonlinear behavior
of the refractive index, but also the asymmetry of the spectrum influences the shape of the cross
correlation function. Let us now simulate an asymmetric spectrum. The center of the PSD is still
at 3.7474× 1014 Hz (800 nm). But this time, the PSD consists two Gaussians. The left side of the
Gaussian PSD has a half width at half maximum of 0.52×1014 Hz, and the right side of the Gaussian
PSD has a half width at half maximum of 0.18×1014 Hz. The repetition frequency is again 30 GHz,
corresponding to 1 cm inter-pulse distance in vacuum. The PSD is plotted with respect to frequency
f in Fig. 4.9-(a) and the autocorrelation is plotted in Fig. 4.9-(b). The autocorrelation and the PSD
is related by the Wiener-Khinchin theorem.

Figure 4.9: (a) A asymmetric Gaussian shaped PSD, described in section 4.2.3. (b) The corresponding auto-
correlation function

Figure. 4.10 shows the cross correlation functions at different distances (back and forth). We can
also check the width and symmetry of the cross correlation functions and show them in Fig. 4.11.
In this case there is no reason that the chirp could change in a single way. The chirp could go to the
negative and later change to the positive side.

Now the difference between the position of the maximum of the cross correlation function and
a multiple of the inter-pulse distance still exists and is even more than the symmetric case. This is
reasonable because now, this difference is due to two reasons: the non-linear property of the re-
fractive index of air and the asymmetry of the power spectral density. This difference is plotted in
Fig. 4.12. as the function of path length difference. As mentioned before, this has consequences
when we extract the distance from cross correlation functions. We will discuss this further in the
following chapters.

4.3 Spectral interferogram: linear detection in frequency

The Fourier transform spectrometer is not the only way to measure the correct PSD. Another com-
monly used linear measurement technique in determining the spectrum is a grating spectrome-
ter [65]. Instead of the cross correlation function, we simply measure the spectrum by using a prism
or a grating. If a grating spectrometer is used as a detector after a Michelson interferometer, we
call this setup a dispersive interferometer. When the Michelson interferometer is unbalanced, an
additional interference term appears. In this case, no variation in either arm is needed, but a line
camera is required to observe the combined spectrum, as shown in Fig. 4.13. Again, the sample
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Figure 4.10: Simulated cross correlations of a pulse propagating in air, in an unbalanced Michelson interfer-
ometer. We have used the asymmetric power spectral density described in section 4.2.3 for the pulse. The
path length difference are indicated with each cross correlation.

Figure 4.11: The relation between the path length difference and the properties of the cross correlation for
a pulse having an asymmetric PSD as discribed in section 4.2.3. (a) The widths of the cross correlations as a
function of the path length difference. (b) The chirp ratio of the cross correlations as a function of the path
length difference.
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Figure 4.12: The difference between the position of the maximum of the cross correlation function and the
multiple of the inter-pulse distance, as a function of the path length difference. Here we have used a pulse
having an asymmetric PSD as discribed in section 4.2.3.

could be a path length difference in air, a piece of glass, or other dispersive medium [66]. We ne-
glect absorption in this analysis. In the following chapters, this modulated spectrum is often refered
to as a spectral interferogram, or briefly as interferogram.

Figure 4.13: Schematic of the experimental setup of an unbalanced grating dispersive interferometer.

If the two arms of the interferometer are equal and there is no sample, what we measure should be
the PSD itself, as shown in Fig. 4.14-(a). We would like to refer to the three different pulse shapes
in Fig. 4.3. Figure. 4.14-(b) shows the spectral interferogram between Fig. 4.3-(a) and Fig. 4.3-(b),
where one pulse is unchirped, and the other has propagated 2 m in air. The spectral interferogram
between Fig. 4.3-(a) and Fig. 4.3-(c) is given in Fig. 4.14-(c). The imprint of the sample will be seen
on the spectral interferogram.
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Figure 4.14: Spectral interferograms arising from the pulses shown in Fig. 4.3. (a) The spectral interferogram
of the pulse shown in Fig.4.3-(a) with itself, which is the PSD. (b) The spectral interferogram between the
pulses shown in Fig. 4.3-(a) and Fig. 4.3-(b), where one pulse is unchirped, and the other has propagated 2 m
in air. (c) The spectral interferogram between the pulses shown in Fig. 4.3-(a) and Fig. 4.3-(c), where one
pulse is unchirped, and the other has propagated 1 cm in BK7.

4.3.1 Mathematical analysis of the spectral interferogram

If the sample in the interferometer is only a path length difference in air, then the spectrum that is
measured by spectral interferometry is:

S(ω) = |Êm(ω)+ Êr (ω)|2 (4.17)

= |Êm(ω)|2 +|Êr (ω)|2 +2|Êm(ω)Êr (ω)|cos
(
ϕr (ω)−ϕm(ω)

)
If the absorption in the medium is ignored, we have |Êm(ω)| = |Êr (ω)|, implying

S(ω) = 2|Ê(ω)|2 [
1+cos

(
ϕr (ω)−ϕm(ω)

)]
(4.18)

Where |Ê(ω)| is the power spectral density of the pulses. The fundamental property of the interfero-
gram is that it is an intensity measurement that contains the phase difference ϕm −ϕr . This allows
the reconstruction of the path-length difference. For a distance propagation in air, the interference
term can be written as,

ϕ(ω) =ϕr (ω)−ϕm(ω) = 2n(ω)ω(lm − lr )/c (4.19)

with n and c being the refractive index of air and the speed of light in vacuum, respectively. We use
L = 2(lm−lr ) as the geometrical pulse separation from both arms. By inserting Eq. 4.16 into Eq. 4.15,
we have,

S(ω) = 2|Ê(ω)|2 [1+cos(n(ω)ωL/c)] (4.20)

Comparing Eq. 4.20 and Eq. 4.16, we see that, the cross correlation at a certain distance is the inte-
gral of the spectral interferogram over the frequencies. S(ω) should reach its maximum when,

ϕ(ω) = n(ω)ωL/c = m ·2π, (4.21)

for some integer m. The distance between two adjacent maxima is thus,

∆ω= 2πc/n(ω)L (4.22)

This equation shows that, the distance between the adjacent peaks in the spectrum is proportional
to the inverse of the pulse separation. If the two arms of the interferometer are equal, the spec-
tral interferogram is identical to the PSD. In Fig. 4.15 we show the spectral interferograms at dif-
ferent distances, using the PSD from Fig. 4.2. The path-length difference from (a) to (e) is -40µm,
-20µm, 0µm, 20µm and 40µm respectively. The spectral interferogram is symmetric to the zero-
displacement. This is called the twin-image ambiguity.

Now Eq. 4.20 is written for a continuous spectrum. In our case we use the frequency comb, thus
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Figure 4.15: The spectral interferograms at around equal arms of the interferometer, using the symmetric
PSD from Fig. 4.2. The path-length difference from (a) to (e) is -40 µm, -20 µm, 0 µm, 20 µm and 40 µm
respectively.
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Eq. 4.20 applies only to the frequencies of the comb i.e. to ωn = n ·ωr +ω0 where n is the mode
number. We observe that the cosine term has a period of the inter-pulse distance Lpp . In order to
show this, let us consider,

L = m ·Lpp +∆L (4.23)

where the first term is a multiple of inter-pulse distance and the second is a short distance. Substi-
tute Eq. 4.23 into Eq. 4.20, we have,

S(ω) = 2|Ê(ω)|2 [
1+cos

(
n(ω)nmωr Lpp /c +n(ω)nωr∆L/c +n(ω)mω0Lpp /c +n(ω)ω0∆L/c

)]
(4.24)

The third and fourth terms inside the cosine are dependent only on ω0 and cause only a shift of
the phase. For the remaining analysis, the terms containing ω0 are ignored, then, Eq. 4.24 can be
written as,

S(ω) = |Ê(ω)|2 [
1+cos

(
n(ω)nmωr Lpp /c +n(ω)nωr∆L/c

)]
(4.25)

If the pulse propagates in vacuum, then n(ω) is one and the first term will be a multiple of 2π, which
means that the modulated spectrum will exactly repeat after every multiple of the cavity length. For
the pulse propagating in air, n(ω) is not one and the period is lost because of dispersion.

4.3.2 The spectral interferogram of a symmetric power spectral density

It is useful to see how the first term inside the cosine in Eq. 4.25 influences the interferogram when
the path length difference is changed. To investigate this, we use the symmetric PSD from Fig. 4.2.
The measurement arm is 500× lpp/2 (2.5 m, single way) longer than the reference arm. In Fig. 4.16
we show the interferograms at 500×Lpp − 40µm, 500×Lpp − 20µm, 500×Lpp , 500×Lpp + 20µm,
500×Lpp +40µm path length difference respectively. Now, even at exactly 500×Lpp , we see some
modulations because the group velocity used to calculate Lpp is only correct for the central fre-
quency of the PSD. This arises because unlike the center frequency, each frequency component of
the PSD encounters a different refractive index and propagates a different distance, which is not
exactly a multiple of the Lpp . The figures at 500×Lpp −40µm and 500×Lpp −40µm are symmetric.
Denser fringes mean a longer distance between the interfering pulses. Since the refractive index of
air is not a linear function, the chirp of the interferogram is also not linear.

Although at the path length difference of 500×Lpp the interferogram shows chirp, we can compare
Fig. 4.16-(a) and Fig. 4.16-(e) with Fig. 4.15-(a) and Fig. 4.15-(e), which are identical. We make the
following important observation, that the density of the maxima, at the regions close to the central
frequency are the same. This is shown in Fig. 4.17-(a), (b) and (c). If we concentrate only on a small
region around the central frequency, marked by the darker rectangle in Fig. 4.17, the distance be-
tween adjacent peaks is the same. We will use this in chapter 6, where we reconstruct the distance
information from these spectral interferograms.

Figure. 4.18 shows the spectral interferomgrams when the path length difference is exactly a multi-
ple of inter-pulse distance. The simulation ranges from 0×Lpp to 1000×Lpp (10 m, back and forth).
The central frequency, which is propagated with the group velocity, vg , forms always a minimum or
a maximum. These figures look symmetric, but we know that they deviate from symmetric because
of the nonlinearity of the refractive index of air in this frequency range.
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Figure 4.16: The spectral interferograms around 500×Lpp , using the symmetric PSD from Fig. 4.2. The path-
length difference from (a) to (e) is 500×Lpp −40µm, 500×Lpp −20µm, 500×Lpp , 500×Lpp +20µm, 500×
Lpp +40µm respectively.

Figure 4.17: Comparison between spectral interferograms shown in Fig. 4.16-(a) and Fig. 4.16-(e) with
Fig. 4.15-(a) and Fig. 4.15-(e), which are identical. (a) 500 × Lpp − 40µm as shown in Fig. 4.16-(a). (b)
0× Lpp ± 40µm as shown in Fig. 4.15-(a) and Fig. 4.15-(e). (c) 500× Lpp + 40µm as shown in Fig. 4.16-(e).
The density of the maxima, at the regions close to the central frequency are the same, as marked by the dark
rectangle in each case.
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Figure 4.18: The spectral interferomgrams when the path length difference is exactly a multiple of inter-pulse
distance. The simulation ranges from 0×Lpp (0 m) to 1000×Lpp (10 m, back and forth).
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4.3.3 The spectral interferogram of an asymmetric power spectral density

To study the effects of an asymmetric PSD on the spectral interferogram, we use the asymmetric
PSD in Fig. 4.9 to generate the interferograms. When the two arms of the interferometer are ap-
proximately equal, the modulated spectra are shown in Fig. 4.19. The path-length differences from
(a) to (e) are -40µm, -20µm, 0µm, 20µm and 40µm respectively. Just like a symmetric PSD, the
spectral interferogram is symmetric to the zero-displacement.

Figure 4.19: The spectral interferograms at around equal arms of the interferometer, using the asymmetric
PSD from Fig. 4.9. The path-length difference from (a) to (e) is -40 µm, -20 µm, 0 µm, 20 µm and 40 µm
respectively.

If the two arms are unbalanced, the interferogram will be chirped. In Fig. 4.20 we show the inter-
ferograms at 500×Lpp − 40µm, 500×Lpp − 20µm, 500×Lpp , 500×Lpp + 20µm, 500×Lpp + 40µm
respectively. We observe that most of the properties of these spectrograms are similar to those gen-
erated using a symmetric PSD. For example, again at exactly 500×Lpp , we see some modulations
because the group velocity used to calculate Lpp is only correct for the frequency at the maximum
of the PSD.

Here again, we make the following important observation, that the density of the maxima, at the
regions close to the frequency at the maximum of the PSD are the same. This is shown in Fig. 4.21-
(a), (b) and (c). If we concentrate only on a small region around the frequency at the maximum
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Figure 4.20: The spectral interferograms around 500 × lpp , using the asymmetric PSD from Fig. 4.9. The
path-length difference from (a) to (e) is 500×Lpp − 40µm, 500×Lpp − 20µm, 500×Lpp , 500×Lpp + 20µm,
500×Lpp +40µm respectively.
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of the PSD, marked by the darker rectangle in Fig. 4.21, the distance between adjacent peaks is the
same. Why the peak densities are the same, only close to the maximum of the PSD. The key is, this
is not because this region is close to the peak or not, but because this region is around the frequency
which has been used to calculate Lpp . Each frequency in the PSD propagates at its own speed, but
Lpp is calculated by the group velocity at one perticular frequency. We will use this idea in chapter
6, where we reconstruct the distance information from these spectral interferograms.

Figure 4.21: Comparison between spectral interferograms shown in Fig. 4.20-(a) and Fig. 4.20-(e) with
Fig. 4.19-(a) and Fig. 4.19-(e), which are identical. (a) 500 × Lpp − 40µm as shown in Fig. 4.20-(a). (b)
0× Lpp ± 40µm as shown in Fig. 4.19-(a) and Fig. 4.19-(e). (c) 500× Lpp + 40µm as shown in Fig. 4.20-(e).
The density of the maxima, at the regions close to the frequency at the maximum of the PSD are the same, as
marked by the dark rectangle in each case.

In Fig. 4.22 we show the spectral interferomgrams when the path length difference is exactly a mul-
tiple of inter-pulse distance. The simulation ranges from 0×Lpp to 1000×Lpp (10 m, back and forth).
The maximum frequency, which is propagated with the group velocity vg , is not necessarily a mini-
mum or a maximum, but the derivative of the modulated spectrum at this frequency is always zero.

4.4 Relation between the cross correlation and the spectral interferogram

4.4.1 The difference between the position of the maximum of the cross correlation func-
tion and the multiple of the inter-pulse distance

We would like to study the origin of the difference between the position of the maximum of the cross
correlation function and the multiple of the inter-pulse distance. Initailly we consider the case of
the pulses with symmetric PSD. For this, we compare Eq. 4.16 to Eq. 4.19, we observe that the inten-
sity at a certain point of the cross correlation is only the weighted sum of the spectral interferogram.
We consider the spectral interferogram of a symmetric spectrum, for example, Fig. 4.16-(a) where
we calculated the spectral interferogram for 500×Lpp−40µm. The spectral interferogram is chirped,
because of the group delay dispersion of air. If we integrate this spectral interferogram, the fast os-
cillating part from the left should be compensated by the slow oscillating part from the right. The
integral should be the same as when the spectral interferogram in Fig. 4.15-(a), which corresponds
to the case of 0×Lpp −40µm, is integrated. This cancellation of the integral of the two sides of the
spectral interferogram is zero only if the chirp is linear. But this is not the case for pulse propagation
in air. When the quadratic behavior of the refractive index is considered, the integral of the spectral
interferogram shown in Fig. 4.16-(a) will deviate from that of Fig. 4.15-(a). Therefore the position of
the maximum of the correlation patterns, which are formed by the weighted sums of chirped spec-
tral interferograms, differ from the position of a multiple of cavity length.

When we consider the case where the PSD is asymmetric, more deviations are introduced. This
is mainly because the spectral interferogram is even more asymmetric to the maximum of the PSD,
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Figure 4.22: The spectral interferomgrams when the path length difference is exactly a multiple of inter-pulse
distance. The simulation ranges from 0×Lpp (0 m) to 1000×Lpp (10 m, back and forth).
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caused not only by the non-linearity of the refractive index of air, but also the asymmetry of the
PSD itself. For this we refer to Fig. 4.20-(a), where we calculated the spectral interferogram for
500×Lpp − 40µm. The integral of the slowly oscillating part in the right of the spectral interfero-
gram does not compensate the fast oscillating part in the left. This is the reason for an asymmetric
PSD, the cross correlation function is more chirped than the one of a symmetric PSD [67].

In both symmetric and asymmetric PSD, the position of the brightest fringe of the cross correla-
tion, does not necessarily coincide with the position of the fringe which is a multiple of Lpp . This is
shown in Fig. 4.23. The cross correlation, shown in Fig. 4.23-(a), is calculated from an asymmetric
PSD at 10 m path length difference. The brightest fringe is the integral of the spectral interferogram
shown in Fig. 4.20-(b), but not from the spectral interferogram at a multiple of Lpp , as shown in
Fig. 4.20-(c).

Figure 4.23: (a) The cross correlation calculated from an asymmetric PSD at 1000×Lpp . (b) Spectral interfer-
ogram which made the brightest fringe of the cross correlation. (c) Spectral interferogram at 1000×Lpp

4.4.2 The spectrogram

Combine the Fourier transform spectrometer and dispersive grating interferometry, we can generate
a two dimensional image. This kind of image is often called a spectrogram. In Fig. 4.24 we show the
spectrogram using the symmetric PSD from Fig. 4.2-(a) at around equal arms. Here the x-axis is
the displacement and the y-axis is the frequency. A spectrogram contains both the cross correlation
and the spectral interferograms. If we integrate the spectrogram column by column, we will obtain
the cross correlation function. Also if the spectrogram is integrated row by row, we get the PSD.
Although a two-dimensional image looks more impressive than a cross correlation or the spectral
interferogram, it doesn’t yield more information than the PSD and the unbalanced phase difference.
In Fig. 4.25, we show a spectrogram for a pulse having a symmetric PSD, for a path-length difference
of 1000×Lpp (10 m, back and forth). We can clearly observe the chirp in the spectrogram.
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Figure 4.24: The spectrogram using the symmetric PSD from Fig. 4.2-(a) at around equal arms.

Figure 4.25: The spectrogram for a pulse having a symmetric PSD from Fig. 4.2-(a), for a path-length differ-
ence of 1000×Lpp (10 m, back and forth)
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Chapter 5

Distance measurement using correlations

5.1 Cross correlations in an unbalanced Michelson interferometer

In 2004, The first schemes, for absolute length metrology by using a phase-stabilized optical fre-
quency comb, were proposed [17]. The main idea was to measure cross correlations in an unbal-
anced Michelson interferometer. In Fig. 5.1 we show the schematic of a typical experimental setup.
After the beam splitter, the beam divides into two. One part of the beam is reflected by a hollow
corner cube mounted on a piezo-electric transducer (PZT). We call this the short reference arm.
The other part of the beam propagates along the long measurement arm and is reflected by another
hollow corner cube. The returning beams are overlapped and focused onto a slow detector. A cross
correlation function will be observed whenever the path length difference between the two arms is
a multiple of the half laser cavity length lpp/2. We scan the reference arm and observe the first cor-
relation when the two arms of the interferometer are equal. Subsequently the hollow corner cube
mounted on a mechanical car is moved over an arbitrary long distance. The reference arm is then
scanned again to search for another cross correlation function. The path length difference now is
close to a multiple of the inter-pulse distance Lpp , or in other words, the laser cavity length. Now
if we label the displacement of the measurement arm as |AB | = ∆lm , the displacement of the ref-
erence arm as |ab| = ∆lr , the length difference between the two displacements should be related
by,

∆lm = m · lpp/2 ±∆lr (5.1)

Here, m is an integer number and ∆lr is the displacement of the reference arm which is less than
half of the cavity length and can be measured with high accuracy. The half of the laser cavity length,
or, the half of the inter-pulse distance, is lpp/2 which can be calculated by,

lpp/2 = c/
(
2vg fr

)
. (5.2)

Here c is the speed of light in vacuum and vg is the group velocity of pulse calculated at the central
frequency of the PSD, i.e.

vg = c

(
n0 −λ0

dn(λ)

dλ
|λ0

)−1

. (5.3)

The central wavelength of the pulse is λ0 and n0 is the refractive index of air at λ0. This definition
is only valid for a symmetric power spectral density (PSD) and for short distances where the group
delay dispersion (GDD) of air can be ignored. The case of an asymmetric PSD or where the GDD of
air is not neglectable will be discussed later in the chapter.
The integer number m can be determined with an ambiguity range of half the inter-pulse distance,
which is around tens of centimeters for a typical femtosecond laser. In Jun Ye’s paper [17] in 2004, it
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Figure 5.1: The schematic of a typical experimental setup for distance measurement using correlations

is suggested that m is measured, by shifting the repetition frequency fr . It is also possible to mea-
sure m by other ways such as a time-of-flight measurement. Jun Ye originally suggested that the
combined beams are focused onto a second harmonic crystal and the fringe resolved cross corre-
lations are observed by an APD. In our experiment, we discovered that this is not really necessary,
mainly because of the power requirements for really long propagation lengths. Also, Ye’s paper was
for an experiment to be done in vacuum and did not consider the dispersion introduced due to
pulse propagation in air. In the previous chapter, chapter 4, we discuss how the group delay disper-
sion of the pulse in air makes the idea of group velocity invalid. Thus making the definition of vg in
Eq. 5.2 inapplicable.

5.2 Measurement of short distances using cross correlations

Our first experiments in 2007 using this principle involved the measurement of a short displace-
ment (lpp/2) and comparison of the results with a counting laser interferometer [68]. For a short
path length difference, in the order of a few cavity length, the group delay dispersion of air can be
ignored. This is not the case when the path length differnce extends to tens of cavity length.

5.2.1 Experimental setup

A schematic of the experimental setup we used, in the VSL laboratory, is shown in Fig. 5.2. The
measurements are carried out with a mode-locked Ti:Sapphire laser with a pulse duration of around
40 fs. Both the repetition frequency fr and the carrier-envelope-offset frequency f0 are locked and
referenced to a cesium clock. The output wavelength of the pulse is centered at around 820 nm with
a spectral bandwidth of 20 nm. The repetition frequency was approximately 1 GHz, corresponding
to a cavity length of the laser of about 30 cm, for most of our experiments. The pulses from the
laser are split into two at the beam splitter. One part of the pulse goes into the non-varying refer-
ence arm of the interferometer with length lr and is reflected by a hollow gold coated retro-reflector.
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The other part of the pulse goes into the measurement arm with length lm . The length of this arm
can be varied with a translation stage (PI M series 15 cm translation range). Another gold coated
retro-reflector was mounted on a piezo-electric transducer (PZT) on top of the translation stage.
During the measurement, the retro-reflector is scanned using the PZT with a frequency of 1 Hz us-
ing a saw-tooth voltage. The PZT can scan a maximum of around 40 microns. The two reflected
beams coincide with each other and are focused inside a Barium Borate Crystal (BBO) for second
harmonic generation. A filter was used to block the original infrared light. The second harmonic
signal generated in the crystal was focused onto an avalanche photo diode (APD). The intensity of
the second harmonic signal was measured with an oscilloscope.

Figure 5.2: Schematic of the experimental setup used to measure a short distance using cross correlations.
A pulse train is sent into an interferometer and cross-correlation functions are measured at two positions
of the translation stage, separated by a distance lpp/2. Simultaneously, the displacement is measured with a
Zeeman-stabilized HeNe fringe counting laser interferometer.

5.2.2 Measurement procedure

The experiment is done as follows. First the translation stage is positioned at A where lr and lm

are equal. Here an auto-correlation function was measured using the oscilloscope. Then the stage
was translated to position B such that lm was approximately equal to lr + lpp/2. At this position a
cross correlation function is measured. Since the translation stage has a finite step size, 300 nm, it
was not always possible to position the stage such that the maximum value of the cross correlation
function at position B occured at exactly the same piezo voltage, i.e. scan position, as at position
A. Therefore, to determine the maximum of the pulse overlap, Gaussian functions were fit through
the profiles of the two recorded correlation patterns. By comparing the extracted maximum of the
cross-correlation with the auto-correlation, a correction term δ was obtained. This procedure is
shown in Fig. 5.3. The real displacement ∆lm of the retro-reflector was,

∆lm = lpp/2 +δ/2 (5.4)

The displacement ∆lm was measured independently using a calibrated He-Ne fringe counting laser
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Figure 5.3: Comparison of the two cross-correlation functions at position A (higher) and B (lower). Note the
small shift between these two. This shift is determined by Gaussian curve fitting of both measurements.

interferometer. The fluctuation of the temperature in the laboratory was controlled to be less than
0.1 ◦C, and also the air pressure change was measured to be within 1 hPa. the uncertainty on the
He-Ne laser was dominated by the 40 cm dead path length and is estimated to be around 50 nm as
specified in the manual. This value is much smaller than the fluctuations seen in the measurements
done with the Ti:Saphire laser. A position sensitive detector is used for the alignment of the beams
parallel to the translation direction of the stage, leading to a negligible alignment error.

5.2.3 Measurement results

The whole experiment including the control measurement was carried out for six independent val-
ues of the repetition frequency fr . The first three were carried out with the temperature stabilized
at 20.17 ◦C and air pressure at 1011.2 hPa. The last three measurements took place at modified
environmental conditions given by T = 20.11 ◦C and p = 1025.2 hPa. The group velocities were cal-
culated by using the updated Edlèn equation [35], and are 299710681 m/s and 299709555 m/s for
the two sets of environmental conditions, respectively. Each of the measurements by the frequency
comb is repeated ten times and the results are shown in Table.5.1. The distance measurements
using the femtosecond laser agree with the reference measurement using the He-Ne laser within
less than half of a wavelength, i.e. 316 nm [68]. The standard deviation of the measurements is
attributed to the jitter in the detection system which causes the cross-correlation function to shift
from time to time. For the time scales which play a role in this measurement the timing jitter of
the frequency comb laser can be neglected in comparison to the other sources. The jitter has con-
tribution arising from the vibration of the setup, fluctuations in the air and electrical drifts. The
piezo-element was powered by a function generator and a high voltage power supply. We suspect
that the main contribution was the drifts in the high voltage power supply and the resulting vibra-
tion of the piezo on the translation stage.
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lpp /2 Displacement Measured distance Reference distance Difference
(nm) δc /2 (nm) frequency comb(nm) He-Ne laser (nm) (nm)

147,765,420 +396 147,765,816 147,765,593 +223
± 112

147,765,493 -571 147,764,922 147,764,996 -74
± 250

147,765,566 -836 147,764,730 147,764,815 -85
± 339

147,779,205 -261 147,778,944 147,779,054 -110
± 224

147,779,278 -124 147,779,154 147,779,464 -310
± 276

147,779,351 +128 147,779,479 147,779,383 +96
± 174

Table 5.1: Measurement results using the two lasers. The average of ten measurements of the frequency comb
is shown along with the standard deviation below it. The first three were carried out with the temperature
stabilized at 20.17 ◦C and air pressure at 1011.2 hPa. The last three measurements took place at modified
environmental conditions given by T = 20.11 ◦C and p = 1025.2 hPa. The group velocities were calculated by
using the updated Edlèn equation, and are 299710681 m/s and 299709555 m/s for the two sets of environ-
mental conditions, respectively.

5.3 Measurement of long distances with cross correlations

5.3.1 Experimental setup

After we sucessfully measured a short displacement in 2007, we moved the experimental setup to
the 50 m long corridor in VSL laboratory. In 2008, our experimental setup was ready and is shown
in Fig. 5.4. The new experiment was done in two adjacent rooms. The Ti:Sapphire laser based fre-
quency comb was located in the room on the left, where we did the short distance measurement.
Two achromatic lenses were used in order to minimize the divergence of the beam, before the colli-
mated beam was transported through a hole on the wall to the interferometer in the long corridor.
The reference arm consisted of a hollow corner cube mounted on a piezo-electric transducer (PZT)
placed on the translation stage described before. The measurement arm consists of two dispersion
compensated mirrors and a gold coated retroreflector mounted on a mechanical stage of the 50 m
long measurement bench. One of the mirrors is coated for high reflectivity for 820 nm and high
transmission at 633 nm. This was done so that the HeNe fringe counting laser interferometer could
be used for a comparison measurement at the same time. A compensation window is used in the
long arm to compensate the dispersion of the plate beam splitter, arising due to the different lengths
in glass encountered by the two beams of the interferometer. The returning beams are overlapped
and focused on a avalanche photo diode. When the total path length difference between both arms
is a multiple of Lpp a coherence maximum appears. Field cross correlation functions are then ob-
tained by modulating the PZT at 50 Hz with a sine modulation with a range of 80 µm. The beam of
a helium-neon (He-Ne) laser interferometer co-propagates with the frequency comb and measures
the displacement of the long arm independently. Figure. 5.5 shows some photographs of the hole
on the wall and 50 m bench in the long corridor.
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Figure 5.4: Schematic of the experimental setup used to measure distances in the 50 m corridor using cross
correlations. We can see that the experiment was located in two adjacent rooms. The Ti:Sapphire laser based
frequency comb was located in the room on the left. The beam was transported through a hole on the wall
to the interferometer in the long corridor. The reference arm consists of a hollow corner cube mounted on
a piezo-electric transducer (PZT) placed on the translation stage. The measurement arm consists of two dis-
persion compensated mirrors and a gold coated retroreflector mounted on a mechanical stage of the 50 m
long measurement bench. The HeNe fringe counting laser interferometer was used for a simultaneous com-
parison measurement. The returning beams were overlapped and focused on a avalanche photo diode.



5.3 Measurement of long distances with cross correlations 55

Figure 5.5: Photographs of experimental setup in the long corridor. (a) We can see the hole on the wall which
transport the beam to the long corridor. (b) We can see the mechanical car carrying the retroreflector, which
constitutes the long measurement arm of the interferometer.

5.3.2 Modifications implimented in the experimental setup

We made a lot of changes in our new experimental setup as compared to the setup for the short
displacement measurement in Fig. 5.2.

• Field cross correlations. Although in our initial measurements we used the second order
cross correlations, we observed that there was no advantage of doing this as compared to
measuring field cross correlations. In fact there is an obvious advantage of using the linear
measurement. This is that the requirements on beam power are lowered. To generate the sec-
ond harmonic signal, at least 50 mW laser beam power has to be used, but only 0.5 mW is
enough for the linear measurement. This also has considerable implications for laser safety
during experimentation when the beam is transported along the long corridor. Therefore we
decided to continue our measurement with field cross correlations.

• Minimization of the beam divergence. Beam transport from one room to the other and along
the long corridor led to serious losses in intensity due to beam divergence. Therefore to op-
timize the power collected from the reflected beam from the long measurement arm, two
achromatic lenses are used before the beam splitter to minimize the divergence. The reflected
beam size is limited by the diffraction by,

D =λ ·L/d (5.5)

where, d is the initial diameter of the pulse and D is the diameter of the beam after propa-
gation of a distance L. For our case where d = 1 cm and L = 100 m, we have D = 3 cm under
optimum conditions.

• Compensation window. In Fig. 5.4, the beam splitter has a thickness of 1 cm. The group delay
dispersion caused by the multiple reflections of the reference arm inside the beam splitter
can not be ignored. A compensation window is inserted in the measurement arm to obtain a
symmetric autocorrelation at equal arms.

• Piezo scanning speed. The piezo for short displacement measurement worked at a linear
modulation of 1 Hz. When we use this to measure the length of the long arm, longer than
10 m, we observed that the fringes disintegrated. This is shown in Fig. 5.6. This arises due
to the turbulance of air and inherent vibrations of the setup. To determine the source of
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this problem, we fixed the mechanical car at 50 m and measured the interference fringes for
this distance, for 60 seconds using the HeNe fringe counting laser interferometer. On Fourier
transforming the measured fringes. We discovered that most of the turbulance and vibration
contribution lie below 50 Hz. This measurement and Fourier transform are shown in Fig. 5.7.
Therefore we decided to use a different piezo (Amplified Piezo Actuator APA120ML-PP) which
could be scanned at 50 Hz with a sine modulation. Using this we could observe the fringes
inside the cross correlations for longer length of the measurement arm.

Figure 5.6: Fringes from cross correlations recorded using the old piezo with different path length differences.
(a) 6×Lpp , (b) 50×Lpp , (c) 100×Lpp . It can be seen that the fringes disintegrate due to air turbulance and
vibration at low frequencies.

Figure 5.7: (a) Measured interference fringes using the HeNe fringe counting laser interferometer at the path
length difference of 100 m. (b) The corresponding frequency analysis. We can see that, most of the turbulance
and vibration contribution lie below 50 Hz.

• New retro-reflector. For the piezo element which could be scanned at 50 Hz, we needed
a much lighter retro-reflector. Therefore we used a new gold coated retro-reflector with a
diameter of 0.25 inch and weighing 8 g in total.

• Piezo Scanning range. For the short distance, a piezo range of 40 µm was used. For long
distance measurements this was not enough since the correlations are broadened through
the long propagation in air. The new piezo scan range is 80 µm. Figure. 5.8 shows the cross
correlation functions at Lm = 100 m. The left one is a field cross correlation with 40 µm linear
modulation at 1 Hz with the old piezo. The right is a cross correlation function with 80 µm
sine modulation at 50 Hz with the new piezo.

5.3.3 Measurements procedure

The measurement is carried out by first placing the mechanical car with the retro reflector in the
long arm at the closest possible position to the dichroic mirror. At this position the path length
difference between both arms is 1.8 m, corresponding to 6 times the cavity length. The cross-
correlation pattern is located by moving the translation stage in the reference arm and scanning
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Figure 5.8: The cross correlation functions at Lm = 100 m observed by the old piezo and the new piezo. (a)
Field cross correlation with 40 µm linear modulation at 1 Hz using the old piezo. (b) Field cross correlation
with 80 µm sine modulation at 50 Hz using the new piezo.

the PZT. This cross correlation is then recorded. Subsequently the mechanical car is moved over a
distance of tens of meters (corresponding to a path length change of several hundred Lpp ), such
that another cross correlation pattern is located and recorded. The measured distance ∆Lm has
been extracted from the position of the maximum of the cross correlations, which is found by curve
fitting the envelope with a Gaussian. Since the displacement can only approximately be set to a
multiple of lpp/2, the peaks do not appear at exactly the same PZT position. From the relative peak
positions of the two cross correlations the correction term δ is obtained. The real displacement is
retrieved from,

∆lm = m · lpp/2 +δ/2 (5.6)

Here to simplify the experiment, we moved the measurement arm in multiples of half cavity length,
in order to make the ∆lr in Eq. 5.1 equal zero. This was done only to simplify the measurement
procedure. In fact, to measure an arbitrary distance, the reference arm needs to be accurately cal-
ibrated. Also, the integer number m in our case is known very accurately using measuring tape,
since the ambiguity range for this measurement is 15 cm.

5.3.4 Numerical model for analysis

In case of the measurement of distances larger than 10 m, considerable broadening and chirp is
observed in the correlation patterns because of the dispersion of the pulse in air. This makes it
quite challenge to determine the center of the cross correlation pattern and thus the distance from
the measurements. In chapter 4, we already observed that no single group velocity can be used
to determine the maximum of the cross correlation function and hence the path length difference.
Group velocity simply defined by Eq. 5.3 is not valid for a pulse with asymmetric PSD propagating
in a dispersive medium, in our case, air. Typical laser pulses used in an experiment have sufficient
asymmetry for the old definition of vg to be inapplicable. To calculate the correct distance marked
from the maximum of the cross correlations we have to take all the frequencies in the PSD and their
propagation using refractive indices which are nonlinear with frequency, into account. To accom-
plish this, we developed the numerical model described below.

The starting point of our model involved getting an accurate measurement of the PSD of our laser
pulses. The spectral content of the pulse was extracted from an autocorrelation measurement at
zero path length difference by the Wiener-Kinchine theorem. The autocorrelation is shown in Fig. 5.9-
(a), with its Fourier transform the solid curve in Fig. 5.9-(b). This measured PSD has been compared
to another independent measurement made with an Ocean Optics spectrometer shown as the dot-
ted curve in Fig. 5.9-(b). The spectrum has a maximum at 815 nm.
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10m 20m 30m 40m 50m
dchi r p (µm) 1.122 1.458 1.512 1.534 1.492

Table 5.2: Different dchi r p from path length difference from 0 m to 100 m.

Figure 5.9: (a) Autocorrelation at equal arms. (b) Spectrum derived from the autocorrelation (solid) compared
to the spectrum measured using an Ocean Optics spectrometer (dotted).

Using this PSD, the numerical model implemented plane wave propagation at 106 individual fre-
quencies, separated by the repetition frequency, using Edlèn’s equation. Cross correlations were
then calculated using Eq. 4.16. The model takes into account only path length differences and thus,
only differences in spectral phase acquired in air. The experimentally measured cross correlations
compared to our numerical model are shown in Fig. 5.10. The amplitude of the cross correlation
function drops to 30% after 50 m propagation in air in the case of experiments. We can explain
this decrease in amplitude by taking into account the divergence of the beam and the fact that only
some part of the returning beam is captured by the APD. The envelope of the measured cross cor-
relation functions vary due the turbulance of the air column during the measurement. Overall the
experimental and numerical cross correlation patterns show good agreement in width and shape,
and will be further compared in the next section.

In chapter 4 section 2, we have seen that, the path length difference at the maximum coherence i.e.
the peak of the correlation function at different positions, does not exactly overlap with a multiple
of Lpp , which is calculated using Eq. 5.2 and Eq. 5.3. In this case the λ0 used is the wavelength at the
maximum of the PSD which is asymmetric. For path length differences up to 100 m the value varies
from 1 µm to 1.6 µm as shown in Table.5.2. In order to take this deviation arising due to dispersion
into account, a correction term dchi r p has to be added to Eq. 5.6 and the measured distance is given
by,

∆lm = m · lpp/2 +dchi r p /2+δ/2 (5.7)
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Figure 5.10: Cross correlations at different path length differences ranging from 0 m to 100 m. (a) Measured
cross correlations. For each panel, the y-axis shows the maximum of the intensity, the scale begins at zero.
(b) Corresponding normalized cross correlations calculated using the numerical model.
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5.3.5 Cross correlations up to 200 m propagation in air

We recorded cross correlation patterns for a path length difference of 200 m by folding the beam
using another retro-reflector. This was done to study the evolution of the cross correlation with
distance for longer path length differences. In Fig. 5.11 we show the comparison between the ex-
periment and the simulation results from path length differences ranging from 120 m to 200 m.

In general, the shapes of the cross correlations show good agreement with the simulated patterns.
Simulated and measured patterns both show similar chirp and broadening. It can be seen that the
numerical model can account for the effect of non-linear dispersion due to propagation in air for
pulses which have an asymmetric PSD. To study the broadening, full width at half maximum of
measured and simulated correlation patterns are given in Fig. 5.12-(a). The comparison is done for
0 up to 200 m propagation in air. The differences mainly arise due to the unpredictable effects of
vibrations in the interferometer and air turbulence in the measurement room.

To study the chirp, we again compared measurements to simulations. For this, let us consider RHW

to be the half-width on the right of the full-width at half maximum and LHW to be the left half width
at the full width at half maximum. We define the chirp ratio as follows

chirp ratio = RHW

LHW
(5.8)

This chirp ration extracted from Eq. 5.8 using both the measured and simulated patterns are shown
in Fig. 5.12-(b), for path length differences ranging from 0 m to 200 m in air. From our simulations
we note that the chirp reaches its maximum at a path length difference of ∼ 40 m. After 40 m,
this ratio follows an exponential decay and tends asymptotically to a constant value for large delays
(> 150 m) [67]. Here again the differences mainly arise due to the unpredictable effects of vibrations
in the interferometer and air turbulence in the measurement room.

5.3.6 Measurement results

The fluctuation of the temperature in the laboratory was controlled to be less than 0.1 ◦C. Dur-
ing the measurement, pressure and humidity have been monitored with an accuracy of 1 hPa and
1% respectively. Here again the uncertainty of the measurement done using the He-Ne laser was
dominated by the 40 cm dead path length and is estimated to be around 50 nm as specified in the
manual. Figure. 5.13 shows the results obtained as compared to the fringe counting wavelength
calibrated He-Ne laser. Each data point has been averaged from 6 independent measurements for
both lasers. For each of these measurement, we averaged over 5 correlation patterns. From the fig-
ure, it can be seen that the measurements using the frequency comb laser agree with the reference
measurement done with the He-Ne laser within 2 µm [69].

As discussed earlier in chapter 2, the variation and uncertainty on the measurement of these en-
vironmental parameters, limits the accuracy in measuring the absolute distance. For example, a
typical uncertainty of 0.2◦C in temperature and 0.5 hPa in pressure already leads to an uncertainty
of the refractive index of air of about 5×10−7, which corresponds to 25 µm at 50 m. Moreover the
updated Edlï£¡n’s equation itself has an intrinsic uncertainty of 1×10−8, implying 1 µm over a path
length difference of 100 m. The influences of the environmental parameters on the refractive index
at the wavelengths of both the He-Ne laser and the frequency comb cancel in first order. For this is
the reason the agreement between the experimental results is much better than 25 µm. We attribute
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Figure 5.11: Cross correlations at different path length differences ranging from 120 m to 200 m. (a) Measured
cross correlations. For each panel, the y-axis shows the maximum of the intensity, the scale begins at zero.
(b) Corresponding normalized cross correlations calculated using the numerical model.
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Figure 5.12: The relation between the path length difference and the properties of the cross correlation for the
pulses in the experiments. (a) The widths of the cross correlations as a function of the path length difference.
(b) The chirp ratio of the cross correlations as a function of the path length difference. In each case, the dots
indicate measurement results and the continuous line was obtained from the simulations.

Figure 5.13: Measurement of displacements, of the measurement arm ranging from 10 m to 50 m. The error
bars indicate the standard uncertainty, derived from measurement reproducibility.
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the residual difference and uncertainty in the comparison measurement to vibrations of the setup
and air turbulence. The agreement between the frequency comb and the He-Ne laser is much better
than the achievable absolute accuracy in air, showing that the measurement result is not limited by
the method chosen.
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Chapter 6

Distance measurement in frequency
domain

6.1 Spectral interferograms in an unbalanced Michelson interferometer

In chapter 5, we demonstrated that, cross correlation functions from an unbalanced Michelson in-
terferometer can be used to measure the path length difference and hence absolute distances or
displacements. Similar measurements can also be done in the frequency domain using spectral in-
terferogram. In this chapter we will describe experiments demonstrating this idea. The experimen-
tal setup is very similar to the one where we measured cross correlations, except that we replace
the detector with a spectrometer, as can be seen in Fig. 6.1. The physical principle of this has been
described earlier in chapter 4, section 3. In this case, the frequency comb laser is used the same
way as a white-light source but with much longer coherence length. Suppose the intensities of the
reflected beams from the two arms are equal and the absorption of air can be ignored, the spectrum
of the interfering beams from both arms is described by,

S(ω) = 2|Ê(ω)|2 [
1+cos

(
ϕr (ω)−ϕm(ω)

)]
(6.1)

Where Ê(ω) is the spectral amplitude of the pulses, and the distance information is within the in-
terference term,

ϕ(ω) =ϕr (ω)−ϕm(ω) = n(ω)ωL/c (6.2)

with n(ω) and c being the refractive index of air and the speed of light in vacuum, respectively. The
distance L is the pulse separation from both arms as seen on the spectrometer.

In Fig. 6.1, in order to measure an arbitrary distance, the reference arm needs to be translated
and measured with high accuracy. If the resolution of the spectrometer is high enough, the refer-
ence arm does not need to move and fringes can always be observed in a spectral interferogram. In
practice if the spectrometer has a resolution around 0.01 nm, the fringes become hard to distinguish
when the distance between the interfered pulses is more than 10 mm. This distance is much shorter
than the inter-pulse distance for a typical femtosecond laser. Instead of moving the reference arm,
there are other solutions for this problem. For example, in 2006, Joo and coworkers suggested the
use of an Fabry-Perot Etalon (FPE) before the spectrometer [56]. This filtered the frequencies of the
pulse and reduced the equivalent inter-pulse distance to 2 mm.

65
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Figure 6.1: The schematic of a typical experimental setup for distance measurement using spectral interfer-
ograms

6.2 Measurement of short distances with spectral interferograms

6.2.1 Experimental setup and measurement principle

We began first by building a setup for measuring a short displacement (lpp/2) and again comparing
the results with a fringe counting laser interferometer. For a short distance, the group delay dis-
persion of air was ignored. Figure. 6.2 is a schematic of the optical configuration of our setup. The
laser source is still the same as we used in chapter 5, section 2. The pulses from the laser are split
into two at the beam splitter. One part of the pulse goes into the non-varying reference arm of the
interferometer with length lr and is reflected by a hollow gold coated retro-reflector. The other part
of the pulse goes into the measurement arm with length lm . The length of this arm can be varied
with a translation stage (PI M series 15 cm translation range). Another gold coated retro-reflector
was mounted on top of the translation stage. The two reflected beams coincide with each other and
are focused onto an uncalibrated grating spectrometer. This spectrometer is made by a single slit,
two lenses, one grating and a line CCD (Thorlab) with 3000 pixels as shown in Fig. 6.2.

Once the intensity of the spectral interference pattern containing the phase information is recorded,
a Fourier filter was used to reconstruct the distance information [56, 70, 71]. The dispersed interfer-
ence intensity captured by the line CCD is Fourier transformed and shown Fig. 6.3-(a) to Fig. 6.3-(b).
The DC peak is only the power spectral density and contains no phase information. One of the AC
peaks is band-pass filtered and inverse Fourier transformed. The phase of the inverse Fourier trans-
form is extracted and from this the unwrapped phase is obtained as shown in Fig. 6.3-(e). Then the
distance can be calculated from the derivative of the unwrapped phase,

L(ω) = c

ng (ω)

(
dϕ

dω

)
L(λ) =− λ2

2πng (λ)

dϕ

dλ
. (6.3)

Here λ is the wavelength and ng is the group refractive index of air. For an unchirped spectral in-
terferogram, L tends to a constant value as shown in Fig. 6.3-(f). In the above equation, dϕ/dω and
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Figure 6.2: Schematic of the experimental setup used to measure a short distance using spectral interfero-
grams. A pulse train is sent into an interferometer and spectral interferograms are measured at two positions
of the translation stage, separated by a distance lpp/2. Simultaneously, the displacement is measured with a
Zeeman-stabilized HeNe fringe counting laser interferometer.
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Figure 6.3: Data processing procedure for measurement of L. (a) The spectral interferogram i.e. dispersed in-
terference intensity captured by the CCD line. (b) Fourier transform of the measured spectral interferogram.
(c) The DC peak and one AC peak are band pass filtered. (d) The wrapped phase. (e) The unwrapped phase.
(f) The pulse separation obtained from the derivative of the unwrapped phase.

dϕ/dλ are the derivatives of the unwrapped phase, with respect to circular frequency and wave-
length respectively. In order to minimize the uncertainties introduced by Fast Fourier Transform,
a zero-padding process and if necessary, a filtering window have to be used to get the best recon-
struction.

In Fig. 6.4 we show the interfered spectra at different pulse separations. When the translation stage
is set to the front such that the distances between the two arms are nearly equal, a modulated
spectrum shown in Fig. 6.4-(a) is observed. Due to the cosine term in Eq. 6.1, the spectrum is
un-distinguishable from its twin image with the same pulse separation but an opposite sign. This
"‘twin image"’ problem can be solved by moving one arm a little bit and observing how the spec-
trum changes. When the separation between the two pulses becomes larger, more fringes appear in
the spectrum. When the number of fringes is beyond the resolution of the spectrometer, as shown
in Fig. 6.4-(b), the modulation depth becomes shallower. The fringes disappear when the distance
between the two arms is larger than 20 mm, but they appear again as the translation stage moves
around half of the inter-pulse distance (15 cm) because one pulse is interfering with the next, as
shown in Fig. 6.4-(c). As the translation stage moves further backward, this phenomenon re-appears
periodically. For this measurement, lpp/2 can be viewed as the synthetic wavelength. Spatial overlap
between the pulses can always be accomplished when the displacement of the measurement arm
is around a multiple of the half inter-pulse distance,

∆lm = m·lpp/2 +L A/2−LB /2. (6.4)

Here m is an integer and lpp/2 is half of the inter-pulse distance, calculated by lpp/2 = vg /(2 fr ). The
group velocity of the frequency at the center of the PSD is vg and fr is the repetition frequency.
∆lm is the total displacement of the measurement arm. Each spectral interferogram consists of the
interference between two pulses which are slightly separated from each other. The pulse separation
in the front of the translation stage is L A and LB is the pulse separation at the back of the translation
stage, calculated by Eq. 6.3. In both cases, the sign of L A and LB are defined positive when the pulse
from the measurement arm is ahead of the pulse from the reference arm. The factor of two comes
from the back and forth propagation. If fr is locked and stabilized, the absolute uncertainty of
this method should not increase due to increasing the integer number m. This indicates that the
maximum distance that can be measured by this technique is only limited by the coherence length
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Figure 6.4: Spectral interferograms recorded for different pulse separations. (a) Two pulses at ±0.6 mm sepa-
ration. (b) Two pulses at ±6mm separation. (c) After one cavity length, the fringes re-appear, where the pulse
separation now is ±1.2 mm.

of the laser source, allowing for a low relative uncertainty at long distance. In this section, we only
verified a short displacement of m = 1. Distance measurements as long as 50 m will be given in the
next section.

6.2.2 A new calibration approach

The calibration of the grating spectrometer plays an important role when using this method for
distance measurement. First, what is measured from the grating spectrometer is the modulated
spectra, with respect to the wavelength instead of the frequency. Only when the spectrum is narrow
can we use λ2

c to approximate λ2 in Eq. 6.3, where λc is the wavelength at the maximum of the PSD.
Normally it is necessary to convert the x-axis from wavelength to frequency and this conversion
decreases the resolution. Secondly for a typical grating spectrometer, the read out of the line CCD
is not necessarily linear to the wavelength. The spectrometer is normally calibrated as a quadratic
function of the wavelength. Thirdly, although the grating spectrometer can be calibrated accurately,
the wavelength calibration also drifts slightly in time due to varying environmental conditions [72].
In our experiment, instead of calibrating the grating spectrometer itself, we measure a short dis-
placement accurately (<1 mm) and use this distance as a reference to measure the unknown dis-
tance. In this case, the calibration parameters cancel, but the ratio between the two distances can
be calculated from the unwrapped spectral phases obtained from the spectrometer.

First, we need to measure a short calibrated displacement. This is down as follows: We first scan
the measurement arm to make it approximately, but not exactly, equal to the reference arm and
label this position as "C1". In Fig. 6.5-(a) we show the measured interferogram when the measure-
ment arm is located at position "C1". In Fig. 6.5-(b) we show the derivative of the unwrapped phase
dϕc1/d x obtained from the interferogram in Fig. 6.5-(a), with respect to the pixel number x. The
deviation on both sides of the curve shown in Fig. 6.5-(b) comes from the aliasing of the Fourier
transform and can be ignored. Next, the measurement arm is displaced a short distance to position
"C2". This displacement is labeled as ∆lc and is simultaneously measured by a traditional count-
ing laser with an accuracy of 10 nm. The interferogram measured at "C2" is shown in Fig. 6.5-(c)
and the derivative of the unwrapped phase dϕc2/d x is calculated and shown in Fig. 6.5-(d). The
exact pulse separations at "C1" and "C2" are not known because the grating spectrometer is not
calibrated, but the displacement ∆lc is linked to the difference of Fig. 6.5-(b) and Fig. 6.5-(d), or in
other words, dϕc1/d x −dϕc2/d x.

If we assume that the relation between the pixel number x of the CCD line camera and the circular
frequency ω follows a nonlinear relation,

x =Ω(ω) (6.5)
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where x spans from 1 to 3000 pixels. When we substitute Eq. 6.5 into Eq. 6.3, we get

L = c

ng

dϕ

d x
Ω

′
(ω) (6.6)

where Ω
′
(ω) is the derivative with respect to ω. If we measure a calibrated short displacement ∆lc

at approximately equal arms, we get the calibration function related to the distance,

2∆lc = c

ng c

(
dϕ1c

d x
Ω

′
(ω)− dϕ2c

d x
Ω

′
(ω)

)
(6.7)

Where dϕ1c /d x and dϕ2c /d x are the derivatives calculated from the unwrapped phase of the mod-
ulated spectra as described earlier. ng c is the group refractive index of the wavelength at the maxi-
umum of the PSD, measured at the time of the calibration measurement. Now if a displacement of
L is as shown in Eq. 6.6 is to be measured, it is related to the calibration equation Eq. 6.7 by,

L

2∆lc
= ng c

ng

dϕ

d x
/

(
dϕ1c

d x
− dϕ2c

d x

)
. (6.8)

We observe that the calibration function x =Ω(ω) has canceled out. The derivative of the measured
(unknown) unwrapped phase is dϕ/d x, and ng is the group refractive index of the wavelength at the
maxiumum of the PSD, at the time of the distance measurement. In the special case when the spec-
tral width dλ is much less than λ in Eq. 6.3 and the read out x has a linear relation to λ, x =Ω(ω)
becomes a linear function. But we would like to emphasize that Eq. 6.8 is also valid for an arbitrary
relation between x and ω.

6.2.3 Measurement procedure

When the measured interferograms are not chirped, the derivative of the unwrapped phase is ex-
pected to be a constant, as shown in Fig. 6.3-(f). In absence of an absolute calibration of the spec-
trometer, that is an unknown relationship between the pixel number "x" on the line CCD and fre-
quency, even without chirp, the dϕ/d x respect to x is not a constant because the relation between
x and ω is not necessarily linear.

In the actual experiment, the measurement arm was moved approximately half cavity length from
position A to B as illustrated before in Fig. 6.1. The modulated spectra at both A and B are recorded
and the derivatives of the unwrapped phases are obtained. If the environmental conditions at the
calibration and actual distance measurements are approximately equal, from Eq. 6.8, we get,

L A = 2∆lc · dϕA

d x
/

(
dϕ1c

d x
− dϕ2c

d x

)
LB = 2∆lc · dϕB

d x
/

(
dϕ1c

d x
− dϕ2c

d x

)
. (6.9)

In Fig. 6.6-(a) and (b) we show the interferogram recorded at A and the derivative of the unwrapped
phase respectively. In Fig. 6.6-(c) we show the distance L A extracted using Eq. 6.9. The nonlin-
ear relation between the pixel number and the frequency shown in Eq. 6.5 canceled out in Eq. 6.9.
Therefore we can see almost a constant L A most frequencies in the center of Fig. 6.6-(c). The alias-
ing caused by the Fourier transform does not canceled, so both sides of Fig. 6.6-(c) show deviation.
A constant L A for all pixel numbers indicates that the spectral inteferogram is not chirped with re-
spect to ω. A similar process happens at position B and the respective interferogram, derivative of
the unwrapped phase and calculated LB are shown in Fig. 6.6-(d),(e),(f) respectively. Since half a
cavity length is a small distance, we can see that Fig. 6.6-(f) still shows a fairly constant LB .
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Figure 6.5: The spectral interferograms and the derivatives of the unwrapped phases at position C1 and C2
in the calibration measurement. (a) The measured interferogram when the measurement arm is located at
position "C1". (b) The derivative of the unwrapped phase dϕc1/d x obtained from the interferogram in (a),
with respect to the pixel number x. The deviation on both sides of the curve shown in Fig. 6.5-(b) comes
from the aliasing of the Fourier transform and can be ignored. (c) The measured interferogram when the
measurement arm is located at position "C2". (d) The derivative of the unwrapped phase dϕc2/d x obtained
from the interferogram in (c), with respect to the pixel number x.

Figure 6.6: The spectral interferograms, the derivatives of the unwrapped phases and the derived pulse sepa-
rations at postion A and B in the distance measurement. (a) The interferogram recorded at A. (b) The deriva-
tive of the unwrapped phase at A. (c) The distance L A extracted using Eq. 6.9. (d) The interferogram recorded
at B. (e) The derivative of the unwrapped phase at B. (f) The distance LB extracted using Eq. 6.9.
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Figure 6.7: Experimental results of comparison measurement of 6 difference distances. The error bars indi-
cate the standard uncertainty, derived from measurement reproducibility. The agreements are within 200 nm
and the standard deviation of each measurement is less than 100 nm.

From these measurements, using Eq. 6.4 and Eq. 6.9 we can calculate the measured distance as,

∆l =
dϕA

d x − dϕB

d x
dϕc1

d x − dϕc2

d x

·∆lc + lpp/2 (6.10)

where m = 1.

6.2.4 Measurement results

At first the translation stage was displaced from approximately 1.2 mm pulse separation (Lc1=1.2 mm)
to about 0.6 mm pulse separation (Lc2=0.6 mm). The displacement was recorded by a traditional
counting laser with an accuracy of about 10 nm. The calibration measurement is repeated 6 times
and the average value of dϕ1c /d x −dϕ2c /d x was used. Then the actual comparison experiment
was carried out by measuring 6 different distances, all close to a distance of 15 cm, which is approx-
imately the half laser cavity length. All comparison measurements start at 1.2 mm pulse separation
at position A (L A=1.2 mm), and span equally distances from 0.6 mm to 1.2 mm separation, for
several position of B (LB = 0.6,0.72,0.84,0.96,1.08,1.2 mm) and each measurement consists of 5 in-
terferograms recorded in the front and 5 interferograms at the back of the translation stage. The
temperature and pressure are stabilized within 0.1 ◦C and 1 hPa. The measured distances are com-
pared to a fringe counting laser interferometer. The results of the comparison are shown in Fig. 6.7
with the error bars indicating the standard deviation of our measurement.
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6.2.5 Resolution of the the grating spectrometer

It is important that the spectrometer has good resolution to give the correct ratio between the ref-
erence distance ∆lc and the measured distances L A/2 and LB /2. The resolution of the grating spec-
trometer is determined by several factors, which we discuss below [73].

• Grating resolution. The limit of the grating resolution is determined by,

λ/dλ= N ·p (6.11)

Here N is the totally number of grooves used on the grating and p is the order number and
in our experiments it is 1. We use a grating with groove density 1200 lines/mm, 50 mm total
width. If we suppose that 70% of the grating surface is used, the grating resolution is δλg =
0.02 nm.

• Lateral dispersion. The lateral dispersion is a measure of how different wavelengths are lat-
erally displaced in the exit focal plane. It is calculated by,

dλ/d x = g ·cosβ/ f (6.12)

where g is the groove size, β is the diffraction angle, d x is the length of one single pixel on the
line CCD camera and f is the focal length of the lens behind the grating. In our experiment,
we try to use all pixels of the CCD camera to obtain almost the maximum dispersion possible.
The CCD camera consists by 3000 pixels in a line with 25 mm length. This limits the resolution
due to lateral dispersion to δλc = 0.011 nm.

• Slit size. The slit size determines the bandwidth of a single input wavelength. Only two signals
with their frequency difference more than the bandwidth can be distinguished by the spec-
trometer. This leads to a limit on the resolution due to the finite size of the slit width given
by,

δλs = g

f
·cosβ ·∆x (6.13)

In our experiments, the slit size is around 20 µm. This gives a resolution of δλs = 0.026 nm
because of the slit size.

The total resolution of the spectrometer in terms of wavelength,

δλ=
√
δλ2

g +δλ2
c +δλ2

s = 0.035 nm (6.14)

The resolution of the spectrometer plays a key role in our measurement accuracy. In Fig. 6.8 we
show the modulated spectra at pulse separation of 2 mm. The resolution of the spectrometer is
0.05 nm in Fig. 6.8-(a), 0.1 nm in Fig. 6.8-(b) and 0.2 nm in Fig. 6.8-(c) respectively. When the dis-
tance between the interfered pulses is fixed, a higher resolution means deeper modulation.

6.2.6 Influence of the grating spectrometer resolution on distance measurement

To estimate the uncertainty in the measured distance, arising due to the finite resolution of the
grating spectrometer, let us assume that ϕ and λ have a linear relation. We illustrate this in Fig. 6.9.
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Figure 6.8: Simulated spectral interferograms arising from the interference of two pulses separated by 2 mm
shown using spectrometer having resolutions of (a) 0.05 nm, (b) 0.1 nm and (c) 0.2 nm respectively.

Figure 6.9: Illustration of the uncertainty caused by the influence of the grating spectrometer resolution on
distance measurement
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From Eq. 6.3, we can see that the distance between the two interfering pulse is proportional to
ϕ0/λspan . Here we call the total range of the spectrometer λspan , and ϕ0 is the maximum of the
wrapped phase. Because of the finite resolution, what we actually measure is proportional to ϕ0/(λspan±
δλ). The uncertainty due to this in the measurement is given by,

δL

L
= L

′ −L

L
=

ϕ0

λspan±δλ −
ϕ0

λspan

ϕ0

λspan

≈± δλ

λspan
(6.15)

In our experimental setup, λspan = 35 nm and δλ= 0.035 nm. This leads to δL
L equal to 10−3 in our

case.

It should be mentioned that, δL will effect both the reference measurement and the comparison
measurement. For the first order approximation, if suppose that the dependence between the pixel
number and the wavelength is a linear function, from Eq. 6.10, we see that, the uncertainty of the
measurement depends on dϕ1c /dλ, dϕ2c /dλ, dϕF /dλ and dϕB /dλ. Beside the resolution of the
grating spectrometer, the fluctuation of air, the vibration of the setup and the resolution of the Fast
Fourier Transform also contribute to the uncertainty of the measurement. Our experimental result
of 200 nm accuracy is beyond the resolution limit of the grating spectrometer, mainly because we
derived the result by averaging five interferograms.

6.3 Measurement of long distances with spectral interferograms

6.3.1 Experimental setup and measurement procedure

A schematic of the experimental setup is shown in Fig. 6.10. As can be seen from the figure, this
setup was also located in two adjacent rooms mentioned before in chapter 5. In comparison to the
setup for similar measurements done using cross correlations shown in Fig. 5.4, now, the piezo el-
ement in the reference arm was removed. The combined beam of the interferometer is incident on
the grating spectrometer. The grating spectrometer consists of a slit, a diffraction grating, 2 achro-
matic lenses and a line CCD with 3000 pixels. Here, we will point out some significant changes to
the new setup as compared to the setup for distance measurement using cross correlations.

• In the cross correlation setup, the beam was transported from one room to the other by 4
mirrors and a hole on the wall. In the new setup, we used a fiber to tranport the beam as
seen in Fig. 6.10. We verified that the PSD was not significantly changed due to the fiber. One
advantage of this modification was that, the output beam profile from the fiber had a very
good spatial distribution. At the same time, the two achromatic lenses used to minimize the
beam divergence were moved to the long corridor.

• We added a third gold coated retro reflector on a small translation stage (TS1) at the beginning
of the long arm of the interferometer in the measurement corridor. A second HeNe fringe
counting interferometer was also added to the setup. These additions were made to enable
the calibration measurements.

The calibration measurement was performed for equal arms of the interferometer. For this, the
third retro reflector mounted on a small translation stage (TS1) at the beginning of the measure-
ment arm was used. At the time of the calibration measurement, TS1 is moved into the beam path
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Figure 6.10: Schematic of the experimental setup used to measure distances in the 50 m corridor using spec-
tral interferograms. We can see that the experiment was located in two adjacent rooms. The Ti:Sapphire laser
based frequency comb was located in the room on the left. The beam was transported through a hole on the
wall to the interferometer in the long corridor using a fiber. The reference arm consists of a hollow corner
cube mounted on the translation stage (TS2). The measurement arm consists of two dispersion compen-
sated mirrors and a gold coated retroreflector mounted on a mechanical stage of the 50 m long measurement
bench. The HeNe fringe counting laser interferometer was used for a simultaneous comparison measure-
ment. The returning beams were overlapped and focused on a grating spectrometer. A third gold coated
retro reflector on a small translation stage (TS1) was added at the beginning of the long arm of the interfer-
ometer. A second HeNe fringe counting interferometer was also added to the setup to enable the calibration
measurements.
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and forms a short interferometer with the translation stage on the reference arm (TS2) as can be
seen from Fig. 6.10. The calibration measurement is performed by moving the reference arm (TS2)
in a small amount around 1 mm and recording the modulated spectra on the CCD line camera. A
second HeNe fringe counting laser interferometer is used to measure the reference arm indepen-
dently. After the calibration, the retroreflector on TS1 is moved out of the measurement arm. The
calibration measurement was repeated several times and the averaged value was used for the long
distance measurement.

After the calibration, we translate the retro reflector mounted on TS1 out of the measurement arm.
Now the beam is directed to the 50 m bench using two mirrors. One of the mirrors is coated for
high reflectivity for 820 nm and high transmission at 633 nm. This was done so that the HeNe fringe
counting laser interferometer could be used for a comparison measurement at the same time. A
compensation window is used in the long arm to compensate the dispersion of the plate beam
splitter, arising due to the different lengths in glass encountered by the two beams of the interfer-
ometer. The measurement is carried out by first placing the mechanical car with the retro reflector,
in the long arm, at the closest possible position to the dichroic mirror. The translation stage in the
reference arm is scanned and the spectral interferogram is found and recorded. At this time the
path length difference between both arms is around 1.5 m, corresponding to 9 times the half cavity
length. Let us label the position of the measurement arm at this position of the retro reflector as
A and the distance between the two interfering pulses as L A . Subsequently for each measurement
the mechanical car was moved over a long distance which we label as position B. This long distance
was 50 m in our experiments (corresponding to 340·lpp/2). At this time the distance between the
two interfered pulses is LB and a new spectral interferogram is recorded. The total displacement of
the measurement arm is calculated from Eq. 6.4, where L A and LB are obtained by using Eq. 6.9.

6.3.2 Numerical model for analysis

In chapter 4 section 3, we studied that, even though the spectral interferogram is significantly chirped
during the long distance propagation in air, the fringe density at the small range around the max-
imum of the spectral interferogram remains same, as shown in Fig. 4.21. This is reflected on the
derivative of the unwrapped phase. Although we used the measured power spectral density for sim-
ulations, we show that, it is not necessary to know the entire PSD to get the distance information.
We only need the region around the maximum of the PSD and the group velocity of the frequency
at the maximum of the PSD.

For this experiment, we obtained the PSD again from the autocorrelation verified using the ocean

Figure 6.11: (a) Autocorrelation at equal arms. (b) PSD derived from the autocorrelation.
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optics spectrometer. The autocorrelation and the derived PSD are shown in Fig. 6.11. Using this
PSD, the numerical model implemented plane wave propagation at 106 individual frequencies, sep-
arated by the repetition frequency, using Edlèn’s equation. Spectral interferograms were then cal-
culated using Eq. 4.19. The model takes into account only path length differences and thus only
the difference in spectral phase acquired by both arms in air. In Fig. 6.12-(a) we show the spectral
interferogram obtained for a path length difference of 2 mm. The calculated spectral interferogram
was analyzed using the procedure described in section 6.2.1. This analysis procedure is illustrated
in Fig. 6.3. The curve shown in Fig. 6.12-(b) shows distance as a function of ω. We can compare
this with the distance which we input into the program, i.e. 2 mm. We observe that, Fig. 6.12-(b) is
mainly a constant at 2 mm, but has aliasing on both sides due to the Fourier transform.

Figure 6.12: (a) Numerically simulated interferogram with path length difference equals to 0×Lpp ±2 mm.
(b) The derived pulse separation as a function of ω.

In Fig. 6.13-(a) and Fig. 6.13-(c) we show the simulated spectral interferograms for the path length
difference of 339×Lpp +2 mm and 339×Lpp −2 mm respectively, where Lpp is the inter-pulse dis-
tance. In our experiments 339×Lpp corresponds to a distance of around 100 m. In Fig. 6.13-(a)
the fringes are more separated in the high frequency side and the other way round in Fig. 6.13-(c),
but these chirps can hardly be seen from the two figures. The chirp is clearly visible in the fig-
ures showing the extracted distances, that is Fig. 6.13-(b) for 339×Lpp −2 mm and Fig. 6.13-(d) for
339×Lpp + 2 mm. An increasing or decreasing derivative of the unwrapped phase always means
chirp of the spectral interferogram. Here the twin image ambiguity disappears: A decreasing curve
in Fig. 6.13-(b) means the path length difference is shorter than 339×Lpp . This can be understood
by considering that, higher frequency waves propagate slower than lower frequency waves in air.
When the path length difference between the two arms is shorter than 339×Lpp , the pulse reflected
from the long arm is in front of the pulse reflected from the short arm. The high frequency com-
ponent of the pulse from the long arm are closer to the pulse from the short arm. We see that the
central region of the curves in Fig. 6.13-(b) and Fig. 6.13-(d) are approximately linear. This is mainly
due to the fact that for a small frequency range around 3.674×1014 Hz the refractive index of air is
approximately a linear function of frequency.

Although the derived distances in Fig. 6.13-(b) and Fig. 6.13-(d) are functions of the frequency, the
distance of 2 mm is always shown at the frequency 3.674×1014 Hz, as labelled with the dot in both
curves. This fact implies that, for deriving the distance information, it is not necessary to know the
entire distance curve in Fig. 6.13-(b) but only the small region around 3.674×1014 Hz is interesting.
The same derived distance of 2 mm in Fig. 6.13-(b) and Fig. 6.13-(d) at 3.674×1014 Hz means the
fringe densities in Fig. 6.13-(a) and Fig. 6.13-(c) around the frequency 3.674×1014 Hz is the same.
These are the regions that we are interested which contain the distance information.
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Figure 6.13: (a) Numerically simulated interferogram with path length difference equals to 339×Lpp −2 mm.
(b) The derived pulse separation from the spectral interferogram shown in (a). (c) Numerically simulated
interferogram with path length difference equals to 339×Lpp +2 mm. (d) The derived pulse separation from
the spectral interferogram shown in (c).

6.3.3 Calculate the displacement using more frequencies

The distance information is not only contained at the peak frequency of the PSD, but also at other
positions on the curve. Actually, the exact distance or path length difference which we measure can
be extracted from almost the entire curves shown in Fig. 6.13-(b) and Fig. 6.13-(d), except for the
small regions at the edges which have the numerical artifact due to the Fourier transform. In an ul-
trashort pulse, all frequency components propagate with difference velocities. The interfered fringes
on the spectral interferogram, in a particular region in the frequency domain, can be considered as
the interference of this particular frequency component, contained within the pulses reflected from
both arms. From the previous paragraph we know that, the distance can be derived from a small
region of the spectral interferogram around 3.674×1014 Hz. Here 3.674×1014 Hz is a special fre-
quency not because it is the maximum of the PSD, but because it is the frequency which we used
to calculate Lpp . Actually, the exact distance or path length difference which we measure can be
extracted from almost the entire curves shown in Fig. 6.13-(b), except for the small regions at the
edges which have the numerical artifact due to the Fourier transform. We can choose an arbitrary
frequency component in Fig. 6.13-(b), but remember that Lpp should also be calculated from the
frequency we choose.

To illustrate this more clearly, we give an example. Let us select two points from Fig. 6.13-(b), for ex-
ample, point 1, f1 = 3.658×1014 Hz L1 = 2.009 mm and point 2, f2 = 3.688×1014 Hz L2 = 1.997 mm.
These two frequencies correspond to two different group refractive indices in air and hence two
inter-pulse distances. We have Lpp1 = 294.063777 mm and Lpp2 = 294.063742 mm. The total dis-
tance calculated using different frequency components,

339×Lpp1 −L1 = 339×Lpp2 −L2 = 99685.611 mm, (6.16)
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is the same.

6.3.4 Spectral interferograms at 100 m path length differences

The PSD was first remeasured using the grating spectrometer. The maximum intensity appears at
pixel number x = 1150. On comparing with the PSD measured with the Fourier transform spec-
trometer, we know that this corresponds to the frequency of 3.4×1014 Hz. We measured the largest
path length difference possible ≈50 m in our setup. We recorded the spectral interferograms at sev-
eral pulse separations, close to 339×Lpp . One such spectral interferogram is shown in Fig. 6.14-(a).
The reflected beam drops considerably in power, leading to a drop in the modulation depth, but the
fringes were clearly visible. The derived pulse separation after calibration is shown in Fig. 6.14-(c).
At pixel number x = 1150 the read out of the distance LB = 0.9455 mm. The derived pulse sepa-
ration is decreasing respected to wavelength. This means the path length difference is 339×Lpp +
0.9455 mm. The turbulance in air causes the fringes in the spectral interferogram to vibrate, which
can be seen in the corresponding curve in Fig. 6.14-(c). This leads to an uncertainty of around
2 µm. The measured spectral interferogram and the derived pulse separation are also compared
with simulation. Fig. 6.14-(b) is the simulated spectral interferogram for this distance. To give a
good comparison, the x-axis of Fig. 6.14-(b) was chosen to be the wavelength, and the power of the
reflected beam was taken to be only 1/10 of the original. The pulse seperation calculated from the
simulation is shown in Fig. 6.14-(d). Besides the aliasing on both sides, the central parts of (b) and
(d) match quite well, as indicated by the red line in Fig. 6.14-(c).

We also give an example when the path-length difference between the two arms is shorter than
339 × Lpp . Fig. 6.15-(a) and Fig. 6.15-(c) show the spectral interferogram and the derived pulse
separation at LB = −2.9228 mm. The spectral interferometer and the derived curve of the pulse
separation is also compared with the simulations, as shown in Fig. 6.15-(c) and Fig. 6.15-(d). The
total displacement of the measurement arm is calculated from Eq.3, where Lpp is calculated by
Lpp = c/ng fr and ng is the group refractive index of air at 3.674×1014 Hz (816 nm).

6.3.5 Measurement results

During the measurement, the fluctuation of the temperature in the laboratory was controlled to be
less than 0.1 ◦C. The pressure and humidity have been monitored with an accuracy of 1 hPa and
1% respectively. The calibration distance of around 3 mm was used. Each time the translation stage
was displaced from pulse separation of -1.5 mm to pulse separation of +1.5 mm., This process is
repeated 6 times independently and the averaged calibration distance was used.

Totally 5 groups of long distance measurement were performed. We chose different fr for each
group. Within each group 6 independent measurements were performed. In each measurement,
we arbitrarily chose L1 and L2 in Eqn.6.4. At each position the spectral interferogram is recorded
5 times to statistically minimize the uncertainty. One 50 m measurement took about 10 minutes,
mostly occupied by transporting the retroreflector down the 50 m bench. The measured displace-
ment is compared with measurement of the HeNe fringe counting laser interferometer and the re-
sult is shown in Fig. 6.16. The agreement in 5 measurements are all within one wavelength, with the
standard deviation of around 1 µm. The average of all measurements shows the agreement within
200 nm on 100 m pulse propagation in air, as shown by the dotted line in Fig. 6.16.
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Figure 6.14: (a) A typical measured interferogram with path length difference longer than 339×Lpp . (b) The
simulated spectral interferogram using L = 0.9455 mm. (c) The derived pulse separation from the measure-
ment data in (a). At pixel number x = 1150 the read out of the distance L = 0.9455 mm. The decreasing
slope of the curve indicates a positive sign. (d) The pulse separation calculated from the simulation using
L = 0.9455 mm.

Figure 6.15: (a) A typical measured interferogram with path length difference shorter than 339× Lpp . (b)
The simulated spectral interferogram using L =−2.9228 mm. (c) The derived pulse separation from the mea-
surement data in (a). At pixel number x = 1150 the read out of the distance L = 2.9228 mm. The increasing
slope of the curve indicates a negative sign. (d) The pulse separation calculated from the simulation using
L =−2.9228 mm.
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Figure 6.16: Comparison measurement of displacements of around 50 m. The error bars indicate the stan-
dard uncertainty, derived from measurement reproducibility. The average of all measurements is shown by
the dotted line.

We attribute the residual difference and uncertainty in the comparison measurement to vibrations
of the setup and air turbulence. The variation and uncertainty of the environmental parameters,
limits the accuracy in measuring the absolute distance. For example, a typical uncertainty of 0.1◦C
in temperature already leads to an uncertainty of the refractive index of air of about 1×10−7, corres-
ponding to 10 µm at 100 m propagation. Also, an uncertainty of 1 hPa in pressure leads to an un-
certainty of 2.7×10−7, corresponding to 26 µm at 100 m propagation. Moreover the updated Edlen’s
equation itself has an intrinsic uncertainty of 1×10−8, implying 1 µm over a path length difference of
100 m. The influences of the environmental parameters on the refractive index at the wavelengths
of both the He-Ne laser and the frequency comb cancel in first order. For this is the reason the
agreement between the experimental results is much better than 10 µm. The agreement between
the frequency comb and the He-Ne laser is much better than the achievable absolute accuracy in
air, showing that the measurement result is not limited by the chosen method.
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Conclusion

In this thesis we have shown two different methods using the femtosecond comb laser as a source
for absolute long distance measurement. The first method is based on cross correlations, recorded
by periodically moving one arm of the Michelson interferometer. The second one is based on spec-
tral interferograms, recorded by a grating spectrometer.

We built experimental setups to measure distances up to 50 m using both techniques. Both meth-
ods have shown that accuracies less than 2 µm can be achieved. The accuracy is not limited by
the measurement techniques, but the knowledge of the environment. The uncertainty in determin-
ing the refractive index of air becomes the key factor in measuring long distances in air. During
the measurement, although the temperature, pressure and humidity were monitored, still the vari-
ation and uncertainty on the measurement of these environmental parameters, limits the accuracy
in measuring the absolute distances.

If the experiments are performed in outer space, where the refractive index of air is not needed
to be taken into account. Then the accuracy will only be influcenced by,

• The noise properties of the femtosecond laser. The timing error is defined as the deviation
of the temporal pulse position from the corresponding position of a timing reference, which
will always be assumed to be noiseless [74–76]. In the frequency domain this is the shift of
each repetition frequency from its noiseless position fn = n fr + f0 on the frequency axis. For
a typical Ti:Sapphire laser locked to the cesium clock, fr can be stablized within 1 Hz. Let us
give an example, if the repetition frequency of the laser is 1 GHz, the timing jitter is 10−9 of the
repetition frequency. Therefore if the inter-pulse distance is Lpp = 30 cm, an uncertainty of
30 nm arises from the timing jitter. Suppose we measure a distance of 15 km in vacuum, that
is 105 times the half of the inter-pulse distance, the uncertainty in measuring this distance be-
cause of the timing jitter is about 30 µm. For commercial on-board femtosecond laser sources
the timing jitter is larger than the cesium clock locked Ti:Sapphire laser and will cause larger
inaccuracies when measuring long distances in vacuum.

• The mechanical vibrations of the experimental setup. This is important, especially with the
experiments using the cross correlations. The accuracy of moving the piezo element is one
key limit to the measured accuracy.

• The resolution of the detector. When the path length difference is very long, the reflected
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beam from the measurement arm is expected to be very weak. Hence the sensativity and the
resoltion of the detector are important. In the experiments using spectral interferogram, the
resolution of the grating spectrometer will limit the measurement accuracy.

• The calibration of the reference arm. To measure an arbitrary distance, the short reference
arm is needed to accurately calibrated. The reference arm of always less than half of the inter-
pulse distance and can be calibrated accurately by using other technique such as a two wave-
length interferometer.

The ultimate maximum distance which can be measured will be limited by the coherence length of
the laser source, which depends on the linewidth of the comb lines in the particular comb source.
The coherence length of a Ti:Sapphire frequency locked femtosecond laser is of tens of kilometers
or more. This is a good property to expect that this method can be applied to measure very long
distances, especially in space where the dispersion of air is absent.



Nomenclature

The notations used throughout this thesis are listed in Table 1), represented in the SI units. To
complete the nomenclature, all abbreviations used in this thesis are described in a separate list (see
Table 2).

Table 1: List of used notations

Symbol Units Description

L m path length or separation between two interfered pulses

Lm m path length of the measurement arm in an interferometer (back and forth)

Lr m path length of the reference arm in an interferometer (back and forth)

lm m the length of the measurement arm in an interferometer (single way)

lr m the length of the reference arm in an interferometer (single way)

∆lm m the displacement of the measurement arm in an interferometer

∆lr m the displacement of the reference arm in an interferometer

∆lc m the calibration distance in a spectral dispersive interferometer

Lpp m the inter-pulse distance or one cavity length

lpp/2 m half of the inter-pulse distance or half cavity length

fr H z the repetition frequency of the comb laser

ωr r ad/s the angular repetition frequency of the comb laser

f0 H z the carrier-envelope offset frequency of the comb laser

ω0 r ad/s the angular carrier-envelope offset frequency of the comb laser

nx − the refractive index of the x-th frequency or wavelength

nc − the refractive index of the frequency at the center of the PSD

np − the phase refractive index

ng − the group refractive index

nai r − the refractive index of air

nBK 7 − the refractive index of BK7

n(X ) − the refractive index as a function of X

n (bare) − the mode number in a frequency comb

c m/s the speed of light in vacuum

k 1/m wave number

λ m wavelength

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .continued on next page. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 1: List of used variables

Symbol Units Description

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . continued from previous page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Λ m the synthetic wavelength in a two wavelength interferometer

f H z the optical frequency

ω r ad/s the angular frequency

ωc r ad/s the angular frequency at the center of the PSD

E V /m the electric field (polarization ignored)

|E | V /m the scalar amplitude of the electric field

φ r ad the phase of the electric field

Ê V /m the spectrum of the electric field

|Ê | V /m the spectral amplitude

ϕ r ad the spectral phase

I W /m2 the intensity of the beam

S V 2/H z the power spectral density (PSD)

δ m the correction term obtained by comparing the peaks of two cross correlations

dchi r p m the correction term between the brightest fringe of the cross correlation and a multiple of Lpp

Table 2: List of abbreviations

Abbreviation Description

AC Achromatic Lens

AOM Acoustic Optical Modulation

APD Avalance Photo Diode

BBO Beta Barium Borate

BS Beam Splitter

CCD Charge Coupled Device

CEO Carrier Envelope Offset

FRAC Fringe Resolved Auto Correlation

FROG Frequency Resolved Optical Gating

FWHM Full Width Half Maximum

GVD Group Velocity Dispersion

KLM Kerr Lens Modulation

PDA Photo Diode Array

PSD Power Spectral Density

FSR Free Spectral Range

SHG Second Harmonic Generation

SPIDER Spectral Phase Interferometry for Direct Electric-field Reconstruction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . continued on next page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 2: List of abbreviations

Abbreviation Description

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .continued from previous page . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SPM Self Phase Modulation

TS Translation Stage

WLS White Light Source
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Summary

This thesis is about interferometric distance measurement using ultrashort pulses, with linear mea-
surement techniques in a dispersive medium. Several fields of expertise are combined here: ultra-
short pulse propagation in dispersive media, distance measurement interefometry and linear mea-
surement techniques. All our measurements can be mainly classified into two interferometers we
built as a part of this work. The two interferometers share somethings in common but also differs:
They shared the same femtosecond laser source; both had 50 m long path length differences be-
tween the two arms. The detected signals from the two methods are quite different: one is cross
correlations, with measured intensity as a time sequence, and the other is spectral interferograms,
measured by a grating spectrometer. But the information obtained from the two detection methods
are the same: The PSD and the path length difference at certain enviroment conditions.

Although the information we obtain from a linear technique is limited, it is enough, or sometimes
more than enough to extract the path length difference of the two arms. For example if the measure-
ment is performed in vacuum, where the inter-pulse distance is only determined by the repetition
frequency and the speed of light in vacuum. Then cross correlation will always be the same as an
autocorrelation, and the spectral interferograms will never be chirped. The PSD is not necessary to
extract the path length difference because the spectral component does not contribute to the mea-
sured distance. At this time, the deviation factor dchi r p in chapter 5 is always zero and the derivative
of the unwrapped phase in chapter 6 is always a constant.

When the measurement is performed in air, each frequency now has its own refractive index and
hence its own velocity. The situation becomes complex because the effect of the dispersion strongly
depends on those frequencies we are observing. The ways to extract the path length differences
from the cross correlations and the spectral interferograms are quite different: In the cross corre-
lation technique, each point in a cross correlation is the intensity of the weighted combination of
all the frequencies. Then a complete knowledge of the PSD is necessary to perdict the shape of the
cross correlations hence derive the path length difference. In the spectral interferometry method,
we can concentrate at one particular frequency where the modulated spectrum around this fre-
quency is only determined by the interfering of this particular frequency component in the PSD.
Thus the global knowledge of the PSD is not necessary to be known.

In this research, we investigated a new way of measuring long distances with stablized femtosec-
ond pulses. In the end, we need to say that our research is only the first step. When this technique
is developed for practical uses, for example, in space missions, many adaptions will be undertaken
and many more factors will be considered. Fortunately, while the author finishing this thesis, more
compact, stable and cheaper femtosecond pulse sources are being made available all around the
world. Our theoretical and experimental research will be the footsteps for future researchers.
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Samenvatting

In deze dissertatie staan interferometrische afstandsmetingen centraal waarbij gebruik wordt ge-
maakt van ultrakorte pulsen met lineaire meettechnieken in dispersieve media. Verschillende ex-
pertisegebieden zijn hierbij gecombineerd: ultrakortegolf-propagatie in dispersieve media, interfe-
rometrische afstandsmetingen, en lineaire meettechnieken. Als onderdeel van het project zijn twee
typen inferometers gebouwd waarop alle metingen zijn uitgevoerd. De twee typen interferometers
hebben gezamenlijke aspecten maar verschillen ook van elkaar: zo maken ze gebruik van dezelfde
femtosecond laserbron en hebben beide een weglengteverschil tussen de twee armen van 50 meter.
Verschillend zijn de gedetecteerde signalen bij de twee methoden: bij de ene betreft het kruiscorre-
laties met een gemeten intensiteit als tijdsequentie, bij de andere bestaat het signaal uit spectrale
interferogrammen welke gemeten zijn met een grating spectrometer. De informatie die wordt af-
geleid uit de twee detectiemethoden is echter gelijk: de PSD en het weglengteverschil bij bepaalde
omgevingscondities.

Hoewel de verkregen informatie uit een lineaire techniek beperkt is, is die voldoende, en soms
meer dan genoeg, voor het bepalen van de weglengteverschillen in de twee armen. Bijvoorbeeld
als de meting in vacuüm wordt uitgevoerd, waarbij de onderlinge pulsafstand alleen maar wordt
bepaald door hun herhalingsfrequentie en de snelheid van het licht in vacuüm. In dat geval zal
een kruiscorrelatie altijd gelijk zijn aan een autocorrelatie en de spectrale interferogrammen zul-
len nooit ge-’chirped’ zijn. De PSD is niet nodig om een weglengteverschil te bepalen omdat de
spectrale component niet bijdraagt aan de gemeten afstand. Op dit moment is de afwijkingsfactor
dchi r p in hoofdstuk 5 altijd gelijk aan nul en is de afgeleide van de ’unwrapped phase’ in hoofdstuk
6 altijd een constante.

Wanneer de meting in lucht wordt uitgevoerd heeft elke frequentie zijn eigen brekingsindex en
dus zijn eigen snelheid. De situatie wordt gecompliceerd omdat het effect van dispersie sterk af-
hangt van de geobserveerde frequentie. De manieren om de weglengteverschillen te bepalen uit de
kruiscorrelaties en de spectrale interferogrammen zijn wezenlijk verschillend: bij de kruiscorrela-
tietechniek is ieder punt in een kruiscorrelatie de intensiteit van de gewogen combinatie van alle
frequenties. Vervolgens is volledige kennis vereist van de PSD om de vorm van de kruiscorrelaties te
voorspellen en daarmee het weglengteverschil. Bij de spectrale interferometrie methode kunnen we
ons concentreren op één specifieke frequentie, waarbij het gemoduleerde spectrum rondom deze
frequentie alleen wordt bepaald door de mate waarin deze specifieke frequentiecomponent met de
PSD interfereert. Volledige kennis van de PSD is dan ook niet noodzakelijk.

In dit onderzoek hebben wij een nieuwe manier voor het meten van lange afstanden met gesta-
biliseerde femtosecondpulsen onderzocht. Hierbij vermelden we dat ons onderzoek een eerste stap
is. Wanneer deze techniek verder wordt ontwikkeld voor praktische toepassingen, bijvoorbeeld in
ruimtevaartmissies, zullen er veel aanpassingen nodig zijn en zal er met veel meer factoren reke-
ning gehouden moeten worden. Het is erg positief dat, op het moment van het afronden van deze
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dissertatie, er een groeiend aantal compacte, stabiele en goedkopere femtosecond pulsbronnen ver-
krijgbaar zijn. Ons theoretisch en experimentele onderzoek zal fungeren als voetstappen voor toe-
komstige onderzoekers.
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