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Summary

The area of interest for this study is the field of uncertainty quantification in computational
fluid dynamics. The goal is to contribute to a new method to perform uncertainty quantifi-
cation analyses for industrial, computationally expensive CFD simulations.

To this end, a new adaptive grid refinement method is developed. The existing sparse grid
procedure introduced by Smolyak [20] for high-dimensional parameter spaces is used with
Clenshaw-Curtis quadrature rules. Starting from a low level grid, more points are added
based on the values of the Sobol variances, which are estimated values. The Sobol variances
provide an indication of the importance of each variable and interactions between variables.

The method is applied to an industrial atmospheric flow case, where a heavy gas is released
upwind of a barrier. The quantity of interest is the effect distance, the distance from the
barrier where the molar concentration drops below 1 percent, which is important for safety.
The adaptive refinement algorithm is compared to a standard sparse grid and to the adaptive
method by Gerstner & Griebel [18]. The results indicate that the new adaptive grid refinement
method requires only 23 grid points, compared to the 69 for the standard sparse grid. The
final grid is smaller than for the Gerstner & Griebel approach, which contains 31 grid points.
The error of the new algorithm is slightly larger than the Gerstner & Griebel approach when
comparing to a standard sparse grid. The method shows promise for use with industrial cases,
where a significant reduction in the computational effort can be achieved compared to the
standard sparse grid approach.
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Chapter 1

Introduction

This chapter will start by giving a general introduction to the field of uncertainty quantifica-
tion and the goal of this study in Section 1.1. A literature review has been performed, which
is summarized in Section 1.2. Finally, Section 1.3 will present the structure of the remainder
of the report.

1.1 Uncertainty quantification

The area of interest for this study is the field of uncertainty quantification (UQ) in computa-
tional fluid dynamics. Uncertainty can be divided into two categories [3]:

• Epistemic uncertainty: A potential deficiency in any phase or activity of the modeling
process that is due to lack of knowledge. This is also known as reducible uncertainty,
since increasing the knowledge can reduce this type of uncertainty. An example would
be a lack of experimental data.

• Aleatory uncertainty: The physical variation present in the system being analyzed or
its environment. This is also known as irreducible or inherent uncertainty.

In CFD simulations, there are different sources of uncertainty: geometric uncertainties, model
uncertainties, input uncertainties and more. This study will focus only on the uncertainty of
input parameters and the effect on the model response. This is done by finding a probability
distribution for the input parameters and then propagating this uncertainty through the
model to obtain the statistics of the response.

As will be shown in the literature review, there are a number of methods available to perform
UQ analysis, ranging from the traditional random sampling (the most well-known example
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2 Introduction

being the Monte Carlo method, see for example [4]), to structured sampling approaches, such
as sparse grids [5]. One of the big challenges in the field is the curse of dimensionality [2],
the exponentional increase in computational effort of conventional approaches with increasing
dimension, which is why UQ methods in general strive to keep the required computational
work to a minimum.

The goal of this study is to contribute a new method to perform input uncertainty quantifi-
cation analysis. This new method can then be used for industrial, computationally intensive
CFD simulations. We will look into reducing the number of computations required by devel-
oping an effective adaptive algorithm. An overview of the currently used methods in the field
is given in Section 1.2. The conclusions from the literature review and the structure of the
remainder of the report can be found in Section 1.3.

1.2 Literature review

As mentioned in the introduction (Section 1.1), one of the big challenges in the uncertainty
quantification (UQ) field is to reduce the computational effort while achieving a high accuracy.
This is due to the curse of dimensionality [2], a term coined by Bellman in 1961, stating that
the amount of data required grows exponentially with increasing dimension. This becomes a
problem especially for high-dimensional problems, but also for moderate- to low-dimensional
problems if data sampling is time-consuming.

In the field of uncertainty quantification, there are two main approaches. The first approach
are the (quasi-)random sampling methods. The idea here is to take a large number of samples
and use these to obtain reliable statistical information.

The second approach uses deterministic sampling, sampling the data at certain points and
use it to construct a surrogate model. An example of this type of approach is the use of sparse
grids [5]. Once a surrogate model is constructed, it is then used to extract information. The
surrogate model is much cheaper to evaluate, which can save a lot of time. The accuracy of
the model depends on the method and amount of data used to construct the surrogate model
and of course of the the complexity of the original system.

1.2.1 Random Sampling

As mentioned before, traditional approaches use (pseudo-)random sampling, the most known
of which is the Monte Carlo (MC) method (see for example [4]). Once a large amount of data is
collected, a statistical analysis is perfomed on the results. The advantage of such a method is
that it is robust and reliable, given a sufficiently large sample, it is relatively straight-forward
to implement, and used in many fields already. The disadvantage of these methods is that they
generally require a large number of samples. Especially when dealing with computationally
demanding cases, this is not feasible in practice. Even for low-dimensional problems, it is
often not possible to take a sufficient amount of samples to perform a meaningful statistical
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1.2 Literature review 3

analysis.

There are techniques which reduce the number of samples required, such as for example Latin
Hypercube Sampling (LHS) or importance sampling [22]. However, for industrial applications
where cases are computationally expensive this type of approach is generally impractical.

1.2.2 Deterministic sampling

A different type of uncertainty quantification methods uses deterministic sampling. Instead
of taking random samples, the computations are run at particular combinations of the input
parameters. This data is typically used to construct a surrogate model, which is much cheaper
to evaluate.

Polynomial Chaos

In the context of uncertainty quantification, the Polynomial Chaos (PC) framework is well-
known. It based on the work by Wiener [6], which originally dealt with stochastic processes
with Gaussian random variables. More recently, the generalized PC approach was introduced
by Xiu [7].

Note that there are both intrusive and a non-intrusive PC methods. In short, the intrusive
approach requires the governing equations to be rewritten. This means altering the source
code which is used for the computations. One example of the intrusive approach can be found
in [32]. This type of approach is only possible when the source code is available. On the other
hand, the non-intrusive approach treats the governing equations constituting the model as a
blackbox. The way to gain information about the system is by simply taking data samples,
which means running simulations. The non-intrusive approach is much more common for
engineering applications, for example [26], [7]. The reason for this is that it is much easier to
run computations with a readily available commercial code than it is to rewrite the governing
equations in the source code to include intrusive PC.

Polynomial chaos framework

Regardless of the distinction between intrusive and non-intrusive method, all Polynomial
Chaos (PC) based methods operate on the same principle. An approximation to the actual
model is constructed using an orthogonal set of polynomials which serve as basis functions
for an N-dimensional parameter space.

A polynomial chaos expansion can be written as:

Y(X) :=
∞∑
j=0

ajΦj(X) (1.1)

where Y is the model response and X contains the input variables, both of which are affected
by uncertainty. Equation 1.1 shows the model response as a spectral expansion in the vector
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4 Introduction

of independent basis random variables X with random polynomial basis {Φj}. The solution is
split into a deterministic part, coefficients aj , and a stochastic part, the polynomial chaoses,
Φj(X).

The original work by Wiener [6] uses Hermite polynomials as the basis functions to represent
Gaussian random variables. Depending on which probability distribution is used for the ran-
dom variables, different types of polynomials are proposed. An overview of these polynomial
basis functions with corresponding probability distributions is found in the Wiener-Askey
scheme [8]. For arbitrary probability functions, we refer to the work of Wan and Karniadakis
[9]. It is worth noting that using a different type of polynomial than proposed in the Wiener-
Askey scheme does not mean that the surrogate model will be inaccurate. Rather, the use
of the proposed polynomials in combination with the corresponding input distribution is op-
timal, and generally converges faster towards the real model. More information on the PC
framework can be found in Section 2.2.

The main disadvantage of PC-based methods is that if the model shows non-smooth or dis-
continuous behavior, polynomial approximation is inaccurate. In these cases, simply adding
more data points does not improve the accuracy since the issue is inherent to using poly-
nomial approximation. This effect is also known under the name Gibbs’ phenomenon. One
way to circumvent this problem would be to use linear interpolation or one of the methods
mentioned in Section 1.2.2.

Quadrature

Quadrature rules are used to approximate definite integrals using an optimal number of points
by rewriting the integral as the sum of the product of function values (which are determined by
sampling the function) and a weight. By choosing a suitable quadrature rule, the convergence
of the integral value is improved.
Any quadrature rule follows the following form:∫ 1

−1
f(x)β(x)dx ≈

n∑
k=1

wkf(xk), (1.2)

where β(x) is a weight function that corresponds to a probability density function, xk are the
abscissae of the quadrature rule and wk are the corresponding weights. Since β(x) is a PDF,
by definition

∫ 1
−1 β(x)dx = 1. From this it follows that

∑
wk = 1 must be true. The number

of abscissae depends on the quadrature rule and increases with increasing level.

One of the properties of a quadrature rule is whether or not the points are nested. Nestedness
implies that some or all points from a lower level are re-used for higher levels, meaning that
fewer points are required overall for higher level approximations. More information is found
in [23].

The best known quadrature rules are the Gaussian quadrature rules. The classical Gaussian
quadrature rules, such as Gauss-Legendre, Gauss-Hermite, etc. are non-nested. The abscissae
and weights for these Gaussian rules are determined using for example the Golub-Welsch al-
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1.2 Literature review 5

gorithm [10]. More recently, there have been some extensions to existing Gaussian quadrature
rules, such as the Gauss-Kronrod [12] and Gauss-Lobatto [11] rules.

There are alternatives to the Gaussian quadrature rules, for example the Newton-Cotes,
Clenshaw-Curtis and Fejer quadrature rules. An important property of these rules is that
they are nested and use the same abscissae regardless of input variable distribution. The
weights can be computed to accomodate the use of different input distributions, for example
see [15].

A recent paper by Trefethen [13] compares the convergence of Gauss quadrature with
Clenshaw-Curtis quadrature and finds that they are almost equal in practice. If the Clenshaw-
Curtis points are used, Lagrange polynomials can serve as the orthogonal basis. An example
where this is applied is found in [14].

To summarize, the number of quadrature rules to choose from is extensive, depending on
what input distribution is used. Different input distributions can taken into account by using
a different othogonal set of polynomials [8], such as for the Gauss rules. Each Gaussian
rule has different abscissae, meaning that in order to analyze multiple input distributions,
additional samples would be required. On the other hand, for Clenshaw-Curtis this is more
straightforward. Here, the input distribution is taken into account solely in the calculation
of the weights [15].

Sparse grid vs. full tensor grid

For multidimensional problems, data samples are required in all dimensions. A relatively
straightforward method would be to construct a tensor grid of quadrature rules. The disad-
vantage of this approach is that the number of computations required scaled exponentially
with increasing dimension. In practice, it is important to limit the number of computa-
tions. For this reason, sparse grids are highly preferred. Sparse grids were first introduced
by Smolyak [20]. Using univariate basis functions, a multidimensional function can be con-
structed by tensor product. The advantage of these grids is that they are more efficient than
the traditional full tensor grids. The convergence of both types of grid is comparable, but the
number of points used in a sparse grid is significantly lower [21].

Sparse grids are constructed using quadrature rules, which means a good approximation of
the integral of the response can be found on these grids. The choice of quadrature rule is
dependent on the application, but nested rules can save a lot of points so these are preferred
for this study. A qualitative comparison of a tensor grid, a sparse grid and a random sampling
grid is given in Figure 1.2.2.

Other methods

There are other methods available to construct surrogate models, some of these are mentioned
here for completeness. One alternative to the Polynomial Chaos approach would be to use
Kriging to construct a response surface. First, presented by Krige [27], it was originally used
in geostatistics but has found uses in other fields as well. Kriging is essentially a different
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(a) Monte Carlo (b) Tensor grid (c) Sparse grid

Figure 1.1: Qualitative comparison of a Monte Carlo random sampling approach to a tensor grid
and a sparse grid constructed from quadrature formulas in 2 dimensions.

kind of interpolation, where the interpolated values are modeled by a Gaussian process[25].
The method does not require the use of a structured grid, so it is quite flexible. This method
has already been used in the field of uncertainty quantification, for example [24] and [28].

For the interpolation of data there are still other options, such as radial basis functions [26].
However, the main idea is always the same: the model is sampled at certain points. This
data is used to construct a surrogate model, which is used to analyse the statistics of the
model. The closer the surrogate model represents the real model, the better the result of the
statistical analysis.

1.2.3 Sensitivity Analysis

It is important to extract useful information from the results, such as which parameters have
the most influence on the model response. This is why it is useful to perform a global sensi-
tivity analysis. Sobol indices are used to quantify the relative importance of input variables
on the response of a mathematical model. It is a variance-based method. This method is
closely related to the ANOVA (ANalysis Of VAriance) decomposition [16].

This approach can be applied to Monte Carlo and other (pseudo-)random methods but Sobol
indices can also be calculated analytically.

1.2.4 Adaptivity

One particular point of interest of this project is using an dimension-adaptive grid refinement
algorithm to reduce the number of computations as much as possible. Since computational
resources are limited, they should be used as efficiently as possible.

There are different approaches to perform adaptive grid refinement. One well-known example
is the approach by Gerstner and Griebel [18], based on minimizing an error estimate. In this
approach, the effect of adding sparse grid components on the error estimate is determined.
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1.3 Report structure 7

Only those components which introduce a large difference are added. This procedure of adding
points goes on until a certain tolerance is reached. The study contains valuable information
on how to structure an adaptive sparse grid code.

A different approach is described in [19]. The grid is enriched using a quasi-random ap-
proach (Latin Hypercube Sampling or quasi-Monte Carlo) and use is made of the ANOVA
decomposition. An approximation of the PC expansion coefficients is then calculated.

The use of Sobol indices for a Stochastic Collocation (which is based on the PC framework)
method has already been investigated in [17], where it was concluded that using Sobol indices
as a post-processing procedure to the construction of the PC expansion provides an attractive
route to adaptive grid refinement. This method would combine the use of sparse grids with
a PC expansion. The use of Sobol indices would give us valuable information of the effect of
inputs on the model response, which is then used to adaptively refine the grid.

1.3 Report structure

The aim of this project is to contribute a new method for input parameter uncertainty
quantification for industrial CFD computations. This means that we want a structured
method which provides reliable results and limits the required computational resources.
Since computational resources are so limited, random sampling methods are impractical for
the purpose of this project. Though the approach provides a reliable statistical analysis,
the disadvantage of needing a large number of samples is so large that it is impractical. A
deterministic sampling approach using sparse grids is chosen as a basis for the new method,
since it is proven to be efficient. Using a sparse grid limits the number of points while
maintaining a convergence which is similar to full tensor grids. Clenshaw-Curtis quadrature
rules will be used to construct these grids. The sparse grids will be used in combination
with the Polynomial Chaos framework to construct an accurate surrogate model, which can
then be used to perform a cheap statistical analysis. This approach limits the number of
simulations required and still provides reliable results, which is exactly what we are looking
for. The method that will be developed and tested in this study will be a dimension-adaptive
grid refinement method based on Sobol indices. They will provide an indication of which
parameters have the most influence on the model response. This information can then be
used to refine the grid.

The remainder of the report will provide an overview of the work performed throughout this
project. First, Chapter 2 will provide the mathematical framework, going into more detail on
how to construct sparse grids, compute the abscissae and weights to incoorporate different
input prarameter distributions. After this, the approximation of the Sobol variances on a
sparse grid is given, followed by an existing method by Gerstner and Griebel [18] and the new
adaptive grid refinement method. Subsequently, Chapter 3 will verify the implementation
of the different methods by using a set of test functions. The new adaptive grid refinement
algorithm is applied to an industrial case, the results are presented in Chapter 4. Finally,
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Chapter 5 will summarize the findings of the study and provide a few recommendations for
the work if it is to be used in the future.
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Chapter 2

Mathematical Framework

This chapter will provide the mathematical tools required for a new adaptive grid refinement
method. First, a problem formulation is presented in Section 2.1, followed by a description
of the Polynomial Chaos method in Section 2.2. In Section 2.3.1 the ANOVA decomposition
is introduced. This is followed by a definition of the abscissae and weights of the Clenshaw-
Curtis quadrature rule in Section 2.4. Sections 2.5 and 2.6 show how to construct sparse grids
and how to perform integration and interpolation on these grids. Then, Section 2.7 shows
how to approximate Sobol variances using sparse grids. Finally, Section 2.8 will describe two
adaptive grid refinement approaches: the existing Gerstner and Griebel approach, and the
new method based on Sobol variances.

2.1 Problem formulation

The problem under consideration is the quantification of the effect of parametric uncertainty
on the response of the model. In other words, the uncertainty in the input parameters is
propagated through the model to determine the distribution of the output.

Let us consider a physical model represented by a deterministic function y = M(x), where
x = [x1, . . . , xN ]T ∈ RN , N ≥ 1 is the vector of input variables, and y = [y1, . . . , yQ]T ∈ RQ,
Q ≥ 1 is the vector containing the quantities of interest of the model [19]. Vector y is
also known as the model response. Now assume input vector x is affected by uncertainty,
which is represented by a random vector X with prescribed joint probability density function
(PDF) fX(x). It is assumed that the components {X1, . . . , XN} are independent, such that
fX(x) = ΠN

i=1fXi(xi) is the marginal PDF of Xi. The model response can then be seen as
the random vector Y defined by:

Y =M(X) (2.1)

where M can be seen as a differential operator which contains space and time derivatives.

MSc. Thesis Desmedt S.G.L.



10 Mathematical Framework

2.2 Polynomial Chaos

Recall the problem formulation (2.1):

Y =M(X) (2.2)

where Y is the model response, L is a (possibly nonlinear) differential operator which con-
tains space and time derivatives and X contains the input variables, which are affected by
uncertainty. The polynomial chaos expansion of Y(X) is then:

Y(X) :=
∞∑
j=0

ajΦj(X) (2.3)

which is a spectral expansion in the vector of independent basis random variables X with
random polynomial basis {Φj}. The solution is split into a deterministic part, coefficients aj ,
and a stochastic part, the polynomial chaoses, Φj(X). In practice, the number of terms in
(2.3) is truncated:

Y(X) :=
N∑
j=0

ajΦj(X) (2.4)

The polynomial basis {Φj(X)}Nj=0 of the Polynomial Chaos expansion in (2.3) satisfies the
following orthogonality condition:

〈Φj(X),Φk(X)〉 = 〈Φ2
j (X)〉δjk (2.5)

where j, k = 0, 1, . . . , N , δjk is the Kronecker delta and 〈, 〉 denotes the inner product.

〈Φj(X),Φk(X)〉 =

∫
SX

Φj(X)Φk(X)w(X)dX (2.6)

where w(X) is the weighting function corresponding to the polynomials {Φj(X)}Nj=0 and SX
is the support of X.

The term Polynomial Chaos (PC) originates from the work of Wiener [6], using Hermite
polynomials as an orthogonal basis to represent stochastic processes with Gaussian random
variables. Note that there are two main categories of PC-based methods: intrusive and non-
intrusive. In this context, intrusive implies rewriting the governing equations of the model,
in other words rewriting the code of the simulation software. Non-intrusive methods treat
the model as a black box and only use deterministic samples to obtain information on the
system. Non-intrusive methods PC-based methods are more common since they can be used
with commercial software, see for example [30],[26]. There are also cases of intrusive PC being
implemented, but this requires the source code to be available. An example of intrusive PC
being implemented can be found in [32]. For the rest of this thesis, unless explicitly stated
otherwise, only non-intrusive PC is considered.

Choosing the optimal polynomials for common weighting functions leads to the Wiener-Askey
scheme. To name a few examples for continuous weighting functions [7],[8]:
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2.3 Global Sensitivity of Functions: Sobol Indices 11

• Hermite polynomials are associated with the Gaussian distribution.

• Legendre polynomials to the uniform distribution.

• Laguerre polynomials with the Gamma distribution.

• Jacobi polynomials to the Beta distribution.

The nodes and weights are chosen from the Gauss quadratures corresponding to the polyno-
mial basis, for more information on this see the Golub-Welsch algorithm [10].

For input distributions which are not in the Wiener-Askey scheme it is still possible to
construct a orthogonal polynomial basis numerically as shown in [9]. Alternatively, Gram-
Schmidt orthogonalization has also been used [31]. In this case, the nodes and weights can be
determined using the Stieltjes procedure combined with the Lanczos algorithm, as shown in
[9]. Once the orthogonal polynomial basis and the corresponding weights are known, it is pos-
sible to determine the coefficients aj from (2.4) by taking samples at the collocation points
defined by the appropriate quadrature rule. Note that for higher-dimensional problems, a
tensor grid is formed from the 1-D rules. This leads to the following system:

Φ0(X0) Φ1(X0) . . . ΦN (X0)
Φ0(X1) Φ1(X1) . . . ΦN (X1)

...
...

. . .
...

Φ0(XN ) Φ1(XN ) . . . ΦN (XN )




a0

a1
...
aN

 =


Y(X0)
Y(X1)

...
Y(XN )

 (2.7)

Since the only unknowns are the coefficients aj for j = 0, . . . , N , they can be extracted from
(2.7). The coefficients are only approximations of the real polynomial expansion coefficients.
The more accurate the approximation using the basis polynomials, the closer the coefficients
will be to the actual values. The solution Y from (2.1) is now fully defined; the mean µY
and variance σ2

Y are then [26]:

µY = a0 (2.8)

σ2
Y =

N∑
j=1

a2
jΦ

2
j (X). (2.9)

2.3 Global Sensitivity of Functions: Sobol Indices

Consider a multivariate real function f : RN → R. Sobol indices are one measure of the global
sensitivity of the function with respect to its arguments x. Usually sensitivity measures are
local, that is, they concern themselves only with the linearized behaviour of f function at a
reference point x0 ∈ RN . For instance local sensitivities might be defined as:

Si := σi
∂f

∂xi

∣∣∣∣
x0

i ∈ {1, . . . , N}, (2.10)
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where σi is a measure of how much variable xi is expected to vary. This definition ignores
the behavour of f away from x0. For example f(x) = 1010x2 at x0 = 0 is considered to be
“insensitive” to x, and f(x) = H(x), (with H(·) the Heaviside function) is ”insensitive” to
x everywhere (except possibly at the origin). Furthermore S provides no information on the
effect of interactions of multiple variables on f .

Global sensitivity measures attempt to address these limitations. The first step is to specify
what is meant by ”global”. In the case of variance-based sensitivity indices (of which Sobol
indices are an exmaple) this is achieved by defining a probability density function (pdf) for
each input variable, specifying the range of that variable which is of interest:

ρ(x1), . . . , ρ(xN ),

with the corresponding random-variables denoted X = (X1, . . . , XN ). These are comparable
in purpose to σi in the local case. To continue the derivation of Sobol indices, the Analysis
of Variance (ANOVA) decomposition must be introduced.

2.3.1 ANOVA Decomposition

Assume that f(x) is square-integrable1 with respect to the metric generated by X. Furthmore
let X1, . . . , XN ∼ U(0, 1) be independently uniformly distributed on [0, 1]. Any input space
can be transformed onto this unit hypercube, so there is no loss of generality. Then f(X) is
a random-variable with finite variance, which we represent in the form:

f(X) = f∅ +

N∑
s=1

∑
1≤i1<···<is≤N

fi1...is(Xi1 , . . . , Xis). (2.11)

Or in long-hand:

f(X) = f∅

+ f1(X1) + · · ·+ fN (XN )

+ f12(X1, X2) + f13(X1, X3) + · · ·+ fN−1N (XN−1, XN )

+ f123(X1, X2, X3) + . . .

+ . . .

+ f1...N (X1, . . . , XN )

The most convenient form is the third form:

f(X) =
∑
u⊆U

fu(Xu) (2.12)

where u is a multi-index, U = {1, 2, . . . , d}, and the sum is over all subsets of U . Now
Xu is the set of random-variables whose indices lie in u, and fu is the component function
only dependent on Xu. If it is true that – in physical and engineering models – low-order

1Incidentally, a much weaker condition on f than that required by (2.10).
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2.3 Global Sensitivity of Functions: Sobol Indices 13

interactions of variables have the main effect on the output, and if this is captured by the
decomposition above, then we should be able to truncate the sum without substancial loss of
fidelity. Compare this to sparse grids, in which high polynomial order interactions of multiple
variables are also preferentially eliminated.

This formula is called an ANOVA decomposition if:∫
fu(xu1 , . . . , xus)dρ(xi) = 0 for i ∈ u. (2.13)

This implies:

Efu :=

∫
fu(xu)dρ(xu) = 0 for u 6= ∅, (2.14)

i.e. all fu have zero mean, with the exception of f∅, and

cov(fu, fv) =

∫
fu(xu)fv(xv)dρ(xu ∪ xv) = 0 for u 6= v, (2.15)

i.e. fu, fv are orthogonal. Let u′ is the complement of u, so that {u∪u′} = U and {u∩u′} = ∅.
These properties are satisfied when the component functions fu are defined as:

f∅ =

∫
f(x)dρ(x),

fu =

∫
f(x)dρ(xu′)−

∑
w⊂u

fw(xw) for u 6= ∅,

which can be rewritten in terms of conditional expectations:

f∅ = Ef,
fi = E(f |Xi)− f0,

fij = E(f |Xi, Xj)− fi − fj − f0,

. . .

at which point the terms can be interpreted. It is evident that fi captures the effect of varying
Xi alone, with all other variables integrated out. And fij captures the effect of varying Xi

and Xj simoultaneously, minus the effect of their individual variations. And so on.

The variances of these terms are therefore our desired sensitivity measures:

Du := var(fu) =

∫
f2
udρ(xu), (2.16)

which implies that all Sobol variances are non-negative. A little algebra shows that Du

simplifies to:

Du :=

∫ (∫
f(x)dρ(xu′)

)2

dρ(xu)−
∑
w⊂u

∫
(fw(xw))2 dρ(xu),

=

∫ (∫
f(x)dρ(xu′)

)2

dρ(xu)−
∑
w⊂u

Dw, (2.17)
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which is a readily computable expression for Du, and allows computation in order of increasing
interaction, first Di, then Dij , then Dijk etc. As well as Du ≥ 0 we have

D := var(f) =
∑
u⊆U

Du,

i.e. the variance of f has been decomposed into the effects due to individual combinations of
variables. This property suggests the definition of Sobol indices, which are just normalized
Sobol variances:

Su :=
Du

D
.

2.4 Clenshaw-Curtis Quadrature

As mentioned in the literature review (Section 1.2), there are many quadrature rules with
corresponding basis functions which can be used. For this project, the Clenshaw-Curtis
quadrature rule is used in combination with Lagrange polynomials.

Quadrature rules are typically used in combination with polynomial basis functions, see [8].
However, it can be convenient to use linear basis functions when dealing with non-smooth
functions. This is why Section 2.4.2 will use polynomial basis functions, and Section 2.4.3 will
discuss the use of linear hat basis functions. But first, a definition of the abscissae is given in
Section 2.4.1.

2.4.1 Abscissae

The Clenshaw-Curtis quadrature rule is used to approximate an integral as:

∫ 1

−1
f(x)β(x)dx ≈

n∑
k=1

wkf(xk), (2.18)

where β(x) is a weighting function that corresponds to a probability density function, xk are
the abscissae of the Clenshaw-Curtis rule, and wk are the corresponding weights. Since β(x)
is a PDF, by definition

∫ 1
−1 β(x)dx = 1. The abscissae of the n-point Clenshaw-Curtis rule in

the reference interval [−1, 1] are defined as [15]:

xk :=

{
0 if l = 1,

cos
(

(k−1)π
n−1

)
, k = 1, ..., n if l > 1.

(2.19)

where n = 2l−1 +1. The computation of the weights is discussed in the following two sections.

Desmedt S.G.L. M.Sc. Thesis
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2.4.2 Weights for Polynomial Basis Functions

This section will deal with the computation of the weights for polynomial basis functions.
First, a uniform input parameter distribution is considered, where each point is equally im-
portant. This distribution can be utilized if there is no additional information on the input.
It is possible to obtain weights corresponding to other distributions.

We will use an algorithm from the work of Sommariva [15]. It uses a discrete cosine transform
to compute the weights of Clenshaw-Curtis and Féjer quadrature rules for general weight
functions β. Sommariva shows that the Clenshaw-Curtis weights can be computed as long as
the weighted moments of the Chebyshev polynomials are known. These are defined as:

γk :=

∫ 1

−1
Tk(x)β(x)dx, (2.20)

where β(x) is the weighting function and Tk(x) the Chebyshev polynomials, which can be
found using [1]:

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x).

(2.21)

The first few Chebyshev polynomials are given here:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

Since an analytical expression for the Chebyshev polynomials is available, only the weighting
function β(x) is required to compute the weighted moments for the Sommariva algorithm.
Two common weighting functions will be used in this thesis: the uniform distribution and
the truncated normal distribution.

Uniform Distribution

For the uniform distribution, the weighting function is set β(x) = 1
2 for x ∈ [−1, 1], which

simplifies equation 2.20 to the integrals of the Chebyshev polynomials. Note that other
works dealing with Clenshaw-Curtis quadrature rules tend to use β(x) = 1 for the uniform
distribution, for example [33]. The weights are the same up to a constant, in this case 1

2 . The

reason for choosing β(x) = 1
2 here is to ensure that

∫ 1
−1 β(x)dx = 1. In other words β(x) is

the probability density function of x. It is straightforward to compute the weighted moments
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as:

γ0 =

∫ 1

−1
T0(x)dx =

∫ 1

−1
dx = 2

γ1 =

∫ 1

−1
T1(x)dx =

∫ 1

−1
xdx = 0

γ2 =

∫ 1

−1
T2(x)dx =

∫ 1

−1
2x2 − 1dx = −2

3

γ3 =

∫ 1

−1
T3(x)dx = 0

γ4 =

∫ 1

−1
T4(x)dx = − 2

15

...

(2.22)

or in general:

γk =


2 if k is 0

0 if k is odd

− 2
2k−1

if k is even

(2.23)

Using the vector of γk as input for the Sommariva algorithm, the weights for the uniform
distribution are then calculated.

Truncated Normal Distribution

For the second distribution considered, the truncated normal distribution, the weighting func-
tion is set to β(x) = NT (x) such that:∫ 1

−1
f(x)NT (x)dx =

1∫ 1
−1N (x)dx

∫ 1

−1
f(x)N (x)dx (2.24)

where f(x) can be any function and N (x) is the normal distribution:

N (x) =
1

σ
√

2π
e

(x−µ)2

2σ2 (2.25)

It is convenient to rewrite the integral by splitting up the terms of the Chebyshev polynomial.
Each of these integral can be computed separately and subsequently summed up to obtain
the actual results. For example:

γ2 =

∫ 1

−1
T2(x)NT (x)dx =

∫ 1

−1
(2x2 − 1)NT (x) (2.26)

= 2

∫ 1

−1
x2NT (x)−

∫ 1

−1
NT (x) (2.27)

This implies that to compute the modified moments γk, the integrals of the form:

Ik =

∫ 1

−1
xkN (x) (2.28)
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are required for k = 0, ..., k. For this project, the normal distribution is truncated at the
95% range, which corresponds to approximately µ ± 2σ, though it is possible to choose any
value between 0 and 1. It is trivial to derive (2.28) from (2.24) since

∫ 1
−1N (x)dx is known

to be 0.95; it is also by definition equal to I0. Note that the truncated normal distribution
is a symmetric function and the Chebyshev polynomials alternate between even and odd
functions. It follows that half of the integrals will be of odd functions, which by definition are
equal to zero. This is confirmed when computing the integrals. Performing partial integration
yields the following recursive expression:

I0 = 0.95

Ik = 0 if k is odd

Ik = −
√

2σ√
π
e

1
2σ2 + (n− 1)σ2In−2 if k is even.

(2.29)

The expression above can also be written analytically, but it is shorter and more convenient
to write it in a recursive way. Note that µ has been set to zero in equation (2.29) since µ = 0
when dealing with the range [−1, 1].

Finally, the weighted moments γk can be calculated by combining (2.29) with the correct
coefficients for each Chebyshev polynomial. The first few are given below. Recall that:∫ 1

−1
Tk(x)NT (x)dx =

1

I0

∫ 1

−1
Tk(x)N (x)dx, (2.30)

such that the weighted moments γk become:

γ0 =

∫ 1

−1
T0(x)NT (x)dx =

I0

I0
= 1,

γ1 =

∫ 1

−1
T1(x)NT (x)dx = 0,

γ2 =

∫ 1

−1
T2(x)NT (x)dx =

2I2 − I0

I0
,

γ3 =

∫ 1

−1
T3(x)NT (x)dx = 0,

γ4 =

∫ 1

−1
T4(x)NT (x)dx =

4I3 − 3I1

I0
,

...

(2.31)

Using this vector containing γk for k = 0, ..., N , the Sommariva algorithm can be used to
obtain the weights for the truncated normal distribution.

2.4.3 Weights for Linear Hat Basis Functions

Instead of using polynomials as the basis functions, it is also possible to use linear hat func-
tions. When dealing with a function which shows non-smooth behavior, it is convenient to
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have this option available. The convergence using linear hat functions is not spectral, which
implies it will in general be slower than for polynomials, which is why it is only used as a
backup. The definition of the i−th linear hat function is given by:

Hi(x) =


ax+ b if x ∈ [xi−1, xi]

cx+ d if x ∈ [xi, xi+1]

0 otherwise

(2.32)

where H are the linear hat function, n is the number of nodes and xi are nodes, in this case
Clenshaw-Curtis abscissae. H is equal to 1 at the i-th node. Coefficients a, b, c and d can

Figure 2.1: Linear hat function.

be determined from the geometry of the hat function:

a =
1

xi − xi−1
(2.33)

b =
xi−1

xi−1 − xi
(2.34)

c =
1

xi − xi+1
(2.35)

d =
xi+1

xi+1 − xi
. (2.36)

We are trying to approximate f(x) by linear hat functions:

f(x) ≈
n∑
i=1

f(xi)Hi(x). (2.37)

Taking the integral f(x) multiplied by some weighting function β(x):∫ 1

−1
f(x)β(x)dx ≈

n∑
i=1

f(xi)

∫ 1

−1
Hi(x)β(x)dx =

n∑
i=1

f(xi)wi. (2.38)

The calculation of the weights is done by computing the following integral:

wi =

∫ 1

−1
Hi(x)β(x)dx =

∫ xi+1

xi−1

Hi(x)β(x)dx, (2.39)
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since Hi(x) is 0 outside [xi−1, xi+1]. Splitting this up into two parts for convenience gives:

wi =

∫ xi

xi−1

(ax+ b)β(x)dx+

∫ xi+1

xi

(cx+ d)β(x)dx, (2.40)

where a, b, c and d are given in (2.33).

Uniform Distribution

The weighting function is set to β(x) = 1
2 , as was done in Section 2.4.2. In this case it

becomes straightforward to evaluate (2.40). Alternatively from the geometry of the linear hat
function it is clear that we are simply looking for the area of a triangle, for which the formula
is 1/2× base×height. From the definition of the hat function (2.32) the base is known to be
from xi−1 to xi+1, and the height h = 1 such that:

wi =
(xi+1 − xi−1)

2
. (2.41)

Truncated Normal Distribution

For the truncated normal input distribution, (2.40) now includes the truncated normal dis-
tribution. Splitting up the terms yields:

wi = a

∫ xi

xi−1

xNT (x)dx+b

∫ xi

xi−1

NT (x)dx+c

∫ xi+1

xi

xNT (x)dx+d

∫ xi+1

xi

NT (x)dx, (2.42)

where the fact that Hi(x) is 0 outside [xi−1, xi+1] has been used. Recalling from (2.24):∫ 1

−1
f(x)NT (x)dx =

1∫ 1
−1N (x)dx

∫ 1

−1
f(x)N (x)dx, (2.43)

where f(x) can be any function and N (x) is the normal distribution given in (2.24). The
choice is again made to truncate at the 95% range. The integrals in (2.42) can then be split
up into two categories:

∫ xs+1

xs
xN (x)dx and b

∫ xs+1

xs
N (x)dx. To compute the integrals of the

second kind, use the well-known fact that:∫ x

−∞
N (x) =

1

2

(
1 + erf

(
x− µ
σ
√

2

))
, (2.44)

such that:∫ xs+1

xs

N (x)dx =

∫ xs+1

−∞
N (x)dx−

∫ xs

−∞
N (x)dx (2.45)

=
1

2

(
1 + erf

(
xs+1 − µ
σ
√

2

))
− 1

2

(
1 + erf

(
xs − µ
σ
√

2

))
. (2.46)

For the integrals of the first kind, it is actually deceptively easy to compute the integral using
partial integration. Substituting the N (x) notation by its definition:∫ xs+1

xs

xN (x)dx =

∫ xs+1

xs

x
1

σ
√

2π
e

(x−µ)2

2σ2 dx =

[
σ√
2π
e−

1
2σ2

x2
]xs+1

xs

, (2.47)

where the fact that µ = 0 has been used. The weights in (2.42) can now be determined by
combining the above with (2.33).
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2.5 Sparse Grid Construction

The sparse grid method is a numerical discretization technique which was first introduced
by Smolyak [20]. It uses tensor products of 1-dimensional quadrature rules to construct an
n-dimensional grid which can be used for multivariate integration. The difference with the
sampling grid of the PC method is that specific tensor product combinations are used to
construct a grid, instead of making a full tensor grid. Using the notation of Gerstner and
Griebel [18] to describe the numerical integation of functions f (d)(x) from a function class F
over the d-dimensional hypercube Ω = [−1, 1]d:

If (d) :=

∫
Ω
f (d)(x)dx (2.48)

by a sequence of n
(d)
l -point quadrature formulas with level l ∈ N and n

(d)
l < nl + 1(d):

Qlf
(d) :=

n
(d)
l∑
i=1

wlif
(d)(xli) (2.49)

using weights wli and abscissae xli. The construction of the sparse grid begins with a series
of 1-dimensional quadrature formulas for a univariate function f (1):

Qlf
(1) :=

n
(1)
l∑
i=1

wlif
(1)(xli) (2.50)

The difference formulas are defined by:

∆Qkf
(1) := (Qk −Qk−1)f (1) with (2.51)

Q0f
(1) := 0 (2.52)

For index set X ∈ Nd, the conventional sparse grid quadrature method for d-dimensional
functions f (d) for a given level l ∈ N is:

QX f
(d) :=

∑
k∈X

(∆Qk1 ⊗ · · · ⊗∆Qkd)f
(d) (2.53)

For a standard sparse grid, all possible tensor product combinations of one-dimensional
quadrature formulas are considered which satisfy the criterion X = {k :

∑
ki ≤ l+ d− 1, i =

1, . . . , d}, such that the index set X describes a unit simplex. Here, ki indicate the multi-
indices in the admissible index set. To give a visual representation of the sparse grid con-
struction the tensor products can be plotted as blocks, Figure 2.5 shows an example of a
level 3 simplex in 2D and 3D. Each of the blocks in the simplex represents one sparse grid
component, which is a tensor product of 1-d quadrature rules. A visual representation of the
2-dimensional tensor product of a 1-point rule with a 3-point rule is shown in Figure 2.5.
Adding all the components corresponding to the blocks in the simplex produces a conven-
tional sparse grid, as shown in Figure 2.4 for level l = 3. The Smolyak procedure can be used
with any quadrature rule, be it nested or non-nested. Each of the previous figures has used
a nested rule.
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Figure 2.2: A level 3 sparse grid simplex in 2 (left) and 3 (right) dimensions.

Figure 2.3: Tensor product of a 1-point rule and a 3-point rule, resulting in a 2D grid containing
3 points.

Figure 2.4: Sparse grid components in the 2-dimensional level 3 simplex (left) and the resulting
sparse grid (right). In this figure the grid is constructed using nested quadrature rules.
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2.6 Interpolation on Sparse Grids

This section will go over two types of interpolation on sparse grids: interpolation using La-
grange polynomials in Section 2.6.1 and using linear hat functions in Section 2.6.2.

2.6.1 Lagrange Polynomial Basis Functions

The i-th Lagrange polynomial associated with abscissae xk is defined as [29]:

Li(x) =
Πj 6=i(x− xj)
Πj 6=i(xi − xj)

(2.54)

xi and xi are sample points. Essentially, each Lagrange polynomial has value 1 at one of
the abscissae and has value 0 at all the others. Below, Lagrange polynomials through 3
points (x = −1, 0 and 1) are shown. By multiplying the Lagrange polynomials with the

Figure 2.5: Lagrange polynomials going through abscissae x = −1, 0 and 1.

corresponding function values, and adding them together, an interpolating polynomial is
obtained which passes through all the function values. The order of the resulting polynomial
is equal to n− 1.

f(x) ≈ P (x) =
n∑
i=1

f(xi)Li(x) (2.55)

As an example, Figure 2.6 shows the polynomial going through (−1, 3), (0, 1) and (1, 2) as
the sum of the three Lagrange polynomials multiplied by their respective function values.
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Figure 2.6: Polynomial interpolation through (−1, 3), (0, 1) and (1, 2) as the sum of 3 Lagrange
polynomials multiplied by the respective function values.

2.6.2 Linear Hat Basis Functions

The i-th linear hat function with associated abscissa ξi is given by:

Hi(x) =


ax+ b if x ∈ [xi−1, xi]

cx+ d if x ∈ [xi, xi+1]

0 otherwise

(2.56)

where n is the number of sample points and ξ are the sample points. Put simply, it connects
the center points xki with its two neighbours through a straight line. It is similar to the
Lagrange polynomial in the fact that it has value 1 at one of the abscissae and 0 at all the
others. Because of this, the formula for the approximation of a function using linear hat
functions has the same form as equation 2.55:

f(x) ≈
n∑
i=1

f(xi)Hi(x) (2.57)

To illustrate the use of linear hat functions, they are plotted through x = −1, 0 and 1 in
Figure 2.7. The linear interpolation through (−1, 3), (0, 1) and (1, 2) is shown in Figure 2.8.
This can be compared to Figure 2.6, which shows the Lagrange polynomial interpolation
through the same points.
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Figure 2.7: Linear hat functions going through abscissae x = −1, 0 and 1.

Figure 2.8: Linear interpolation through (−1, 3), (0, 1) and (1, 2) as the sum of 3 linear hat
functions multiplied by the respective function values.

Desmedt S.G.L. M.Sc. Thesis



2.7 Numerical Approximation of Sobol Variances 25

2.6.3 Sparse Grid Interpolation

Both 1-dimensional interpolation methods methods can be extended to n dimensions. The
procedure is similar to the extension of 1-D quadrature rules to n dimensions shown in Section
2.5. The notation below only shows the usage of Lagrange polynomials. To do the same thing
for linear interpolation, the Lagrange polynomials are replaced by linear hat functions.

The goal is to find an approximation of a function f (d)(x) using the 1-D interpolation defined
in the previous subsections:

Plf
(1) :=

n
(1)
l∑
i=1

f (1)(xi)Li(x) (2.58)

where Pl denotes that this is an approximation of f and nl is the number of points in the
quadrature rule. The other symbols are defined in Section 2.6.1. Now define the difference
formulas as:

∆Pkf
(1) := (Pk − Pk−1)f (1) with (2.59)

P0f
(1) := 0 (2.60)

For X ∈ Nd, the sparse grid interpolation for d-dimensional functions f (d) for a given level
l ∈ N is:

Plf
(d) :=

∑
k∈X

(∆Pk1 ⊗ · · · ⊗∆Pkd)f
(d) (2.61)

For a standard sparse grid, all possible tensor product combinations of one-dimensional
quadrature formulas are considered which satisfy the criterion X = {k :

∑
ki ≤ l+ d− 1, i =

1, . . . , d}, such that the index set X describes a unit simplex.

2.7 Numerical Approximation of Sobol Variances

To compute the Sobol variances on a sparse grid, the following integral is evaluated, recalling
from (2.17):

Du :=

∫ (∫
f(x)dρ(xu′)

)2

dρ(xu)−
∑
w⊂u

Dw, (2.62)

It was already shown in (2.61) that function f(x) can be approximated by means of interpo-
lation:

f(x) ≈ Plf (d) :=
∑
k∈X

(∆Pk1 ⊗ · · · ⊗∆Pkd)f
(d) (2.63)

For a standard sparse grid, all possible tensor product combinations of one-dimensional
quadrature formulas are considered which satisfy the criterion X = {k : |k|1 ≤ l + d − 1},
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such that the index set describes a unit simplex. In (2.53) the approximation of an integral
of a function using a standard sparse grid has been shown to be:∫

f(x)dx ≈ Qlf (d) :=
∑
k∈X

(∆Qk1 ⊗ · · · ⊗∆Qkd)f
(d) (2.64)

Recall the difference formulas:

∆Qkf
(1) := (Qk −Qk−1)f (1) with (2.65)

Q0f
(1) := 0, (2.66)

and:

Qkf
(1) :=

n
(1)
k∑
i=1

wkif
(1)(xki) (2.67)

It was shown in Section 2.4.1 that it is possible to compute the weights such that it includes an
input weighting distribution. To solve (2.62), first consider the inner integral

∫
f(x)dρ(xu′).

Using the information above, this can be rewritten:∫
f(x)dρ(xu′) ≈

∫
Plfdρ(xu′) (2.68)

=

∫ ∑
k

(∆Pk1 ⊗ · · · ⊗∆Pkd)fdρ(xu′) (2.69)

=

∫ ∑
ku

∑
k′u

(∆Pku1 ⊗ · · · ⊗∆Pkun )⊗ (∆Pku′1
⊗ · · · ⊗∆Pku′p

)fdρ(xu′)

(2.70)

where k has been split up into contribution from u and u′. The subscripts of f have been
dropped for simplicity. The above can be rewritten by taking into account:∫

f(x)dx ≈
∫
Plfdx and (2.71)∫

f(x)dx ≈ Qlf (2.72)

(2.73)

such that:∫
f(x)dρ(xu′) ≈

∑
ku

∑
k′u

(∆Pku1 ⊗ · · · ⊗∆Pkun )f ⊗ (∆Qku′1
⊗ · · · ⊗∆Qku′p

)f (2.74)

= Plfu ⊗Qlfu′ (2.75)

Combining this info with (2.62) gives [17]:

Du ≈
∫

(Plfu ⊗Qlfu′)2 dρ(xu)−
∑
w⊂u

Dw (2.76)

= (Qlfu′)
2 ⊗Qlf2

u −
∑
w⊂u

Dw (2.77)
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The Sobol variances are calculated in order of increasing cardinality, so all Dw are always
known from previous calculations.

In the literature review in Section 1.2 it was already mentioned that the convergence of
Clenshaw-Curtis integration has been shown to be close to Gaussian integration, which can
approximate a polynomial P of degree 2N − 1 with N sampling points [13]. If there are N
samples of a function f , the approximation of the function goes up to a degree of maximum
2N − 1. To now approximate f2 (of degree 2(2N − 1) = 4N − 2), an additional number of
samples is required. These samples are generated by interpolating the available data on a
sparse grid of a higher level. The increase in number of points for each increasing level is:

Nl+1 = 2Nl − 1, (2.78)

which follows from (2.19). Here, subscript l denotes the current level. If the refined grid is a
sparse grid one level higher than the current one, it could approximate f2 up to degree:

2Nl+1 − 1 = 2(2Nl − 1)− 1 (2.79)

= 4Nl − 3, (2.80)

which is not enough to integrate the polynomial approximation of f2 exactly. Following the
same principle, if the sparse is refined by 2 levels it is guaranteed to always integrate the
polynomial approximation of f2 exactly. All of this only holds when dealing with polynomial
basis functions.

For the linear basis functions, the function f is approximated by piecewise linear basis func-
tions. This means that f2 consists of piecewise quadratic functions. By considering a grid
of one level higher than the current sparse grid, these piecewise quadratic functions can be
determined and used to integrate the integral of the piecewise quadratic approximation of f2.
The piecewise quadratic approximation was not implemented, meaning that the integrals are
not evaluated exactly when using linear basis functions. One way to still get a reasonable ap-
proximation is to make a grid of a much higher level, using piecewise linear functions as usual.
The disadvantage of this is that the calculations may show Sobol variances to be negative or
inaccurate. However, it can still pose problems by interfering with the adaptive scheme, which
selects refinements based on the values of the Sobol variances. This is a serious drawback
of having to use linear integration to determine the Sobol variances, and if this method is
developed further, this is definitely one of the things that needs to be implemented.

2.8 Adaptive Grid Refinement

This section will give a description of two adaptive grid refinement methods. For clarity, first
a list of definitions for frequently used terms is given here. Most of these definitions are taken
from [18]:

Definition 1 A multi-index represents one combination of 1D quadrature rules
to form a N -dimensional grid component. For example: multi-index (1, 3) would
represent a 2-dimensional grid component formed by the tensor product Q1 ⊗Q3.
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Definition 2 An index set is a set of multi-indices that represent the components
of the sparse grid. An index set X is admissible if it satisfies the following condition
for generalized sparse grid construction for all multi-indices k ∈ X :

k− ej ∈ X for 1 ≤ j ≤ d, kj > 1, (2.81)

where k is a multi-index, ej is the j-th unit vector and d is the number of dimensions
of the problem. In other words, any admissible index set for each k contains all
indices which have smaller entries than k in at least one dimension.

Definition 3 The forward neighbours of a multi-index k is defined as the d multi-
indices {k + ej , 1 ≤ j ≤ d}. By extension, the forward neighbours of a grid are all
multi-indices which satisfy this definition, and are not yet part of the index set X .
As an example consider a level 2, 2-dimensional sparse grid. The index set for this
grid is: {(1, 1), (2, 1), (1, 2)}. The set of forward neighbours for this grid would be:
{(3, 1), (2, 2), (1, 3)}. This is depicted in Figure 2.8.1, where the sparse grid is shown
in dark gray, and the forward neighbours in light grey.

Definition 4 The backward neighbours of a multi-index are defined as all multi-
indices {k− ej , 1 ≤ j ≤ d}.

Definition 5 A parent interaction is an interaction which contains exactly (i− 1)
of the indices of the current interaction, where i indicates the order of the current
interaction. As an example, for third order interaction (1, 2, 4) there are exactly
three parent interactions: (1, 2), (1, 4) and (2, 4).

The next section will present a description of the adaptive refinement approach by Gerstner
& Griebel [18] and the Sobol adaptive refinement method.

2.8.1 Gerstner and Griebel Adaptivity

The Gerstner and Griebel adaptive approach is explained in detail in [18], which the infor-
mation contained in this section is based on. This approach divides the index set I into two
disjoint sets, called active and old index set. The active index set A contains the forward
neighbours of the old index set I. For each of the multi-indices in A, an error indicator is
calculated:

gj =
∣∣II − II+Aj

∣∣ , (2.82)

where g is the error indicator, I indicates the computed value of the integral and j indicates
a multi-index in A. In other words, the error indicator calculates the difference between the
calculated value of the integral with the old index set, the value of the integral calculated
with the old index set plus one of the multi-indices in the active index set. This is done for
each entry in A. The global error estimate η is then the sum of all gj :

η =

m∑
j=1

gj , (2.83)
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Figure 2.9: Diagram showing the forward neighbours of a level 2, 2-dimensional sparse grid. The
multi-indices of the sparse grid are shown in dark grey, while the three forward neighbours are
light grey.

where m is the number of multi-indices in A. For each iterative refinement step, the following
actions are taken:

• The index with the largest associated error indicator is selected from the active index
set and put into the old index set.

• Its associated error estimate is subtracted from the global error estimate η.

• At the same time the new admissible forward neighbours are added to the active index
set. The global error estimate is recalculated by determining the error estimators of
these new forward neighbours.

• The value of the integral is updated.

• If the global error estimate falls below a given threshold, the computation is stopped
and the computed integral value is returned. If this is not the case, the cycle goes back
to the first step.

The computed integral value from the Gerstner & Griebel algorithm was compared to a high-
level full sparse grid, and yielded results which were the same up to an accuracy of 10−8 or
better.
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Algorithm 2.8.1: Gerstner&Griebel(TOL)

i := (1, . . . , 1)
O := ∅
A := i
r := ∆if
while (η > TOL)

do



select i from A with largest gi
A := A \ {i}
O := O ∪ {i}
η := η − gi
for k := 1, . . . , d

do



j := i + ek
if j− q ∈ O for allq = 1, . . . , d

then


A := A ∪ {j}
s := ∆jf
r := r + s
η = η + gj

return (r)

2.8.2 Sobol Adaptive Refinement Algorithm

The goal of this algorithm is to find a grid refinement based on the information contained in
the Sobol variances of the current grid. Since the values obtained are just approximations
of the real values, they can change between refinement steps. This algorithm does not look
forward (like the Gerstner & Griebel approach, and also does not use the values from previous
refinement steps; for each step the refinements are chosen based on the current grid. The
algorithm is explained in words first:

First, the Sobol adaptive refinement algorithm starts with a level 2 sparse grid, with the
number of dimensions d equal to number of the dimensions of the problem under consideration.
The range of all parameters is normalized to [0, 1] in the code, so this has to be translated
to the range of the problem parameters. From this, an input value matrix can constructed
and the simulations are run. The relevant data is extracted from the simulation results,
which are then used to calculate the mean, total variance and first order Sobol variances.
Note that, since this is only a level 2 grid, any Sobol variances higher than the first order
are automatically zero. The only way to approximate the higher order Sobol variances is by
adding points in the appropriate directions, which means a mechanism is required to add the
appropriate higher order interactions.

Next, the Sobol variances are sorted based on their magnitude, from high to low. A cut-off
value is used to determine which directions to refine. The sum of the first N Sobol variances
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is such that:

N∑
r=1

Dr ≥ CDtot, (2.84)

where r indicates the rank of the Sobol variance according to magnitude, C is the cutoff value
and Dtot is the total variance. In parallel, a list of valid forward neighbours of the current
grid is calculated. The refinement of the grid is added in the directions corresponding to the
N selected Sobol variances by selecting the appropriate multi-indices out of the list of forward
neighbours. This is done as follows: for D1, the refinement occurs only in the direction of the
first parameter (which corresponds to multi-indices of the form (x, 1, . . . , 1)) where the x can
be any value > 1.

For a second order interaction, the refinement occurs on the plane spanned by 2 corresponding
parameters. For example take D1,2, the corresponding forward neighbours must be of the form
(x, y, 1, . . . , 1), where x and y can be any number > 1. The principle extends to N -th order
interactions. Which interactions are refined depends on the cut-off value. Since the calculated
values of the Sobol variances are only approximations, their exact value can change between
refinement steps.

Using these guidelines on their own would mean that higher-order interactions are never
introduced. Since only the first order Sobol variances are available on a level l = 2 sparse
grid, refinements would only occur in the directions of single parameters. To remedy this, a
higher-order interaction is included in the refinement if it satisfies two conditions:

• All of its parent interactions are being refined.

• It is the first time this higher order interaction is being refined.

The first condition is based on the assumption that higher order interactions are more likely
to be significant if their parent interactions are. In some cases this may not be true, in which
case a significant higher order interaction can be neglected. This is where the importance
of the cut-off value becomes clear. The second condition is necessary since we only want to
add a higher order interaction once. After that, the corresponding Sobol variance can be
calculated. Whether or not more refinements are added in this direction then depends on the
ranking of the Sobol variances in the next refinement cycle.

The Sobol variances are only approximations of the real values, which means they will change
with each step until the value converges. For high a cut-off value, only interactions which
appear to be of small significance are not refined. Even if the initial approximation of the
values is different from the real value, it is likely that the total error will be limited. As such,
the cut-off value plays an important role in the performance of the algorithm: the higher
the value, the closer the refined grid will look like a standard sparse grid. On the other
hand, the lower this value is set, the higher the chance significant interactions are ignored. A
good starting point is to set the cut-off to 0.95 as it appears to include the most significant
interactions while still reducing the number of points of the refined grid when comparing to
a standard sparse grid.
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Finally, a mechanism is in place to check that the parent refinements of each interaction are
being refined as well. If this would not be the case, there is a risk of limiting the search space.
It is not known exactly how much this limited search space could affect the performance of
the algorithm, so the choice was made to include this condition. It also helps conserve the
simplex structure of a standard sparse grid. The algorithm is summarized here:

Algorithm 2.8.2: Soboladaptiverefinement(C)

i := [(1, 1, . . . , 1), (2, 1, . . . , 1), (1, 2, . . . , 1), . . . , (1, 1, . . . , 2)]
while (continue = true)

do



data := f(i)
D := Sobol variances(i, data)
var := Dtot

D := sort(D)
Dc := {}
j = 1
while (sum(Dc) < C.var)

do

{
Dc = Dc +D(j)
j = j + 1

Nf := forwardneighbours(i)
r := refinements(Nf , Dc)
i := i + r

The advantages of this method are as follows:

• Conserves a grid structure which resembles the standard sparse grid, which is already
better then traditional tensor product grids and Monte Carlo simulations.

• Reduced grid size when compared to a standard sparse grid.

• Intuitive refinement criterion based on Sobol variances, which indicate which parameters
have the largest influence on the result.

• A low number of refinement steps (and thus simulations) is generally sufficient to gain
a good approximation of the solution for problems of low to moderate dimension. This
means gaining valuable information of the problem at hand at a limited computational
cost.

Some disadvantages include:

• There is generally no guarantee that the method converges to the true value for a high
number of refinement steps. The only exception to this is when the cut-off value is set
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so high that all interactions are included, in which case the algorithm simply produces
a standard sparse grid.

• There is a risk that a significant interaction is missed because the value of one or
multiple of its parent interactions is so small that it is not included in the refinements.
The chance of this happening increases with dimensions, simply because there are more
potentially important interactions.

• Information from previous refinement steps is not currently included when deciding
which refinements to add. Taking into account previous values could mean that no
more points are added in a certain direction when the value has converged to a given
threshold. This was not included since the search space could be limited, and the effect
of this is unknown. The overall effect of this is almost negligible, since in practice only
a low number of refinement steps will be taken.
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Chapter 3

Verification

This chapter is dedicated mostly to the verification of the implementation of integration and
interpolation on sparse grids, as well as two adaptive grid refinement methods. First, the
test functions which are used for the integration and interpolation testing are defined in
3.1. Sections 3.2 and 3.3 will show the performance of the sparse grid method to perform
integration and interpolation for these six functions. Finally, Section 2.8 will explain the new
Sobol adaptive refinement method as well as the existing method by Gerstner & Griebel [18].
The section is finalized with a simple application example.

3.1 Test functions

A set of six test functions defined by Genz [39] will be used to verify the implementation of
the integration and interpolation in the code. They are defined as follows:

f1(x) = cos

(
2πw1 +

d∑
i=1

aixi

)
, ”Oscillatory”, (3.1)

f2(x) =

d∏
i=1

1

a2
i + (xi − wi)2

, ”Product Peak”, (3.2)

f3(x) =
1(

1 +
∑d

i=1 aixi

)d+1
, ”Corner Peak”, (3.3)

f4(x) = exp

(
−

d∑
i=1

a2
i (xi − wi)2

)
, ”Gaussian”, (3.4)
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f5(x) = exp

(
−

d∑
i=1

ai|xi − wi|

)
, ”Continous”, (3.5)

f6(x) =

{
0 if x1 > w1 and x2 > w2,

exp
(∑d

i=1 aixi

)
otherwise,

”Discontinous”. (3.6)

where d is the number of dimensions, x is the input vector of length d, and ai and wi are
both set to constants for the following computations:

ai =
9

d
for i = 1, . . . , d, (3.7)

wi = 0.5 for i = 1, . . . , d. (3.8)

It is also possible to define vectors a and w such that the entries are not constant, but since
the objective is simply to verify the implementation of the code, this is deemed unnecessary.

Figure 3.1: Qualitative contour plots of the six Genz functions in 2 dimensions. On the top:
Genz function 1 to 3, on the bottom: Genz function 4 to 6. Blue indicates a low value, red
indicates a high value.

A qualitative contour diagram of the six Genz functions is given in Figure 3.1 For five out of
six Genz functions, an analytical solution for the integral

∫ 1
0 fi(x)dx can be found. The only

function for which an analytical solution is not known is Genz function f3(x). The others are
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given here:∫ 1

0
f1(x)dx = 2d cos

(
2πw1 + 0.5

d∑
i=1

ai

)
d∏
i=1

sin(0.5ai)

ai
, (3.9)

∫ 1

0
f2(x)dx =

d∏
i=1

ai (arctan(ai(1− wi)) + arctan(aiwi)) , (3.10)

∫ 1

0
f4(x)dx =

d∏
i=1

√
π

2ai
(erfc(−aiwi)− erfc(ai(1− wi))) , (3.11)

∫ 1

0
f5(x)dx =

d∏
i=1

1

ai
(2− exp(−aiwi)− exp(ai(wi − 1))) , (3.12)

∫ 1

0
f6(x)dx =

{∏2
i=1

exp(aiwi)−1
ai

if d < 3,∏2
i=1

exp(aiwi)−1
ai

∏d
i=3

exp(ai)−1
ai

otherwise
. (3.13)

In the equations above, erfc denotes the complementary error function. All other symbols
are the same as previously defined. The given analytical solutions are used in the following
section to track the convergence of the polynomial and linear integration. Since the domain is
[0, 1]d, calculating the integral is in this case the same as calculating the mean. The integral
of the third Genz function is estimated by a Monte Carlo simulation of N = 100 million
samples. An indication of the accuracy of the Monte Carlo method is given by calculating
the standard error of the estimated mean:

εstd =
σ√
N

(3.14)

where σ is the standard deviation and can be calculated from the integral form for each of
the test functions. The standard error can be seen as the standard deviation of the estimated
sample mean with respect to the real mean. As a criterion for the accuracy we take 2εstd,
such that there is roughly a 95% chance that the error of the Monte Carlo estimated mean
to the integral value is less than or equal to 2εstd. The same procedure can be followed for
the integration using non-uniform weights, since the analytical solutions of the integrals are
only available for a uniform input distribution but we still want to check the accuracy of the
integration method.

3.2 Verification of Integration

3.2.1 Uniform Input distribution

The integrals of the test functions defined in the previous section were computed using
Clenshaw-Curtis sparse grids of levels l = 1, . . . , 9 and dimensions d = 2, 3, 4, 6 and 8, apply-
ing both linear and polynomial weights. For each of these, the relative error is plotted as a
function of the grid size. The relative error is defined as:

ε =

∣∣∣∣ Iapprox − IexactIapproxl=1
− Iexact

∣∣∣∣ , (3.15)
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where Iapprox is the approximate integral value obtained with the sparse grid code, and Iexact
is the analytical solution of the integral.

For
∫ 1

0 f3(x)dx, the exact solution is not known. Instead of using Iexact, IMC from a Monte
Carlo simulation, using N = 108 samples, is used as the reference. An indication of the Monte
Carlo method is given by calculating 2εstd, where εstd is given by (3.14). These are put in
Table 3.1. From Figure 3.2 the following observations can be made:

• The convergence rate generally decreases with increasing dimensions, for all functions.
Linear integration is less affected by this effect than polynomial integration.

• For the first Genz function the polynomial integration clearly outperforms its linear
counterpart. There is clearly spectral convergence for the polynomial integration, while
the convergence of the linear integration stabilizes at a steady value.

• For the second Genz function, there is spectral convergence for d = 2, 3, but not yet
for higher dimensions. The linear integration seems to converge faster than for the first
Genz function, but it is still outperformed by the polynomial integration, which in turn
is slower than for the first Genz function. The difference between linear and polynomial
integration is small for d = 3 and 4.

• The polynomial integration seems to perform slightly better than its linear counterpart
for the third Genz function. Only the convergence of polynomial integration for d = 2
and to a lesser extent 3 is decent, for all other cases the convergence is poor. The error
ε never comes close to 2εstd as tabulated in Table 3.1.

• For the fourth Genz function a similar trend to the second Genz function is found. For
d = 2, 3 the polynomial integration the convergence is spectral, for higher dimensions
this is not (yet) the case. The linear integration is outperformed by the polynomial
integration for each dimensions.

• For the fifth Genz function the linear integration outperforms the polynomial integra-
tion. The difference between both increases with dimensions as the linear integration
converges faster with increasing level, while the polynomial integration converges slower.

• The sixth Genz function also has a better convergence rate for linear integration, though
the difference is very small. Both types of integration seem to be ineffective for this
type of function. This is because the number of points around the discontinuity is quite
small, meaning it is hard to resolve the jump. For the linear integration especially this
affects the convergence rate.

For practical cases, the computational resources are much more limited than for the simple
test functions used here. It is convenient to have an idea of the number of simulations required
to reach a certain accuracy. To that end, the grid points required to reach an error lower
than 10−2 for each function is given in Table 3.2. The third and sixth Genz function are
omitted since convergence generally does not reach a value of 10−2 for these functions for
an acceptable l. It is worth noting that it looks like, in some cases, the minimum grid size
which satisfy the convergence requirement is higher for smaller dimensions. This is because
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(a) First Genz function. (b) Second Genz function.

(c) Third Genz function. (d) Fourth Genz function.

(e) Fifth Genz function. (f) Sixth Genz function.

Figure 3.2: Convergence of linear and polynomial integration of the different Genz functions for
dimension d = 2, 3, 4, 6, 8 and level l = 1, . . . , 9 for a uniform input parameter distribution.
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Table 3.1: Accuracy of the Monte Carlo simulation for the third Genz function assuming a uniform
input parameter distribution.

Dimensions 2εstd

2 9.2e-06
3 2.4e-06
4 5.3e-07
6 1.9e-06
8 1.5e-07

Table 3.2: Minimum grid sizes to reach an error below 10−2 for the first, second, fourth and fifth
Genz function.

(a) Polynomial integration of f1.
Dimensions Number of grid points Error

2 65 3.9e-04
3 69 8.1e-03
4 137 3.1e-03
6 389 4.8e-04
8 849 8.0e-04

(b) Linear integration of f1.
Dimensions Number of grid points Error

2 65 7.3e-03
3 441 6.2e-03
4 1105 3.9e-03
6 4865 4.9e-03
8 15713 5.8e-03

(c) Polynomial integration of f2.
Dimensions Number of grid points Error

2 145 4.0e-03
3 177 3.6e-03
4 137 6.3e-03
6 1457 2.1e-03
8 849 6.6e-03

(d) Linear integration of f2.
Dimensions Number of grid points Error

2 65 1.1e-03
3 177 6.9e-03
4 401 9.0e-03
6 4865 9.5e-04
8 15713 1.7e-03

(e) Polynomial integration of f4.
Dimensions Number of grid points Error

2 145 3.0e-03
3 441 5.0e-03
4 401 8.7e-03
6 1457 4.0e-04
8 849 3.0e-03

(f) Linear integration of f4.
Dimensions Number of grid points Error

2 65 5.4e-03
3 177 9.9e-03
4 1105 2.6e-03
6 4865 1.6e-03
8 15713 1.7e-03

(g) Polynomial integration of f5.
Dimensions Number of grid points Error

2 705 3.4e-03
3 441 2.6e-03
4 7537 4.3e-03
6 15121 8.4e-03
8 15713 3.3e-03

(h) Linear integration of f5.
Dimensions Number of grid points Error

2 321 4.7e-03
3 177 7.1e-03
4 401 3.7e-03
6 4865 5.7e-04
8 9017 1.9e-03
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the number of points in a grid increases significantly with each level. In a few cases, the
convergence jumps from for example 10−2 to 10−4, while for others the jump is much smaller.
Since the grid sizes shown are the values for which the error goes below 10−2, it is possible
that the grid of a lower level was barely too high to quilify for this requirement. These values
are simply given as an indication of what to expect in terms of computational effort for a
problem of given dimensions.

The convergence for the third and sixth Genz function never reaches the requirement of
< 10−2, which is why there are no tables for these functions.

3.2.2 Truncated Normal Input distribution

The analytical solutions of the integrals are only available for a uniform weighting function
ρ(x) = 1, which means there is no exact solution available. However, a Monte Carlo simulation
can be used to estimate the integral.

ε =

∣∣∣∣ Iapprox − IMC

Iapproxl=1
− IMC

∣∣∣∣ , (3.16)

where the denominator is introduced for the sole purpose of easily comparing the convergence
for different dimensions by making sure ε always starts at 1. The integrals were again com-
puted using Clenshaw-Curtis sparse grids of levels l = 1, . . . , 9 and dimensions d = 2, 3, 4, 6
and 8, applying both linear and polynomial weights.

For each of the Genz functions, the reference solution is calculated using a Monte Carlo
simulation of N = 108 samples. An indication of the accuracy of the results obtained using
Monte Carlo is the standard error defined in (3.14):

εstd =
σ√
N

(3.17)

In the tables below, 2εstd is given for dimensions for each test function.
From Figure 3.3 the following observations can be made:

• The convergence rate generally decreases with increasing dimensions, for all functions.

• Since the reference solutions are obtained via Monte Carlo. In some of the figures, the
error ε stops going down once it reaches a certain value; this is because the reference
result is only accurate up to a certain order of magnitude. The accuracy of the Monte
Carlo results is estimated by calculating 2 εstd for each function for different dimensions.
These values are given in Table 3.3. In almost all cases, the value where the error stays
constant is below 2εstd, meaning that it is within the expected 95% range of the result.
In the cases where this effect occurs at a value higher than 2εstd, it is still close enough
to that value (i.e.: the same order of magnitude) to assume that the integration method
is valid.

• For the first Genz function the polynomial integration outperforms its linear counter-
part. The polynomial integration quickly reaches a point where the error is of the same
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(a) First Genz function. (b) Second Genz function.

(c) Third Genz function. (d) Fourth Genz function.

(e) Fifth Genz function. (f) Sixth Genz function.

Figure 3.3: Convergence of linear and polynomial integration of the different Genz functions
for dimension d = 2, 3, 4, 6, 8 and level l = 1, . . . , 9 for a truncated normal input parameter
distribution.
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Table 3.3: Accuracy of the Monte Carlo simulation for each Genz function assuming a truncated
normal input parameter distribution.

(a) First Genz function.
Dimensions 2εstd

2 7.0e-05
3 6.8e-05
4 6.5e-05
6 6.0e-05
8 5.5e-05

(b) Second Genz function.
Dimensions 2εstd

2 1.0e-02
3 1.5e-02
4 1.2e-02
6 1.8e-03
8 7.4e-05

(c) Third Genz function.
Dimensions 2εstd

2 8.3e-04
3 8.4e-04
4 8.6e-03
6 7.8e-02
8 5.6e-02

(d) Fourth Genz function.
Dimensions 2εstd

2 8.3e-05
3 7.7e-05
4 7.3e-05
6 6.8e-05
8 6.4e-05

(e) Fifth Genz function.
Dimensions 2εstd

2 4.6e-05
3 5.2e-05
4 4.8e-05
6 2.7e-05
8 NaN

(f) Sixth Genz function.
Dimensions 2εstd

2 NaN
3 NaN
4 1.9e-05
6 6.7e-05
8 8.6e-05

magnitude as the accuracy of the Monte Carlo results. For all dimensions, the conver-
gence rate of the polynomial integration is pretty close, the linear integration seems to
be more affected by dimension.

• For the second Genz function, The polynomial and linear integration are very similar
(with a few outliers) for dimensions d = 2 and 3. For higher dimensions, there is a
clear difference between the two, where the polynomial integration performs better with
increasing dimension. It takes much longer to reach the point where the error approaches
the accuracy of the Monte Carlo method compared to the first Genz function.

• The polynomial integration seems to perform better than its linear counterpart for the
third Genz function. Only the convergence of polynomial integration for d = 2 and to
a lesser extent 3 is decent, for all other cases the convergence is very poor. The error ε
never comes close to 2εstd except for the polynomial integration for d = 2.

• The results for the fourth Genz function are similar to those of the second Genz function.
For d = 2, 3 the polynomial and linear integration are close, but for higher dimensions
the polynomial integration performs better.

• For the fifth Genz function the linear integration outperforms the polynomial integra-
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tion. The difference between both increases with dimension as the error for the linear
integration becomes smaller. The polynomial integration never goes below an error of
roughly 10−2.5, for any number of dimensions or grid points.

• The linear integration outperforms the polynomial integration for the sixth Genz func-
tion, though the difference is small. Both types of integration are ineffective for this
type of function. This is because the number of points around the discontinuity is quite
small, meaning it is hard to resolve the jump. For the linear integration especially this
affects the convergence rate.

3.3 Verification of Interpolation

To quantify the convergence of the linear and polynomial interpolation, the exact function
values at N random locations are compared to the interpolated values. The following measure
β is calculated:

β =
1

N

N∑
i=1

(fapprox(xi)− fexact(xi))2 , (3.18)

where N is the number of samples, i denotes a random sample withing the parameter space
and x is the input vector.

We are investigating the evolution of this value for increasing level and dimensions. To
normalize the results for different levels and dimensions, β/(β)level=1. The smaller this value
becomes, the better the convergence of the interpolation. It is plotted for the first, second,
fourth and fifth Genz functions. The third and sixth Genz functions are omitted since it was
already indicated in Section 3.2.1 that the convergence for these two functions is poor. In
all the figures, a total sample size of N = 104 was used to compute the β values. The level
was limited to 7 to save time when running the code. To get more accurate results, a larger
sample size would be optimal. However, since we are only interested in the trends, and not
necessarily in the exact value, N = 104 is sufficient. The following observations can be made:

• For all functions, both linear and polynomial interpolation converge slower with increas-
ing dimension.

• For the first Genz function, the difference between polynomial and linear interpolation
is quite clear, in favor of polynomials. The polynomial interpolation shows spectral
convergence.

• The difference between both interpolation methods for the second Genz function is quite
small for lower dimensions, but increases with dimension where polynomial interpolation
performs better.

• The fourth Genz function has the same trends as the second Genz function. Both
interpolation methods are close for d = 2, 3, 4, but for d = 6, 8 polynomial interpolation
is better than linear interpolation.
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(a) First Genz function. (b) Second Genz function.

(c) Fourth Genz function. (d) Fifth Genz function.

Figure 3.4: Convergence of linear and polynomial interpolation of the different Genz functions
for d = 2, 3, 4, 6, 8 and level l = 1, . . . , 7.
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• The convergence of interpolation for the fifth Genz function is not good for either inter-
polation method, though linear interpolation outperforms its polynomial counterpart.
The difference between the two increases with dimension.

3.4 Adaptive Grid Refinement: Test case

This section will apply both adaptive refinement algorithms to a test case and compare the
results to a standard sparse grid. The goal is to show the difference between the two schemes,
and also to indicate the difference between polynomial and linear integration.

3.4.1 Moody diagram

The Moody diagram (or Moody chart) plots the friction factor as a function of Reynolds
number, inner pipe diameter and roughness. For low Reynolds number, the flow through a
pipe is laminar, but at a certain point it will transition to turbulent flow, which is indicated
by a discontinuity in the friction factor. Transition does not actually occur at one point, but
is shown as the grey area in Figure 3.5. However, for the calculations the assumption is made
that the jump occurs at a Reynolds number of 2100. The following explicit formula is known
[35]:

f =


64
ReD

if ReD < 2100,(
−1.8 log10

[
6.9
ReD

+
(
k/D
3.7

)1.11
])−2

otherwise,
(3.19)

where f is the Darcy friction factor, ReD denotes the Reynolds number, D is the inner
diameter of the pipe and k is the pipe roughness. The Reynolds number is defined as:

ReD =
UD

ν
, (3.20)

where the subscript D denotes the fact that we are dealing with pipes. U is the flow velocity
and ν is the kinematic viscosity. The region where ReD < 2100 corresponds to a laminar flow.
At ReD = 2100 the flow transitions into the turbulent regime. The Moody diagram shows
the friction factor as a function of Reynolds number for different values of pipe roughness, as
shown in Figure 3.5 [36].

It is possible to treat this as a engineering problem with uncertain inputs. Consider ε and U
as uncertain input parameters where:

εmin = 0.001, (3.21)

εmax = 0.04, (3.22)

Umin = 0.01, (3.23)

Umax = 0.5, (3.24)
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Figure 3.5: The friction factor f as a function of Reynolds number Re for different values of
pipe roughness.
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where ε is the ratio of roughness and inner diameter of the pipe k/D. The other variables are
set constant:

ν = 10−6, (3.25)

D = 0.025. (3.26)

Using the above information, the range of Reynolds numbers can be found:

(ReD)min = 250, (3.27)

(ReD)max = 12500 (3.28)

The two variables ε and U will be analyzed for two input parameter distributions: a uniform
distribution and a truncated normal distribution. The results are given in the following two
sections.

Standard sparse grid results

The evolution of the Sobol variances on a standard sparse grid are given in Tables 3.4
and 3.5 for level l = 2, 3, 4, 5 and 6 for the uniform and truncated normal input parameter
distribution respectively.

Table 3.4: Evolution of the Sobol variances on the standard sparse grid for the Moody diagram
test case assuming a uniform input parameter distribution. Indices 0 and 1 correspond to the
Reynold number Re and the ratio of roughness and inner pipe diameter ε respectively.

Polynomial basis functions

Variable Level 2 Level 3 Level 4 Level 5 Level 6

Grid points 5 13 29 65 145
Mean 8.708e-02 5.386e-02 5.476e-02 5.620e-02 5.683e-02
Variance 4.432e-03 2.076e-03 6.693e-04 5.062e-04 4.968e-04
D0 4.342e-03 2.002e-03 6.055e-04 4.363e-04 4.243e-04
D1 9.016e-05 6.283e-05 4.532e-05 5.446e-05 5.900e-05
D0,1 0 1.086e-05 1.851e-05 1.549e-05 1.346e-05

Linear basis functions
Variable Level 2 Level 3 Level 4 Level 5 Level 6

Grid points 5 13 29 65 145
Mean 1.033e-01 6.214e-02 5.708e-02 5.679e-02 5.698e-02
Variance 4.383e-03 1.860-03 7.361e-04 5.484e-04 5.049e-04
D0 4.162e-03 1.770e-03 6.780e-04 4.805e-04 4.246e-04
D1 -3.560e-04 -9.289-05 1.026e-04 7.663e-05 4.808e-05
D0,1 5.672e-04 1.834e-04 -4.452e-05 -8.779e-06 3.215e-05
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Table 3.5: Evolution of the Sobol variances on the standard sparse grid for the Moody diagram
test case assuming a truncated normal input parameter distribution. Indices 0 and 1 correspond
to the Reynold number Re and the ratio of roughness and inner pipe diameter ε respectively.

Polynomial basis functions

Variable Level 2 Level 3 Level 4 Level 5 Level 6

Grid points 5 13 29 65 145
Mean 7.389e-02 4.744e-02 5.354e-02 5.460e-02 5.502e-02
Variance 2.625e-03 1.193e-03 2.283e-04 1.852e-04 1.793e-04
D0 2.571e-03 1.147e-03 1.873e-04 1.397e-04 1.328e-04
D1 5.343e-05 4.225e-05 3.325e-05 4.021e-05 4.239e-05
D0,1 0 3.815e-06 7.733e-06 5.298e-06 4.103e-06

Linear basis functions
Variable Level 2 Level 3 Level 4 Level 5 Level 6

Grid points 5 13 29 65 145
Mean 9.023e-02 5.362e-02 5.414e-02 5.473e-02 5.504e-02
Variance 2.743e-03 6.602e-04 2.356e-04 1.834e-04 1.710e-04
D0 2.504e-03 5.880e-04 1.993e-04 1.395e-04 1.125e-04
D1 -4.586e-04 -1.021e-04 1.043e-04 5.718e-05 2.629e-05
D0,1 6.914e-06 1.742e-04 -6.811e-05 -1.327e-05 3.220e-05

Table 3.6: Evolution of the Sobol variances on the Sobol adaptive sparse grid for the Moody
diagram test case using polynomial integration. Indices 0 and 1 correspond to the Reynold
number Re and the ratio of roughness and inner pipe diameter ε respectively.

Uniform input distribution

Variable Level 2 Level 3 Level 4 Level 5 Level 6

Grid points 5 7 11 25 45
Mean 8.708e-02 5.379e-02 5.460e-02 5.614e-02 5.678e-02
Variance 4.432e-03 2.087e-03 6.935e-04 5.109e-04 4.991e-04
D0 4.342e-03 1.997e-03 6.034e-04 4.373e-04 4.251e-04
D1 9.016e-05 9.016e-05 9.016e-05 6.283e-05 6.288e-05
D0,1 0 0 0 1.081e-05 1.113e-05

Truncated normal distribution
Variable Level 2 Level 3 Level 4 Level 5 Level 6

Grid points 5 7 11 25 45
Mean 7.389e-02 4.740e-02 5.347e-02 5.457e-02 5.501e-02
Variance 2.624e-03 1.203e-03 2.409e-04 1.860e-04 1.792e-04
D0 2.571e-03 1.150e-03 1.875e-04 1.400e-04 1.330e-04
D1 5.343e-05 5.343e-05 5.343e-05 4.225e-05 4.224e-05
D0,1 0 0 0 3.777e-06 3.875e-06
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Sobol adaptive sparse grid results

The Sobol adaptive sparse grid algorithm is explained in Section 2.8.2, the cut-off value is set
to 0.95. When looking at the linear approximation for the standard sparse grid, the accuracy
of the Sobol variances was poor. Due to this, only polynomial approximation was considered
for the adaptive algorithm. The results can be found in Table 3.6.

Comparison

As is clear from (3.19), there will be a discontinuity in the friction factor values since the
flow transitions from the laminar to the turbulent regime. To investigate the influence of the
discontinuity, both polynomial and linear integration and interpolation are used to plot the
response surfaces and to calculate the Sobol variances for two input parameter distributions.
As mentioned in Section 2.7, for polynomial integration the data is interpolated to a sparse
grid of 2 levels above the initial grid to ensure the integrals approximating the Sobol variances
are exact. For the linear integration, the grid is interpolated to a grid of 5 levels above the
initial grid.

The first important observation from the standard sparse grid results is that the linear approx-
imation of the Sobol variances seems to be poor. By definition, none of the Sobol variances
should have a negative value, yet this is the case for some of them. In Section 2.7, it was
shown that the Sobol variances are calculated as follows (eq. (2.62):

Du :=

∫ (∫
f(x)dρ(xu′)

)2

dρ(xu)−
∑
w⊂u

Dw. (3.29)

Each Sobol variance is determined by calculating an integral and then subtracting the ap-
proprioate Sobol variances of a higher order. Because the integral to approximate the Sobol
variances is not solved exactly with the linear basis functions, this introduces an error for
each of the integral values. When subtracting the higher order Sobol variances, the error
associated with each of them is also subtracted, which affects the overall results in a negative
way. The algorithm uses these values to make decisions on where to refine the grid, so the
performance of the refinement algoritm is heavily tied to the accuracy of the computed Sobol
variances. Because of the accuracy of the Sobol variances, the Sobol adaptive refinement al-
gorithm will only be used with polynomial approximation. In order to evaulate the integrals
exactly, piecewise quadratic approximation needs to be implemented.

For both input distributions, the polynomial approximation on the standard sparse grid and
the Sobol adaptive sparse grid can be compared. The final grids for both input distributions
turn out to be the same in this case. The level 6 standard sparse grid and the adaptive sparse
grid are shown in Figure 3.6. The final adaptive grid contains 45 grid points compared to
145 in the standard sparse grid, which is a reduction of 69%. The results in Tables 3.4, 3.5
and 3.6 indicate that the mean for the adaptive grid is always close to the results on the
standard sparse grid, with a maximum deviation in the order of 1%. For the Sobol variances
there are some small differences in values but the relative importance of each variable shows
little difference, meaning that the accuracy of the results is affected only slightly. Since the
linear approximation method provides irregular results, it is hard to quantify the effect of
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the discontinuity in the solution on the values obtained for mean and Sobol variances. On
the other hand, the refinement algorithm is working properly, showing a significant grid size
reduction at the cost of a minimal reduction in accuracy.

Figure 3.6: A comparison of the level 6 standard sparse grid (145 points) to the result of the
adaptive refinement algorithm (45 points) on the right.

MSc. Thesis Desmedt S.G.L.



52 Verification

Desmedt S.G.L. M.Sc. Thesis



Chapter 4

Application: Heavy gas release

This chapter introduces an industrial case, for which the performance of the standard sparse
grid, the Gerstner & Griebel adaptive sparse grid and the new Sobol adaptive sparse grid are
compared. Section 4.1 will present the specifics of the case and its applications. Section 4.2
presents the results for the three different methods. Finally, Section 4.3 will compare and
discuss the differences between the methods.

4.1 Heavy Gas Release

The case that will be studied is a release of a heavy gas - in this case propane - over a barrier
located downstream of the release point. The quantity of interest is the effect distance: the
distance from the barrier where the molar concentration propane gas drops below 1%, which
is roughly half of the lower explosion limit (LEL) [37].

The real application of this case is in external safety. For example: A truck transporting a
heavy gas is involved in an accident, which causes the gas being transported to be released
into the atmosphere. After a while, the gas may start spilling over the barrier next to
road. It is important to know the perimeter where the gas concentration is higher than a
given value, since people near the area are in potential danger. If there are buildings near
the highway, it is important to know whether evacuation is necessary or not. This is also
where the input uncertainty plays a role. The results may change drastically with different
input or combinations thereof. A parameter study was already performed prior to this study,
from which the three most important input parameter were chosen. Since the computational
resources are limited, a simplified model is used to investigate the behavior of the heavy gas.
In this model, the geometry is completely fixed. Some of the parameter relating to the model
are presented here:

• The barrier height is fixed at 4m height.
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• The gas is released 60m upstream of the barrier.

• The gas is released at at a height of 1m and the release point has a diameter of 1.243m.

• The wind direction is set to 0 degrees.

• The atmospheric boundary layer velocity UABL has a range of 3 to 7m/s.

• The gas release velocity Urel has a range of 18 to 22m/s.

• The gas release temperature Trel has a range of 270 to 310K.

Here the wind velocity profile at the boundary of the domain is characterized by the atmo-
spheric boundary layer velocity. The input uncertainty of the three input variables UABL,
Urel and Trel is modelled using a uniform and a truncated normal distribution. The topology
of the area surrounding the gas release is neglected. In reality this would influence the flow of
the gas greatly, but it is too complicated to consider different landscapes when we are inter-
ested in a simple model. A diagram representing the computational domain is given in Figure
4.1. The gas release point lies in a symmetry plane, effectively cutting the computational

Figure 4.1: Top view diagram of the release of propane gas flowing over a barrier.

domain to half without loss of accuracy. The ground is modelled as a closed wall, the other
four boundaries are open so the gas is allowed to exit the domain. The problem is modelled
with ANSYSTM/Fluent version 14.5 [38] using steady-state RANS equations. The turbulence
model used in the computations is the standard k-ε two equation model where 3 constants
are specified: Cµ = 0.09, C1ε = 1.44 and C2ε = 1.92. The turbulent Prandtl number is set to
1. The mesh contains roughly 1 million mixed cells with a higher density of cells near the gas
release point and close to the ground. The mesh is shown in Figure 4.2.
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Figure 4.2: The mesh over the entire domain in ANSYSTM/Fluent version 14.5 [38].

4.2 Results

This section presents the results of the simulations. All simulations were run until the solution
converged to 10−6. One computation took anywhere between 12 and 24 hours on one core.
A total of 69 simulations was performed, corresponding to a standard sparse grid of level
l = 4 in 3 dimensions. A table containing the input matrix and corresponding effect distances
can be found in Appendix B. The results for the complete data set, as well as two adaptive
methods, are presented here.

4.2.1 Standard sparse grid

A level 4 sparse grid in 3 dimensions was constructed, containing 69 sample points. Each
sample point represents a combination of input values within their specified ranges. Using
this data, information on the system is obtained. The evolution of the sparse grid from level 1
to level 4 for the heavy gas release is shown in Figure 4.3. The Sobol variances are computed
assuming a uniform and a truncated normal distribution for the three input variables. Their
values are given for levels l = 2, 3 and 4 in Table 4.1. The level 1 grid is omitted since it
contains only 1 point. To compute the Sobol variances of order n, a grid of level l = n+ 1 is
required. This explains why the second order Sobol variances are only available for a level 3
sparse grid, the third order Sobol variances for the level 4 sparse grid and so on.
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Figure 4.3: Evolution of the standard sparse grid for the heavy gas release. Going from left to
right: grid points for level l = 2, 3 and 4.

Table 4.1: Sobol variances calculated on a standard sparse grid. Indices 0, 1 and 2 correspond to
the atmospheric boundary layer velocity UABL, the propane release velocity Urel and the propane
release temperature Trel respectively.

Uniform input parameter distribution.

Variable Level 2 Level 3 Level 4

Grid points 7 25 69
Mean 184.7 183.1 182.8
Variance 446.2 363.9 346.6
D0 375.9 261.3 253.0
D1 60.18 73.59 75.73
D2 10.15 0.5088 0.9390
D0,1 0 3.826 2.417
D0,2 0 24.86 13.24
D1,2 0 0.002394 0.1490
D0,1,2 0 0 1.096

Normal input parameter distribution.

Variable Level 2 Level 3 Level 4

Grid points 7 25 69
Mean 182.8 181.3 180.9
Variance 264.4 166.3 158.6
D0 222.7 114.6 111.0
D1 35.66 40.30 40.56
D2 6.014 1.391 2.560
D0,1 0 1.343 0.8433
D0,2 0 8.651 3.536
D1,2 0 0.0008375 0.03190
D0,1,2 0 0 0.09199
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4.2.2 Gerstner and Griebel adaptive sparse grid results

The results of the Gerstner and Griebel with each step is given in Table 4.2. To summarize,
this approach uses two index sets: the ’old’ and the ’active’ index set. The ’old’ index set
is a list of all the blocks currently in the grid. The ’active’ index set contains the forward
neighbouring blocks of the ’old’ index set. For each block in the ’active’ index set, an error
estimate is calculated. In each step, the block with the largest error estimate is moved from
the ’active’ to the ’old’ index set, and the new forward neighbours with corresponding error
estimates are determined. The table shows for each step the number of points in the ’old’
and ’active’ index sets, the mean calculated using the grid based on the ’old’ index set. The
last column shows which block is added to the ’old’ index set in the next iteration.

The data set available is limited to a level 4, 3D standard sparse grid, so any multi-indices
outside the level 4 simplex are not available. The algorithm starts with one block: the multi-
index (1, 1, 1). The adaptive algorithm then begins by refining in the direction of the first
parameter, until it reaches the multi-index (4, 1, 1). Note that the forward neighbour (5, 1, 1)
is not a part of the data set available to us. Since the error estimate tends to become smaller
with each refinement, it is assumed that the error estimate for this forward block (5, 1, 1) is
small enough that the algorithm would not refine further in this direction. Following this
assumption, multi-index (5, 1, 1) is considered to be part of the ’active’ index set (and thus
contributes to the number of grid points), but can never become part of the ’old’ index
set. This is why all the following entries for the ’active’ index set are followed by a *. The
two alternatives to this assumption would be to either perform more simulations, or to stop
the algorithm. Since the assumption seems realistic, the algorithm is continued under the
mentioned restrictions. In the last step one multi-index is moved from the ’active’ to the ’old’
set, but new forward neighbouring blocks are not considered. This is why the number of grid
points stays constant (indicated by **).

Figure 4.4: Evolution of the Sobol adaptive sparse grid for the heavy gas release. Going from
left to right: grid points for level l = 2, 3 and 4.
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Table 4.2: Evolution of the mean following the Gerstner & Griebel adaptive approach [18]. The
* and ** indicate that refinement in the direction of the first parameter is not possible, since
the data set is limited to a level 4 sparse grid. To investigate the evolution of the algorithm, the
assumption is made that the refinement in this direction is already sufficient.

Uniform input parameter distribution.

Grid points ’old’ (+’ac-
tive’) index set

Mean Add multi-index
to ’old’ index set

1 (7) 180.04 (2, 1, 1)
3 (9) 184.65 (3, 1, 1)
5 (13) 182.44 (4, 1, 1)
9 (21*) 182.22 (1, 1, 2)
11 (27*) 182.41 (2, 1, 2)
15 (31*) 183.00 (3, 1, 2)
19 (31**) 182.81 /

Normal input parameter distribution.

Grid points ’old’ (+’ac-
tive’) index set

Mean Add multi-index
to ’old’ index set

1 (7) 180.04 (2, 1, 1)
3 (9) 182.77 (3, 1, 1)
5 (13) 181.02 (4, 1, 1)
9 (21*) 180.68 (1, 1, 2)
11 (27*) 180.79 (2, 1, 2)
15 (31*) 180.99 (3, 1, 2)
19 (31**) 180.91 /

4.2.3 Sobol adaptive sparse grid algorithm

The evolution of the Sobol adaptive sparse grid from level 2 to level 4 for the heavy gas release
is shown in Figure 4.4. The values of the Sobol variances on the adaptive grid are given in
Table 4.3. The adaptive algorithm starts for a standard level 2 sparse grid, which is why
the results are exactly the same as before. From the initial grid, D0 and D1 are the most
important contributions to the total variance. The cutoff value has been set to 0.95, meaning
that D2 is considered insignificant. As a result of this, the refinement of the grid only occurs
in the directions of UABL and Urel. Because of this, D0,2, D1,2 and D0,1,2 will always be 0 in
this case. The second refinement only adds points in the direction of UABL and Urel. (4)
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Table 4.3: Evolution of the Sobol variances on the adaptive sparse grid. Indices 0, 1 and 2
correspond to the atmospheric boundary layer velocity UABL, the propane release velocity Urel

and the propane release temperature Trel respectively.

Uniform input parameter distribution.

Variable Level 2 Level 3 Level 4

Grid points 7 15 23
Mean 184.7 182.5 182.4
Variance 446.2 309.6 312.5
D0 375.9 222.6 225.6
D1 60.18 72.71 72.80
D2 10.15 10.15 10.15
D0,1 0 3.826 4.013
D0,2 0 0 0
D1,2 0 0 0
D0,1,2 0 0 0

Normal input parameter distribution.

Variable Level 2 Level 3 Level 4

Grid points 7 15 23
Mean 182.8 181.1 180.8
Variance 264.4 150.3 151.1
D0 222.7 102.9 103.4
D1 35.66 40.01 40.08
D2 6.014 6.014 6.014
D0,1 0 1.343 1.546
D0,2 0 0 0
D1,2 0 0 0
D0,1,2 0 0 0

4.3 Discussion

This section will discuss the results of the simulations to see which parameters are important.
Then, the performance of the two adaptive grid refinement methods is compared to a standard
sparse grid and to each other.

4.3.1 Flow characteristics

The Sobol indices computed on the standard sparse grid indicate that UABL and Urel are the
two most important parameters. Before further discussing the results of the different methods,
we will look at response surface plots to investigate local behavior. This can provide additional
information on the response, since Sobol variances by definition are global measures. Since
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Trel seems to have the least effect, the variation of the effect distance with respect to UABL
and Urel is plotted in Figure 4.5 for constant values of Trel. The following trends become
clear from these plots:

• The effect distance increases with increasing Urel and with decreasing UABL and Trel.
UABL is the most important parameter followed by Urel.

• Trel does not have a big effect on its own, but there is an interaction between UABL and
Trel. When both values are low, the effect distance increases even more than just the
separate contributions.

• The variation of effect distance with UABL comes mainly from values between 3 and
4m/s, where the gradient becomes much steeper.

• A low temperature seems to add to above effect, but it is still limited to the same range
of UABL = 3− 4m/s.

• The maximum effect distance occurs for UABL = 3m/s, Urel = 22m/s and Trel = 270K.
The minimum effect distance occurs for UABL = 7m/s, Urel = 18m/s and Trel = 310K.
This is in line with the first two trends.

Figure 4.5: Effect distance as a function of UABL and Urel for Trel = 270K, 290K and 310K.

The behavior of the gas in front of upstream of the barrier is very important, since it strongly
affects the profile of the propane concentration behind the barrier. This in turn affects the
effect distance. In order to examine this, the molar concentration profile in the entire domain
can be plotted for different inputs. From these plots, it is confirmed that the boundary layer
velocity UABL has by far the largest influence on the effect distance, as was indicated by the
Sobol variances. To illustrate this, the molar concentration is plotted for 3 values of UABL:
3, 5 and 7m/s in Figure 4.6. The other 2 parameters are kept at their mean values. Plots for
other input values do not add any new information, and are omitted for this reason.

The wind velocity profile is dependent on the boundary layer velocity, ranging from 3 to
7m/s. Once the gas is released, it will start mixing with the air. As a result of this, the
velocity of the air-propane mixture will go down from the original release temperature and
get closer to the surrounding air velocity. The value of UABL will thus strongly affect the
velocity of the propane cloud when it reaches the barrier.
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(a) UABL = 3m/s.

(b)

UABL = 5m/s.

(c)

UABL = 7m/s.

Figure 4.6: Molar concentration of propane gas over the computational domain at a height of 1m
for different values of UABL. Trel and Urel are kept constant at 290K and 20m/s respectively.
The thin gray lines indicate the effect distance.
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The release velocity Urel will also affect the velocity of the propane cloud prior to reaching the
barrier. For higher values of Urel, the propane cloud will reach the barrier at higher velocities,
though the effect is not as significant as for UABL.

Finally, the propane gas has a higher density than air and will gravitate to the ground. Of
course, this effect depends on the concentration of the propane gas. As the air and propane
gas start mixing, this effect will become less strong. The release temperature of the gas ranges
between 270 and 310 Kelvin. As a result of this, the density of the gas will vary, going down
when the temperature increases. In this specific case, the variation in density is very small,
so that the effect of the release temperature is negligible.

The reason the velocity of the cloud is so important is because of how it affects the buildup
of gas near the barrier. If the propane cloud is moving at a high speed, it will flow over the
barrier more easily, and the tangential velocity component due to impact is less important.
If the cloud is moving at a relatively low speed, the momentum of the gas cloud is much
lower and the buildup of gas becomes much larger. This effect is clearly visible in Figure 4.6.
When this happens, the tangential velocity component becomes much more significant and
the cloud of gas will flow over the barrier at a point further away from the symmetry plane.
This in turn affects the propane concentration contour profiles downstream of the barrier,
which is also visible in the figure.

An interesting observation is that this also increases the effect distance. Data was only
collected in the plane z = 1m, so a 3-dimensional representation of the cloud is not available,
but it is certain that the effect distance measurements are greatly affected by the height at
which it is measured. The highest effect distances are found when the gas cloud velocity
upstream of the barrier is low. This means that the velocity downstream of the barrier will
be low as well. A likely explanation is that for these lower velocities, the effect of the wake
downstream of the barrier is smaller. Because of this, the gas will be closer to the ground. For
higher gas cloud velocities, the wake has a much larger effect and the gas is more spread out
in the z-direction. Since the molar concentrations are only measured in a plane at a height
of 1m, the effect distances measured are much closer to the barrier.

Finally, for completeness, the propane concentration contour plots are given in Figure 4.7.

4.3.2 Comparison

Let’s continue by comparing the mean computed with the three methods. The data is taken
from Tables 4.1, 4.2 and 4.3. Both adaptive methods get a good estimation of the mean with
a significant reduction in the grid points. For this case, the Gerstner & Griebel approach gives
almost exactly the same results as the standard sparse grid. The Sobol adaptive approach
gives a slightly different value, but since it differs only a fraction of a percent it is not
significant. The results for both input distributions follow the same trend for this case,
although the values differ. The variance is smaller when assuming a normal input distribution.
This is expected since a large part of the variation of the effect distance occurs near the
boundaries of the domain.
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(a) UABL = 3m/s, Urel = 22m/s, Trel = 270K.

(b)

UABL = 7m/s, Urel = 18m/s, Trel = 310K.

Figure 4.7: Molar concentration of propane gas over the computational domain at a height of
1m for minimum (a) and maximum (b) effect distance, which are indicated by the thin grey lines.
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The main difference between the two adaptive grid refinement methods is that the Sobol
adaptive method does not look forward, the only information used to determine the refine-
ments is the Sobol variances on the current grid. Because it uses a cutoff value, convergence
is not strictly guaranteed for a high number of refinement steps. The Gerstner & Griebel
approach does look forward, and chooses its refinements based on an error indicator. This
method will converge given enough refinement steps, but since it has to look forward, this
comes at a cost of requiring extra data samples. Finally, the grids from the three methods

Figure 4.8: Convergence of the mean for the standard sparse grid, Sobol adaptive sparse grid and
the Gerstner & Griebel adaptive sparse grid, assuming a uniform input parameter distribution.

are compared in block diagrams in Figure 4.9. For the first two diagrams, the grey blocks
represent the multi-indices that are a part of the final grid. For the third diagram, the grey
blocks indicate the multi-indices which are a part of the ’old’ index set, using which the mean
is calculated. The red lined blocks are a part of the ’active’ index set, for which the error
indicator is calculated, but which are not added to the grid. The pink block is the multi-index
(5, 1, 1). Strictly speaking, it is not part of the data set. The reasons why it was included
anyways are explained in Section 4.2.2.
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Figure 4.9: Block diagram representation of the final grid for the heavy gas release. From left to
right: standard sparse grid, Sobol adaptive sparse grid and Gerstner & Griebel adaptive sparse grid.
For the third diagram, the grey blocks represents the ’old’ index set, while the red blocks belong
to the ’active’ index set. Also note that the Urel and Trel axes are switched for convenience.
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Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The goal of this study was to contribute to a new method to perform uncertainty quantifica-
tion analysis, specifically for industrial, computationally intensive CFD simulations. To that
end, an adaptive grid refinement algorithm was proposed and applied to a real-life industrial
application.

First, a code was developed which can perform interpolation and integration using polynomial
and linear hat basis functions, based on the mathematical framework introduced in Chapter
2. The quadrature weights for two input parameter distributions were implemented. This
implementation was verified in Chapter 3, by using a set of test functions. It has become clear
that the polynomial integration and interpolation generally outperforms its linear counterpart,
since the polynomial method will show spectral convergence. In case there is a discontinu-
ity, the performance of polynomial basis functions will deteriorate sginificantly. This is due
to the effect known as the Gibbs’ phenomenon, which means the discontinuity can not be
resolved using polynomial, which introduces oscillations in the approximation. The linear
approximation method is not affected by this effect, but since the convergence is generally
quite slow it is only used as a backup in case polynomial approximation is inaccurate. The
weights for both input parameter distributions were verified by comparing the integral results
to the exact values where available, and to Monte Carlo results otherwise. The accuracy of
the results obtained from Monte Carlo simulations is dependent on the number of samples.
The effect of this is estimated by calculating the standard error, for all test functions the
results of the code were sufficiently close to the Monte Carlo results so we can conclude that
the implementation is correct.

The new adaptive grid refinement is based on the approximation of Sobol variances and was
introduced in Section 2.8. Based on the values of the Sobol variances, more grid points are
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added in the appropriate directions. In Chapter 4, the method is compared to a standard
sparse grid approach and a different grid refinement approach by Gerstner and Griebel [18].
For the application considered, the values obtained with the Gerstner and Griebel approach
were shown to be closer to the sparse grid approach. However, the Sobol refinement method
used only 23 samples, compared to 31 in the Gerstner and Griebel method, and 69 for a
standard sparse grid.

The advantages of the Sobol adaptive grid refinement method are that the refinements are
based on an intuitive measure, the Sobol variances, which indicate which interactions are the
most significant. Based on the result in Chapter 4, we can say that this method provides a
good approximation of the response, while significantly reducing the computational cost. It
seems especially suited for problems of low to moderate dimensions where the computational
resources are limited.

The main disadvantage of the method is that convergence to the real response is not guar-
anteed for a high number of refinement steps. Since the method is intended for industrial
applications, this disadvantage is marginal. It will still provide a good estimation of the
response at a low computational cost.

5.2 Recommendations

This section will provide a few recommendation for the method moving forward:

• As already mentioned in the previous section, a problem was encountered when calcu-
lating Sobol variances using linear hat basis functions. In order to evaluate the integrals
exactly, piecewise quadratic integration needs to be implemented. For now, the prob-
lem is partly circumvented by applying a refinement to the grid and using the linear
integration method.

• The current algorithm will not converge to the exact solution when increasing the num-
ber of grid points. This is because of the introduction of a cut-off value, which limits
the directions in which points are added. Although the effect of this seems insignificant
for industrial applications, since the number of computation is limited, it would still be
worth looking into. If the algorithm has this property, it can be more easily compared
to other methods, and will be more reliable when more computational resources are
available.

• Right now, the grid refinement is based solely on the Sobol variances on the current
grid. It would be interesting to look into a way to incorporate information from previous
steps into the decision making process. This could provide the user with an additional
reduction of grid points. Depending on the approach, it could also provide a solution
for the second recommendation.

• Only two input parameter distributions have been implemented. However, a similar
approach to what is described in 2.4 can be used to compute the quadrature weights
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for other distributions.

• It can be convenient to use different distributions for different input parameters. Right
now, this option is not available; one distribution is chosen and it is then applied to all
input parameters.

• More applications are required to test the Sobol adaptive refinement grid approach.
The results presented in Chapter ch:application indicate that this method is promising,
but to be sure of this it should be applied to a large range of industrial cases. An
investigation on the effect of the cut-off value on the result for the mean and variance
for different cases would provide a better view of the accuracy of the method.
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Appendix A

Sommariva Algorithm

Below is the Matlab code used to calculate the weights for polynomial integration as detailed
in section 2.4. First, the weighted Chebyshev polynomials are determined, and then the
corresponding weights are calculated using a discrete cosine transform. The procedure is
treated in more detail in [15].

A.1 Matlab code

function [ w, x ] = Sommariva_CC( L, distr )

% This function will calculate the polynomial weights for a uniform or

% normal distribution (95% at boundaries, implement flexibility later).

% The algorithm used is taken from the paper by Sommariva:

% ’Fast Contruction of Fejer and Clenshaw-Curtis rules for general

% weight functions’, 2012.

n=2^(L-1)+1;

V=zeros(2^(L-1)+1);

% Used for the normal and truncated normal distributions.

confidence=0.95;

if strcmp(distr,’uniform’)==true

% integrals of Chebyshev polynomials

for i=1:n/2

g(i)=2/(1-(2*i)^2);

end

% g

for i=1:n
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if i==1

g_k(i)=2;

elseif mod(i,2)==0

g_k(i)=0;

else

g_k(i)=g((i-1)/2);

end

end

% g_k

moms=g_k/2;

elseif strcmp(distr,’normal_trunc’)==true

% confidence interval boundaries are at +- sig* sigma

sig=erfinv(confidence)*sqrt(2);

sigma=1/sig;

% constants, easier for use later on

c_1=1/(sigma*sqrt(2*pi));

c_2=1/(2*sigma*sigma);

% T contains the indices of the Chebyshev polynomials, these are used

% later on for the computation of the weights.

% for example N=4: T0=1, T1=x, T2= 2x^2-1, T3=4x^3-3x

%

% Then T becomes [ 0 0 0 1;

% 0 0 1 0;

% 0 2 0 1;

% 4 0 -3 0]

T=zeros(n,n);

T(1,1)=1;

T(2,2)=1;

for i=3:9

for j=1:i

T(i,j+1)=T(i-1,j)*2;

end

T(i,:)=T(i,:)-T(i-2,:);

end

T=T(1:n,1:n);

% I contains the integrals of N(x), x*N(x), x^2*N(x), x^3*N(x), ...

% Note that, since N(x) is symmetric and x^N for uneven N is

% antisymmetric, the integral of x^N*N(x) becomes zero in these cases.

I=zeros(length(V(1,:)),1);

I(1)=confidence; % I0
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for k=2:length(V(1,:))

if mod(k,2) == 0

% integral is zero for odd functions (I1,I3,I5,...)

I(k)=0;

else

% Matlab doesn’t handle index k=0 so k-1 in the expression

% becomes (k-1)-1 since we start from k=1 instead of k=0

I(k)=-c_1/c_2*exp(-c_2)+((k-1)-1)/(2*c_2)*I((k-1)-1);

end

end

%scaling

I=I/confidence;

% The moments are equal to the integrals of the Chebyshev polynomials

% multiplied with the Normal distribution.

% As an example: I4=integral of T4*N(x)= integral of (4x^3-3x)*N(x)

% this can be rewritten as 4 * integral of x^3*N(x) -3 * integral of

% x*N(x). Which is the same as multiplying the 4th row of the T matrix

% with the I vector.

moms=T*I;

else

disp(’Wrong input, invalid distribution type’)

end

% Sommariva algorithm, see paper: ’Fast Contruction of Fejer and

% Clenshaw-Curtis rules for general weight functions’, 2012.

% Computes the weights and abscissa locations, input required are the

% moments computed above.

if L==1

%disp(’something’)

w=[1];

x=[0];

else

momscc(1:n-2)=1/2*(moms(1:n-2)-moms(3:n));

% disp(length(momscc));

theta=(1:n-2)’*pi/(n-1);

xx=cos(theta);

% length(xx);
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w=((2*sin(theta)/(n-1)).*dst(momscc’))./(1-xx.^2);

w1=(2*sum(moms)-moms(1)-moms(end))/(2*(n-1));

wn=moms(1)-w1-sum(w);

x=[1;xx;-1]; w=[w1;w;wn];

for i=1:length(x)

if abs(x(i))<1.0e-10

x(i)=0;

end

end

end

end
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Appendix B

Heavy gas release: results

The tables below contains the results of the simulations the barrier case. There are a total of
69 simulations, corresponding to a standard sparse grid of level l = 4 in 3 dimensions.

Table B.1: Input values and results of the barrier case.

UABL[m/s] Urel[m/s] Trel[m/s] Effect distance [m]

5 20 290 180.04

3 20 290 226.67

7 20 290 161.04

5 18 290 166.23

5 22 290 193.10

5 20 270 175.09

5 20 310 186.11

3.585786 20 290 198.50

6.414214 20 290 167.14

3 18 290 204.35

7 18 290 149.08

3 22 290 250.17

7 22 290 172.94

5 18.58579 290 170.28

5 21.41421 290 189.29

3 20 270 262.36

7 20 270 162.29

3 20 310 215.01

7 20 310 159.20

5 18 270 160.90
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Table B.2: Input values and results of the barrier case.

UABL[m/s] Urel[m/s] Trel[m/s] Effect distance [m]

5 22 270 188.37

5 18 310 172.13

5 18 310 199.47

5 20 275.8579 176.06

5 20 304.1421 184.59

3.152241 20 290 217.83

4.234633 20 290 184.57

5.765367 20 290 173.81

6.847759 20 290 162.67

3.585786 18 290 179.47

6.414214 18 290 154.59

3.585786 22 290 215.46

6.414214 22 290 179.48

3 18.58579 290 211.5

7 18.58579 290 152.78

3 21.41421 290 243.35

7 21.41421 290 169.32

5 18.15224 290 167.26

5 19.23463 290 174.91

5 20.76537 290 185.23

5 21.84776 290 192.10

3.585786 20 270 206.16

6.414214 20 270 167.00

3.585786 20 310 200.23

6.414214 20 310 166.62

3 18 270 230.94

7 18 270 149.6

3 22 270 294.59

7 22 270 174.77

3 18 310 197.47

7 18 310 148.36

3 22 310 233.67

7 22 310 186.56

5 18.58579 270 165.05

5 21.41421 270 184.48
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Table B.3: Input values and results of the barrier case.

UABL[m/s] Urel[m/s] Trel[m/s] Effect distance [m]

5 18.58579 310 176.28

5 21.41421 310 195.67

3 20 275.8579 249.58

7 20 275.8579 161.98

3 20 304.1421 217.17

7 20 304.1421 159.80

5 18 275.8579 161.58

5 22 275.8579 189.49

5 18 304.1421 170.56

5 22 304.1421 197.64

5 20 271.5224 175.36

5 20 282.3463 177.45

5 20 297.6537 182.60

5 20 308.4776 185.72
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