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Abstract

Epidemic models are applied to describe epidemic processes such as the
spreading of infectious viruses, opinions and fake news on real-life or online
social networks, and to analyse the epidemic processes mathmatically. The
viral state evolution is closely related to the underlying network topology.
Therefore, the network topology is of vital importance to describing the viral
state of each individual in a network.

This master thesis focuses on the network reconstruction problem of the
NIMFA approximation of the Susceptible-Infected-Susceptible (SIS) epi-
demic process. Given the viral state series generated by the NIMFA epi-
demic process, we aim to estimate the adjacency matrix A of the underlying
network given that the spreading parameters are known. The discrete-time
NIMFA model, whose accuracy of modeling the SIS process is evaluated in
Chapter 3, is applied in this thesis to describe the spreading process in the
network, for it has the advantage of a lower computational complexity than
the SIS model. The scope of the networks ranges from random network
models to real networks (e.g., a subpart of the facebook network).

In this thesis, we estimate the adjacency matrix of the network from the viral
states by a constrained linear least-squares formulation. Our algorithm gives
an accurate estimate of the adjacency matrix provided that sufficiently many
epidemic outbreaks are observed. By numerical evaluations of the network
reconstruction method for random and real-world networks, we analyze the
relationship among the accuracy, the number of outbreaks and the size of
the network.

Keywords: SIS, NIMFA, network reconstruction, epidemic pro-
cesses on networks
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Chapter 1

Introduction

1.1 Background

The study of epidemics on networks involves a myriad of phenomena, such
as the spreading of infectious disease, opinions and fake news on real-life or
online social networks. It is of vital importance to understand what is going
on in the epidemic process, so that effective measures can be taken to prevent
disasters such as the death due to serious infectious diseases and the paralysis
of the communication network casued by computer viruses. However, it
is impractical to understand the epidemic processes by tracing the exact
dynamics of the epidemic process in large complex networks. Epidemic
models are applied to understand the viral dynamics, and, thus, further
enable people to control the outbreak of the epidemic.

Before the concept of network science is raised, traditional epidemic models
hardly considered the underlying network such as the Yule process and the
linear birth and death process [1]. These traditional epidemic models cannot
describe complex epidemic processes accuratly. Nowadays, compartmental
models are the most commonly used epidemic models to describe complex
epidemic processes. They divide the population into compartments base on
the state of each individual. Individuals in the same compartment has the
same viral state [4]. Two of the most fundamental examples of compart-
ment models are the Susceptible-Infected-Susceptible (SIS) model and the
Susceptible-Infected-Removed (SIR) model.

The topological structure of the network is crucial for the research on epi-
demic processes. The knowledge of the underlying topology enables the
analysis of the epidemic processes based on the epidemic models and the
design of control strategies. Hence, one important question of studying the
epidemic process is to know the topology of the network, which underlies the
epidemic process. The network reconstruction problem is the task of estim-
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ating the network by observing the viral state series of an epidemic process.
Network reconstruction is applied in many areas, such as deducing gene reg-
ulatory networks from expression data in biological networks [5]. This work
solves the network reconstruction problem that given the viral state series
generated by discrete-time NIMFA epidemic model, the adjacency matrix A
needs to be estimated.

1.2 Thesis Layout

This thesis consists of five chapters:

Chapter 2 provides background knowledge of graph theory, including ba-
sic metrics and parameters applied to analyze network topologies, as well
as typical network models. Chapter 3 introduces the Susceptible-Infected-
Susceptible (SIS) model in continuous-time and sampled-time, and the N -
Intertwined Mean Field Approximation (NIMFA) in continuous- and discrete-
time. Chapter 4 introduces a reconstruction algorithm to estimate the ad-
jacency matrix based on the discrete-time NIMFA model. The network
reconstruction results are presented, as well as the numerical evauluation of
the reconstruction accuracy. Finally, in Chapter 5, conclusions as well as an
outlook to future work is given.
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Chapter 2

Network Science

Networks such as telecommunication networks, computer networks, biolo-
gical networks, social networks, economic and financial networks are com-
monly used in people’s daily life. In general, a network represents a group of
objects and their interconnections. Network science is dedicated to studying
the general properties of such complex networks, such as the degree distribu-
tion and the shortest path for a better understanding of the network. This
chapter introduces the fundamentals of graph theory, which is the root of
network science. Network metrics and some commonly used network models
are introduced.

2.1 Graph Theory

Graph theory is used to analyze the performance of the network. The idea
of graph theory was first proposed by Leonhard Euler in 1736 [6] to solve
the Seven Bridges of Königsberg problem. This problem asks whether it
is possible to find a route which goes through each of the seven bridges of
Königsberg only once. The modeling of the land and the bridges by means
of nodes and links respectively was the foundation of graph theory. Based
on Euler’s idea, Johann Benedict Listing first introduced the ”topology” to
describe the structure of the network [6].

In graph theory, a graph G(N ,L) consists of a set N of N nodes connected
by a set L of L links. When a graph does not contain a self-loop or an
overlapped link, it is referred to as the simple network. For instance, a
particular graph is given by the complete graph: in a complete graph KN

with N nodes, any two nodes is connetced with each other. Figure 2.1
illustrates a complete graph K8 with N = 8 nodes. The complete graph KN

has a total number of L = N(N−1)
2 links, which is the maximum number of

links in the simple graph with N nodes.
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Fig. 2.1. The complete graph K8 [1]

In this work, we confine ourselves to unweighted and undirected networks
without self-loops. The topology of a graph with N nodes and L links
is described by the N × N adjacency matrix A. For an unweighted and
undirected network, the elements aij of the adjacency matrix A are binary
numbers, which describe the presence or the absence of the link between two
nodes:

aij =

{
1, if there is a link between node i and node j
0, otherwise

(2.1)

where i = 1, ..., N and j = 1, ..., N . Since the graph is undirected, it holds
that aij = aji. The diagonal entries aii are 0 since there are no self-loops.
Therefore, the adjacency matrix A is symmetric.

The degree di of node i is defined as the number of neighbors of node i:

di =
N∑
j=1

aij (2.2)

The degree of a node indicates the associated strength of this node with the
other nodes in the network. For instance, on instagram or twitter, a high
degree node means that the user has many connections to the other users.

The largest eigenvalue of the adjacency matrix A is denoted by λ1 and its
corresponding eigenvector is denoted by x1, and it holds:

Ax1 = λ1x1 (2.3)

2.2 Network Models

Instead of analyzing a specific network by a graph, network models are
applied to analyze a group of networks with similar characteristics. This
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section introduces three important and well-studied network models: the
Erdős-Renyi (ER) network, the small-world network and the scale-free net-
work. Typical outcomes of these three types of networks are illustrated in
Figure 2.2.

Fig. 2.2. Typical outcomes of the Erdős-Renyi, the small-world, and the
scale-free random graph models [2]

.

Erdős-Renyi network

The Erdős-Renyi (ER) model was introduced by Paul Erdős and Alfred
Renyi in 1959 [7]. In the ER model, a graph with N nodes is denoted
as Gp(N). Nodes are connected independently with the link probability
p ∈ [0, 1]. If the link probability equals p = 0, then there is no link in the
network. As the link probability p increases from 0 to 1, it is more likely to
have a link between two nodes. The ER model generates a complete graph
when the probability p equals to 1.

Small-world network

The small-world property found by Watts and Strogatz in 1998 [8] states that
on average, arbitrary two nodes in the small-world network are connected
by short paths. This property can be interpreted that any two people in
the world can get to know each other through an average of 6 intermediate
friends in the social network [9]. As it is illustrated in [9], a small-world
network is generated from the regular graph, where each node in the graph
has the same degree, by randomly rewiring the links with a probability
p ∈ [0, 1]. When p = 1, the network tends to behave similarly to the Erdős-
Renyi network.

Scale-free network

The scale-free property found by Barabási and Albert in 1999 [10]. Many
real-world networks such as the social network show a scale-free property
that has a power law degree distribution:

p(k) ∼ k−γ (2 < γ < 3), (2.4)

5



where p(k) is the fraction of nodes having degree k in the network and γ is
a exponential parameter whose value satisfies 2 < γ < 3 in most real-world
networks [11]. The Barabási-Albert (BA) model generates the scale-free
networks following the rule of preferential attachment [12], which stating
that new nodes are added to the network iteratively by connecting to the
initially existing nodes, where the node with larger degree has a higher
probability of being connected.

6



Chapter 3

Epidemic Models

Epidemic models describe the dynamical evolution of the contagion process
within a group of individuals. Most epidemic models are compartmental
models, which assume that every individual of the population can be as-
signed to different classes depending on the stage of the disease [13].

Two fundamental compartmental models are the Susceptible-Infected-Susce-
ptible (SIS) model and the Susceptible-Infected-Removed (SIR) model. In
both models, a susceptible node can be infected by its infected neighbors.
In the SIS model, an infected node can be cured and become a susceptible
node, which can be infected by its neighbors again. On the other hand, in
the SIR model, a cured node has immunity (and is hence removed) and will
not be infected again. In this work, the SIS model is considered.

For the task of the network reconstruction, it is most convenient to de-
scribe the SIS process in discrete-time. However, it is proved in [14] that
the maximu-likelihood network reconstruction from the complete sampled-
time SIS nodal state infection information is NP-hard. Thus, we consider
the discrete-time N -Intertwined Mean-Field Approximation (NIMFA) of the
SIS process, which has the advantage of reducing the computational com-
plexity by calculating just N linear equations instead of calculating 2N linear
equations in the SIS process with N nodes.

This chapter introduces the Susceptible-Infected-Susceptible (SIS) epidemic
model. Section 3.1 and Section 3.2 introduce the system model of the
continuous-time SIS process, the sampled-time SIS process and the NIMFA
model respectively. Section 3.3 gives a numerical evaluation on the accur-
acy of the two approximate models, the sampled-time SIS model and the
discrete-time NIMFA model, with respect to the original continuous-time
SIS process.
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3.1 SIS Epidemic Model

Arguably one of the most fundamental epidemic models is the Susceptible-
Infected-Susceptible (SIS) model [13], whereby each node is either in a sus-
ceptible or an infected state. It can be described in continuous-time and
in discrete-time, which we will introduce in Section 3.1.1 and Section 3.1.2,
respectively.

3.1.1 Continuous-time SIS Process

The viral state of a node i at continuous time t is denoted by a Bernoulli
random variable xi(t) ∈ {0, 1}. The values xi(t) = 0 and xi(t) = 1 represent
that node i is in the susceptible state and in the infected state at time
t ≥ 0, respectively. The SIS process assumes that the curing process of each
node i and the infection process of each link are both Poisson process with
the recovery rate δ and the infection rate β [1]. As shown in Figure 3.1,
a susceptible node i can be infected by its neighbors with a total infection
rate

∑N
j=1 aijxjβ, and an infected node i can be cured with a recovery rate

δ.

Fig. 3.1. The state transition of an SIS epidemic process

The effective infection rate is defined as τ = β
δ , which is crucial to the

epidemic behavior, and a phase transition of the epidemic process occurs.
”The epidemic threshold τc is defined as the border between an exponential
die-out phase and a non-zero fraction of infected nodes in the metastable
state” [1]. For any finite sized network and for no self-infections (ε = 0), the
lower bound of the SIS epidemic threshold τc is given by [15]

τc ≥ τ (1)c =
1

λ1
, (3.1)

where λ1 is the largest eigenvalue of the adjacency matrix A. If the effective

infection rate satisfies τ ≥ τ
(1)
c , then the virus will spread over the network

8



and prevail for a very long time and an epidemic outbreak can be observed.

On the contrary, if τ < τ
(1)
c , then the number of infected nodes decreases

exponentially fast [13, 16]. The prevalence in the SIS epidemic process after
an infinitely long time tends to zero, where the absorbing state xi(t) = 0 for
all nodes i is reached [17].

Figure 3.2 shows the expected fraction of the infected nodes in an examplary
SIS process with a high effective infection rate τ . It starts with a small
number fraction of nodes being infected. The number of infected nodes
increases exponentially fast during the outbreak phase. Then it reaches to
the meta-stable state and keep for a long time. Then after an exponentially
long time with respect to N , the epidemic dies out, where the absorbing
state is reached.

Time

F
ra

ct
io

n
of

th
e

In
fe

ct
ed

n
o
d

es

Meta-stable stateOutbreak phase

Absorbing
state

Fig. 3.2. The expected fraction of the infected nodes in the SIS process.

3.1.2 Sampled-time SIS Process

”The transition probability of the continuous-time Markovian SIS process
from state i at time τ to state j at time t+ τ is denoted by Pij(t), which is
independent of τ since the SIS process is stationary” [18]. The sampled-time
SIS process is a sampled-time Markov chain with sampling time T , which
is a discrete-time Markov chain [1]. ”The transition probabilities Pij from
state i to state j of the sampled-time Markov chain are given by the first-
order Taylor-expansion Pij = P ′ij(0)T” [18]. Hence, in the sampled-time
SIS process, the infection probability per link is βT = βT and the curing
probability is δT = δT .

There are three transitions in the sampled-time SIS process [18], which are
listed below:

1. A node i changes from the infected state at time k to the susceptible

9



state at time k + 1, which occurs with probability:

Pr [xi[k + 1] = 0|xi[k] = 1] = δT (3.2)

2. A node i changes from the susceptible state at time k to the infected
state at time k + 1, which occurs with probability:

Pr [xi[k + 1] = 1|xi[k] = 0] = β
N∑
j=1

aijxj [k]T (3.3)

where N is the number of nodes in the network.

3. No node changes its state from time k to time k+1, which occurs with
probability:

Pr [x[k + 1] = x[k]] = 1− δTuTx[k]−
N∑
j=1

βTxj [k]
N∑
i=1

(1− xi[k]) aij .

(3.4)

3.2 The N-Intertwined Mean-Field Approximation
(NIMFA)

The exact SIS process is given by a continuous-time Markov chain with a
state space with 2N elements for a network with N nodes. The state trans-
ition probabilities in the continuous-time Markov chain are described by a
set of linear equations. Since the number of possible states of the system
grows exponentially with the number of nodes N , this exact description of
the SIS process is not practical. Therefore, several methods have been de-
veloped to approximate the SIS model in order to reduce the computational
complexity to make an analysis feasible. The N -Intertwined Mean-Field
Approximation (NIMFA) [15] and the Heterogeneous Mean-Field method
(HMF) [19] are two widely-used approximation methods.

Pastor-Satorras and Vespignani [19] introduced the Heterogeneous Mean-
Field method, in which the SIS process is approximated based on the degree
distribution of the underlying graph. It assumes that the infection probab-
ilities of nodes with the same degree are the same [20]. The HMF approx-
imation considers the probability that a node with degree k is infected at
time t during the epidemic process. ”However, the state of each node is not
taken into account” [21].

The N -intertwined epidemic approximation is derived by observing the viral
state of each node with the only assumption that the state of neighboring
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nodes is stochastically independent [21]. It replaces the binary viral state
xi(t) in the SIS process by its expectation vi(t) = E[xi(t)]. It was shown in
[21] that NIMFA is currently the most accurate approximation of the SIS
model in any network.

The NIMFA approximation is derived as follows, which is shown in Figure
3.3. The governing equation of the SIS process for node i is

dxi(t)

dt
= −δxi(t) + (1− xi(t))β

N∑
j=1

ajixj(t), (3.5)

for nodes i = 1, ..., N . By taking the expected value of equation (3.5), we
obtain

dE[xi(t)]

dt
= −δE[xi(t)] + β

N∑
j=1

ajiE[xi(t)]− β
N∑
j=1

ajiE[xi(t)xj(t)] (3.6)

In NIMFA, by assuming independence, which implies

E[xi(t)xj(t)] = E[xi(t)]E[xj(t)] (3.7)

and by denoting vi(t) = E[xi(t)] = Pr[xi(t) = 1], equation (3.6) becomes

dvi(t)

dt
= −δvi(t) + β (1− vi(t))

N∑
j=1

aijvj(t), i = 1, 2, ..., N (3.8)

The discrete-time NIMFA model is derived from the continuous-time NIMFA
(3.8). Applying Euler’s method [22] gives:

dv(t)

dt
' v(t+ T )− v(t)

T
, for T ' 0 (3.9)

Inserting equation (3.9) in equation (3.8), yields the discrete-time NIMFA
model [23]:

vi[k + 1] = −δTvi[k] + vi[k] + (1− vi[k])βT

n∑
j=1

aijvj [k], (3.10)

where k ∈ N denotes the discrete-time step, and T is the sampling time.
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Original SIS Process

Continuous-Time NIMFA: Equation (3.8)

Discrete-Time NIMFA: Equation (3.10)

Mean Field

Euler’s Method

Fig. 3.3. The flow chart of the derivation of the discrete-time NIMFA

If the sampling time T satisfies T ≤ 1
δ and T ≤ 1

β(N−1) , then the viral state

vi[k] of the discrete-time NIMFA (3.10) stays in [0, 1] for every time k ≥ 0
as shown by [23].

3.3 Numerical Evaluation of the SIS Epidemic Mod-
els

The sampled-time SIS model and the NIMFA model are both approxima-
tions of the continuous-time SIS model. In the following, we discuss how
these approximate models fit to the continuous-time SIS model by means of
simulation.

We generateM = 50 random Erdős-Renyi networks withN = 100 nodes and
with link probability p = 0.5, where disconnected networks are discarded.
According to [14], the sampling time T for the sampled-time SIS process
needs to satisfy

T ≤ 4

N2β + 4Nδ
(3.11)

to ensure that the expression of the transition probabilities are in the interval
[0, 1]. In the simulations, we choose the value of the sampling time T such
that the bound (3.11) is satisfied with equality. We choose all nodes in the
network to be infected initially xi[0] = 1, for all nodes i, and set the recovery
rate to δ = 1. The results for the sampled-time SIS shown below are the
average of P = 1000 realizations of the SIS process.

The average over M = 50 networks and P = 1000 realizations for the
continuous-time SIS model at time k is given by:

x̄exact(kT ) =
1

MP

M∑
i=1

P∑
j=1

x(ij)(kT ), (3.12)
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where x(ij)(kT ) denotes the viral state of the continuous-time SIS process
for a single realization j for the i-th network at time k.

The average over M = 50 networks and P = 1000 realizations for the
sampled-time SIS model at time k is:

x̄sampled[k] =
1

MP

M∑
i=1

P∑
j=1

x
(ij)
sampled[k] (3.13)

where x
(ij)
sampled[k] denotes the viral state of the sampled-time SIS process for

a single realization j for the i-th network at time k.

For the discrete-time NIMFA model, v̄[k] is the average over M = 50 net-
works at time k:

v̄[k] =
1

M

M∑
i=1

v(i)[k], (3.14)

where v(i)[k] denotes the viral state of the discrete-time NIMFA model for
the i-th network at time k.

We compare the error of the approximated models to the original continuous-
time SIS model with respect to the mean squared error (MSE) ε, which is
given by:

ε1 =
1

K

K∑
k=1

(x̄(kT )− x̄sampled[k])2 (3.15)

and

ε2 =
1

K

K∑
k=1

(x̄(kT )− v̄[k])2 (3.16)

for the sampled-time SIS model and the discrete-time NIMFA model re-
spectively, where K is the total number of observations.

The impact of the effective infection rate τ and the sampling time T on the fit
of the approximate models to the continuous-time SIS model is investigated
in the following.

Effective Infection Rate τ

The epidemic process can be represented by the prevalence:

P [k] =
1

N

N∑
i=1

xi[k] (3.17)
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Figure 3.4 and Figure 3.5 show the prvalence of the three epidemic models

above the epidemic threshold (τ = 5τ
(1)
c ) and below the epidemic threshold

(τ = 0.9τ
(1)
c ). Each of the curves for the sampled-time SIS model and

the discrete-time NIMFA model has an error e to the continuous-time SIS
curve. We define these errors as e[k] = 1

N

∑N
i=1 xi(kT )− 1

N

∑N
i=1 vi[k], and

we obtain Figure 3.6 and Figure 3.7 for τ = 5τ
(1)
c and τ = 0.9τ

(1)
c .
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Fig. 3.4. The prevalence P [k] for the sampled-time SIS model, the discrete-

time NIMFA and the continuous-time SIS for τ = 5τ
(1)
c .
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Fig. 3.5. The prevalence P [k] for the sampled-time SIS model, the discrete-

time NIMFA and the continuous-time SIS for τ = 0.9τ
(1)
c .

14



0 500 1,000 1,500 2,000 2,500 3,000 3,500
−2

−1

0

1
·10−3

Time k

E
rr

o
r
e[
k
]

sampled-time SIS
discrete-time NIMFA

Fig. 3.6. Error e[k] of the prevalence of the sampled-time SIS model and
the discrete-time NIMFA compared to the continuous-time SIS model for
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Fig. 3.7. Error e[k] of the prevalence of the sampled-time SIS model and
the discrete-time NIMFA compared to the continuous-time SIS model for

τ = 0.9τ
(1)
c .

The MSEs ε of the two approximated models, the sampled-time SIS model
and the discrete-time NIMFA model, are ε1 = 8.56× 10−11 and ε2 = 1.30×
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10−10, respectively, for τ = 5τ
(1)
c . This result shows that the sampled-

time SIS model outperforms the discrete-time NIMFA model with respect to

approximating the continuous-time SIS process. For the case of τ = 0.9τ
(1)
c ,

the MSE is ε1 = 5.07 × 10−11 and ε2 = 4.70 × 10−8, respectively. Also
for this situation, the sampled-time SIS model outperforms the discrete-
time NIMFA model with respect to approximating the continuous-time SIS

process. Comparing the two situations for τ = 5τ
(1)
c and τ = 0.9τ

(1)
c , the

former one has a smaller error for the NIMFA model.

To discover the relationship between the MSE ε and the effective infection

rate τ , we change the value of τ in the interval [0.9τ
(1)
c , 5τ

(1)
c ]. In this

situation, the sampling time is set to T = 4
N2βmax+4Nδ

, where βmax = 5τ
(1)
c .

Figure 3.8 shows that the MSE ε of the sampled-time SIS model does not
have an obvious change with the effective infection rate τ . For the MSE
ε of the discrete-time NIMFA model, when the effective infection rate τ is

around the epidemic threshold τ
(1)
c , it has the worst fitness to the continuous-

time SIS process. Otherwise, when τ is greater than τ
(1)
c , the MSE ε of

the discrete-time NIMFA model shows a downwards trend as τ increases.
To visualize the influence of the effective infection rate τ on the fit of the
sampled-time SIS process, we plot the samped-time SIS curve separately in
Figure 3.9. There seems to be no obvious relationship on the sampled-time
SIS curve with the change of the effective infection rate τ .
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Fig. 3.8. Fitness ε of the sampled-time SIS model and the discrete-time
NIMFA model with respect to the continuous-time SIS model, in dependency
of the effective infection rate τ .
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Fig. 3.9. Fitness ε of the sampled-time SIS model with respect to the
continuous-time SIS model, in dependency of the effective infection rate τ
on a semi-logarithmic scale.

Sampling Time T

In the following, the influence of the sampling time T on the fitness ε is
investigated. We vary the sampling time T in the interval of [ 1

100Tmax, Tmax]
and obtain the relationship between the fitness ε and sampling time T in
Figure 3.10. Figure 3.10 shows that the fitness ε becomes better when the
sampling time T decreases. We fit the above fitness ε to a cubic polynomial
curve and the result is shown in Figure 3.11. The function of the fitness ε
and the sampling time T can be approximated as

ε(T ) = 0.0088T 3 − 2.08× 10−5T 2 + 1.743× 10−8T (3.18)
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Chapter 4

Network Reconstruction for
NIMFA

The objective of this thesis is to reconstruct the network topology given the
knowledge of the viral states vi[k] of all nodes i in a discrete-time NIMFA
model. Section 4.1 formulates the network reconstruction task as linear
system and introduces the basic idea of the network reconstruction method
introduced in [24]. Section 4.2 discusses the identifiability of the network.
Section 4.3 gives the network reconstruction algorithm in detail. Finally,
the numerical evaluations of the network reconstruction algorithm on the
accuracy for both random and real-world networks are presented in Section
4.4.

4.1 Formulation as Linear System

As discussed in Chapter 3, compared to the sampled-time SIS model, the
NIMFA model has a lower computational complexity, which makes an ana-
lysis easier. Therefore, the discrete-time NIMFA model is considered in the
following, whose equations were introduced in Chapter 3. According to the
derivations in [24], we define

bi[k] =
vi[k + 1]− vi[k]

1− vi[k]
(4.1)

ci[k] =
vi[k]

vi[k]− 1
(4.2)

for every node i = 1, 2, ..., N . Then, the NIMFA equation (3.10) becomes

bi[k] = δT ci[k] + βT v
T [k]ATrow,i, (4.3)

where Arow,i is the i-th row of the adjacency matrix A. As stated in [24]:
For a network with N nodes, the equations (4.3) for node i = 1, ..., N can
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be concatenated
βTAv[k] = b[k]− δT c[k], (4.4)

with the N×1 vectors v[k] = (v1[k], ..., vN [k])T , b[k] = (b1[k], ..., bN [k])T and
c[k] = (c1[k], ..., cN [k])T . Furthermore, for all the observation time instants
k = 1, ..., n, the equations (4.4) can be combined as:

βTAV = B − δTC, (4.5)

with the N × n matrices V = (v[1]...v[n]), B = (b[1]...b[n]) and C =
(c[1]...c[n]). Finally, the network reconstruction problem becomes solving
the above set of linear equations (4.5) for the adjacency metrix A.

If the N×n viral state matrix V has full row rank, rank(V ) = N , then there
is a unique solution to the normal equation (4.5) for the adjacency matrix
Â:

Â =
1

βT
(C − δTB)V T (V V T )−1, (4.6)

which follows from the normal equations [25]. For convenience, we define
the N × n matrix M :

M =
1

βT
(C − δTB), (4.7)

which yields
Â = MV †, (4.8)

where the Moore-Penrose pseudo-inverse [25] of the viral state matrics V is
given by V † = V T (V V T )−1 .

4.2 Exact Network Reconstruction

4.2.1 Singular Value Decomposition (SVD)

Theorem 1 (Singular Value Decomposition(SVD)[26])
If X is a real m × n matrix, then there exist orthogonal matrices U =
[u1, ..., um] ∈ Rm×m and Q = [q1, ..., qn] ∈ Rn×n, such that

UTXQ = Σ ∈ Rm×n, (4.9)

The diagonal entries of the matrix Σ are the singular values of X and the
vectors ui and qi are the i-th left singular vectors and the i-th right singular
vectors, respectively.

The sigular value decomposition of the viral state matrix V is given by

V = UΣQT (4.10)
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The numerical rank of the viral state matrix rank(V, ε) is defined as the
number of singular values of V that are greater than the threshold ε. We
set the threshold ε to the default value of the Matlab command rank. If
rank(V, ε) < N , then the viral state matrix V is regarded as numerical rank
deficient.

4.2.2 Numerical Evaluation on the Numerical Rank

To solve the unconstrained linear system (4.5) uniquely for the adjacency
matrix A, the viral state matrix V must be of full row rank, i.e.,

rank(V ) = N. (4.11)

However, by simulating multiple NIMFA processes, it is found that rank(V, ε)
< N almost always occurs. In fact, in most cases, the rank(V, ε) is much
smaller than the number of nodes N . To discuss possible factors that may
have an influence on the numerical rank of the viral state matrix V , the
following numerical evaluations are performed.

Distribution of the Numerical Rank

We generate 100 random Erdős-Renyi networks with N = 100 nodes and
with the link probability p = 0.5. For each network, a discrete-time NIMFA
process is simulated with an effective infection rate β

δ = 0.8 and δ = 1, which

satisfies β
δ >

1
λ1(A)

, where λ1(A) is the largest eigenvalue of the network’s

adjacency matrix A. The initial states vi[0] of the NIMFA process are uni-
formly and independently distributed random numbers in the interval [0, 1].
A NIMFA series v[1], v[2], ..., v[n] is obtained, where n is the observation
length. The numerical rank rank(V, ε) is computed for each network and a
distribution of the rank is obtained. According to the simulations, with a
frequency of 0.8, we have rank(V, ε) = 15. Otherwise, rank(V, ε) = 16 holds
with a frequency of 0.2. The largest numerical rank is rank(V, ε) = 16, which
is much smaller than the number of nodes N = 100.

Link probability p

To figure out if the link probability p will influence the distribution of
rank(V, ε), in this simulation, the link probability is set to different values
p = 0.1, ..., 0.9. For each value of p, we generate 100 random Erdős-Renyi
networks with N = 100 nodes. For each network, a discrete-time NIMFA
process with an effective infection rate β

δ = 0.8 and δ = 1 is simulated. The
numerical rank rank(V, ε) is computed for each network and the resulting
distribution of rank(V, ε) with respect to the link probability p is shown in
Figure 4.1.
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Fig. 4.1. The distribution of the numerical rank rank(V, ε) for different
values of the link probability p when the number of nodes in the network is
N = 100.

By calculating the average over the 100 networks for each value of the link
probability, we obtain a curve that shows the relationship of the link probab-
ility p and the numerical rank rank(V, ε). Figure 4.2 shows that rank(V, ε)
almost has a linear relationship with the link probability p. As the link
probability p increases, the numerical rank rank(V, ε) decreases. Hence, the
sparser the network is, the more likely the network can be identified. Des-
pite this, as long as rank(V ) < N , the network cannot be identified from
solving the unconstrained linear system (4.5). The largest numerical rank
is rank(V, ε) = 23, which is far from the number of nodes N = 100.

Number of nodes N

We are interested in the relationship of the number of nodes N and the
distribution of the numerical rank rank(V, ε). The number of nodes in the
network is set to N = 25, ..., 100. For all the values of N , the link probability
is set to p = 0.5. For each network, a discrete-time NIMFA process with
an effective infection rate β

δ = 0.8 and δ = 1 is simulated, which satisfies
β
δ >

1
λ1(A)

. The normalized rank(V, ε)/N is computed for each situation and

a distribution of rank(V, ε)/N with respect to the link probability p is shown
in Figure 4.3.

By calculating the average over the 100 networks for each value of N ,
we obtain a curve that shows the relationship of the network size N and
rank(V, ε)/N in Figure 4.4. It can be seen that rank(V, ε)/N has a nonlin-
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Fig. 4.3. The distribution of the normalized rank(V ) with respect to dif-
ferent values of the network size N when the link probability is p = 0.5.

ear relationship with the network size N , and as N increases, rank(V, ε)/N
decreases. It means more nodes cannot guarantee that more information
can be obtained form the viral state observations. Despite this, as long as
rank(V ) < N , the network cannot be identified from solving the uncon-
strained linear system (4.5).

The above numberical analysis shows clearly that the numerical rank of the
viral state for a single epidemic outbreak is always too small to allow for an

23



20 30 40 50 60 70 80 90 100

0.2

0.3

0.4

0.5

0.6

Number of nodes N

N
o
rm

al
iz

ed
n
u

m
er

ic
al

ra
n

k
ra

n
k
(V
,ε

)/
N

Fig. 4.4. The relationship between the normalized numerical rank
rank(V, ε)/N and the number of nodes N .

accurate network reconstruction.

4.3 Network Reconstruction Algorithm

As the simulation results above shows, it is hard to find a network which
results in a viral state matrix V of full row rank. One solution to this problem
is to consider multiple epidemic outbreaks with different initial states v[0]
for each process. The whole viral state matrix after cascading K processes
with each process is denoted as the N × nK matrix: Vmult = [V1, ..., VK ],
where Vi is the viral state matrix of the i-th epdemic outbreak with i =
1, ...,K. By considering multiple outbreaks, a viral state matrix Vmult with
rank(Vmult) = N can be obtained. As it is shown in Figure 4.5, the numerical
rank rank(Vmult, ε) increases linearly as the number of epidemic outbreaks
K increases until it reaches to the full row rank, i.e., rank(Vmult, ε) = N .

Similarly, we define Mmult = [M1, ...,MK ], where Mi = 1
βT

(Ci − δTBi) for
the i-th NIMFA process with i = 1, ...,K. Therefore, similar to equation
(4.8), the estimate for the adjacency matrix Â becomes:

Â = MmultV
†
mult (4.12)

The pseudo code of this algorithm is shown in Algorithm 1.
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Algorithm 1 Network Reconstruction from Multiple Epidemic Outbreaks

1: Input: Multiple viral state matrices V1, ..., VK
2: Output: Estimated adjacency matrix Â
3: Obtain M1 from V1 by (4.7)
4: Vmult ← V1
5: Mmult ←M1

6: i← 2
7: while i ≤ K do
8: Vmult ← [Vmult, Vi]
9: Obtain Mi from Vi by (4.7)

10: Mmult ← [Mmult,Mi]
11: i← i+ 1

12: end while
13: Â ← Least-squares solution to AVmult = Mmult by QR-decomposition

(4.12)
14: for i = 1, ..., N do
15: for j = 1, ..., N do
16: if âij + âij >= 1 then
17: âij ← 1
18: else
19: âij ← 0

20: end if
21: end for
22: end for
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Fig. 4.5. The relationship between the numerical rank rank(Vmult, ε) and
the number of epidemic outbreaks K for an Erdős-Renyi network with N =
100 nodes and the link probability p = 0.1. The effective infection rate
β
δ = 1.1τ

(1)
c .

Reduced-size Linear Equations by Truncated Singular Value De-
composition

Considering multiple epidemic outbreaks overcomes the problem that the
numerical rank rank(V ) is smaller than the number of nodes N , but it still
has its limitations. For large scale networks with hundreds or thousands of
nodes, the numerical rank of the viral state matrix V is often does not exceed
twenty, which means that there are just few linear independent rows in a
matrix. In other words, a viral state matrix V with thousands of rows, only
about twenty rows contain meaningful information. Therefore, if the whole
matrix V is considered in the calculation, most of the memory is wasted and
the computation time is greatly increased. Hence, Algorithm 1 seems to be
suitable only in small-scale networks.

We propose an improvement of Algorithm 1, such that the network adja-
cency matrix A can also be reconstructed for large scale networks. The basic
idea is to replace the viral state matrix V by its truncated singular value
decomposition (TSVD) [27], which we introduce in the following.

As discussed in Section 4.2.1, the singular value decomposition for the viral
state matrix Vi of the i-th outbreak is given by

Vi = UiΣiQ
T
i (4.13)

The truncated singular value decomposition of the matrix Vi is obtained from
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equation (4.13) by considering only the largest rank(Vi, ε) singular values of
Vi and setting the other singular values to zero, which yields:

Vi ' ŨiΣ̃iQ̃
T
i , (4.14)

where Ũi is an N×rank(Vi, ε) matrix, Σ̃i is a rank(Vi, ε)×rank(Vi, ε) matrix,
and Q̃i is an n × rank(Vi, ε) matrix. We introduce the matrix Si = Σ̃iQ̃

T
i .

Then, comparing with equation (4.7), we define a new matrix MTSVD:

MTSVD,i = S†iMi (4.15)

Similar to Algorithm 1, instead of concatenating the viral states Vi, the sin-
gular vectors Ui are concatenated for i = 1, ...,K in this improved algorithm.
So we have Umult = [Ũ1, ..., ŨK ] and MTSVD,mult = [MTSVD,1, ...,MTSVD,K ].
Finally, the adjacency matrix is estimated as

Â = MTSVD,multU
†
mult (4.16)

The pseudo code of this algorithm is shown in Algorithm 2.

Constrained Solution for Â

In Algorithm 1 and Algorithm 2, the estimated adjacency matrix Â is com-
puted by the QR factorization [25]. The solutions (4.12) and (4.16) are not
constrained to be in the interval [0, 1]. As the true elements aij of the ad-
jacency matrix A are in {0, 1}, a solution that is constrained in the interval
[0, 1] will yield more accuracy.

We pose a constrained linear least-squares problem based on the equation
(4.16):

min
A
||AUmult −Msvd,mult||22, s.t. aij ∈ [0, 1] (4.17)

to ensure that every element in the estimated adjacency matrix Â lies in
the interval of [0, 1]. To solve equation (4.17), we use the command lsqlin

in Matlab, which implements the Trust Region Refelctive algorithm which
is based on the interior-reflective Newton method described in [28]. The
pseudo code of this algorithm is shown in Algorithm 3.

4.4 Numerical Evaluation

4.4.1 Error Metrics

We introduce two kinds of error metrics to quantify the accuracy of the
network reconstruction method introduced in Section 4.3.
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Algorithm 2 Network Reconstruction from Multiple Epidemic Outbreaks
by TSVD

1: Input: Multiple viral state matrices V1, ..., VK
2: Output: Estimated adjacency matrix Â
3: Obtain the TSVD Ũ1Σ̃1Q̃

T
1 of V1

4: S1 ← Σ̃1Q̃
T
1

5: Obtain M1 from V1 by (4.7)
6: Obtain MTSVD,1 from M1 and S1 by (4.16)

7: Umult ← Ũ1

8: MTSVD,mult ←MTSVD,1

9: i← 2
10: while i ≤ K do
11: Repeat step 3-6 for Vi to obtain Ũi and MTSVD,i

12: Umult ← [Umult, Ũi]
13: MTSVD,mult ← [MTSVD,mult,MTSVD,i]
14: i← i+ 1

15: end while
16: Â← solution to AUmult = MTSVD,mult by QR-decomposition
17: for i = 1, ..., N do
18: for j = 1, ..., N do
19: if âij + âji >= 1 then
20: âij ← 1
21: else
22: âij ← 0

23: end if
24: end for
25: end for
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Algorithm 3 Network Reconstruction from Multiple Epidemic Outbreaks
by TSVD and constrained solutions

1: Input: Multiple viral state matrices V1, ..., VK
2: Output: Estimated adjacency matrix Â
3: Obtain the TSVD Ũ1Σ̃1Q̃

T
1 of V1

4: S1 ← Σ̃1Q̃
T
1

5: Obtain M1 from V1 by (4.7)
6: Obtain MTSVD,1 from M1 and S1 by (4.16)

7: Umult ← Ũ1

8: MTSVD,mult ←MTSVD,1

9: i← 2
10: while i ≤ K do
11: Repeat step 3-6 for Vi to obtain Ũi and MTSVD,i

12: Umult ← [Umult, Ũi]
13: MTSVD,mult ← [MTSVD,mult,MTSVD,i]
14: i← i+ 1

15: end while
16: Â← solution to min

A
||AUmult −Msvd,mult||22, s.t. aij ∈ [0, 1]

17: for i = 1, ..., N do
18: for j = 1, ..., N do
19: if âij + âji >= 1 then
20: âij ← 1
21: else
22: âij ← 0

23: end if
24: end for
25: end for
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Scaled One-norm Deviation εA

εA =
1

2Lmax
||A− Â||1, (4.18)

where Lmax = N(N − 1)/2 is the maximal number of links for a network of
N nodes.

TPR-FPR

In a two-class estimation problem, the outcomes are defined as positive (P)
and negative (N). There are four possible outcomes. If the estimation is
âij = 1 and the true value is also aij = 1, then the result is true positive
(TP); however if the true value is aij = 0 but âij = 1, then it is false positive
(FP). On the other hand, when both the estimation and the true value are
âij = aij = 0, the result is true negative (TN) and false negative (FN) is
when the estimation is âij = 0 while the true value is aij = 1. These four
results can be drawn as a 2× 2 table of confusion[29] in Table 4.1:

Table 4.1: Table of Confusion

True Value
aij = 1 aij = 0

Estimated
Value

âij = 1 TP FP
âij = 0 FN TN

The true positive rate (TPR) defines the ratio of correct positive results
in all positive samples, while false positive rate (FPR) defines the ratio of
incorrect positive results in all negative samples.

TPR = TP/(TP + FN) (4.19)

FPR = FP/(FP + TN) (4.20)

The estimation is accurate when TPR = 1 and FPR = 0.

4.4.2 Numerical Evaluation of the Accuracy

To study the accuracy of Algorithm 3, we apply it to Erdős-Renyi random
networks and Watts-Strogatz small-world networks. We generate a Erdős-
Renyi network with N = 200 nodes and with a link probability p = 0.2.
Furthermore, we generate a small-world network with N = 200 nodes of
average degree E[d] = 0.2N and with a rewiring probability p = 0.5. by
setting the parameters in this way, both networks have the same network
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size N = 200 and the same average degree E[d] = 40. The effective in-

fection rate for both networks are set to be β
δ = 1.1τ

(1)
c , where τ

(1)
c is the

epidemic threshold. Figure 4.6 and Figure 4.7 shows the relationship of the
accuracy and the number of outbreaks. The estimation error εA roughly
seems to decrease linearly with the increase of the number of epidemic out-
breaks K until the estimation error εA reduces to 0 when the number of
epidemic outbreaks equals K = 5. Compared to the small-world network,
the Erdős-Renyi network has a higher estimation error before εA reduces to
0. Considering the TPR-FPR error metrics, we obtain Figure 4.7.
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Fig. 4.6. The estimation error εA versus the number of epidemic outbreaks
K for the Erdős-Renyi network and the small-world network.

Number of nodes N

To figure out how many outbreaks are required for an accurate estimation
for networks of different sizes N , the following simulations are performed.
Both the Erdős-Renyi network and the Small-world network are considered.
The network size N ranges from [100, .., 700]. For each value of N , we
generate 1000 Erdős-Renyi networks with link probability p = 0.1 and 1000
Small-world networks with average degree E[d] = 0.2N and with a rewiring
probability pr = 0.5. The effective infection rate for both networks is set

to β
δ = 1.1τ

(1)
c , where τ

(1)
c is the epidemic threshold. The average network

reconstruction error over 1000 networks ε̄A can be calculated as:

ε̄A =
1

1000

1000∑
l=1

εA,l, (4.21)
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Fig. 4.7. The TPR and FPR value of the Erdős-Renyi and small-world
network reconstruction results, indicating the relationship of the accuracy
and the number of epidemic outbreaks K.

where εA,l is the reconstruction error of the l-th network. The relationship
of the averaged error ε̄A and the number of outbreaks K is shown in Figure
4.8 and Figure 4.9 for the Erdős-Renyi network and the small-world network
respectively. For both network models, the larger the size of the network N
is, the more epidemic outbreaks are required to obtain an accurate estima-
tion of the adjacency matrix Â. The averaged estmation error ε̄A roughly
seems to decrease linearly with the number of epidemic outbreaks K. Figure
4.10 and Figure 4.11 present the TPR and FPR values for the Erdős-Renyi
network. Figure 4.12 and Figure 4.13 present the TPR and FPR values for
the small-world network. As the network size increases for both epidemic
models, more epidemic outbreaks are required so that TPR value reaches to
1 and FPR value reaches to 0, where an accurate estimation is obtained.

Average degree E[d]

Besides the number of nodes N , the average degree E[d], or the sparsity of
the network may also have influence on the network reconstruction accuracy
and the number of required epidemic outbreaks. To find the relationship
among the accuracy, the number of epidemic outbreaks and the average
degree E[d], the following simulations are performed. Both the Erdős-Renyi
network and the small-world network are considered. The number of nodes
in the network N is set to 200. The average degree E[d] ranges in the
interval of [40, 160]. The effective infection rate for both networks are set to

be β
δ = 1.1τ

(1)
c , where τ

(1)
c is the epidemic threshold. For each value of the

average degree E[d], 1000 networks are generated. The averaged accuracy
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Fig. 4.8. The averaged estimation error ε̄A versus the number of epidemic
outbreaks K for the Erdős-Renyi networks.
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Fig. 4.9. The averaged estimation error ε̄A versus the number of epidemic
outbreaks K for the small-world networks.

over these 1000 networks for each value of E[d] is considered.

Figure 4.14, Figure 4.15 and Figure 4.16 show the averaged estimation error
ε̄A and the TPR, FPR values versus the number of epidemic outbreaks K
for the Erdős-Renyi networks with different average degree E[d]. They show
that as the average degree E[d] increases, the number of epidemic outbreaks
required K to obtain an accurate estimation increases. The same conclusion
can be drawn in the small-world network as Figure 4.17, Figure 4.18 and
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Fig. 4.10. The TPR values of the Erdős-Renyi network reconstruction
results with different network sizes with respect to the number of epidemic
outbreaks K.
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Fig. 4.11. The FPR values of the Erdős-Renyi network reconstruction
results with different network sizes with respect to the number of epidemic
outbreaks K.

4.19 show.

4.4.3 Network Reconstruction for Real Networks

In this section, the network reconstrution Algorithm 3 is applied to several
real networks. All of them are undirected and unweighted graphs. Firstly,
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Fig. 4.12. The TPR values of the small-world network reconstruction
results with different network sizes with respect to the number of epidemic
outbreaks K.
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Fig. 4.13. The FPR values of the small-world network reconstruction res-
ults with different network sizes, with respect to the number of epidemic
outbreaks K.

we simulate NIMFA processes on the real-world networks for 10 different
initial consitions v[0], which were generated randomly. Secondly, we use the
generated virual states matrices V to reconstruct the adjacency matrix Â
by applying Algorithm 3. We consider the following real-world networks.
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Fig. 4.14. The averaged estimation error ε̄A versus the number of epidemic
outbreaks K for the Erdős-Renyi networks of size N = 200 with different
average degree E[d].
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Fig. 4.15. The TPR values of the Erdős-Renyi network reconstruction
results with different average degrees, with respect to the number of epidemic
outbreaks K.

Contiguous USA

This network includes the 48 contiguous US-American states, which are
connected by land with the other states and the district of Columbia of
the United States of America [30]. Each state is denoted by a node in the
network. If two states share a border, then there exists a link between these
two nodes. In this dataset, the network has 49 nodes (states) and 107 links
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Fig. 4.16. The FPR values of the Erdős-Renyi network reconstruction
results with different average degrees, with respect to the number of epidemic
outbreaks K.
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Fig. 4.17. The averaged estimation error ε̄A versus the number of epidemic
outbreaks K for the small-world networksof size N = 200 with different
average degree E[d].

(borders) with an average degree of 4.3673 links per node.

Euroroad

This network is an international road network, which represent roads in
European countries [31]. Each node corresponds to a European city and
the link between two nodes represents that there is a direct road connecting
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Fig. 4.18. The TPR values of the small-world network reconstruction
results with different average degrees, with respect to the number of epidemic
outbreaks K.
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Fig. 4.19. The FPR values of the small-world network reconstruction res-
ults with different average degrees, with respect to the number of epidemic
outbreaks K.

two cities. The network is neither a scale-free nor a small-world network [3].
The network has 1,174 nodes (cities) and 1,417 links (roads), whose layout
is shown in Figrue 4.20 with an average degree of 2.4140 links per node.
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Fig. 4.20. European road network with N = 1174 nodes and 1417 edges
[3]

Hamsterster

This social network contains friendships among users of the website ham-
sterster.com [32]. Each node represents a user. If two users are friends,
then there is a link between these two nodes. This network has 1,858 nodes
(users) and 12534 links (friendships), which leads to an average degree of
13.492 links per node.

Facebook

This connected network represents the friendships among a small subgroup
of users of Facebook [33]. Each node represents a user of Facebook. If two
users are friends, then there is a link between these two nodes. The Facebook
network has 2,888 nodes (users) and 2,981 links (friendships), which leads
to an average degree of 2.0644 links per node.

Table 4.2 gives an overview of these networks. Figure 4.21 show the estim-
ation error ε̄A averaged over 10 different initial viral state sequences and
the TPR-FPR metrics with respect to the number of epidemic outbreaks
K for these real networks. In the contiguous USA network, as the number
of nodes in the network N is small, the network can be accurately recon-
structed by only one epidemic outbreak. So the estimation error for the
contiguous USA network equals to zero for all K, thus cannot be displayed
in this semilog figure. For the Facebook network, for two of the ten viral
state sequences the reconstruction error ε̄A did not converge to zero, even
after considering 30 epidemic outbreaks. For the other Facebook networks,
the network can be accurately reconstructed by less than five epidemic out-
breaks, and the low average degree of the network may be an explaination
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of an accurate reconstruction by only five outbreaks K on average. For the
Hamsterer friendship network, which has a large number of nodes and the
highest average degree, the most number of epidemic outbreaks are required
to obtain an accurate estimation among these four real networks.

Table 4.2: Network Information

Network Number of nodes N Number of links L Average degree E[d]

Contiguous USA 49 107 4.3673

Euroroad 1174 1417 2.4140

Hamsterster friendships 1858 6594 13.492

Facebook 2888 2981 2.0644
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Fig. 4.21. The averaged estimation error ε̄A versus the number of epidemic
outbreaks K for real-world networks. Discontinued curves refer to zero error.
The contiguou USA network has been exactly reconstructed with only one
outbreak (ε̄A = 0) for all realizations. For the Facebook network, only the
estimation error of the eight (of ten total) realizations which converged to
ε̄A = 0 are plotted.
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Chapter 5

Conclusions and Outlook

5.1 Conclusions

This thesis focuses on reconstructing the network topology from observing
the viral state series of the NIMFA epidemic process. In order to achieve
this purpose, our contribution is as follows.

Firstly, we numerically evaluate the performance of the approximated mod-
els: the sampled-time SIS model and the discrete-time NIMFA model with
respect to the continuous-time SIS model, and studying the feasibility of
network reconstruction. The discrete-time NIMFA model is finally decided
to be applied in the following network reconstruction process.

Secondly, the basic data model, which is derived from the discrete-time
NIMFA equation is studied. We found that it is not possible to uniquely
estimate the adjacency matrix A from the viral state series of a single epi-
demic outbreak for the majority of networks, since the rank of the viral state
series is much smaller than the number of nodes N .

Thirdly, to solve the problem of the rank deficiency, we implement a net-
work reconstruction algorithm that estimates the adjacency matrix A from
the viral state series of multiple epidemic outbreaks. To improve the estima-
tion accuracy and solve the network reconstruction problem more efficiently,
we resort to the truncated singular value decomposition and a constrained
linear least-squares formulation of the network reconstruction problem. The
larger the network is and the larger the average degree is, the more num-
ber of epidemic outbreaks are required to obtain an exact estimation of the
network.
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5.2 Outlook

The network reconstruction algorithm can be perfectly applied in small to
medium size networks. In larger networks, more epidemic outbreaks are
required and the computation time grows accordingly. Therefore, how to
improve the algorithm so that it can solve the network reconstruction prob-
lem faster is a topic for future work. Then, more real networks with larger
size can be estimated by the network reconstruction algorithm.
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