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Preface 

 
Many classification procedures are based on variable selection methodologies. This master thesis 
concentrates on continuous variable selection procedures based on the shrinkage principle.  Generally, 
we would like to find sparse prediction rules for multi-class classification problems such that in increases 
the prediction accuracy but also the interpretability of the obtained prediction rules. For these reasons 
we have chosen for the multinomial logistic regression model as its penalization procedures perform 
continuous variable selection and generally lead to sparse prediction rules.  Next to the multinomial 
logistic regression model we have also implemented the Ridge penalization, Lasso penalization, Elastic 
net penalization, and the Group Lasso. The emphasis of this research lies on the Lasso and Group Lasso. 
The Lasso performs in a multi-class classification problem a variable selection on individual regression 
coefficients. In the multinomial regression model each predictor has a regression coefficient per class. 
The selection of the individual regression coefficients is less logical than the selection of an entire 
predictor. For this reason it could select redundant predictors leading to more retained predictors and 
less interpretable prediction rules. To overcome this problem we have developed a Group Lasso 
procedure with a novel group structure. The advantage of using the Group Lasso is that it performs 
variable selection on the predefined groups. In our model we developed a group structure which groups 
all the regression coefficients, i.e. of each class, of each predictor. This group structure facilitates the 
selection of an entire predictor. We demonstrate on the basis of gene expression profiles of 531 well-
characterized Acute Myeloid Leukemia patients that the Group Lasso obtains less predictors with a 
similar prediction accuracy when compared to the regular Lasso.  Finally, the Group Lasso facilitates the 
comparison of regression coefficients between classes for each predictor, which is not possible with the 
Lasso. 
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Sparse multi-class prediction based on the Group Lasso 
in multinomial logistic regression 

 

Mathijs Sanders 
 

and 
 

Jelle Goeman 
 

Department of Medical Statistics and Bioinformatics, Leiden 
University Medical Center, Postzone S5-P, P.O. Box 9604, 2300 RC 

Leiden, The Netherlands 
 

Summary: Continuous variable selection using shrinkage procedures have recently been 
considered as favorable models in a wide range of scientific research; in particular 
biomedical research. In some cases, it is desirable to select as few predictors as possible, 
to increase the interpretability of the attained prediction rule. One frequently used 
shrinkage procedure; the Lasso, imposes a L1 regularization on the regression 
coefficients of general linear models, inherently leading to sparse prediction rules. When 
dealing with multi-class prediction in generalized linear models each predictor has a 
regression coefficient for each class. A major disadvantage is that the Lasso selects 
individual regression coefficients instead of the more logical selection of predictors. In 
this paper, we demonstrate a new regularization procedure, based on the Group Lasso 
in multinomial logistic regression. This results in a lower number of retained predictors, 
but with similar prediction accuracy when compared to the regular Lasso regularization. 
To illustrate the new regularization applicability we have employed it on a large cohort 
of acute myeloid leukemia patients (AML, n=531) who are characterized on a gene 
expression microarray. 
 

1. Introduction 

 

 The emphasis in regression models is on finding explanatory variables, also 
called `predictors`, which can predict response variables accurately. 
Contemporary high-throughput technologies, have given rise to vast amounts of 
high-dimensional data. Given the high-dimensionality of the data, it is 
worthwhile to perform variable selection, as it would result in sparser prediction 
rules which could also be used for subsequent analysis. Best-subset procedures 
are in most cases computationally intensive; even for a moderate number of 
variables, and are known to be unstable due to their discrete nature. More 
robust strategies have been proposed for the multinomial logistic regression 
model (Krishnapuram et al., 2005) by imposing a penalty on the regression 
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coefficients; see Le Cessie (1990). In these models, based on the logistic 
regression model, each class has its own set of regression coefficients. By 
imposing penalizations, also called `regularization`, on these regression 
coefficients one can automatically control the behavior of these coefficients as 
the model is being fit. A frequently used penalization methodology is the Lasso 
(Tibshirani R., 1996); which puts a L1 regularization on the regression coefficients. 
This regularization retains one predictor from a set of pair wise correlated 
predictors and discards the remaining. In the usual logistic regression set-up we 
have a continuous response , an  design matrix  and a parameter 
vector . This implies that we have  predictors and  observations. The 
Lasso estimator is then defined as: 
 

 

 

For large values of , some coefficients of  are put exactly to zero and are 
considered to be of no impact on the response variable. The sparse prediction 
rules obtained with the Lasso procedure is one of the reasons why it is frequently 
used for high-dimensional data (Zhu J. and Hastie T., 2004). In a multi-class 
classification problem, we have a regression coefficient vector for each class. A 
specific predictor is retained if one of its regression coefficients over all classes is 
unequal to zero. Table 1 illustrates an excerpt of the regression coefficients 
vectors for a four-class classification problem (chromosomal aberrations, 
classification case 1, Results). It shows the major disadvantage of Lasso 
regulation, as it selects individual regression coefficients instead of the more 
natural selection of predictors. This does not only result in less interpretable 
prediction rules, but also increases the number of selected predictors. 
 

  Other T(15;17) T(8;21) INV(16) Gene Symbol 
1553588_at 9.55E-05 0 0 -0.0003 ND3  
200026_at 9.91E-05 0 0 0 RPL34 
200665_s_at 0 0 0 0.000659 SPARC 
201324_at -0.00024 0 0 0 EMP1 
201360_at -0.00014 0 0 0.000246 CST3 
201432_at 0.00173 0 0 -0.00039 CAT 
201502_s_at 0.000318 0 0 0 NFKBIA 
201721_s_at 0 0 -0.00053 0 LAPTM5 
202746_at 0 0 0 0.000388 ITM2A 
202859_x_at 0 0 0.000122 0 IL8 
202902_s_at 0 0 0 0.000201 CTSS 
202917_s_at 0 0 0 0.00021 S100A8 
203535_at 0 0 0 0.000762 S100A9 

Table 1 Regression coefficients of a 4-class classification problem: Lasso has a tendency 
to set many regression coefficients to zero. 
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An alternative model the Group Lasso (Yuan and Lin, 2006; Meier, 2008) 

can overcome this problem by defining a suitable penalization function. This 
penalization procedure has been observed as an intermediate between Lasso 
and Ridge regulation and in addition has the attractive property to perform 
variable selection on predefined groups of predictors. Most logistic regression 
models, which had hitherto solely been based on single predictors, can now be 
replaced by entities reflecting grouping structures. This predefined grouping has 
given the possibility to integrate prior knowledge into the model and create 
structures relevant to research; such as pathway analysis. The elastic net (Zhou, 
2005) was developed to take advantage of the grouping effect; however it lacks 
the ability to predefine group structures, which could inherently increase the 
interpretability of the prediction rule. 
  In this paper we have extended the Group Lasso for the logistic 
regression model to multi-class classification. In addition, we impose a group 
structure such that an entire predictor is retained or discarded over all classes. 
This implies that retained predictors have a regression coefficient unequal to 
zero for all classes and when discarded are all simultaneously set to zero. A 
benefit of this is that the coefficients can now be compared between classes of 
one particular predictor. The aim of the current study is to demonstrate that the 
new regularization procedure has a prediction accuracy comparable to that of 
the regular Lasso penalization, and in addition, that the optimal estimator 
contains less predictors. To demonstrate this we make use of the gene 
expression data from a large cohort of AML patients (n=531), with a distinct 
molecular-specific subtypes which can be used as classification objectives. The 
core of this algorithm will be explained further in Section 2. Next to the 
derivation of the algorithm we also address parameter identifiability problems 
and an approach for solving these issues. The reparameterization of the model 
has lead to the decision for a Quasi-Newton optimizer with bounding box 
constraints for the optimization. Section 3 presents the results with additional 
interpretation of the prediction rules. Finally, Section 4 discusses the extensions 
of the algorithm and concluding remarks. 

 

2. Multinomial Group Lasso 
 
2.1 Multinomial logistic regression 
 
Firstly, a brief summary of the multinomial regression model is needed to fully 
understand the Group Lasso. The multinomial regression model is a multi-class 
classification procedure, which predicts the probability of a class by fitting the 
data to a logistic curve. Initially, we have a specific number of observations; , a 
specific number of predictors belonging to these observations; , and each 
observation can be assigned to  outcome categories. In an example, we have 
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the outcomes  for each observation and a corresponding  design 
matrix of predictors X. It is convenient to rewrite the outcomes to indicator 
functions which correspond to class participation. We define  

, noting that each class has its own regression 
coefficients vector, . The corresponding probability is given 
by: 
 

 

 

The model defined in (2) is overparameterized. Replacing  by 

, for any  and , results in the same 

probabilities. Commonly, this problem is solved by defining one outcome 
category as the reference category, by setting all its coefficients to zero, i.e. 

, for any . The choice of reference category 

facilitates that the interpretation of the resulting parameter estimates.  Instead 
of choosing a reference category, we will treat the outcome categories as 
symmetrical (Goeman et al., 2006), as penalized models are not invariant to 
setting reference categories and inherently results in different prediction rules. 
Furthermore, the penalized general linear models are not affected by 
overparameterization in terms of function identifiability problems. For notational 
convenience we rewrite the regression coefficient vectors into a long vector 

format: . We also rewrite ,  into vectors: 

,  and the design 

matrix into , where  is the Kronecker product. The log-likelihood of 

this model is: 
 

 

 

which has the gradient  and the Hessian . 

The  matrix W is given by: 
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Where 
 

 

 
Due to the convexity of the problem, we can use a Newton-Raphson algorithm to 
maximize the likelihood. A problem due to the overparameterization of the 
model, is that the Hessian is singular. By using Moore-Penrose or projection 
procedures, we can resolve this issue, but this is not a concern for the Group 
Lasso as earlier stated: penalized models are not affected by 
overparameterization in terms of function identifiability problems. 

 
2.2 Penalty structure 

 
The penalized log-likelihood under Lasso regulation (1), imposes a L1 

regularization on each individual regression coefficient per predictor over all 
classes in a multi-class prediction problem. A large amount of these regression 
coefficients are set to zero under strong penalization, resulting in sparse 
prediction rules. Its emphasis is on the selection of individual regression 
coefficients, instead of the selection of single predictors, leads to a larger 
number of retained predictors than desired. In addition, most regression 
coefficients per predictor are set to zero; this prohibits the comparison of the 
impact of the predictor on all predefined classes. To resolve this disadvantage we 
propose a new penalization structure based on the Group Lasso in multinomial 
logistic regression (Yuan and Lin, 2006; Meier L. et al., 2008). The Group Lasso 
regularization structures allow the definition of groups as entities of the model. 
Instead of selecting single predictors, the model now selects predefined groups, 
facilitating different interpretations of the prediction rules. It does so by defining 
group structures based on the regression coefficients. Let us first define the beta 
matrix, of which the columns consist of regression coefficient vectors for each 
class: 
 

 

 
This beta matrix gives the opportunity to define many group structures, and was 
the underlying mechanism for the development of the Group Lasso. In this study, 
we would like to retain or discard each predictor; i.e. each row of this matrix, by 
setting all regression coefficients simultaneously unequal or equal to zero. This is 
accomplished by defining each row vector of regression coefficients as a group. 
Let us assume that we have a -dimensional feature vector , which 
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consists out of  groups.  Let us denote by  the degrees of freedom of group , 

rewrite  and denote the group of variable , 

. The regression coefficient vector is parameterized as 

, . 

 

Given these groups we rewrite (2) as: 

 

 

 
 
The Group Lasso estimator  is given by the maximizer of the function: 
 

 

 

Hence, the penalty function sums the norm of each row of the beta matrix . 
Note that Meier L. (2008) as well as Yuan M. (2006) integrate the square root of 
the degrees of freedom of each group in the summation. Given the current 
group structure, each group has the same degrees of freedom, thus the 
additional term is omitted. 
 
2.3 Group Lasso estimator 
 
To optimize the penalized log-likelihood function (5), the low-memory BFGS 
algorithm (L-BFGS-B, Liu (1989)) is used. This particular algorithm is a Quasi-
Newton algorithm, as it needs a limited number of previous function and 
gradient evaluations to estimate the inverse Hessian. The gradient of the 
penalized log-likelihood function is given by: 
 

 

 
where the gradient of the penalty function is defined as: 
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2.4 Reparameterization and parameter identifiability 
 
Optimizing the penalized log-likelihood function leads to major problems, as the 
function is only strictly convex and continuous in the internal space of all 
subspaces of the regression coefficients. The derivative of the penalized log-
likelihood function remains undefined when one of the regression coefficients 
equals zero. This is issue is resolved by reparameterizing the model to a higher 
dimension where the function is strictly convex and continuous. The following 
reparameterization is proposed: 
 

 

 

 

 

 

 
The reparameterization is realized by decomposing the individual regression 
coefficients into a positive part function (PPF) and a negative part function (NPF). 
These functions are constrained by the fact that each must be non-negative. For 
this reason we make use of the box constraints that can be set for the L-BFGS-B 
algorithm. Note that at the convergence either the PPF, NPF or both should be 
equal to zero. This reparameterization results in a model with twice as many 
parameters, which are restricted to a subspace of non-negative regression 
coefficients. As stated, in this single subspace the penalized log-likelihood 
function is strictly convex, continuous, and is differentiable in each internal point. 
Hence, instead of dealing with distinct continuous subspaces where the function 
is non-differentiable at their borders, i.e. when one of the regression coefficients 
is set to zero, we now have one subspace where the function is differentiable in 
its internal space. The log-likelihood gradient remains unchanged under the 
reparameterization, but the penalty function gradients are given by: 
 

 

 

 
A problem occurs when all the regression coefficients of a group become zero, as 
the penalty function is no longer differentiable. To solve this problem the 
following limit is taken for the sake of continuity: 
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Next to the reparameterization, the optimization of the penalized log-likelihood is 
also affected by a parameter identifiability problem. The penalty function  

(5-7) consists of the norms of the row vectors of the beta matrix . These norms 
are characterized by the squared regression coefficients , belonging to their 

respective groups. Under the reparameterization this squared regression 
coefficient is given by: 
 

 

 
In equation (8), multiple instances of  or  could give the exact same . This 

problem can be resolved by imposing a constraint on this equation. At 
convergence either the PPF, NPF or both should be equal to zero. This implies 

that the middle term of the factorization of  should be forced to be zero. This 

leads to the redefinition of equation (8): 
 

 

 
As we are trying to redefine the penalty function it is more appropriate to 
rewrite the penalized log-likelihood function: 
 

 

 
It is easily shown through the triangle-inequality that: 
 

 

 
Hence, the redefinition of the penalty function  is always larger or equal 
than its original definition. Given inequality (11) and the fact that either the PPF, 
NPF or both are zero at convergence, the redefined penalty function becomes 
equal to the original definition. By this redefinition we have solved the 
parameter identifiability problem and proven to be exactly the same as the 
original definition at convergence, we obtain the exact same prediction rules 
without convergence problems. 
 Table 2 illustrates an excerpt of the results from the same 4-class 
classification problem (chromosomal aberrations, classification case 1, Results) 
based on the modified Group Lasso. In comparison with Table 1 it immediately 
becomes clear that: (i) the number of predictors is decreased (ii) no regression 
coefficient of the retained predictors is set to zero, and (iii) the new group 
structure facilitates comparison of the regression coefficients between classes. 
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  Other T(15;17) T(8;21) INV(16) Gene Symbol 

1553588_at 0.00018085 -8.59E-05 5.97E-05 -0.0001546 ND3  

200665_s_at -0.00014592 -1.73E-05 -7.23E-05 0.000235584 SPARC 

201324_at -0.00017254 1.18E-05 2.64E-05 0.000134331 EMP1 

201360_at -0.00020149 9.67E-06 -6.17E-05 0.000253532 CST3 

201432_at 0.000946723 -0.00025838 -3.35E-05 -0.0006548 CAT 

201502_s_at 0.000131047 -0.00012284 6.43E-05 -7.25E-05 NFKBIA 

201721_s_at 0.000325746 1.74E-05 -0.00034902 5.93E-06 LAPTM5 

202746_at -0.00012466 1.67E-05 -0.00011551 0.000223436 ITM2A 

202902_s_at -7.06E-06 -1.00E-05 -5.58E-06 2.27E-05 CTSS 

202917_s_at -6.06E-05 -0.0001884 -8.16E-05 0.000330612 S100A8 

203535_at -0.00018007 -6.25E-05 -9.28E-05 0.000335433 S100A9 

Table 2 Regression coefficients of a 4-class classification problem with the modified 
Group Lasso: The Group Lasso procedure produces sparser prediction rules. 
Furthermore it facilitates the comparison of regression coefficients between classes.  

 

3. Results 
 
AML is not a single disease, but a group of neoplasms with various genetic 
aberrations and variable prognosis and responses to treatment. The search for 
novel molecular markers is essential for therapeutical decision-making. A large 
number of molecular markers have been identified in the last decade, however 
the underlying mechanism of leukomogenesis still remains elusive. With the use 
gene expression profiling (GEP), the challenge lies in generating reliable 
prediction rules that can discriminate the different gene expression profiles and 
subsequently the variable subtypes of AML; for instance for the improvement of 
treatment decisions. We have applied our algorithm to the GEP of 540 clinically 
and molecularly well-characterized cases of AML. They originate from two 
different cohorts, the first of which represents a subset of 285 previously 
analyzed patients (Valk P. et al., 2003), while the second was subsequently 
generated as a complement to the first. All samples are analyzed using the 
Affymetrix Human Genome U133APlus 2.0 GeneChips (Affymetrix, Santa Clara, 
CA, USA). All clinical, cytogenetic and molecular information as well as the gene 
expression data are readily available at the Gene Expression Omnibus 
(www.ncbi.nlm.nih.gov/geo, accession number GSE6981). All data has been 
preprocessed as described in Verhaak R. et al. (2009). AML cohort 1 (n=269) has 
been used as training set while AML cohort 2 (n=261) is subsequently used as 
test set. The optimal value for the regularization parameter  was determined by 
5-fold cross-validation. The gene expression signatures are available in 
Supplementary Tables S1-S2. 

 
 
 
 

http://www.ncbi.nlm.nih.gov/geo
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3.1 Classification case 1: Chromosomal aberrations and CEBPa 
 

3.1.1 Background and Classification objective 
 
The first classification objective is to classify AML patients with a favorable risk, 
i.e. with a translocation 15-17 (t(15;17)), translocation 8-21 (t(8;21)), inversion 
16 (INV(16)). In addition to the classes with chromosomal aberrations, a class 
was created for samples that harbored a mutation in the well-known 
transcription factor CEBPa. This transcription factor is associated with inhibiting 
granulocyte differentiation. Usually, these classes are mutually exclusive, and no 
overlapping biological mechanisms influencing the gene expression patterns 
were expected. Finally, an additional class ‘Other’, was created for the remainder 
of the samples. Table 3 depicts the distribution of the different classes over the 
two cohorts.  
 

ClClasses AML cohort 1 (n=261) AML cohort 2 (n=264) Risk 

Other 180 (70%) 204(77%) Intermediate 

t(15;17) 18(7%) 7(3%) Favorable 

t(8;21) 22(8%) 16(6%) Favorable 

inv(16) 23(8%) 18(7%) Favorable 

CEBPa 18(7%) 18(7%) Favorable 

Table 3: Distribution of the AML samples over the predefined classes. 

 
3.1.2 Results 
 
We have applied the global test for multinomial logistic regression (Goeman J.J., 
2004) to investigate whether the fit of the model can discriminate the classes 
based on the given predictors, i.e. genes. This test can determine whether the 
global expression pattern of all genes is significantly related to the outcomes, i.e. 
class labels. It can be shown that the given genes are significantly related to the 
outcomes (p < 0.0001), hence giving positive evidence that the classes can be 
discriminated from each other. Using 5-fold cross-validation the optimal 
regularization parameter  was set to 50. This resulted in 74 retained probe sets 
(Supplementary S1). Figure 1 illustrates the estimated test error curve for a grid 
for eleven evaluations of . The optimal regularization parameter  for the Lasso 
penalization was determined by the same cross-validation procedure. The 
regularization parameter was set at 0.02 with 75 retained probe sets 
(Supplementary S3). For this classification case it does not matter whether to 
select the Lasso or the modified Group Lasso, when only depending on the 
number of retained predictors. The retained predictors of both procedures 
greatly overlap, with the exception of a few predictors. Strikingly, the Lasso 
makes four additional miss-classifications compared to the Group Lasso (Table 5 
vs. Supplementary S6). 
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Figure 1. Estimated test error curve based on 5-fold cross-validation 

 
All AML subtypes harboring chromosomal aberrations (t(15;17), t(8;21) and 
INV(16)) were predicted with 100% accuracy (Table 5), which was consistent with 
previous work. A substantial proportion of the samples with a CEBPa mutation 
were classified as being in the ‘Other’ category. After further investigation it 
became apparent that the misclassified samples all contain a single mutation 
instead of the more common double mutation; affecting both alleles. In previous 
work (Wouters B. et al. 2009) it was noted that double, but not single mutated 
samples have a distinct GEP and can be accurately predicted. Furthermore it is 
noted that the Overall Survival (OS) and the Event-Free Survival (EFS) are 
significantly different between the single (together with the wildtype) and the 
double mutant samples, as illustrated in Figure 2A-B. It is clear that the samples 
with double mutations not only have a more favorable risk than the single 
mutants or samples with a wildtype for CEBPA, but also have a distinct GEP.  
   

 
Figure 2. Overall survival and event-free survival. 
A. Overall survival among CEBPAdouble-mut vs. CEBPAsingle-mut vs. CEBPAwt, Log rank test, pooled: p=0.011 
B. Event-free survival among CEBPAdouble-mut vs. CEBPAsingle-mut vs. CEBPAwt, Log rank test, pooled: 

p=0.008 
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3.1.3 Interpretation 
 
In addition to determining the prediction accuracy of the algorithm, the 
interpretation of the retained predictors is an important part of the analysis. 
Previous research by Kohlmann A. (2003) has also tried to discriminate the 
defined subtypes (CEBPA excluded). Using microarray data, they selected 23 
genes which could accurately classify the subtypes. We have extracted the gene 
expression profiles of these particular genes from our own AML samples. Similar 
to the work of Kohlmann, we performed clustering on these genes and plotted 
them in a heatmap where the colors indicate if the gene was up or down-
regulated for that particular individual, as illustrated in Figure 3 (Top). The 
bottom of Figure 3 contains a subset of the genes with their respective 
regression coefficients taken from the estimated prediction rule. It is clear that 
some genes from our prediction rule overlap with the genes of Kohlmann. With 
the applied penalization we can also see that the regression coefficients of each 
gene strongly reflect the up or down-regulated tendency of that specific class.                  

We should note that the retained predictors are not always truly 
explanatory for the underlying mechanism, such as leukemogenesis. For 
instance, one well known chromosomal aberration that is recurrent in AML, is 
the INV(16): the inversion of a part of chromosome 16 results in a fusion protein 
named CBFB-MYH11. Due to the fusion, the expression levels of MYH11 is 
substantially increased when compared to other subtypes, thus is a very 
important biological marker in the diagnosis for this particular subtype. Many 
classification algorithms with variable selection based on differential expression 
would automatically select this gene. This is not always the case when our 
algorithm is applied. The Lasso as well as the Group Lasso automatically selects 
one predictor if there exists a group of pair-wise correlated and sets all 
remaining predictors to zero. This could very well be the case for MYH11. 
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  Other T(15;17) T(8;21) INV(16) CEBPa Gene 

200665_s_at -6.62E-06 -4.68E-07 -3.00E-06 1.08E-05 -6.94E-07 SPARC 

200675_at 0.000442 8.25E-07 -3.19E-06 -0.00019 -0.00025 CD81 

204039_at -0.00096 0.000151 -0.00062 -0.00068 0.002107 CEBPA 

204150_at -7.40E-05 0.000173 -6.08E-05 -5.21E-05 1.41E-05 STAB1 

204563_at -0.00015 -0.00011 -0.00013 0.000199 0.000194 SELL 

205529_s_at -0.0001 -4.91E-05 0.000257 -9.36E-05 -7.36E-05 RUNX1T1 

206940_s_at -4.49E-05 -2.83E-05 0.000163 -7.21E-05 -1.71E-05 POU4F1 

211990_at -0.00012 -0.00022 0.000108 -1.26E-05 0.000243 HLA-DPA1 

Figure 3: (Top) Clustergram: Clustered genes, colors of the cells relate to up- or down 
regulation of the gene for that particular sample: Green indicates down regulation, Red 
indicated up regulation. (Bottom) Regression coefficients:  Regression coefficients for 
each gene per class. 

 

Previous work by Wunderlich et al. (2006), has shown that other genes, such as 
SPARC and EMP1, are highly correlated with MYH11 in INV(16) patients. Figure 4 
illustrates that the probe sets for these genes are significantly up regulated for 
the INV(16) patients. These probe sets also belong to the top 20 of highest up-
regulated genes compared to other groups (Supplementary S5). From the given 

data, we can conclude that the imposed group structure on the beta matrix  
results in less retained predictors and also an improved prediction accuracy 
compared to the Lasso. In addition, many genes related to the retained 
predictors (Supplementary S1) have been previously associated with 
leukemogenesis. One example, are the HOXA9 and TRIB1 genes, which are 
known to be dysregulated in AML samples, and have been identified as 
cooperative genes together with MEIS1 (Röthlisberger et al.,2007; Jin et al., 
2007). As stated, the retained genes should not be seen as explanatory, however 
can be used as a start-off point for further research. 
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Figure 4: SPARC and EMP1 are elevated in the INV(16) subgroup. Correlation view of the 531 AML 
patients. Colors of the cells relate to the pair wise Pearson’s correlation coefficient values: Red 
indicates higher positive and blue indicates higher negative correlation between samples. INV(16) 
aberration status is indicated by the third row next to each tumor (red, mutant; green, wild-type). 
Histograms next to each tumor indicates the expression levels SPARC and EMP1 respectively, and 
shows a significant elevated expression for the INV(16) samples.  

 

3.2 Classification case 2: NPM1 and FLT3ITD mutations 

  AML cohort 1 (n=261) AML cohort 2 (n=268) 

NPM1-/FLT3ITD- 149(57%) 160(60%) 

NPM1+/FLT3ITD- 44(17%) 32(12%) 

NPM1-/FLT3ITD+ 28(11%) 33(12%) 

NPM1+/FLT3ITD+ 40(15%) 43(16%) 
Table 4: Distribution of the AML samples over the predefined classes. 

3.2.1 Background and Classification objective 

Mutations in the gene nucleophosmin1 (NPM1) are among one of the most 
recurrent molecular abnormalities in AML.  NPM1 is predominantly found in the 
nucleolus and is thought to be an important molecular chaperone protein for 
ribosomal proteins through the cell membrane. Disruption of NPM1, results in 
the dislocation of NPM1 to the cytoplasm. It has been observed that NPM1 
mutations frequently coincide with fms-like tyrosine kinase-3 internal tandem 
duplication (FLT3ITD) mutations. An additional observation is that NPM1 
mutations frequently occur in patients with a normal karyotype and that the 
dislocation of NPM1 to the cytoplasm leads to its inexertion of its primary 
function. It has been debated that NPM1 mutation may be an early event in 
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leukemogenesis. The NPM1 mutation has been associated with as a favorable 
prognostic value in regard to OS and EFS. 
  FLT3 is a receptor tyrosine kinase protein that is situated on the cell 
membrane, where it activates by the binding of the cytokine FLT3 ligand (FLT3L). 
Binding of the ligand initiates a cascade of signals through second messengers 
and is known to play an important role in cell differentiation, survival and 
proliferation. Frequently FLT3 contains an internal tandem duplication and could 
contribute to the development of AML. Furthermore, the mutation of FLT3 has 
been associated with as a poor prognostic value in regard to OS and EFS.  
  In this classification test case, we classify patients which have the NPM1 
mutation alone (NPM1+/FLT3ITD-), FLT3ITD alone (NPM1-/FLT3ITD+), both 
mutations (NPM1+/FLT3ITD+) and the wild-type for these mutations (NPM1-
/FLT3ITD-). Table 4 depicts the distribution of these classes. 
 

    Test set error Sensitivity Specificity Predictive Value 

    Neg Pos % % Neg Pos 

Case 1               

  Other 6/81 0/180 100 93 100 97 

  t(15;17) 0/243 0/18 100 100 100 100 

  t(8;21) 0/239 0/22 100 100 100 100 

  inv(16) 0/238 0/23 100 100 100 100 

  CEBPa 0/243 6/18 67 100 98 100 

                

Case 2               

  Other 23/119 7/160 96 81 93 87 

  NPM1+/FLT3ITD- 17/237 9/32 72 93 96 58 

  NPM1-/FLT3ITD+ 6/236 23/33 30 97 91 63 

  NPM1+/FLT3ITD+ 10/226 17/43 60 96 93 72 

Table 5 Prediction outcomes:  The following calculations were used for evaluation measures: 
sensitivity=true positives/(true positive + false negatives), specificity=true negatives/(true negatives + 
false positives), positive predictive value=true positives/(true positives + false positives), negative 
predictive value=true negatives /(true negatives + false negatives) 

3.2.2 Results 
 
The global test determined that the given genes are significantly related to the 
outcomes (p < 0.0001). With 5-fold cross-validation, we have determined the 
optimal regularization parameter (  as illustrated in Figure 5.  The model 
retained 110 probe sets (Supplementary S2). For the Lasso penalization we 
determined the optimal regularization parameter to be 10 with 152 retained 
probe sets. Using the Group Lasso we can substantially decrease the number of 
retained predictors for similar prediction accuracy when compared to the Lasso. 
The Group Lasso falsely classifies 57 samples whereas the Lasso falsely classifies 
62 samples (Table 5 vs. Supplementary S6).  We took cation not only to compare 
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the misclassifications, as it is shown that based on the average quadratic loss 
function the two test errors were quite similar (0.18314 vs. 0.18995). 

 
Figure 5 Estimated test error curve based on 5-fold cross-validation 

 
Previous classification work has shown that the mutations in NPM1 are strongly 
associated with a discriminative HOX-signature (Verhaak et al., 2005; Alcalay et 
al., 2005). Indeed, our prediction rule has indicated that the presence of the 
HOXA9 and HOXB3 genes has a strong impact on the classification of NPM1+. A 
relatively high number of AML cases were falsely classified as having the NPM1 
mutation. This could have several reasons: (i) many false positives contained an 
11q23 abnormality, which is in line with the affected mixed lineage leukemia 
(MLL) protein as an important HOX gene expression regulator (Verhaak et al., 
2005) (ii) it has been further noted that some subgroup having the FLT3ITD 
mutation, also exhibit a strong HOX gene expression dysregulation.  

The major classification problems stem from the tumors containing the 
FLT3ITD abnormality. Samples harboring the abnormality can only be moderately 
classified as indicated in Table 5, possibly due to the following reasons: (i) the 
cells containing a FLT3ITD abnormality do no diffuse through the whole bone 
marrow culture. The selection of an appropriate amount of oncogenic cells for 
correct classification is based on probability, and samples containing a low 
number of these cells do not have a strong discriminative expression signature 
(ii) a subgroup of samples harboring the FLT3ITD abnormality behaves differently 
from the rest.  

We can conclude that determining samples with a FLT3ITD abnormality is 
difficult based on their GEP alone. Most of the NPM1-/FLT3ITD+ samples are 
falsely classified as wild-type (NPM1-/FLT3ITD-). This is in line with the 
observation that some if not most of the NPM1-/FLT3ITD+ samples exhibit a 
weak distinctive GEP. The same holds for the NPM1+/FLT3ITD+ samples which 
are mostly misclassified as NPM1+/FLT3ITD-, and vice versa. It seems that the 
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lack of a discriminative FLT3ITD expression signature makes it difficult to 
concurrently predict all classes with a high accuracy.  
 
3.2.3 Interpretation 
 
The retained predictors from our model application to AML, show an affinity for 
ribosomal, heatshock, immunoglobulin and HOX proteins. Many genes in the 
gene expression signature are related to processes of cellular stress, 
inflammation response and DNA repair mechanisms. The large number of 
ribosomal genes present in the signature could be due: (i) DNA repair or cell 
homeostasis mechanisms are activated in the response to the abnormalities 
arising from oncogenesis (ii) a mutation in the NPM1 gene can result in the 
dislocation of the protein from the nucleolus to the cytoplasm. The protein is 
known as a chaperon protein for the ribosomes; however the results could 
indicate that it may also be involved in the construction of ribosomes, although 
this is highly speculative. 

 

4. Discussion 
 
The aim of this study was to develop a sparse multi-class classification model 
based on the Group Lasso in multinomial logistic regression. To create such an 
algorithm, we have developed a new group structure based on the beta matrix. 
This group structure facilitates the selection of an entire predictor. We have 
demonstrated that the prediction accuracy is similar to that of the regular Lasso 
procedure, yet with less predictors. To illustrate that our approach is effective 
we have applied the algorithm on microarray gene expression data of a large 
cohort of well characterized AML patients. Not only have shown that the Group 
Lasso achieves good prediction accuracy, but also that it obtains a sparse 
prediction rule containing many previously identified putative cancer genes. 
  We have demonstrated that our algorithm behaves as expected and we 
would like to make a note that many different group structures can be 
developed. We expect in the near feature that singular entities in contemporary 
classification procedures will be readily replaced by group structures, which 
increase the interpretability of the prediction rule and generate the opportunity 
to analyze different aspects of the model. As a final remark we would like to 
conclude that the development of novel group structures could increase the 
interpretability of the prediction rule, the prediction accuracy, and possibly 
further our understanding of cancer and its pathogenesis. 
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Supplementary 

 

S1 Group Lasso: Gene expression signatures of chromosomal 
aberrations and CEBPa 
 

  Other T(15;17) T(8;21) INV(16) CEBPa Gene 

Intercept 3.92E-07 -1.16E-07 2.69E-09 -1.36E-07 -1.40E-07   

1553588_at 0.000265 -4.47E-05 9.67E-05 -0.00019 -0.00013 ND3 /// SH3KBP1 

1555745_a_at 1.85E-05 -7.99E-06 -9.06E-06 6.77E-06 -8.17E-06 LYZ 

200091_s_at 1.34E-06 -6.29E-08 -2.12E-08 -2.38E-08 -1.24E-06 RPS25 

200654_at 9.46E-05 0.000146749 -2.97E-05 -6.76E-05 -0.00014 P4HB 

200665_s_at -6.62E-06 -4.68E-07 -3.00E-06 1.08E-05 -6.94E-07 SPARC 

200675_at 0.000442 8.25E-07 -3.19E-06 -0.00019 -0.00025 CD81 

200748_s_at 0.00014 -1.53E-05 -3.36E-05 3.64E-05 -0.00013 FTH1 

200869_at 1.37E-05 -6.24E-06 -1.87E-06 4.40E-06 -1.00E-05  RPL18A 

200909_s_at 0.000667 -0.00021971 -8.78E-05 1.06E-05 -0.00037 RPLP2 

200920_s_at 0.000374 -4.90E-06 0.000136 -5.89E-05 -0.00045 BTG1 

200921_s_at 5.24E-05 -3.21E-06 1.59E-05 -1.44E-05 -5.07E-05 BTG1 

201160_s_at 0.000266 7.82E-05 8.42E-05 0.000101 -0.00053 CSDA 

201360_at -1.65E-06 -8.17E-07 -1.39E-05 4.00E-05 -2.37E-05 CST3 

201432_at 0.000551 -0.00031515 -0.00012 -0.00083 0.000712 CAT 

201669_s_at 2.88E-05 -6.28E-06 1.87E-06 -1.89E-05 -5.50E-06 MARCKS 

201720_s_at 3.44E-05 -2.86E-06 -3.02E-05 5.16E-06 -6.51E-06 LAPTM5 

201721_s_at 0.000222 1.32E-05 -0.00022 3.67E-05 -5.10E-05 LAPTM5 

202241_at 0.000119 -4.72E-05 -1.12E-05 1.94E-05 -8.00E-05 TRIB1 

202649_x_at 0.000113 -4.06E-05 -2.65E-06 2.12E-05 -9.13E-05 RPS19 

202746_at -0.00113 6.90E-05 -0.00026 0.000667 0.00065 ITM2A 

202902_s_at -4.04E-05 -2.46E-05 -1.89E-05 6.40E-05 1.98E-05 CTSS 

202917_s_at -4.99E-05 -0.00015906 -7.98E-05 0.000254 3.52E-05 S100A8 

203535_at -4.42E-05 -7.21E-05 -0.0001 0.00036 -0.00014 S100A9 

203752_s_at 0.000113 -2.17E-05 1.33E-05 -4.71E-05 -5.75E-05 JUND 

203948_s_at -0.00064 0.000345876 0.000277 0.000239 -0.00022 MPO 

203973_s_at -0.00033 1.15E-05 -2.73E-06 0.000201 0.000116 CEBPD 

204039_at -0.00096 0.000150948 -0.00062 -0.00068 0.002107 CEBPA 

204150_at -7.40E-05 0.000172869 -6.08E-05 -5.21E-05 1.41E-05 STAB1 

204563_at -0.00015 -0.00011174 -0.00013 0.000199 0.000194 SELL 

205237_at 0.00015 2.08E-05 -5.01E-05 -0.00034 0.000219 FCN1 

205382_s_at 1.07E-05 2.77E-05 -2.69E-06 9.79E-07 -3.66E-05 CFD 

205529_s_at -0.0001 -4.91E-05 0.000257 -9.36E-05 -7.36E-05 RUNX1T1 

205683_x_at -0.00024 4.74E-05 0.000126 1.88E-05 4.93E-05 TPSAB1 /// TPSB2 
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206111_at 1.88E-05 0.000319665 -0.00048 0.000393 -0.00025 HLA-DRB1 

206834_at -0.00022 4.74E-05 -0.00012 -0.00012 0.000408 HBD 

206871_at -0.00063 0.00030899 0.000333 -1.32E-05 1.40E-06 ELA2 

206940_s_at -4.49E-05 -2.83E-05 0.000163 -7.21E-05 -1.71E-05 POU4F1 

207134_x_at -6.03E-13 2.44E-14 2.19E-13 8.01E-15 8.86E-14 TPSB2 

207168_s_at -0.00022 2.27E-05 -1.25E-05 2.03E-06 0.00021 H2AFY 

207741_x_at -9.34E-05 1.47E-05 4.65E-05 -4.03E-06 3.62E-05 TPSAB1 

208306_x_at -6.19E-05 -0.00013182 4.59E-05 8.33E-05 6.47E-05 HLA-DRB1 

209189_at -2.54E-05 -2.91E-05 -2.07E-05 3.94E-05 3.58E-05 FOS 

209312_x_at -0.00021 -0.00027601 0.000108 0.000165 0.000217 HLA-DRB1 

209619_at -5.49E-07 -9.22E-05 3.23E-05 4.61E-06 5.59E-05 CD74 

210084_x_at -3.29E-05 3.61E-06 1.63E-05 3.75E-06 9.24E-06 TPSAB1 

211341_at -0.00022 -0.00014343 0.000788 -0.00034 -8.64E-05 POU4F1 

211709_s_at -0.0007 0.000365002 0.000105 6.15E-05 0.000167 CLEC11A 

211745_x_at 6.46E-05 -1.04E-05 -6.64E-05 3.16E-05 -1.93E-05 HBA1 /// HBA2 

211956_s_at 5.92E-05 -1.07E-05 2.28E-06 -8.14E-06 -4.26E-05 EIF1 

211990_at -0.00012 -0.00022121 0.000108 -1.26E-05 0.000243 HLA-DPA1 

212099_at -2.69E-05 5.13E-06 -5.56E-06 5.70E-05 -2.97E-05 RHOB 

212560_at -8.67E-08 1.03E-07 2.24E-07 -4.88E-07 2.49E-07 SORL1 

212587_s_at 0.000132 -1.19E-05 1.20E-06 1.76E-05 -0.00014 PTPRC 

213515_x_at 0.000245 3.18E-05 -0.00011 -0.0001 -6.40E-05 HBG1 /// HBG2 

213737_x_at 0.000457 -8.94E-05 2.14E-05 -0.00054 0.000153 GOLGA9P 

214039_s_at 1.32E-05 -2.07E-06 6.58E-07 -3.07E-06 -8.69E-06 LAPTM4B 

214651_s_at 0.00019 -7.17E-05 -3.48E-05 -7.62E-05 -7.69E-06 HOXA9 

215382_x_at -0.00017 1.50E-05 7.78E-05 2.33E-05 5.53E-05 TPSAB1 

215806_x_at 1.49E-05 1.55E-05 -1.10E-05 -2.20E-05 2.52E-06 TARP /// TRGC2 

216474_x_at -0.00032 5.44E-05 0.000161 1.37E-05 8.77E-05 TPSAB1 /// TPSB2 

216920_s_at 8.90E-05 9.27E-05 -6.54E-05 -0.00013 1.67E-05 TARP /// TRGC2 

217022_s_at 0.000126 -4.24E-05 4.66E-05 -5.33E-05 -7.66E-05 IGH@ 

219014_at -3.30E-06 2.26E-06 -5.82E-06 1.80E-06 5.09E-06 PLAC8 

219371_s_at 1.64E-06 -2.73E-05 9.24E-06 0.00014 -0.00012 KLF2 

221760_at -0.00011 -8.86E-05 0.000178 -8.08E-05 0.000103 MAN1A1 

221841_s_at -2.63E-05 -5.32E-05 -5.97E-05 0.000211 -7.21E-05 KLF4 

223059_s_at 0.000133 -3.70E-05 1.75E-05 -3.58E-05 -7.79E-05 FAM107B 

225262_at 2.80E-05 1.24E-06 -2.24E-06 -2.05E-06 -2.50E-05 FOSL2 

225673_at 6.63E-05 -4.24E-05 5.08E-05 1.93E-07 -7.53E-05 MYADM 

226131_s_at 2.30E-05 -5.65E-06 4.53E-07 -1.38E-07 -1.78E-05 RPS16 

226818_at -3.95E-16 -5.15E-16 -7.05E-16 6.07E-16 2.64E-16 MPEG1 

226876_at 1.69E-16 1.31E-16 -5.96E-16 2.00E-16 -1.58E-16 FAM101B 

226905_at 0.000178 0.000145107 -0.00017 9.75E-06 -0.00016 FAM101B 

227404_s_at -0.00018 -0.00012422 -1.10E-05 8.66E-05 0.000224 EGR1 
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38487_at -6.83E-05 0.00020396 -7.35E-05 -5.88E-05 -3.45E-06 STAB1 
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S2 Group Lasso: Gene expression signatures of NPM1 and FLT3ITD 
mutations 
 

  NPM1-/FLT3ITD- NPM1+/FLT3ITD- NPM1-/FLT3ITD+ NPM1+/FLT3ITD+ Gene 

Intercept 1.78E-07 8.76E-09 -2.01E-07 1.52E-08   

211983_x_at -4.19E-06 -1.54E-06 4.64E-06 1.09E-06 ACTG1 

224585_x_at -4.50E-05 -1.65E-05 5.03E-05 1.12E-05 ACTG1 

201012_at -0.000360372 0.000195166 0.000139287 2.65E-05 ANXA1 

214575_s_at -4.97E-05 7.87E-05 8.94E-05 -0.000118497 AZU1 

200920_s_at -3.44E-05 0.000232044 -0.000119983 -7.77E-05 BTG1 

201310_s_at 3.70E-05 2.10E-05 -2.96E-05 -2.84E-05 C5orf13 

201432_at -0.000198258 0.000191504 -0.000102705 0.000109614 CAT 

211922_s_at -1.68E-05 2.88E-05 -6.94E-06 -5.05E-06 CAT 

209543_s_at 0.000146937 -4.73E-05 -7.24E-05 -2.73E-05 CD34 

209555_s_at -0.000339683 9.66E-05 -3.05E-05 0.000273657 CD36 

209835_x_at 0.000100106 -2.50E-05 -2.70E-05 -4.81E-05 CD44 

209619_at -3.81E-05 -4.50E-05 0.000147403 -6.44E-05 CD74 

201029_s_at 9.68E-07 -8.10E-06 -3.56E-07 7.49E-06 CD99 

208727_s_at 1.79E-05 1.78E-06 -2.57E-05 5.99E-06 CDC42 

211709_s_at 5.26E-09 1.93E-09 -3.68E-09 -3.30E-09 CLEC11A 

205624_at -0.000144824 -1.52E-05 -0.000110138 0.000270098 CPA3 

201160_s_at 8.77E-05 6.74E-05 -3.35E-05 -0.00012162 CSDA 

1553297_a_at 0.000319123 -0.000210977 -2.77E-05 -8.04E-05 CSF3R 

201360_at -4.69E-05 0.000104419 -4.26E-05 -1.49E-05 CST3 

205898_at -2.06E-05 6.33E-05 -3.43E-05 -8.42E-06 CX3CR1 

201041_s_at 4.55E-05 4.79E-05 -6.38E-05 -2.96E-05 DUSP1 

211937_at 4.20E-05 8.60E-06 2.67E-05 -7.73E-05 EIF4B 

206871_at 8.99E-05 -7.19E-05 1.07E-05 -2.87E-05 ELA2 

221804_s_at -4.72E-12 -2.03E-12 3.87E-12 1.10E-12 FAM45A 

200019_s_at 1.37E-07 -1.33E-07 -4.87E-08 4.04E-08 FAU 

218454_at 0.000148374 -0.000158047 -3.91E-05 4.88E-05 FLJ22662 

206674_at -3.02E-08 2.42E-08 2.66E-08 -2.02E-08 FLT3 

200748_s_at -6.84E-06 7.38E-05 -5.64E-06 -6.13E-05 FTH1 

212788_x_at 1.25E-05 -4.55E-05 1.15E-06 3.19E-05 FTL 

212581_x_at -3.75E-07 -3.54E-07 4.32E-07 2.57E-07 GAPDH 

200648_s_at -4.94E-12 6.28E-12 7.94E-12 -8.38E-12 GLUL 

215001_s_at -3.87E-05 4.21E-05 9.06E-05 -9.40E-05 GLUL 

205349_at -4.52E-05 -3.24E-05 5.38E-05 2.37E-05 GNA15 

208798_x_at -8.07E-06 -5.96E-06 4.95E-06 9.08E-06 GOLGA8A 

210425_x_at -5.20E-05 -4.31E-05 2.74E-05 6.78E-05 GOLGA8A  

208886_at 0.000159109 -0.000230503 0.000268639 -0.000197244 H1F0 



 
32 

207168_s_at 4.91E-05 -5.77E-05 0.000186878 -0.000178307 H2AFY 

209458_x_at -1.51E-06 2.66E-06 4.43E-05 -4.55E-05 HBA1 

217232_x_at -3.67E-05 8.36E-05 1.57E-05 -6.26E-05 HBB 

214290_s_at -5.65E-06 1.46E-05 -0.000397119 0.000387664 HIST2H2AA3 

215313_x_at 1.52E-05 -1.13E-05 -1.33E-05 9.45E-06 HLA-A 

201137_s_at -7.03E-06 -4.67E-05 4.92E-05 4.48E-06 HLA-DPB1 

206111_at -9.89E-06 3.41E-05 -9.64E-06 -1.46E-05 HLA-DRB1 

208306_x_at -1.36E-05 -7.12E-05 0.000111589 -2.69E-05 HLA-DRB1 

209312_x_at 9.11E-06 -0.000162586 0.000170839 -1.74E-05 HLA-DRB1 

215193_x_at -1.71E-06 -9.58E-06 1.05E-05 7.80E-07 HLA-DRB1 

214651_s_at -0.000244243 6.22E-05 -0.000241893 0.00042393 HOXA9 

228904_at -0.000514691 0.00017295 9.99E-05 0.000241824 HOXB3 

1557910_at -6.82E-05 2.92E-05 7.09E-05 -3.20E-05 HSP90AB1 

200799_at -6.46E-05 9.85E-05 0.00013247 -0.000166403 HSPA1A 

201315_x_at 5.02E-14 -6.20E-13 4.21E-13 -2.00E-13 IFITM2 

201163_s_at 0.000158966 6.45E-05 -7.47E-05 -0.000148747 IGFBP7 

217022_s_at 2.88E-05 -1.41E-06 -0.000115641 8.82E-05 IGH@ 

221651_x_at 6.12E-06 -3.11E-06 -2.85E-05 2.55E-05 IGK@ 

224795_x_at 3.13E-05 -6.52E-06 -0.000123394 9.86E-05 IGK@ 

215121_x_at 2.62E-05 1.71E-05 -2.32E-05 -2.00E-05 IGL@ 

202746_at 7.73E-05 -4.83E-05 -3.75E-05 8.52E-06 ITM2A 

201464_x_at 1.16E-05 -8.42E-06 -1.27E-05 9.55E-06 JUN 

203752_s_at 1.72E-05 -2.92E-05 -1.89E-05 3.09E-05 JUND 

219371_s_at 0.000287501 0.000246003 -0.000303261 -0.000230227 KLF2 

214039_s_at -1.47E-05 -1.01E-05 9.97E-06 1.48E-05 LAPTM4B 

201105_at -1.29E-06 1.56E-06 2.41E-06 -2.69E-06 LGALS1 

200923_at -0.000374201 -0.000101345 0.000113287 0.00036226 LGALS3BP 

234512_x_at 1.05E-05 -1.84E-05 3.63E-05 -2.84E-05 LOC728179 

1555745_a_at 4.65E-05 -1.10E-05 -0.000101175 6.56E-05 LYZ 

222670_s_at -6.77E-06 1.34E-05 -3.20E-05 2.54E-05 MAFB 

1558678_s_at 0.000107329 -2.05E-05 -0.000125333 3.85E-05 MALAT1 

203949_at 5.86E-06 -9.81E-05 5.01E-05 4.22E-05 MPO 

204438_at -4.68E-05 -0.000129185 0.000140988 3.50E-05 MRC1 

212185_x_at 2.90E-05 -1.44E-05 -1.29E-05 -1.68E-06 MT2A 

225344_at -2.52E-05 -5.45E-05 7.62E-05 3.48E-06 NCOA7 

234989_at 3.89E-05 3.22E-05 -7.74E-05 6.42E-06 NCRNA00084 

1553588_at -1.30E-05 -7.42E-05 1.34E-05 7.39E-05 ND3 

223217_s_at 5.63E-05 0.000129459 -0.000100436 -8.53E-05 NFKBIZ 

223218_s_at 1.42E-05 6.24E-05 -2.85E-05 -4.82E-05 NFKBIZ 

212240_s_at -8.39E-05 -3.79E-05 6.22E-05 5.97E-05 PIK3R1 

219014_at 4.43E-05 -8.22E-05 3.88E-05 -8.34E-07 PLAC8 
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214146_s_at -0.000105048 0.000121205 -9.54E-05 7.93E-05 PPBP 

202130_at 1.28E-05 -8.12E-06 -5.31E-06 6.36E-07 RIOK3 

224930_x_at 2.25E-05 -8.25E-05 0.000300059 -0.000239988 RPL7A 

200032_s_at 6.51E-05 -1.52E-05 -5.50E-05 5.05E-06 RPL9 

200909_s_at 0.000114 -5.47E-05 -4.18E-05 -1.76E-05 RPLP2 

200817_x_at 4.12E-05 -1.81E-05 -3.28E-05 9.74E-06 RPS10 

217753_s_at 4.61E-05 -4.84E-05 -1.69E-05 1.91E-05 RPS26 

200099_s_at 8.55E-05 3.19E-05 -4.71E-05 -7.03E-05 RPS3A 

201909_at 5.16E-05 4.02E-05 3.73E-06 -9.55E-05 RPS4Y1 

203408_s_at 5.18E-05 6.07E-06 -5.99E-05 2.03E-06 SATB1 

204563_at -4.45E-05 7.41E-05 3.10E-05 -6.07E-05 SELL 

201427_s_at -4.49E-05 -0.000125351 -1.74E-05 0.000187606 SEPP1 

221269_s_at 0.000358997 -1.37E-05 -0.000360254 1.49E-05 SH3BGRL3 

212826_s_at 0.000383135 -0.000305564 -2.73E-05 -5.03E-05 SLC25A6 

201663_s_at -0.000283041 0.000149964 -2.48E-05 0.000157812 SMC4 

201664_at -0.000386044 0.000244129 -5.00E-05 0.000191897 SMC4 

204466_s_at 0.000151217 -4.37E-05 -6.63E-05 -4.13E-05 SNCA 

212560_at 7.84E-05 2.54E-05 0.000161574 -0.00026544 SORL1 

215806_x_at -3.43E-05 -5.00E-05 7.15E-05 1.28E-05 TARP 

216920_s_at -0.000110091 -0.000114984 0.000186388 3.87E-05 TARP 

201666_at 1.90E-05 -1.69E-05 -9.62E-06 7.46E-06 TIMP1 

205683_x_at 6.62E-05 -3.48E-05 2.28E-05 -5.41E-05 TPSAB1 

215382_x_at 6.01E-05 -3.36E-05 1.86E-05 -4.52E-05 TPSAB1 

216474_x_at 2.40E-05 -1.41E-05 8.76E-06 -1.86E-05 TPSAB1 

209118_s_at 4.09E-06 1.20E-06 -1.36E-06 -3.93E-06 TUBA1A 

201009_s_at -4.04E-05 0.000142586 -5.03E-05 -5.19E-05 TXNIP 

204620_s_at -0.00019742 4.76E-05 5.80E-05 9.20E-05 VCAN 

215646_s_at -2.92E-05 1.30E-05 6.38E-06 9.86E-06 VCAN 

221731_x_at -0.000173184 4.45E-05 5.99E-05 6.89E-05 VCAN 

201426_s_at -7.98E-08 -4.86E-09 6.44E-08 1.83E-08 VIM 

200670_at -0.00015436 1.57E-05 0.000129817 8.85E-06 XBP1 

213655_at -1.59E-08 -3.17E-08 3.99E-09 4.34E-08 YWHAE 

201368_at 8.99E-05 -0.000161074 -5.93E-05 0.000130444 ZFP36L2 
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S3 Lasso: Gene expression signatures of chromosomal aberrations and 
CEBPa 
 

  Other T(15;17) T(8;21) INV(16) CEBPa Gene 

Intercept 9.75E-06 -1.16E-06 4.67E-07 -3.58E-06 -5.51E-06   

1553588_at 0 0 0 -0.00021 -0.00015 ND3 /// SH3KBP1 

1555745_a_at 0.000357 0 0 0 -6.50E-05 LYZ 

200091_s_at 2.45E-06 0 0 0 0 RPS25 

200654_at 0 0 0 0 -0.00012 P4HB 

200665_s_at 0 0 0 0.000547 0 SPARC 

200675_at 0.00239 0 0 0 0 CD81 

200748_s_at 0.000302 0 0 0 -0.00016 FTH1 

200869_at 4.90E-05 0 0 0 0 RPL18A 

200909_s_at 0.003134 0 0 0 0 RPLP2 

200920_s_at 0 0 0 0 -0.00054 BTG1 

201160_s_at 0 0 0 0 -0.00419 CSDA 

201360_at 0 0 0 1.58E-05 0 CST3 

201432_at 0 0 0 -0.00216 5.85E-05 CAT 

201858_s_at 0.000267 0 0 0 0 SRGN 

201909_at 0 0 0 0 0.000772 RPS4Y1 

202081_at -0.00015 0 0 0 0 IER2 

202649_x_at 0.000968 0 0 0 -5.98E-05 RPS19 

202746_at -0.00507 0 0 0.001124 0 ITM2A 

202859_x_at 0 0 0.000867 0 0 IL8 

202902_s_at 0 0 0 4.13E-05 1.64E-04 CTSS 

202917_s_at 0 0 0 8.15E-05 0 S100A8 

203305_at 0.000649 0 0 0 -0.00099 F13A1 

203373_at 8.90E-05 0 0 0 0 SOCS2 

203535_at 0 0 0 0.002361 0 S100A9 

203752_s_at 0.001777 0 0 0 0 JUND 

203948_s_at -0.0023 0 0 0 0 MPO 

203949_at 0 0 0 0 -0.00161 MPO 

203973_s_at -0.00163 0 0 0 0 CEBPD 

204039_at 0 0 0 0 0.009463 CEBPA 

204304_s_at 0 0 0 0 0.001213 PROM1 

204563_at 0 0 0 0.001144 0.001079 SELL 

204670_x_at 0 0 0 0 0.000318 HLA-DRB1 

205237_at 0 0 0 -0.00168 0 FCN1 

205382_s_at 0 0 0 0 -1.06E-05 CFD 

205529_s_at 0 0 0.00245 0 0 RUNX1T1 
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206111_at 0 0 -0.00152 0 -0.00055 HLA-DRB1 

206834_at 0 0 0 0 0.001443 HBD 

206871_at -0.0023 0 9.06E-06 -0.00012 0 ELA2 

207168_s_at -0.00051 0 0 0 2.69E-09 H2AFY 

208306_x_at 0 -0.00057 0 0 0 HLA-DRB1 

209069_s_at 0.000212 0 0 0 0 H3F3A  

209189_at 0 0 0 3.55E-05 0 FOS 

209312_x_at -0.00142 0 0 0 0 HLA-DRB1 

209619_at 0 -0.00106 0 0 0 CD74 

210140_at 0 0.001121 0 0 0 CST7 

210997_at 0 0.000601 0 0 0 HGF 

211341_at 0 0 0.004471 0 0 POU4F1 

211709_s_at -0.00383 0 0 0 0 CLEC11A 

211745_x_at 0.000162 0 0 0 0 HBA1 /// HBA2 

211956_s_at 0.000537 0 0 0 0 EIF1 

211990_at 0 0 0 0 0.001528 HLA-DPA1 

212085_at 0 0 0 0.000555 0 SLC25A6 

212099_at 0 0 0 8.94E-04 0 RHOB 

212560_at 0 1.03E-07 0 0 0 SORL1 

212587_s_at 0 0 0 0 -0.00076 PTPRC 

213515_x_at 0.000929 0 0 0 0 HBG1 /// HBG2 

213737_x_at 0.000994 0 0 -0.00145 0 GOLGA9P 

214039_s_at 2.46E-04 0 0 0 0 LAPTM4B 

214651_s_at 0.000962 0 0 0 0 HOXA9 

216248_s_at 0 0 0 2.02E-05 0 NR4A2 

216474_x_at -0.00319 0 0 0 0 TPSAB1 /// TPSB2 

217022_s_at 2.17E-05 0 0 0 0 IGH@ 

219014_at 0 0 0 0 2.35E-05 PLAC8 

219371_s_at 0 0 0 0.000789 -4.17E-05 KLF2 

220532_s_at 0.000652 0 0 0 0 TMEM176B 

221760_at -0.00011 0 0 0 0.000103 MAN1A1 

221841_s_at 0 0 0 0.002957 0 KLF4 

223059_s_at 0.003553 0 0 0 0 FAM107B 

225262_at 0.000908 0 0 0 -0.00152 FOSL2 

225673_at 0.000816 0 0 0 -0.00015 MYADM 

226818_at 0 0 0 1.74E-05 0 MPEG1 

226905_at 0 5.69E-05 0 0 0 FAM101B 

227404_s_at -0.00036 0 0 0 0.001173 EGR1 

229307_at 0 0 0 0 0.001112 ANKRD28 

234989_at 0 0 0 0 -8.36E-05 NCRNA00084 

38487_at 0 0.003864 0 0 0 STAB1 
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S4 Lasso: Gene expression signatures of NPM1 and FLT3ITD mutations 
 

  NPM1-/FLT3ITD- NPM1+/FLT3ITD- NPM1-/FLT3ITD+ NPM1+/FLT3ITD+ Gene 

Intercept 2.69E-05 -8.92E-07 -4.02E-05 1.42E-05   

211983_x_at -0.000549406 0 0 0 ACTG1 

201012_at -0.001924298 0 0 0 ANXA1 

214575_s_at 0 0 3.45E-06 -0.000498458 AZU1 

202391_at 0 0 -0.000181342 0 BASP1 

200920_s_at 0 0.001596801 0 0 BTG1 

209301_at 0.000861618 0 -0.000203814 0 CA2 

200953_s_at 0 -0.000141761 0 0 CCND2 

201743_at 0 0 0 4.15E-05 CD14 

209543_s_at 0.000553516 0 0 0 CD34 

209555_s_at -0.001964638 0 0 0.00014582 CD36 

228766_at -7.96E-05 0 0 0 CD36 

209835_x_at 0.000143441 0 0 0 CD44 

209619_at 0 0 0.000385769 0 CD74 

208727_s_at 0 0 -0.000743477 0 CDC42 

205382_s_at 0 0.000247366 0 0 CFD 

211709_s_at 0.000644951 0 0 0 CLEC11A 

201560_at 0 -0.004186131 0 0 CLIC4 

205624_at 0 0 0 0.000982105 CPA3 

201160_s_at 0 0.000477698 0 -0.002703532 CSDA 

1553297_a_at 0.00215887 0 0 0 CSF3R 

201360_at 0 0.00028234 0 0 CST3 

205653_at 0 0 0 0.000309869 CTSG 

202902_s_at 0 -0.000875538 0 0.000670705 CTSS 

205898_at 0 0.000961345 0 0 CX3CR1 

208151_x_at 0 0 0 -0.002207349 DDX17 

205033_s_at 0 6.98E-05 0 0 DEFA1 

207269_at 0 0.000421954 0 0 DEFA4 

1566363_at 0.000552686 0 0 0 DNTT 

211937_at 0 0 0 -4.23E-05 EIF4B 

205767_at 0 0.000166241 0 -0.000626061 EREG 

221804_s_at 0 0 0.001082107 0 FAM45A 

221766_s_at 0 -6.08E-05 0 0 FAM46A 

201540_at 0 0 0 -0.001138038 FHL1 

218454_at 0 -0.001630132 0 0 FLJ22662 

200859_x_at 0 0 0 -0.000493235 FLNA 

202768_at 0 0 0 -0.000694321 FOSB 

200748_s_at 0 0.00031813 0 -0.000855146 FTH1 
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212788_x_at 0 -0.001064058 0 0 FTL 

215001_s_at 0 0 2.78E-05 -0.000392583 GLUL 

205349_at 0 0 0.00123184 0 GNA15 

210425_x_at 0 0 0 0.000358595 GOLGA8A 

208886_at 0 0 0.000945981 0 H1F0 

207168_s_at 0 0 0.000328776 0 H2AFY 

213828_x_at 0 0 -0.001700515 0 H3F3A 

209458_x_at 0 0 0 -0.00046558 HBA1 

214414_x_at 4.41E-05 0 0 0 HBA1 

209116_x_at 0 0 0.000135244 0 HBB 

217232_x_at -0.000439071 0.000136679 0 0 HBB 

204419_x_at 0 0 0 0.000151276 HBG1 

240336_at 0 -0.000137841 0 0.001521039 HBM 

214290_s_at 0 0 -0.001162443 0.000782118 HIST2H2AA3 

211911_x_at 0.000190435 0 0 0 HLA-B 

201137_s_at 0 0 0.000782876 0 HLA-DPB1 

206111_at 0 0.000587791 0 0 HLA-DRB1 

208306_x_at 0 0 0.000736662 0 HLA-DRB1 

209312_x_at 0 -0.000737516 0 0 HLA-DRB1 

215193_x_at 0 0 0.000476996 0 HLA-DRB1 

208808_s_at 0 0 0.001337137 0 HMGB2 

200943_at 0 0 0.000404683 0 HMGN1 

214651_s_at 0 0 0 0.002911237 HOXA9 

228904_at -0.00326353 0 0 0 HOXB3 

200799_at 0 0.000674539 0 -0.001735493 HSPA1A 

211936_at -0.000995856 0 0 0 HSPA5 

201163_s_at 0.00104462 0 0 0 IGFBP7 

221671_x_at 0 0 0 0.000212086 IGK@ 

224795_x_at 0 0 -0.002148643 0 IGK@ 

211945_s_at 0 0 -0.00212093 0 ITGB1 

202746_at 0.000974254 0 0 0 ITM2A 

201464_x_at 2.73E-05 -5.10E-05 0 0 JUN 

203752_s_at 0 0 0 0.00094462 JUND 

219371_s_at 0.000110546 0.000328912 -0.000238904 -0.000192295 KLF2 

201553_s_at 0.000612592 0 0 0 LAMP1 

201105_at 0 0 0 -0.000623569 LGALS1 

200923_at -0.000743235 0 0 0.002400105 LGALS3BP 

238893_at 0 0 0 3.89E-05 LOC338758 

236488_s_at 0 0 0 0.000244434 LOC642711 

226789_at 0.000751003 0 0 0 LOC647121 

1555745_a_at 0 0 -0.00028733 0 LYZ 
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213975_s_at 0 -6.02E-05 0 0 LYZ 

222670_s_at 0 0 -2.78E-06 0 MAFB 

36711_at 0 -0.000587123 0.000274669 0 MAFF 

1558678_s_at 0.000365192 0 -0.000235455 0 MALAT1 

201669_s_at 0 0 -0.001111415 0 MARCKS 

203948_s_at 0 0 -6.91E-05 0 MPO 

203949_at 0 -0.00061646 0 0 MPO 

224356_x_at 0.000552355 0 0 0 MS4A6A 

212185_x_at 0.001279688 0 0 0 MT2A 

211445_x_at 0 -7.71E-06 0 0 NACAP1 

208752_x_at 0 0.00149698 0 0 NAP1L1 

225344_at 0 0 0.002102823 0 NCOA7 

234989_at 4.62E-05 0 -0.000584575 0 NCRNA00084 

201502_s_at 0 0 -0.000544236 0.000551416 NFKBIA 

223217_s_at 0 0.00016798 0 0 NFKBIZ 

223218_s_at 0 0.000788183 0 -0.00054332 NFKBIZ 

221501_x_at 0 0 -0.000545477 0 NPIP 

226880_at 0 0.000355529 0 0 NUCKS1 

208690_s_at -0.000240437 0 0 0 PDLIM1 

206390_x_at 0 0.000391525 0 0 PF4 

201118_at 0 0 7.17E-05 0 PGD 

212240_s_at -0.000183918 0 0 0 PIK3R1 

211978_x_at -0.000843402 0 0 0 PPIA 

207341_at 0 0 4.49E-05 0 PRTN3 

211600_at 0 0.000247919 0 0 PTPRO 

212099_at 0 0 -0.001687105 0 RHOB 

200088_x_at -8.62E-05 0 0 0 RPL12 

216570_x_at 0.001975063 0 0 0 RPL29P4 

200674_s_at 0 0.000333418 0 0 RPL32 

224930_x_at 0 0 0.001783615 -0.000987708 RPL7A 

200032_s_at 0 0 -0.001311943 0 RPL9 

201033_x_at 0 -0.000414652 0 0 RPLP0 

211720_x_at 0 -0.001238522 0 0 RPLP0 

214167_s_at 0 -9.32E-05 0 0 RPLP0 

200909_s_at 0.000864384 0 0 0 RPLP2 

214003_x_at 0 -0.000528779 0 0 RPS20 

200926_at 0 0 0 0.00038619 RPS23 

217753_s_at 0 -0.000810844 0 0 RPS26 

200099_s_at 0 0 0 -0.000709369 RPS3A 

201909_at 0 0 0 -0.000928506 RPS4Y1 

214317_x_at 0 0 -0.000926541 0 RPS9 
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200872_at 3.04E-05 0 0 0 S100A10 

230333_at 0 -0.000118766 0 0 SAT 

204563_at -0.000121405 9.69E-05 8.74E-06 -8.18E-06 SELL 

201427_s_at 0 0 0 0.001167497 SEPP1 

201586_s_at -0.001128205 0 0 0 SFPQ 

221269_s_at 0.001087794 0 -0.001126426 0 SH3BGRL3 

212826_s_at 0.001058082 0 0 0 SLC25A6 

223044_at 0 4.72E-06 0 0 SLC40A1 

201664_at -0.00281327 0 0 0 SMC4 

204466_s_at 0.000431789 0 0 0 SNCA 

212560_at 0 0 0 -0.000796242 SORL1 

201858_s_at 0 0.000305885 0 0 SRGN 

224700_at 0 0 0 -0.000458156 STT3B 

223939_at -0.000372006 0 0.000186306 0 SUCNR1 

216920_s_at 0 0 0.000633307 0 TARP 

217733_s_at 0 0 0.001293331 0 TMSB10 

224836_at 0 0 0 0.001784012 TP53INP2 

215382_x_at 0.001024349 0 0 0 TPSAB1 

208763_s_at 0.000888126 0 0 0 TSC22D3 

209118_s_at 0 0 0 -0.000936702 TUBA1A 

201008_s_at -6.02E-05 0 0 0 TXNIP 

201009_s_at 0 0.000719636 0 0 TXNIP 

202589_at -0.000553556 0 0 0 TYMS 

208997_s_at 0.000204044 0 0 0 UCP2 

204620_s_at -0.00133927 0 0 0 VCAN 

215646_s_at -0.000212932 0 0 0 VCAN 

221731_x_at 0 0 0 1.05E-05 VCAN 

200670_at -0.001830076 0 0 0 XBP1 

227671_at 0 -0.000106502 0 0 XIST 

213655_at 0 0 0 0.001603208 YWHAE 

217741_s_at 0 0 0 0.0014386 ZFAND5 

201531_at 0.000447636 0 0 0 ZFP36 

201368_at 0 -0.000660923 0 0.000978681 ZFP36L2 
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S5 Differentially expressed genes for the inverse 16 subtype 
 

Top 20 up- and down-regulated genes for the inverse 16 samples compared to all other 
subtypes. 
 

Fold 
Change ID Gene Symbol 

10.663 206135_at ST18 

8.649 201497_x_at MYH11 

6.303 212358_at CLIP3 

5.743 206682_at CLEC10A 

5.609 204885_s_at MSLN 

5.373 207961_x_at MYH11 

5.365 204787_at VSIG4 

5.206 1556034_s_at MTMR11 

5.068 241525_at LOC200772 

5.016 222862_s_at AK5 

4.859 205076_s_at MTMR11 

4.798 200665_s_at SPARC 

4.666 1564796_at EMP1 

4.479 205330_at MN1 

4.375 201506_at TGFBI 

4.336 212298_at NRP1 

4.274 224724_at SULF2 

4.233 233555_s_at SULF2 

4.17 203060_s_at PAPSS2 

4.166 201324_at EMP1 

4.032 232523_at MEGF10 

-5.934 212070_at GPR56 

-5.967 201670_s_at 
MARCKS (includes 
EG:4082) 

-6.051 217963_s_at NGFRAP1 

-6.121 211748_x_at PTGDS 

-6.213 214183_s_at TKTL1 

-6.233 229638_at IRX3 

-6.387 205801_s_at RASGRP3 

-6.403 201669_s_at 
MARCKS (includes 
EG:4082) 

-6.546 219218_at BAHCC1 

-7.125 213110_s_at COL4A5 

-7.227 206940_s_at POU4F1 

-7.383 211031_s_at CLIP2 
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-7.428 211341_at POU4F1 

-7.598 201427_s_at SEPP1 

-7.632 235521_at HOXA3 (includes EG:3200) 

-9.109 206390_x_at PF4 

-9.616 213844_at HOXA5 

-10.534 214651_s_at HOXA9 

-11.729 209905_at HOXA9 

-11.755 223044_at SLC40A1 

-14.165 214146_s_at PPBP 

 
 

S6 Lasso: Prediction Table 
 

 

    Test set error Sensitivity Specificity Predictive Value 

    Neg Pos % % Neg Pos 

Case 1               

  Other 6/81 4/180 98 93 95 97 

  t(15;17) 0/243 0/18 100 100 100 100 

  t(8;21) 1/239 0/22 100 100 100 96 

  inv(16) 2/238 0/23 100 99 100 92 

  CEBPa 1/243 6/18 67 100 97 92 

                

Case 2               

  Other 18/119 13/160 92 85 89 89 

  NPM1+/FLT3ITD- 18/237 12/32 63 92 95 53 

  NPM1-/FLT3ITD+ 14/236 18/33 45 94 92 52 

  NPM1+/FLT3ITD+ 12/226 19/43 56 95 92 67 

The following calculations were used for evaluation measures: sensitivity=true positives/(true positive + 
false negatives), specificity=true negatives/(true negatives + false positives), positive predictive 
value=true positives/(true positives + false positives), negative predictive value=true negatives /(true 
negatives + false negatives) 
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Multinomial logistic regression 

 
Introduction: 
 
The interest in statistical classification for critical applications such as diagnoses of patient samples 
based on supervised learning is rapidly growing. The primal interest is to design classifiers for different 
forms of decision support in performance sensitive applications, e.g. biomedicine. Important examples 
are predictions of tumor subtype and clinical outcome based on mRNA levels in tumor samples using 
modern large-scale microarray technologies.  
 
Multinomial logistic regression: 
 
One of these supervised learning algorithms is the multinomial logistic regression, which is based upon 
the dichotomous logistic regression principle. In statistics it is used for the prediction of the probability 
of occurrence of an event by fitting data to a logistic curve. In a two-class problem we can state the 
following: 
 

 If a sample belongs to a specific class  with probability , it has odds . 

 The vector  consists out of the data for sample , such as a microarray expression profile. 

 Odds have the range . 
 
We also make some additional assumption: 
 

 The response  is Bernoulli distributed, such that: . 

 The dichotomous logistic regression principle is described by a linear predictor: . 

 The linear predictor is described by: . 

 Under conventional notation: 
 

 

 
Using the definitions and assumptions stated above we can define the equations for the dichotomous 
logistic regression. Given the fact that: 
 

 
 
We can show, for the logistic regression equation of , that: 
 

 

 

 



 
45 

 

 
For the case , this is easily generalized to: 
 

 

 
The dichotomous logistic regression model is easily constructed, but the polytomous logistic regression 
model becomes more involved. The multinomial logistic regression model was first introduced by 
McFadden (1974) for outcomes for more than two levels. The measurement scale for this model should 
be known in advance as there are the different types of models, namely the nominal scaled outcome 
variable and the ordinal scaled variable. As of now we are focusing only on the nominal scaled outcome 
variable. We shall show the construction of the generalized logistic model for three outcome categories. 
The construction of the model for more outcome categories should be self-evident for the reader. 
 
 Let us assume that the categories of the outcome variable  are coded as 0, 1 or 2. Recall that the 
logistic regression model for a binary outcome variable was parameterized in terms of the logit of  
versus .  In the three category model we have two logit functions: one for  versus , 
the other for  versus . In this case we taken the group coded as  as reference 
outcome value. The logit for comparing  to  may be obtained as the difference between the 
logit of  versus  and the logit of  versus . We will denote the two logit 
functions as: 
 

 

 

 
In this case we have taken the group  as reference category and will be a topic of discussion later 
in this document. Using the definition: 
 

 

 
 We state: 
 

 

 

 
We can also show that: 
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Thus: 
 

 

 
Having defined all preliminary equations we can now derive the logit functions of each individual 
outcome category: 
 

 

 

 

 

For : 
 

 

 

 

 

Finally for  

 
 

 

 

 
Hence we have found the logit functions for all outcome categories when using the group  as 
reference category. As noted earlier on we have constructed a multinomial logistic regression model 
with a reference category. The additional advantage of this type of modeling is that the model is not 
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overparameterized. We show this later on, but intuitively it indicates that if we know the regression 

coefficient vectors  we need not to know regression coefficient vector , as it is already pre-

determined due to the other regression coefficient vectors.  For convenient notation and reasons that 
become clearer later in this document we define the logit functions for each category outcome variable 
as: 
 

 

 
In this research we are trying to classify tumor samples originating from multiple different classes. 
Where the class labels are defined as: 
 

 

 
 

 
Where are dealing here with a g-class classification problem of  samples. We have also the covariates 

of the regression, which normally are the data vectors of the samples. We define them as , 

where each vector contains data of a specific feature for all samples (such as the expression 

measurement of a specific gene for each samples), with exception of  which consists only out of 
elements equal to 1 such that the offset of the regression is conveniently integrated in the regression. 
This can be written in matrix form as: 
 

 

 
 
 We are thus dealing with a g-class classification problem with p features.  Due to the primal fact that we 
are dealing with a multi-class problem we also have a regression coefficient vector for each class, 

defined as . Using this notation we can define the linear predictors as: 
 

 
 
or in matrix form: 
 

 

 
In this formulation of the model we have a regression coefficient  for each combination of covariate 

 and outcome category . Suppose we have outcomes , a corresponding  data 
matrix of covariates  and make the simplifying substitution ). For notational 
convenience we write the ,  and  in the form of long  vectors: 

,  and 

. The linear predictors  are related to the vector of parameters 

 through , where ,where  is the Kronecker 

product and  the  identity matrix. 
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Fitting the model: 
 
There is no analytical way to fit the model to the observed data, as we do not have a closed expression. 
To solve this problem we are going to make use of the likelihood function of the model. Recall that the 
probabilities of the category outcomes are Bernoulli distributed. If random variables are independently 
distributed we can state that: 
 

 

 
Hence, we are trying to maximize the conditional probability of the observed data given the parameters. 
We are thus trying to find the parameters which best explains the outcomes given the model structure. 
In case of Bernoulli variables and our logistic regression principle we can state: 
 

 

 
To maximize this expression we are going to make use of the log-likelihood function which has its 
maxima at exactly the same parameter values. 
 

 

 
To find the gradient of this log-likelihood function with respect to the beta coefficients we can show the 
procedure without loss of generality for one partial derivative. 
 
 

 

 
 

This general procedure can be applied to each covariate k for each class s. To write this procedure in 
efficient matrix operations we constructed the new design matrix by the Kronecker product resulting in 
a block matrix and augmented the indicator functions for each class and predicted probabilities to their 
respective vectors  and . In terms of block matrices this would look like: 
 

 

 
Using these definitions we can define the gradient vector as: 
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For the Hessian we have to define two different cases that can arise: 
 
Case one: The first first-order partial derivative is not equal to the second first-order partial derivative 
 
 

 

 

 
Case two: The first first-order partial derivative is equal to the second first-order partial derivative 
 
 

 

 

 

 
We now know the second order partial derivatives for all cases and we can construct the Hessian 
conveniently by matrix operations. The Hessian is defined as: 
 

 

 
Where the  matrix  is given by: 
 

 

 

Where each  is a diagonal matrix with entries: 
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Concavity: 
 
An additional advantage of this log-likelihood function is its concavity, although it is not strict concave. 
We can show this by proofing the assumption that the Hessian is semi-definite negative. To do this we 
will use the most common factorization of non-square matrices called the singular value decomposition. 
We assume the reader to be well educated in this subject. 
 
For any  matrix , the  matrix  is symmetric and hence can be orthogonally diagonalized, 
by the Spectral Theorem. Not only are the eigenvalues of   an element of the set , they are also 
non-negative. To show this, let  be an eigenvalue of  wit corresponding eigenvector . We can 
show that 
 

 
 
Recall that the eigenvectors of the symmetric matrix  is an orthonormal basis for the column space 
of this matrix, hence its norm  is equal to 1. We can now state: 
 

 
 

Making the substitution , we get: 
 

 
 

It shows that the Hessian can be decomposed into two transposed matrices and proofs the fact that the 
eigenvalues of the Hessian are all negative semi-definite (due to the negative sign in front of the 
formula). This indicates that the log-likelihood function is concave and has major advantages when using 
optimization procedures such as Newton optimization to find the appropriate regression coefficients. 
When optimizing concave functions the local optimum is equal to the global optimum. 
 
Optimization: 
 
In mathematics, Newton’s method is a well-known algorithm for finding roots of equations in one or 
more dimensions. It can also be used to find local maxima and local minima of functions by noticing that 
if a real number  is stationary point of a function , then  is a root of the derivative , and 
therefore one can solve for   by applying Newton’s method to . First we should attain the second 
order Taylor expansion of the function . This is given by: 
 

 

 
And attains its extremum when  solves the linear equation: 
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And  is positive. Thus, provided that  is a twice-differential function and the initial guess  is 
chosen close enough to , the sequence  defined by: 
 

 

 
 

Will converge towards . This iterative scheme can be generalized to several dimensions by replacing 
the derivative with the gradient, , and the reciprocal of the second derivative with the inverse of 
the Hessian matrix . One obtains the iterative scheme: 
 

 
 

The advantage that the log-likelihood function is concave certifies that the algorithm shall converge to 
the true maximum. As shown earlier, we already have the gradient and Hessian. 
 
Computational problems: 
 
One of the problems when fitting the multinomial logistic regression model, by maximizing the log-
likelihood function, is that the Hessian is not invertible. The Hessian is a  matrix that is singular, 
due to the fact that the rank of this matrix is . This is solely due the fact that we have an 
overparameterized model, because we have not defined any reference category thus leading to 
dependence. To avoid this problem we could use the Moore-Penroose inverse of the Hessian, leading to 
the minimum length solution for . 
 

 
 
Theorem 1: Let  be an Singular Value Decomposition for an  matrix A, where  

 and D is an  diagonal matrix containing the nonzero singular values  

Of A. The Moore-Penrose inverse of A is the  matrix , defined by: 
 

 
Where  is the  matrix 
 

 

 
The Moore-Penrose inverse is normally used when the matrix A has linear dependent columns. In this 
case  is not invertible. This leads to infinitely many solutions when one is using the pseudo-inverse 

. With the Moore-Penrose matrix we are given the solution  of minimum length (i.e. the 
one closest to the origin). 
 
Proof: Let  be an  matrix of rank  with Singular value Decomposition . Let  

and let , we write  and  in block form: 
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We wish to minimize , or equivalently, . We use the fact that  is orthogonal. 

 

 

 

 
The only part of this expression that we have any control over is , so the minimum norm occurs when 

, or equivalently when . So all least squares solutions  are of the form: 
 

 

 
Set as the minimum length solution: 
 

 

 
This is the least squares solution with minimum length. To show this, let’s suppose that: 
 

 

 
We can show that: 
 

 
 

Finally we show that  is equal to : 
 

 

 
Hence we have found the least squares solution with minimal length. 
 
Alternative view: 
 
One of the major problems of the overparameterization is the invariance of the model in certain 
directions. Let us yet again define the long vector : 
 

 

 
If we were to add a constant vector to each regression coefficient vector: 
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We can easily show that: 
 
 

 

 
Hence, the model is invariant to the translation of the regression coefficient vectors in one particular 
direction. To avoid the overparameterization we can also define the following condition: 
 

 

 
Or when writing in matrix form, we can sum over the rows: 
 

 

 

We are trying to find a vector , such that: 
 

 
 
 
Where  is: 
 

 

 
Or equivalently 
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The last formulation indicates that the matrix  consists out of  block matrices which are identically 

to the -dimensional identity matrix . From theory we know that this vector  is in the null space of 

 and thus is orthogonal to the column space of its transpose , as shown in Figure 1. 
 

 
Figure 1: Orthogonal spaces 

 

An additional advantage is that the column vectors of the matrix  are linearly independent. Hence, we 

can use the pseudo-inverse to construct projection matrices. We state that the vector  can be 
orthogonally projected on the column space of  and the null space of , as shown in Figure 2: 
 

 
Figure 2: Orthogonal Decomposition of vector  

 

Thus the vector  can be expressed as: 
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We sometimes conveniently write the matrix  as the matrix H (hat matrix), which has some 
nice properties: 
 
Theorem: 
 

a) The Hat matrix is symmetric 
b) The Hat matrix is idempotent, meaning that the eigenvalues are 0 or 1. Which also constitutes 

that the Hat matrix is semi-positive definite 

c) If  it will be projected to the  vector 
d) If  it will remain  after projection 
e) There is only a least square solution when the columns of X are linearly independent 

 
Proof: 
 

a)  
b)  

c)  
d) If  it can be written as a linear combination such as:  this 

leads to  

e) If we go back to the form  we can prove that  is invertible if the columns of X 
are linearly independent. 

   

 

 

 
 
 
We are only interested in the solutions orthogonally projected on the null space of . We can observe 
the following: 
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Finally the projection matrix on the null space of  is given by: 
 

 

 

 
If we look carefully at this matrix we can identify a pattern, namely: 
 

 
 

Where  is the average of all the regression coefficients belonging to one class. 
 

 

 
We can easily show that for the condition states earlier this projection holds: 
 

 

 

 

 
As this project does nothing more than translate all regression coefficient vectors with the same amount 
and direction, the solution of the log-likelihood maximization stays the same but the 
overparameterization is resolved. 
  



 
57 

Rank and nullity projection matrix: 
 
Additional properties of the projection matrix can be given. In this section we want to proof that the 
rank and nullity of the projection matrix is the same as that of the matrix .  
 

 
 
To show that , it is enough to show that 

. First of all we know that the , because 

. Let , such that . Then 
 

 
 

And thus . Conversely, let , such that: 
 
 

 
 

This implies also that . But then: 
 

 

 

 
Remember that the orthogonal matrix is nothing more than a rotation matrix. A rotation matrix is one 
that preserves the norm (length) of the vector which can easily be shown by: 
 

 
 
The matrix D is nothing more than a scaling matrix, shown by: 
 

 

 
Hence  
  

 

 

If and only if . Hence the rank and nullity are the same. 
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Basis: 
 
It is a well-known fact that the eigenvectors of  span the same space as the vectors 
belonging to . The orthogonal complements of these are the eigenvectors of  or 
the vectors belonging to  and together they span the complete space with a dimensionality 
equal to the dimensionality of each vector. Using the orthogonal projection we can state that: 
 

 
 
An additional property of the projection matrix is that it is idempotent implying that its eigenvalues are 
equal to zero or one, put mathematically: 
 

 

 
The number of eigenvalues which are equal to 1 is in this case the same as the nullity of , 
shown earlier to be . We can thus write 
 
 

 

 
We define: 
 

 

 
Hence we can write: 
 

 
 
Here we have constructed the matrix , which is an semi-orthogonal matrix where its column vectors 
span the null space of . 
 
Optimization: 
 
Now that we have reparameterized the model, we should also change the log-likelihood function in 
accordance. It is easy to show that: 
 

 

 
The last term comes from the fact that both gradients are equal, because the log-likelihood function is 
translation invariant. Finally we can also write: 
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Where the gradient of the log-likelihood function changes to: 
 

 

 

Hence the vector  and the gradient , are both an element of the null space of . Finally we could 

also find different basis for , as long as it spans the null space of  and is independent of the column 
vectors of V. 
 
To construct an orthonormal basis for the null space of , we first must state that we need  
basis vectors.  We can construct this basis as follows, for a small example where  and : 
 

 

 
Where , we can generalize this construction for larger matrices. We now have an orthogonal 
basis, but still not an orthonormal one. We can show without loss of generality that each vector of this 
basis has the following norm: 
 

 

 
Its reciprocal is given by: 
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We can now easily construct an orthonormal set, for which we give one simple example: 
 

 

 
Hence, we now have an orthonormal basis. By using this basis we can solve the invariance problem of 
the optimization, resulting in fast optimizations without convergence problems (recall that the log-
likelihood is concave and now free from invariance problems). 
 
Hessian: 
 
An additional methodology used in regression is the hypothesis testing of the regression coefficients. 
 

: The regression coefficient  is equal to zero 

: The regression coefficient  is not equal to zero 

 
We assume that the null-hypothesis is normally distributed and that we can approximate it with 
Student’s t-distribution. To calculate the p-value we first must define the t-statistic and the degree of 
freedom: 
 

 

 
From the Gaussian-Markov theorem for linear models we can show the following: 
 

) 
 

Let us define the Hessian: 
 

 

 
Taking the negative of this matrix we gain the information matrix: 
 

 

 
An estimator for the covariance matrix is given by: 
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Hence the estimator of the covariance matrix is given by the inverse of the Hessian. We can now define 
the variance and standard error for each regression coefficient. 
 
 

 

 
Its standard error is than given by: 
 

 

 
Where  is the negative Hessian when we differentiate the log-likelihood function for . A 
problem arises when we invert this Hessian due to the fact that its rank is  and its dimensions 
are . Hence, some columns are linearly dependent, or equivalently some eigenvalues are zero 
resulting in a singular matrix. We solve this by taking the Moore-Penrose inverse of the Hessian to 
calculate the standard errors. 
 
This problem does not arise when we optimize the log-likelihood function for the reparameterization, or 
equivalently optimizing with the parameter vector . We can this in the following way: 
 

 

 

Recall that  is a  matrix, when we multiply it with the  matrix  as we do 

we have the  matrix . An advantage of this symmetric Hessian matrix, is that 

it is invertible due to the fact that it has a rank of . This due to the undoing of the invariance property 
of the log-likelihood function. Additionally, the diagonal elements of the inverse of this information 
matrix are all strictly positive.  
 
Proof: 
 

 

 
 

 
We now show that the information matrix has strictly positive diagonal elements: 
 

 
 

Making the substitution , resulting in: 
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From this matrix multiplication we can see that: 
 

 

And  
 

 

 
Hence, the last equation is contradicting as there is no vector in , that is equal to the zero-vector. This 
implies that all diagonal elements are strictly positive. 
 
L-BFGS-B: 
 
Fundamental problems arise when the Hessian is quite large or ill-conditioned. In some applications in 
can occur that the number of features, , and samples,  are quite large. This results in a matrix with 
large dimensions which takes long to construct, but even longer to calculate its inverse. In some cases 
the Hessian is even ill-conditioned, such that numerical errors lead to the declaration of singularity for 
this matrix while it should be invertible. To avoid these ill-conditioned and time-consuming problems we 
decided to make use of the Quasi-Newton algorithm Limited-memory BFGS algorithm (with possible 
bounds). L-BFGS uses the Broyden–Fletcher–Goldfarb–Shanno update to approximate the Hessian 
matrix. L-BFGS is particularly well suited for optimization problems with a large number of dimensions. 
This because L-BFGS never explicitly forms or stores the Hessian matrix, which can be quite expensive 
when the number of dimensions becomes large. Instead, L-BFGS maintains a history of the past  
updates of the position  and gradient , where generally the history  can be short, often less 
than 10. These updates are used to implicitly do operations requiring the Hessian (or it's inverse). Hence 
we are formulating the log-likelihood and gradient of the log-likelihood in terms of the parameter vector 

, to remove the invariance property of the log-likelihood function. We have reasons to believe that for 
large problems, which this algorithm is intentially constructed for, this algorithm is much faster but also 
uses less memory. 
 
Results: 
 
To test the algorithm we have used the following dataset: 
 

Author: L.Dyrskjot et al.  

Type: Three types of bladder cancer 

Number of samples: 40 

Number of genes/features: 3036 

Number of classes: 3 

 
To test the algorithm we have selected 100 genes to perform the multinomial logistic regression with. 
We also tested with conventional packages such as ‘globaltest’. Regrettably, this algorithm did not 
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converge or the Hessian was not invertible most of the times. Additionally, our algorithm required less 
computing time than other algorithms when fitting a large model.  
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Prob Class 1 Prob Class 2 Prob Class 3 Label 

6.62E-14 1.00E+00 3.28E-23 2 

8.02E-14 1.00E+00 1.96E-17 2 

4.26E-14 1.00E+00 1.19E-14 2 

9.17E-22 1.00E+00 7.92E-18 2 

1.47E-13 1.00E+00 3.72E-14 2 

1.12E-31 1.00E+00 4.54E-25 2 

7.23E-23 1.00E+00 6.58E-20 2 

1.90E-14 1.00E+00 5.86E-15 2 

6.74E-14 1.00E+00 1.27E-16 2 

1.40E-13 1.00E+00 4.02E-15 2 

2.10E-15 1.00E+00 1.85E-18 2 

7.83E-15 1.00E+00 3.74E-14 2 

1.52E-18 1.00E+00 1.94E-14 2 

7.27E-22 1.00E+00 2.39E-18 2 

8.64E-15 1.00E+00 5.35E-16 2 

2.82E-39 1.00E+00 6.54E-29 2 

4.05E-14 1.00E+00 6.58E-15 2 

6.41E-16 1.00E+00 3.62E-15 2 

1.31E-18 2.24E-14 1.00E+00 3 

2.74E-24 5.85E-14 1.00E+00 3 

1.00E+00 7.80E-14 8.60E-15 1 

1.00E+00 5.64E-14 1.09E-17 1 

1.00E+00 1.64E-13 7.62E-18 1 

1.00E+00 1.07E-40 3.67E-31 1 

1.00E+00 1.50E-13 1.88E-19 1 

1.00E+00 8.00E-14 8.18E-18 1 

1.36E-24 1.00E+00 9.21E-15 2 

1.94E-18 1.00E+00 1.83E-15 2 

1.32E-25 1.00E+00 9.62E-14 2 

1.59E-14 1.00E+00 6.55E-14 2 

1.06E-21 1.00E+00 1.38E-18 2 

4.38E-14 1.00E+00 2.41E-14 2 

4.23E-27 1.00E+00 8.88E-19 2 

8.11E-14 1.00E+00 1.81E-14 2 

1.87E-13 1.00E+00 2.11E-15 2 

3.52E-28 1.00E+00 4.38E-22 2 

5.47E-14 1.00E+00 4.42E-14 2 

1.06E-20 1.00E+00 2.76E-14 2 

2.76E-24 1.00E+00 1.00E-16 2 

2.08E-13 1.00E+00 1.42E-15 2 

Table 1: Probabilities inferred by the model 
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From Table 1 we can clearly see that the training samples are perfectly classified, which is due to the 
overfitting of the model. To resolve this issue we should integrate penalization into the fitting of the 
model. This way we avoid overfitting and perform a procedure somewhat similar to parameter 
selection. An additional advantage is that we can integrate group Lasso, a subject later discussed in this 
document. 
 

Penalization 

Introduction: 
 
One of the fundamental problems when trying to fit the model with the ordinary multinomial logistic 
regression model, when then the number of features exceeds the number of observations, is that it 
could lead to an overfit. Hence, inclusion of a larger number of features greatly increases the complexity 
of the model which tends to generate a higher variance. The increase in complexity has the advantage 
that it decreases the systematic error (bias) of the classifier, while increasing its variance. Ultimately, it 
results in an increase in the prediction error on the test sample while decreasing the error for the 
training sample. Hence it would be incongruous to increase the complexity of the model, as seen in 
Figure 2.1. What we are trying to find is the maximum parsimony of the model such that the increase its 
performance and interpretability of the prediction rule. To find this maximum parsimony, multiple 
methodologies and criterions have been devised to generate the model to one’s own liking. 
 

 
Figure 2.1: General behavior of test sample and training sample prediction error as the model complexity is varied. 

 

The Bias-Variance decomposition 
 
One framework we could use to understand the penalization methodologies is the Bias-Variance 
decomposition. In this section we shall explain this decomposition in an abstract way for the sake of 
clarity. Let us assume the following: 
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Where 
 

 
 

 
We furthermore state the prediction or regression fit is given by: 
 

 
 
For the sake for simplicity and generality we shall use the Loss function, also called squares-error loss: 
 

 

 
Than the expected prediction error, or Mean Squared Error, of the regression fit conditioned on the 
input point  is given by: 
 

 

 

 

 

 

 

 

 

 
We have shown that the prediction error consists out of an irreducible error ( ), the variance of the 
predictor and the squared bias. Finally, we need to link the model complexity to the number of features 
or parameters. To show this we will make use of the theory of linear regression given as follows: 
 

 

 

 

 

 
 
We have seen in the last chapter that this Hat matrix is idempotent and symmetric. We can now show 
the following: 
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If we then would calculate the average error over our test sample we would get: 
 

 

 
 
One fundamental theorem in Linear algebra gives us: 
 

 

 
Due to the fact that the Hat matrix is idempotent we know that the eigenvalues are exactly 0 or 1. We 
also know that  (the number of parameters or features) eigenvalues are given the number 1. This 
implies that: 
 

 

 
And eventually the average error becomes: 
 

 

 
Here the model complexity is directly related to the number of parameters. Increasing the number of 
parameters implies that we are increasing the so-called in-sample error. To reduce this variance 
substantially at the cost of some bias we need to reduce the effective dimensionality or the number of 
parameters. 
 
Ridge regression 
 
Introduction: 
 
First we must clarify why we should not be satisfied by a least squares solution: 
 

a) Prediction accuracy: The least squares estimates often have a low bias but large variance. The 
prediction accuracy sometimes can be improved by shrinking or setting some regression 
coefficients to zero. By doing so we sacrifice a little bit of bias to reduce the variance of the 
predicted values, and hence may improve the overall prediction accuracy. 

b) Interpretation: With a large number of predictors, we often would like to determine a smaller 
subset that exhibits the strongest effects. 

 
Both issues are occurring due to multi-collinearity. In regression when several predictors are highly 
correlated, the issue of multi-collinearity occurs. In a regression model we expect a high variance (  
explained. The higher the variance explained, the better the model. In a model where collinearity exists 
we expect that the model parameters and the variance are inflated. The high variance is not explained 
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by independent good predictors, but is due to a misspecified model that caries mutually dependent and 
thus redundant predictors. To cope for these issues we can make use of Ridge regression on a 
continuous level. 
 
Ridge regression shrinks the regression coefficients by imposing a penalty on their size. It does this by 
minimizing the following expression: 
 

 

 
Just like the least squares solution we can use Matrix calculus to minimize this expression. By taking the 
derivative of the residual sum of squares in terms of the regression coefficients and setting this equals 
to zero. We can do this by first noting that the function we are trying to minimize is concave. After 
taking the derivative we get the following: 
 

 

 
 

 
It is possible that there are many highly correlated variables in a linear regression model, these 
parameters can become poorly determined and exhibit high variance. A large positive coefficient for one 
variable can be canceled by a large negative coefficient due to another correlated variable. This can be 
prevented by imposing penalties on the size of the coefficients. Due to the ridge solutions not being 
equivariant under scaling of the inputs, one should first standardize the inputs. It should be clear that 
you don’t want to penalize the constant term. Now that the inputs are centered we need to know an 
estimate for the constant term . This can be estimated by the following formula: 
 

 

 
It is noted in the book of Friedman J., et al.  that the solution adds a positive constant to the diagonal of 

 before inversion. This should make the problem nonsingular, even if  is not of full rank, and it 
was the main motivation for Ridge regression when it was first introduced by Hoerl and Kennard in 
statistics. The basic idea behind this could be that one wants to move the Gerschgorin disks such that 
the matrix becomes nonsingular. 
 
Definition: Let X be a real or complex  matrix and let  denote the sum of the absolute values of 

the off-diagonal entries in the ith row of X. That is, . The ith Gerschgorin disk is the circular 

disk  in the complex plane with center  and radius . That is, 
 

 
 

Gerschgorin’s Disk Theorem: Let X be an  real or complex matrix. Then every eigenvalues of X is 
contained with a Gerschgorin disk. 
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Proof: 
 
Let  be an eigenvalues X with corresponding eigenvector . Let  be the entry of  with the largest 
absolute values. Then , the ith row of which is: 
 

 

Rearranging we have: 
 

 

Because , we obtain: 

 

 

Because . This means that the eigenvalues  is contained within the Gerschgorin 

disk centered at  with radius . In Figure 2.2 we can see some examples of Gerschgorin disks in the 
complex plane. 

 

 
Figure 2.2: Gerschgorin disks in the complex plane 

 

Because  is symmetric we also know that its eigenvalues are all real. This means that the 
Gerschgorin disks are just intervals on the real line. By adding constants to the diagonal entries 
of a matrix we are moving the Gerschgorin disks towards (larger) positive values while the 
radius stays the same. Eventually the matrix becomes what is called strictly diagonally 
dominant, where the absolute value of each diagonal entry is larger than the radius. This would 
mean that the matrix is always invertible as no disk overlaps the origin (0+i0). We know the 
following theorem: 
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By adding constants to the diagonal entries the eigenvalues will not become zero anymore and 
will turn the matrix in a nonsingular one. 
 
As last part we can analyze the nature of Ridge regression. In the first part we have 
standardized the inputs which resulted in the new matrix X. Now we take the Singular Value 
Decomposition of this matrix, which is given by: 
 

 
 

 
 

 
 
 
For the least squares solution this will give: 
 

 

 
This would indicate that the solution is a linear combination of the basis vectors spanning the 
column space. We can also do this for Ridge regression as it has an analytic solution: 
 

 

 

 

 

Here the values  are the singular values squared which are just the eigenvalues of . We can 
clearly see that the basis vectors of the column space get shrunken. It is also clear from the formula that 

the lower the value  the more shrunken the basis vector gets. The basic idea behind Ridge regression 
is that when one centers the input vector on can perform principal component analysis on the matrix. 
The principal components are in this case the basis vectors that span the column space of the centered 
matrix X. This method wants to preserve the column vectors which exhibit the most variance according 
to the eigenvalues. The directions with the smallest variance get shrunken the most by this method. 
As last step we also have the effective degrees of freedom statistic for a given , denoted by df( . This 
can be calculated as follows: 
 

 

 
This is equal to the amount of retained variance of the basis vectors of the column space. If we would 
set  we would just get the least squares dimension, namely p. 
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We can also place the ridge regression methodology in the Bias-Variance framework by noting that: 
 

 

 
The first thing we should now note about the projection matrix  is that it is symmetric but no longer 
idempotent. To see the contribution of the variance to the in-sample error we need to decompose the 
projection matrix by the singular value decomposition. 
 

 
 

 
Then the diagonal entries of this squared projection matrix is given by: 
 

 

 
We can clearly see the following equality: 
 

 

 
 
We know that the, due to the reason that the regularization parameter  is always non-negative, that 
the fraction is always smaller than one, except for the case that the regularization parameter is exactly 
zero. For the in-sample error this implies the following: 
 

 

 

 
We are thus performing a summation over all predictors with fractions all smaller or equal to zero 
thereby reducing the variance. This fit has an additional estimation bias, due to the fact that it is not the 
closes fit in the model space. On the other hand, it has smaller variance. If the decrease in variance 
exceeds the increase in the squared bias, it is worthwhile as shown in Figure 2.3. 
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Figure 2.3: Behavior of the model variance and bias when applying penalization. The model space is the set of all 

possible configurations of the model. The closest fit is generated based upon the training data, but does not 
necessarily implies to best fit for the entire population (or samples from it). By penalization we can generate fits 

with possible better prediction probabilities. 
 
 
 

Multinomial logistic regression: 
 
 It was worthwhile to explain ridge regression in a more abstract sense to truly understand the theory 
underlying this technique, but for this project we need to integrate it in the multinomial logistic 
regression framework. The dichotomous case has been developed by S. Le Cessie, et al.  and has been 
promoted as good prediction model in a multitude of different fields of research, such as classification in 
microarray analysis. First we need to define the log-likelihood function we need to minimize: 
 

 

 
To find the gradient of this log-likelihood function with respect to the beta coefficients we can show the 
procedure without loss of generality for one partial derivative. 
 
 

 

 
Using the concatenated notation of the last chapter we can show that the gradient is given by: 
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We should note that the regularization parameter  is given in bold due to the fact that it is a block 
matrix with a specialized structure. This comes from the fact that we wish not to penalize the constant 
parameter of each regression coefficient vector. The matrix has the following structure: 
 

 

 

 

 
Due to the fact that the gradient consists out of two additive terms one can write the Hessian as follows: 
 

 

 
We can now go one to prove the concavity of the problem, under the assumption that the model matrix 

  has been orthogonalized. This also implies that the cross product of a particular column with itself is 
equal to one and with another is equal to zero, hence resulting into a semi-orthogonal matrix. 
 

 
 

We now define : 
 

 
 
Hence under orthogonality of the model matrix the problem is concave. 
 
Identifiability: 
 
In the ordinary multinomial logistic regression model we have seen that there are identifiability 
problems due to the fact that addition of particular vectors to the regression coefficient vectors leads to 
the same log-likelihood function value. This implies that the log-likelihood function has an optimum 
which at a particular direction has the same evaluation. This ultimately results that Newton-Raphson 
algorithm runs into non-convergent behavior, resulting into the break-down of the algorithm. To solve 
this problem we once again introduce the Omega transformation matrix . We first should identify the 
problem. Recall that the parameter vector is defined as a concatenated version of all regression 
coefficient vectors or conveniently called long notation: 
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Each regression coefficient vector then consists out of the unpenalized constant parameter and the  
predictor parameters: 
 

 

 
If we were to add the same values to each regression coefficient vector as seen in last chapter the log-
likelihood function would remain the same, but the penalization function in the log-likelihood function 
changes and gives a different evaluation value. 
 

 

 
This would not be the case for the unpenalized constant coefficient parameter. If we would add the 
same value to each constant term we would get exactly the same log-likelihood function evaluation. 
 

 

 
This eventually runs into identifiability problems. Unlike the multinomial logistic regression model case 
we now have  unique parameters and the model is overfitted by one parameter. To resolve 
this issue we have constructed a new Omega matrix with the rank . Where the gradient is 
ones more given by: 
 

 

 
And the Hessian by: 
 

 

 
Double cross-validation or Model selection: 
 
Next to finding the optimal regression coefficient vector we also should find the most optimal 
regularization parameter . We should develop criterions to perform model selection and afterwards 
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perform model assessment to estimate the generalization error. Let us first define the training error 
rate: 
 

 

 
This will be less than the true error: 
 

 

 
Due to the fact that the same data is used to fit the model and asses the error. The model adapts to the 
training data, and hence the training error will be too optimistic of the generalization error . The 
phenomena of optimism is best understood in the in-sample error definition: 
 

 

 
The notation  indicates that we are observing N new response values of the trainings points . We 
define the optimism as the expected difference between  and the training error . 
 

 

 

 
It can be shown that for the squared loss function the optimism is given by: 
 

 

This gives the following important formula: 
 

 

 
For the linear regression model it can even be shown that: 
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Hence the in-sample error becomes: 
 

 

 
Using this framework an obvious way to estimate the prediction error would be to estimate the 
optimism and add to it the training error. For this methodology we have developed methodologies such 
as the Akaike Information Criterion and Cross-Validation. The new form of the in-sample error is given 
by: 
 

 
 
Where  is an estimate of the optimism. The Akaike information criterion can generally be used if the a 
log-likelihood loss function is used. It relies on a relation that holds asymptotically when the number of 
observation . 
 

 

 
When the model complexity comes in to play we need to incorporate the regularization parameter . 
For this set of models we define: 
 

 

 
The function  is an estimation of the test error curve, and we need to find the regularization 
parameter  that minimized this function. An example of such a curve is portrayed in Figure 2.4. 
 

 
Figure 2.4: Akaike Information Curve being a function of the regularization parameter . 
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To calculate the AIC we must first define an appropriate Hat matrix for the penalized logistic regression. 
This is given by: 
 

 
 
To estimate a good , we can use the following formula: 
 

 

 
Where . One of the main advantages is that the AIC can be calculated very fast when 
the optimal regression coefficient vector has been found. 
 
Cross-Validation: 
 
One of the most widely used methods is the cross-validated method. Ideally we would have a large 
enough dataset such that we can create a large training set and put away an unused test set that we can 
use later one for the estimation of the generalization error. Alas, this is not always possible and for such 
cases one could use cross-validation. One of the most used variants is called K-fold cross-validation. We 
split the data into K roughly equal sized parts.  If we would for example take K=5, we could partition the 
dataset as follows: 
 

 
 

For the third part, we would fit the model based upon K-1 parts of data as training set and calculate the 
prediction error when predicting the third part of the data. We do this for each part and combine the  
estimates. Let us assume that we have an indexing function  which assigns a 

membership to each observation in a randomized way. Denote by  the fitted function, trained 
without part k. Then the cross-validation estimation based upon the training data and the regularization 
parameter  is given by: 
 

 

 
This cross-validation function estimates the test error curve and we should find the regularization 
parameter that minimized this function. It is also possible to define the number of parts equal to the 
number of observations; we also call this conveniently the leave-one-out cross-validation variant. The 
disadvantage of cross-validation is that it takes a lot of time to calculate it and it takes even more time 
to optimize the test error curve. The main advantage with respect to the Akaike Information Criterion is 
that is not bases on asymptotical assumption and is in cases where there is no time limitation a more 
congruent methodology. 
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The Brent Algorithm: 
 
Although we can use different kinds of estimates for the test error curve we still need to find the 
minimum. One possibility is to let the use define a grid such he or she sees where approximately the 
optimum lies. In the case of Ridge regression this is a good method as it is a smooth function and has 
one global optimum (recall that the penalized log-likelihood function is concave). Due to this 
smoothness we could also devise methods to find the minimum automatically. For this we have 
implemented the BRENT algorithm. A downside of the developed model selection algorithms is that 
there mathematics cannot be used for differentiation; hence non differential algorithms must be used.  
The BRENT is a root finding algorithm that is based on root bracketing, bisection and inverse quadratic 
interpolation.  With a slight modification that can be found in numerous books one can use it to find the 
optimum of a function. For this sole reason and its speed and accuracy we have implemented this 
algorithm additionally. Pre-liminary results have already shown that algorithm is precise and takes small 
amount of time to find the neighborhood of the minimum. 
 
Results: 
 
We expect that the implementation shrinks the regression coefficients to zero as the regularization 
parameter  is increased. It is also well-known that correlated predictors are shrunk to zero 
simultaneously. One disadvantage is that the Ridge penalization never shrinks all regression coefficients 
exactly to zero, which only happened when we put the regularization parameter on infinity which lies 
outside of the practical scope. We furthermore expect that the framework makes convenient use of the 
bias-variance framework to increase the performance of the estimation of the prediction probabilities. 
Figure 2.5 shows an example what happened if we were to increase the regularization parameters. 
Please mind that the regression coefficients as shrunk according to the effective degrees of freedom 
which decreases as the regularization parameter increases. It clearly shows that the regression 
coefficients shrink together to zero. 

 
Figure 2.5: Shrinkage of the regression coefficients as the effective degrees of freedom is decreased. 

 

To show some pre-liminary results, we yet again made use of the bladder cancer dataset: 
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Author: L.Dyrskjot et al.  

Type: Three types of bladder cancer 

Number of samples: 40 

Number of genes/features selected: 200/3036 

Number of classes: 3 

 
Here we have set the regularization parameter  to one to see what happens. We clearly see that the 
regression coefficients have shrunken to zero (not shown), but another clear distinction is that the 
estimated probabilities show less evidence of overfit. To estimate the test error we have used the 
LOOCV which was estimated to be approximately 0.25. We have also used the BRENT algorithm to find 
the optimal lambda which was estimated to be 34.2857433463778 with a LOOCV estimated test error of 
0.199000474817524. 
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0.091077 0.907036 0.001887 2 

0.045411 0.951008 0.003581 2 

0.051887 0.945831 0.002282 2 

0.01481 0.975183 0.010006 2 

0.020055 0.96695 0.012995 2 

0.001175 0.998105 0.00072 2 

0.003067 0.995291 0.001642 2 

0.010391 0.985692 0.003917 2 

0.038143 0.957301 0.004556 2 

0.026307 0.96915 0.004543 2 

0.002629 0.996048 0.001323 2 

0.014063 0.962696 0.023241 2 

0.002857 0.994861 0.002282 2 

0.007431 0.989935 0.002634 2 

0.008014 0.978485 0.013501 2 

0.000858 0.997976 0.001166 2 

0.04285 0.944497 0.012653 2 

0.003688 0.995531 0.00078 2 

0.008515 0.051947 0.939538 3 

9.67E-05 0.052804 0.947099 3 

0.887736 0.105338 0.006926 1 

0.943279 0.054486 0.002235 1 

0.831453 0.161441 0.007106 1 

0.994679 0.00441 0.000911 1 

0.881429 0.116126 0.002445 1 

0.918146 0.080522 0.001332 1 

0.000648 0.983615 0.015737 2 

0.003391 0.995069 0.001541 2 

0.002145 0.958031 0.039824 2 

0.011659 0.972815 0.015526 2 

0.003229 0.985171 0.011601 2 

0.003356 0.993904 0.00274 2 

0.001366 0.99103 0.007604 2 

0.008999 0.983022 0.00798 2 

0.029504 0.966321 0.004175 2 

0.009077 0.174932 0.815991 2 

0.015123 0.965516 0.019361 2 

0.000831 0.997599 0.00157 2 
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0.00117 0.988914 0.009916 2 

0.059458 0.90541 0.035132 2 

 
This table provides us the classification based upon the grade/malignancy of the tumor sample, but the 
authors did also provide us with other classification criteria based on tumor morphology or genetic 
aberrations. To infer the fit of the model we performed double cross-validation by using the BRENT 
algorithm, with LOOCV, to find the most optimal regularization parameter. In this case the optimal 
regularization parameter was found to be 2.8226047667724 with an estimated test error of 
0.147079164231827. This is a general increase in prediction power when compared to the paper from 
which this dataset originates. The authors achieved a prediction accuracy of roughly 75%. We should 
that we do not have a secondary dataset to infer the generalization error and that we can only make 
predictions based upon an estimated test error. We should also note that we now also have some 
uncertainty about our classification, something that cannot be achieved by some other classification 
methods such as Support Vector Machine (SVM). 
 

1 2 3 Type 

0.915159 0.016466 0.068375 1 

0.916726 0.016134 0.06714 1 

0.930751 0.008705 0.060544 1 

0.923985 0.030532 0.045484 1 

0.967394 0.013726 0.01888 1 

0.966659 0.012354 0.020987 1 

0.962801 0.016905 0.020294 1 

0.977591 0.0109 0.011509 1 

0.94094 0.015673 0.043387 1 

0.929132 0.022736 0.048132 1 

0.962508 0.022277 0.015215 1 

0.01994 0.962672 0.017388 2 

0.041344 0.946907 0.011749 2 

0.075804 0.880244 0.043952 2 

0.004397 0.991352 0.004251 2 

0.009161 0.988587 0.002252 2 

0.002275 0.982955 0.014771 2 

0.011658 0.9847 0.003642 2 

0.022417 0.971368 0.006215 2 

0.01516 0.976694 0.008145 2 

0.033912 0.007665 0.958423 3 

0.055509 0.008991 0.9355 3 

0.034911 0.003004 0.962086 3 

0.021306 0.005104 0.973591 3 

0.098492 0.011948 0.889561 3 
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0.05631 0.01475 0.92894 3 

0.001744 0.00723 0.991026 3 

0.004391 0.001129 0.99448 3 

0.004243 0.000453 0.995304 3 

0.041223 0.001142 0.957635 3 

0.007635 0.001647 0.990718 3 

0.006906 0.020466 0.972628 3 

0.002175 0.010441 0.987384 3 

0.006037 0.000183 0.99378 3 

0.000397 0.000202 0.999401 3 

0.004974 0.001264 0.993762 3 

0.001993 0.001629 0.996378 3 

0.002194 0.027644 0.970161 3 

0.019161 0.003074 0.977766 3 

 
Lasso regression 
 
Introduction: 
 
As we have indicated before the data analyst should not be satisfied with the Ordinary Least Squares 
estimates upon which the multinomial logistic regression is based. This has two good reasons: 
 

1. Prediction Accuracy: The ordinary least squares estimates often have low bias, but high variance 
as was shown in the bias-variance framework. The prediction accuracy can sometimes by 
shrinking or setting some regression coefficients exactly to zero. By doing so we might sacrifice a 
little bit of (squares) bias for a substantial decrease in the variance of the predicted 
probabilities. Hence, may improve the overall prediction accuracy. 

2. Interpretation: With a large number of predictors, we often would like to determine a smaller 
subset that exhibits the strongest effect with respect to the outcome or classification. These are 
major issues when using the multinomial logistic regression model with or without the L2 
penalization. In these cases all the predictors will retain a regression coefficient larger than zero. 
Furthermore, correlated predictors will be shrunk together to zero instead of retaining one and 
discarding the others. 

 
Other techniques such as subsets selection indeed give an interpretable prediction rule but can be 
highly variable as it is a discrete process. Small changes in the data can already result in different models 
being selected and can result in a substantial decrease in the prediction accuracy. To solve these issues 
Robert Tibshirani (1996) developed a technique called lasso, for ‘least absolute shrinkage and selection 
operator’. In this case it shrinks some coefficients and sets other exactly to zero, and hence tries to 
retain the good features of both subset selection and ridge regression. First we should define the lasso 
minimization function: 
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Where is the log-likelihood function evaluated at  and is subjected to an L1 penalization. Another 
more appropriate definition is given by: 
 

 

 
The two definitions are equivalent, as the latter definition can be constructed as the Lagrange multiplies 
version of the former optimization problem under the Katush-Kuhn-Tucker (KKT) conditions. It is a nice 
regularization method as it performs variable selection as well as shrinkage. The amount of shrinkage is 
dependent on the magnitude of regularization employed and is very useful for generating interpretable 
prediction rules for high dimensional data in which the number of features exceeds the number of 
observations. Figure 2.5 portrays the main difference between lasso and ridge penalization when using 
linear models. 
 

 
Figure 2.5: Estimation of the regression coefficients for the lasso (left) and ridge regression (right). Shown are the 

contour lines of the error and constraint functions. It can clearly be seen that the lasso shrinks the parameter  to 
zero whereas ridge regression does not. 

 
Many efficient algorithms have been developed to minimize both optimization functions. In the case of 
linear models quadractic programming and even exact solution algorithms have been developed, but for 
generalized linear models, such as multinomial logistic regression, it will be computationally more 
demanding. Various path-based algorithms have been developed generating accurate results. These 
algorithms are based on high-dimensional paths being a function of the regularization parameter . 
These paths are normally piecewise linear giving the advantage that the regression coefficients for a 
particular regularization parameter can be calculated on the fly,  but for generalized linear models these 
paths exhibit a somewhat linear piecewise function, as shown in Figure 2.6. Hence, in this case most 
algorithms make use of linear approximation and the estimation of the parameters. 
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Figure 2.6: Solution paths of the lasso coefficients as the shrinkage factor is varied. 

 

Problem description: 

 
Let us define the target function we would like to minimize: 
 

 

 
It consists out of two terms: The first being the log-likelihood of the concatenated regression coefficient 

vector   and the penalization function . The log-likelihood function is of the class 

, implying that it is at least twice differentiable everywhere, and concave. Alas, the penalization 
function is less well-behaved: it is concave and continuous, but it is only differential at all points except 
for  for all . Hence, the target function being the sum of two concave functions is itself concave 
although it is not strictly concave. This results in the possibility that the target function can have a flat 
top; being a contiguous optimum consisting out of multiple points. Furthermore it is not differentiable 
everywhere. This implies that we have  continuous subspaces which are differentiable. A 
meaningful question would be how we could modify the target function such that we can make use of 
Quasi-newton methods for which we need not to calculate the Hessian exactly. One method that we 
have implemented is projecting every continuous subspace into one subspace where the target function 
is continuous. To do this we first must define the positive part and negative part function: 
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We should note that the positive as well as the negative part are both non-negative. They both are 
always equal or larger than zero. Using these functions we can define: 
 

 
 

 
Hence, we can reparameterize the model such that every regression coefficient can be expresses by the 
summation of two positive parameters. By creating twice as much parameters we can map the loose 
continuous subspaces into higher dimension subspace where every parameter is non-negative. For the 
target function we could write the reparameterization as follows: 
 

 

 
The additional advantage is that we can calculate the gradient because we now have mapped to a 
higher dimensional subspace with a continuous function. 
 

 

 

 

 
The entire gradient of all the new parameters is given by: 
 

 

 
We should note that we have stated the new parameters of the reparameterization should all be non-
negative. To account for this issue we specifically have employed the L-BFGS-B algorithm as it can put a 
lower or upper bound on the parameters to be optimized.  For this reason we have put a lower bound of 
zero on each parameter. 
 
Cross-validation: 
 
To accommodate the data analyst with an automatic algorithm for the search of the optimal 
regularization parameter we have once more employed the Cross-validation methodology. The BRENT 
algorithm is once more used to find the optimum. One down-side is that the estimated test error curve 
is not always as smooth as we would like it to be. Furthermore it could be possible that multiple local 
optima exist. An example of this non-smooth behavior is portrayed in Figure 2.7. 
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Figure 2.7: The cross-validated partial log-likelihood as a function of the regularization parameter. It clearly shows 

the non-smooth behavior of the estimated test error curve. 
 

One advantage that we can use in our optimization is that when: 
 

 
 
We can say that the regression coefficient vector becomes: 
 

 
 
Hence we can calculate the maximum of the regularization parameter for which all predictors are 
discarded from the model. To accommodate the user with the possibility to search for the optimum we 
advise them to first use a grid search to find a section on the line of the regularization parameter for 
which the neighborhood of the optimum is located. 
 
Results: 
 
We will test the multinomial logistic regression model penalized by a L1 penalty ones again on the 
Bladder cancer dataset. The first thing we need to perform is to find a segment on the regularization 
parameter line for which the CV curve is somewhat optimal. First we have defined a grid between 0.1 
and 1.1 with a step size of 0.1. The results are shown in the right image of Figure 2.8, it is clear that we 
need to extend our window to find the optimum. We then generated a grid between 0.1 and 10.1 with a 
step size of 0.5.  The result of this grid is portrayed in the right image of Figure 2.8. It clearly shows that 
the minimum is found somewhat around . For this reason we are applying the BRENT algorithm 
between  and . 
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Figure 2.8: (Right) The Cross-validation curve between 0.1 and 1.1. (Left) The Cross-validation curve between 0.1 

and 10.1. 

 
After only ten evaluations the algorithm converges at a cross-validation value of 0.1299629. It 
immediately becomes clear that using the full model leads to an overfit, due to the fact that at this 
regularization level only 3 to 4 predictors are retained of the initial 405 predictors. We can see from the 
table of estimated prediction probabilities that some observations would be misclassified. That is not a 
problem, as we are trying to fit the model such that it would perform best on the population or at least 
a new sample of the observations. 
 

1 2 3 Type 

0.373356 0.220487 0.406157 1 

0.752456 0.062806 0.184738 1 

0.655487 0.038351 0.306162 1 

0.710162 0.069747 0.22009 1 

0.689049 0.157069 0.153882 1 

0.823122 0.036727 0.140151 1 

0.821358 0.078928 0.099714 1 

0.807941 0.15022 0.041839 1 

0.781624 0.08937 0.129006 1 

0.541128 0.116254 0.342619 1 

0.792307 0.103733 0.10396 1 

0.189501 0.757636 0.052862 2 

0.337993 0.555242 0.106765 2 

0.288671 0.601237 0.110092 2 

0.003649 0.985853 0.010498 2 

0.077597 0.89671 0.025693 2 



 
88 

0.048145 0.896675 0.05518 2 

0.04502 0.947885 0.007095 2 

0.188947 0.770344 0.04071 2 

0.088549 0.703892 0.207559 2 

0.221005 0.016985 0.76201 3 

0.138496 0.014215 0.847289 3 

0.227286 0.013778 0.758936 3 

0.136596 0.027618 0.835786 3 

0.438225 0.194671 0.367103 3 

0.350974 0.036839 0.612187 3 

0.008515 0.039923 0.951562 3 

0.037552 0.012405 0.950043 3 

0.010974 0.00701 0.982016 3 

0.099581 0.01848 0.881939 3 

0.036124 0.008699 0.955177 3 

0.058265 0.108023 0.833712 3 

0.013029 0.021878 0.965093 3 

0.019446 0.002765 0.977789 3 

0.014683 0.003296 0.982021 3 

0.013289 0.061389 0.925322 3 

0.079471 0.056182 0.864347 3 

0.0281 0.109958 0.861942 3 

0.048964 0.005191 0.945844 3 

 
Elastic net 
 
Introduction: 
 
The advantage of penalized the regression coefficients with a L1 norm is that it improves the 
interpretability over multinomial logistic regression and ridge regression. The downside is that is 
sometimes has a slight worse prediction accuracy than ridge regression. To cope with this problem H. 
Zou and T. Hastie (2003) developed and new penalization function called the elastic net. This is an 
algorithm we additionally added to our package. As a continuous shrinkage method, ridge regression 
achieves its better prediction performance through a bias-variance trade-off. However, ridge regression 
cannot produce a parsimonious model, for it always keeps all the predictors in the model. The lasso 
technique should solve these issues. Although the lasso has shown success in many situations, it has 
some of its limitations: 
 

1. In the  case, the lasso selects at most n variables before it saturates, which seems to be a 
limiting feature for a variable selection method. 

2. If there is a group of variables with high pairwise correlations, then the lasso tends to select only 
one variable from the group and does not case which one is selected. 
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3. In the case that , if there are high correlations between predictors, it has been empirically 
observed that the prediction performance of the lasso is dominated by ridge regression. 

 
The first two situations make the lasso as variable selection method in some cases incongruous, 
especially when we want to interpret the prediction rule. In the classification of biological samples we 
could stumble upon pathways, of which the genes are frequently pairwise correlated.  These genes 
could be classified as groups. In good variable selection methods the trivial genes would be discarded 
whereas a group should be preserved once one gene among them is selected. For the grouped variables 
situation, the lasso is not a good algorithm. To improve these penalization phenomena we have 
implemented the elastic net algorithm. Which performs automatic variables election and continuous 
shrinkage, and it can select groups of correlated variables automatically. 
 
Elastic net: 
 
First we need to introduce the target function we need to minimize: 
 

 

 
We see that log-likelihood function now is penalized by a L2 and a L1 norm. We could see this target 
function as a somewhat intermediate between the lasso and ridge regression, although that is not 
entirely the case as the model is vulnerable to the scaling of the predictors. Figure 2.9 illustrates the 
contour plots of the penalization curves. The round contour plot is generated by ridge regression 
whereas the contour plot with strict corners is generated by the lasso. The last contour plot is generated 
by the elastic net penalization function and we can clearly see that it is a somewhat intermediate 
between the two other contour plots.  
 
Due to the reason that the lasso penalization function is added to the target function we once more 
make use of the reparameterization. 
 

 

 

 

 
We can now also define the gradient: 
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So that the gradient becomes: 

 

 

 
We should now note that the target function is dependent on two different regularization parameters, 
namely  and . Hence, the cross-validation function is also dependent on these two regularization 
parameters. To solve the issue for finding the optimal regularization parameters we first employ a grid 
search such that the data analyst has the general idea where the optimal values are somewhat located. 
For the bladder cancer dataset we have created a grid as illustrated in Figure 2.10(A) and 2.10(B). 
 

 
Figure 2.10: (A) The cross-validation surface dependent on the two regularization parameters (B) The same cross-

validation surface, but now from another angle. 
 

It is clear from both images that the surface is not smooth in the direction of the  parameter, but 
tends to be smooth in the direction of the  parameter. To solve this issue we once again have 
implemented the BRENT algorithm, but now that algorithm is applied in a two-state procedure. First the 
direction of  is optimized by setting  to zero and afterwards the function is optimized in the 
direction of . Although we cannot guarantee that the global optimum is found, we expect that this 
methodology generally gives a good estimate of the optimal regularization parameters in an automatic 
way. If one wants to find the exact estimate, the only option would be to apply the grid search in a finer 
resolution. 
 
Results: 
 
We applied the elastic net to the bladder cancer dataset with the same set of genes used for all the 
other algorithms. We first applied the grid search on this dataset and the results are illustrated in Figure 
2.10. One can clearly see that the optimum is somewhat around  and . It seems that 
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for this particular dataset it is best to not use the ridge regression penalization in terms of the estimated 
test error.  Hence, in this case we will get the same results as with the lasso.  
 

1 2 3 Type 

0.373356 0.220487 0.406157 1 

0.752456 0.062806 0.184738 1 

0.655487 0.038351 0.306162 1 

0.710162 0.069747 0.22009 1 

0.689049 0.157069 0.153882 1 

0.823122 0.036727 0.140151 1 

0.821358 0.078928 0.099714 1 

0.807941 0.15022 0.041839 1 

0.781624 0.08937 0.129006 1 

0.541128 0.116254 0.342619 1 

0.792307 0.103733 0.10396 1 

0.189501 0.757636 0.052862 2 

0.337993 0.555242 0.106765 2 

0.288671 0.601237 0.110092 2 

0.003649 0.985853 0.010498 2 

0.077597 0.89671 0.025693 2 

0.048145 0.896675 0.05518 2 

0.04502 0.947885 0.007095 2 

0.188947 0.770344 0.04071 2 

0.088549 0.703892 0.207559 2 

0.221005 0.016985 0.76201 3 

0.138496 0.014215 0.847289 3 

0.227286 0.013778 0.758936 3 

0.136596 0.027618 0.835786 3 

0.438225 0.194671 0.367103 3 

0.350974 0.036839 0.612187 3 

0.008515 0.039923 0.951562 3 

0.037552 0.012405 0.950043 3 

0.010974 0.00701 0.982016 3 

0.099581 0.01848 0.881939 3 

0.036124 0.008699 0.955177 3 

0.058265 0.108023 0.833712 3 

0.013029 0.021878 0.965093 3 

0.019446 0.002765 0.977789 3 

0.014683 0.003296 0.982021 3 
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0.013289 0.061389 0.925322 3 

0.079471 0.056182 0.864347 3 

0.0281 0.109958 0.861942 3 

0.048964 0.005191 0.945844 3 

 
Due to the reasons that this is not so spectacular we also used the other classification problem where 
we are separating the tumors based on malignancy. This cross-validation surface is shown in Figure 2.11, 
and it clearly shows that in the case the lasso regularization parameter  is best to set to zero. In this 
case we get the best results by using only ridge regression and hence we get the same results as in the 
previous chapters. In this dataset we clearly see that a combination of the two penalization functions is 
not preferred. We need to search for a dataset were this is not the case. 
 

 
Figure 2.11: Cross-validation surface bases on the classification of the tumor grade of malignancy. 
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Group lasso 
 
Introduction: 
 
A problem occurring with the regular lasso algorithm is that it tends to retain or discard predictors, 
irrespective of all the other regression vectors for the other classes.  In the Table below we see an 
excerpt of the prediction rules generated for a 4-class classification problem. As is obvious the Lasso 
penalization performs a selection on the individual covariates when dealing with a multi-class problem. 
It is quite unnatural to select regression coefficients instead of entire predictors. In the case of Lasso a 
predictor is automatically selected if one of its regression coefficients is selected. Inherently this leads to 
prediction rules with many zeros, but also the selection of more predictors than desired and maybe 
necessary. 
 

  Other T(15;17) T(8;21) INV(16) Gene Symbol 
1553588_at 9.55E-05 0 0 -0.0003 ND3  
200026_at 9.91E-05 0 0 0 RPL34 
200665_s_at 0 0 0 0.000659 SPARC 
201324_at -0.00024 0 0 0 EMP1 
201360_at -0.00014 0 0 0.000246 CST3 
201432_at 0.00173 0 0 -0.00039 CAT 
201502_s_at 0.000318 0 0 0 NFKBIA 
201721_s_at 0 0 -0.00053 0 LAPTM5 
202746_at 0 0 0 0.000388 ITM2A 
202859_x_at 0 0 0.000122 0 IL8 
202902_s_at 0 0 0 0.000201 CTSS 
202917_s_at 0 0 0 0.00021 S100A8 
203535_at 0 0 0 0.000762 S100A9 

Table 1. Regression coefficients of a 4-class classification problem: Lasso has a tendency to set 
many regression coefficients to zero. 

 
We wish to retain or discard an entire predictor. To accomplish this we are going to make use of the 
Group Lasso penalization in multinomial logistic regression. This algorithm is an extension of the regular 
Lasso and was developed by Yuan and Lin (2006) and Meier and Buhlmann (2008). The advantage of this 
penalization is that we can define grouping structures on which we can perform variable selection 
instead of single predictors. This could be for instance prior knowledge of pathways, or similarity in 
enzymatic function of the genes (based on Gene Ontology or KEGG annotation). In our case we wish to 
group the regression coefficients of one specific gene and perform the Group Lasso. In this case a 
particular gene is retained or discarded in all classes as their regression coefficient is put non-zero or 
zero simultaneously for all classes. The Group Lasso can be seen as an intermediate between Ridge and 
Lasso penalization. As illustrated in Figure 2.12, a group of regression coefficients is shrunk 
simultaneously to zero, when the regularization parameter is increased, similar to Ridge penalization. It 
also shows that as when the regression coefficients of a group are set to zero, it will remain zero. 
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Figure 2.12: Behavior of regression coefficients in a group (Meier L. et al) 

 
Group Lasso: 
 
We should define the beta matrix, of which the columns consist of regression coefficient vectors for 
each class: 
 

 

 
This beta matrix gives the opportunity to define many group structures, and was the underlying 
mechanism for the development of the Group Lasso. In this study, we would like to retain or discard 
each predictor; i.e. each row of this matrix, by setting all regression coefficients simultaneously unequal 
or equal to zero. This is accomplished by defining each row vector of regression coefficients as a group. 
Let us assume that we have a -dimensional feature vector , which consists out of  groups.  Let 

us denote by  the degrees of freedom of group , rewrite  and denote the 

group of variable , . The regression coefficient vector is parameterized as 

, . Given these groups we rewrite the logistic curve function as: 
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It is clear that under this new definition the logistic curve function has changed somewhat. Next point is 
to proof that this definition leads to the same logistic curve function under our defined group structure. 

Let us first denote the linear predictor . To obtain the linear predictors for all 

observation over all classes we denote: 
 

 

 
Where   is the i-th column of the design  matrix. Hereby we show that the linear predictor for 
the group lasso under the proposed group structure is similar to the linear predictor for the multinomial 
logistic regression model. Hence, we proof: 
 

 

 
 
The Group Lasso estimator  is given by the maximizer of the function: 
 

 

 

Hence, the penalty function sums the norm of each row vector of the beta matrix . Note that Meier L. 
(2008) as well as Yuan M. (2006) integrate the square root of the degrees of freedom of each group in 
the summation. Given the current group structure, each group has the same degrees of freedom, thus 
the additional term is omitted. To optimize the penalized log-likelihood function, the low-memory BFGS 
algorithm Liu (1989) is used. The gradient of the penalized log-likelihood function is given by: 
 

 

 
where the gradient of the penalty function is defined as: 
 

 

 
Optimizing the penalized log-likelihood function leads to major problems, as the function is only strictly 
convex and continuous in all subspaces of the regression coefficients. The derivative of the penalized 
log-likelihood function remains undefined when one of the regression coefficients equals zero. This is 
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issue is resolved by reparameterizing the model to a higher dimension where the function is strictly 
convex and continuous.  The following reparameterization is proposed: 
 

 

 

 

 

 

 
The reparameterization is realized by decomposing the individual regression coefficients into a positive 
part function (PPF) and a negative part function (NPF). These functions are constrained by the fact that 
each must be non-negative. For this reason we make use of the box constraints that can be set for the L-
BFGS-B algorithm. Note that at the convergence either the PPF, NPF or both should be equal to zero. 
This reparameterization results in a model with twice as many parameters, which are restricted to a 
subspace of non-negative regression coefficients. As stated, in this single subspace the penalized log-
likelihood function is strictly convex, continuous, and is differentiable in each internal point. Hence, 
instead of dealing with distinct continuous subspaces where the function is non-differentiable at their 
borders, i.e. when one of the regression coefficients is set to zero, we now have one subspace where the 
function is differentiable in its internal space. The log-likelihood gradient remains unchanged under the 
reparameterization, but the penalty function gradients are given by: 
 

 

 

 
A problem occurs when all the regression coefficients of a group become zero, as the penalty function is 
no longer differentiable. To solve this problem the following limit is taken for the sake of continuity: 
 

 

 

Next to the reparameterization, the optimization of the penalized log-likelihood is also affected by a 
parameter identifiability problem. The penalty function  consists of the norms of the row vectors 

of the beta matrix . These norms are characterized by the squared regression coefficients , 

belonging to their respective groups. Under the reparameterization this squared regression coefficient is 
given by: 
 

 

 

In this equation, multiple instances of  or  could give the exact same . This problem can be 

resolved by imposing a constraint on this equation. At convergence either the PPF, NPF or both should 

be equal to zero. This implies that the middle term of the factorization of  should be forced to be 

zero. This leads to the redefinition of equation above: 
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As we are trying to redefine the penalty function it is more appropriate to rewrite the penalized log-
likelihood function: 
 

 

 
It is easily shown through the triangle-inequality that: 
 

 

 
Hence, the redefinition of the penalty function  is always larger or equal than its original 
definition. Given the inequality and the fact that either the PPF, NPF or both are zero at convergence, 
the redefined penalty function becomes equal to the original definition. By this redefinition we have 
solved the parameter identifiability problem and proven to be exactly the same as the original definition 
at convergence, we obtain the exact same prediction rules without convergence problems. 
 The table below illustrates an excerpt of the results from the same 4-class classification problem 
based on the modified Group Lasso. In comparison with Table 1 it immediately becomes clear that: (i) 
the number of predictors is decreased (ii) no regression coefficient of the retained predictors is set to 
zero, and (iii) the new group structure facilitates comparison of the regression coefficients between 
classes. 

 
 

  Other T(15;17) T(8;21) INV(16) Gene Symbol 

1553588_at 0.00018085 -8.59E-05 5.97E-05 -0.0001546 ND3  

200665_s_at -0.00014592 -1.73E-05 -7.23E-05 0.000235584 SPARC 

201324_at -0.00017254 1.18E-05 2.64E-05 0.000134331 EMP1 

201360_at -0.00020149 9.67E-06 -6.17E-05 0.000253532 CST3 

201432_at 0.000946723 -0.00025838 -3.35E-05 -0.0006548 CAT 

201502_s_at 0.000131047 -0.00012284 6.43E-05 -7.25E-05 NFKBIA 

201721_s_at 0.000325746 1.74E-05 -0.00034902 5.93E-06 LAPTM5 

202746_at -0.00012466 1.67E-05 -0.00011551 0.000223436 ITM2A 

202902_s_at -7.06E-06 -1.00E-05 -5.58E-06 2.27E-05 CTSS 

202917_s_at -6.06E-05 -0.0001884 -8.16E-05 0.000330612 S100A8 

203535_at -0.00018007 -6.25E-05 -9.28E-05 0.000335433 S100A9 
Table 2. Regression coefficients of a 4-class classification problem with the modified Group Lasso: The 
Group Lasso procedure produces sparser prediction rules. Furthermore it facilitates the comparison of 
regression coefficients between classes.  
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Results: 
 
For most of the test results we would like to refer to the paper “Sparse multi-class prediction based on 
the Group Lasso in multinomial logistic regression” and its supplementary which can be found in the 
Chapter Paper on page 28. In this section we will discuss some results that are obtained, but not given in 
the paper. 
 
Global test: 
 
We have applied the global test for multinomial logistic regression (Goeman J.J., 2004) to investigate 
whether the fit of the model can discriminate the classes based on the given predictors, i.e. genes. This 
test can determine whether the global expression pattern of all genes is significantly related to the 
outcomes, i.e. class labels. For classification case 1, which consist out of classes with a favorable risk 
except for the ‘Other’ class it immediately clear that the multinomial logistic regression model can 
accurately discriminate the given classes as illustrated in Table 3. 
 

Cohort 1         

p-value   Statistic Expected  Std.dev  #Cov 

6.91E-17 2.58 0.386 0.0975 54675 
Table 3 Global test results: The results gives positive evidence that the classes can be 
accurately discriminated 
 

We have also applied the global test on the second classification case where we are trying to 
discriminate classes based on the NPM1 and FLT3ITD mutation. We have applied the global test 
procedure on both cohorts to give positive evidence that the quality is similar. This is illustrated in Table 
4. It is obvious on the bases of the p-values that the gene expression data contains information to 
discriminate the given classes, although less than in classification case 1. 
 

Cohort 1         

   p-value   Statistic Expected  Std.dev  #Cov 

3.64E-08 1.43 0.392 0.0869 54675 

Cohort 2         

  p-value    Statistic Expected  Std.dev  #Cov 

8.05E-08 1.36 0.385 0.0863 54675 
Table 4 Global test results: The results gives positive evidence that the classes can be 
accurately separated and that the two cohorts are of similar quality. 

  



 
99 

Survival analysis: 
 
In classification case 1 it became apparent that the CEBPAdouble-mut samples have a distinct and 
discriminative gene expression profile compared to the CEBPAsingle-mut and. CEBPAwt samples. In this case 
all CEBPAsingle-mut are misclassified due to a weak gene expression pattern. To show that these groups are 
significantly different we have create Kaplan-Meier curves and used the pooled log-rank test to see if 
their respective distributions are significantly different. We used the statistical software package SPSS to 
accomplish this. Figure 2.13 illustrates the Kaplan-Meier curves and it can be seen clearly that the 
CEBPAdouble-mut samples have a higher survival probability after 5 years. The overall survival, Figure 2.13A, 
clearly shows a difference between the single- and the double-mutated samples. This is difference is 
significant as seen in Figure 2.14 (p=0.011). For the event-free survival (EFS) the double- and single-
mutated samples also differ significantly as shown in Figures 2.13B and 2.15. 
 

 
Figure 2.13. Overall survival and event-free survival. 
C. Overall survival among CEBPA

double-mut
 vs. CEBPA

single-mut
 vs. CEBPA

wt
, Log rank test, pooled: p=0.011 

D. Event-free survival among CEBPA
double-mut

 vs. CEBPA
single-mut

 vs. CEBPA
wt

, Log rank test, pooled: p=0.008 
 

 
Figure 2.14. Pooled log rank test for the OS. 

 

 
Figure 2.15. Pooled log rank test for the EFS. 
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MAPK pathway: 
 
For classification case 2 the retained predictors show an affinity for ribosomal, heatshock, 
immunoglobulin and HOX proteins. The HOX proteins have a heavy impact on the classification of the 
classes harboring samples with the NPM1 mutations. Many genes in the expression signature are 
related to processes of cellular stress, inflammation response and DNA repair mechanisms. For the large 
number of ribosomal genes we could give the following explanations: (i) it could be the case that DNA 
repair or cell homeostasis mechanisms are activated in the response to the abnormalities arising from 
cancer formation (ii) NPM1 is a known chaperon protein for ribosomal proteins in the nucleolus. The 
mutation dislocates NPM1 and could indicate that it is also a complement for the construction of the 
ribosomal proteins, although this is highly speculative. The inflammatory and immunoglobulin response 
could be induced through well-known MAPK-pathway. A substantial number of retained genes could be 
mapped back to the MAPK pathway (Figure 2.16, Ingenuity), which can initiate inflammatory and (anti)-
apoptotic mechanisms. If these mutations truly initiate these mechanism is only speculative and should 
be distinguished on the basis of further and more elaborate research. 
 

 

Figure 2.16 MAPK pathway: The constituents of the MAPK pathways are 
depicted in this figure. The green color indicates that the gene is retained in 
the gene signature. 
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Problem description 
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Background 
 

Linear regression 
 
Regression methods have become an integral component of any data analysis concerned with describing 

the relationship between a response variable and one or more explanatory variables. In any regression 

problem the key quantity is the mean value of the response variable, given the values of the explanatory 

variables. This quantity is expressed as , where  denotes the response variable and  denotes a 

value of the explanatory variable [1-3]. In linear regression we assume that this mean may be expressed 

as an equation linear in . 

 

 

 

This linear regression model is simple and often provides an adequate and interpretable description of 

how the inputs affect the output. We can also extend the model such that we can predict a real valued 

output  based upon the design matrix .  

 

 
 

The criterion of the fit normally used is the residual sum-of-squares (RSS). To minimize this criterion we 

must find the optimal vector  of regression coefficients. 

 

 
 

It is easily shown that the estimates are given by: 

 

 
 

Coefficient shrinkage 
 

There are two reasons why we are often not satisfied with the least squares estimates (4). 

 

 Prediction accuracy: The least squares estimates often have low bias but large variance. 

Prediction accuracy can sometimes be improved by shrinking some coefficients to zero. By doing 

so we sacrifice a little bit of bias to reduce the variance of the predicted values, and hence may 

improve the overall prediction accuracy. 

 Interpretation: With a large number of predictors, we often would like to determine a smaller 

subset that exhibits the strongest effects. In order to get the “big picture”, we are willing to 

sacrifice some of the small detail. 
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Ride regression 
 
Ridge regression shrinks the regression coefficients by imposing a penalty on their size. The ridge 

coefficients minimize a penalized residual sum of squares: 

 

 

 

Equation (5) makes explicit the size constraint on the predictors. When there are many correlated 

variables in a linear regression model, their coefficients can become poorly determined and exhibit high 

variance. A wildly large positive coefficient on one variable can be canceled by a similarly large negative 

coefficient on its correlated cousin. By imposing a size constraint on the coefficients, this phenomenon is 

prevented from occurring. Here the regularization parameter  controls the amount of shrinkage: the 

smaller the value , the greater the amount of shrinkage. This will result in the coefficients being shrunk 

to zero (and each other).  

 

The lasso 
 
The lasso is a shrinkage method like ridge, with subtle but important differences [4]. The lasso is a 

regularized estimation approach for regression models that constrains the -norm of the regression 

coefficients. 

 

 
The use of lasso as a regularization method has two main advantages. First advantage is that it shrinks the 

regression coefficients towards zero and automatically can set many of them exactly zero, depending on 

the magnitude of the regularization parameter . This indicates that we apply variable selection somewhat 

analogous to forward or backward feature selection. This can be very useful for high-dimensional data, 

where the number of predictors is larger than the number of observations. Ultimately the variable 

selection will result in the obtainment of an interpretable prediction rule, and the shrinkage is also 

desirable to improve the prediction and to prevent overfit. 

 

Logistic regression 
 

Logistic regression is a model used for prediction of the probability of occurrence of an event by fitting 

data to a logistic curve. The logistic regression model is a generalized linear model that can be used to 

classify samples. Let us assume that we have dichotomous data, with classes , and the following 

definitions: 

 

Odds: 

 If an event has probability P,  it has odds  

 Odds go from 0 to  
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Assumptions: 

 Response  Bernoulli distributed: P( =1)=P 

 Logistic regression: ln(  

 Linear predictor =  

 

We can show that the model has the form: 

 

 

 

 

Logistic regression models are usually fit by maximum likelihood. The log-likelihood can be written as: 

 

 

 

An advantage is that this log-likelihood function is concave, lending itself optimally to the methods of 

Newton-Raphson. To find the optimal set of coefficients we need to calculate the gradient and the 

Hessian of the log-likelihood function. This can be easy done for dichotomous data, but is more elaborate 

for polytomous data. 

 

Multinomial logistic regression 
 

Logistic regression is most frequently employed to model the relationship between a dichotomous 

outcome variable and a set of covariates, but with a few modifications it may also be used when the 

outcome variable is polytomous [5]. Suppose the outcome variable  takes a value in the unordered set 

. In the multinomial logistic regression model the probability of each outcome depends on the 

covariates  as 

 

 

where  is a linear function of the covariates. In this formulation of the model we have a 

regression coefficient  for each combination of covariate  and outcome category , and a separate 

vector of linear predictors  for each outcome category. The fitting of this model is somewhat more 

complex. Suppose we have samples outcomes , a corresponding  data matrix of 

covariates  and make the simplifying substitution ). 

 For notational convenience we write the ,  and  in the form of long  vectors: 

,  and 

. The linear predictors  are related to the vector of parameters 

 through , where ,where  is the Kronecker 

product and  the  identity matrix. 
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The log-likelihood of the model is: 

  

 

 

which has gradient  and Hessian . Where the  matrix  is 

given by: 

 

 

 

where each  is a diagonal matrix with 

 

 

 

 

Due to the fact that the Hessian matrix is singular we use the Moore-Penrose inverse of the Hessian in the 

Newton-Raphson algorithm. 
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Problem definition 
 

There are many different methods to perform multi-class classification but the use of multinomial logistic 

regression as classifier could have an additional advantage. We could namely integrate coefficient 

shrinkage in the classification, such that we not only improve the prediction accuracy but also perform 

variable selection. This thesis looks into state-of-the-art methods currently developed to integrate 

penalization into the estimation of the regression coefficients. The main objective is to use the method 

upon microarray data originating from different classes. In this thesis the following issues will be 

addressed: 

 

Large Hessian: The optimal regularization parameters in the penalization functions can best be 

empirically determined by methods such as leave-one-out cross validation or the Aikake Information 

Criterion (AIC). This implies that the Newton-Raphson algorithm must be performed for a wide range of 

the regularization parameter until convergence. In the multinomial logistic regression model the Hessian 

can become quite large, resulting in unfeasible computation times. To resolve this issue we should 

investigate Quasi-Newton methods, such as the limited memory Newton-Raphson method (L-BFGS-B). 

The advantage is that it can integrate bounds in the optimization. Generally, these types of methods need 

more optimization steps, but need less computation time per step. 

 

Integration penalization: One open problem of the multinomial logistic regression is that the capability 

of penalization has not yet been integrated into the model. An integration of the penalization could lead to 

more accurate class predictions and has the advantage of variable selection. During this thesis we would 

like to integrate to types of penalization: ride regression, lasso. A fact is that microarray data is very high-

dimensional (currently around 55.000 measurements), and in this case variable selection is desirable to 

obtain an interpretable prediction rule.  

 

Suppose that we have a multi-class classification problem with classes . In this case we have a 

regression coefficient vector for each class,  and can be rewritten for notational 

convenience as a matrix: 

 

 

 

The integration of penalization is in this case more complex due to the fact that the regression coefficients 

for each response variable are now related (row), which is naturally also for each regression coefficient 

vector (column). To avoid this problem we can reparameterize the model and exploit the structure of the 

matrix. This reparameterization describes the same model, but with different parameters. A downside is 

that the penalization is variant for reparameterization and might define a different penalization-structure 

resulting in different solutions. A clever definition of the penalization structure should be invariant to 

parameterizations and is a topic addressed during this thesis. The use of a proper reparameterization could 

also enhance the interpretability of the regression coefficients (e.g. coefficient testing). 

 

Additionally we would like to integrate the idea of the group lasso for logistic regression [6-7]. This 

method groups input variables in so called “factors”.  In microarray experiments a natural grouping might 

for example be; genes that have a similar function or pathways. In this case we are trying to find 

regression coefficient vectors that best explain the output variable vector (11). 
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where  is an  vector, ,  is an  matrix corresponding to the jth factor and  

is a coefficient vector of size . The group lasso methodology does not try to discard individual 

predictors by penalization, but tries to discard entire groups of variables by trying to shrink some  to . 

This methodology has also been extended for logistic regression [7], but has not been integrated for the 

multi-class case. During this thesis we wish to integrate group lasso into the multinomial logistic 

regression model. In this case a pathway or group must be selectively be “switched”  on or off for each 

class! 

 

Constraints on parameters: Next to the constraints posed by the penalization terms on the regression 

coefficients, it is sometimes desirable to put additional constraints on the parameters. Unfortunately, there 

are not so many standard software packages which are able to put these constraints on the coefficients. 

We wish to investigate how to integrate these additional constraints in the penalized multinomial logistic 

regression model. 
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Goal and validation 
 
The goal of this project is to develop an efficient algorithm to perform multi-class classification with the 

penalized multinomial logistic regression. Eventually this method shall also be validated on real data. The 

department of Pathology provided use with two datasets: 

1. Sporadic parathyroid carcinomas: A total of 53 parathyroid tumors and 16 normal specimens 

of parathyroid tissue were obtained from the Leiden University Medical Center, Royal North 

Shore Hospital and Martin Luther University and can be roughly divided into 5 different classes 

based upon genetic aberrations [8]. These samples were profiled on spotted cDNA microarrays. 

2. Colorectal cancer: A total of 79 samples were collected from patients treated from different 

hospitals dispersed over the Netherlands. The samples can be classified as being in subsequent 

tumor stages and are analyzed with spotted cDNA microarrays [9]. 

3. Acute Myeloid Leukemia: A total of 600 Acute Myeloid Leukemia samples were obtained from 

the Erasmus Medical Center in Rotterdam with the HGU133A 2.0 PLUS microarray with around 

55.000 probe sets. These samples have been fully characterized, such as its karyotype and 

mutation status. Particular groups of samples have a genetic mutation leading to a poor prognosis 

were as other have a more favorable prognosis. It remains to this day still a question what the 

underlying pathogenesis is [11-12]. 

 
Figure 1: Kaplan-Meier curves for patients with an FLT3 ITD mutation and/or NPM1 mutation. 

 

If need be, additional datasets can be retrieved from repositories, such as Gene Expression Omnibus [10].  

There are multiple ways to general methods to validate the model, but we should also devise methods to 

infer the goodness-of-fit of the model [5]. This method represents a score test to infer the fit of the 

multinomial logistic regression model. Another point of validation could be to see if the selected 

covariates (e.g. genes) are biomarkers previously found associated, in literature, with the particular types 

of tumor. 
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Planning 
 
To make sure that the project is not delayed or diverges from its original goal we give in this chapter a 

tight planning. This planning contains milestones, sub-goals and project boundaries such that the project 

progresses according plan. 
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