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Chapter 1

General Introduction

Detectors for radiation are becoming more and more widespread in our society. In everyday
life infrared light detectors are used for burglar alarms, remote controls and all sorts of
wireless appliances. Visible light detectors are used in video cameras and electronic imaging
systems. In industry, detectors for y-rays and X-rays are used for oil well logging and for
structural analysis of fabricates and samples. In the medical world detectors for y-rays and X-
rays are used for tracing techniques and for imaging systems. In high energy physics
detectors for all kinds of radiation are used to analyse the products of particle beam collider
experiments.

1.1 Inorganic Scintillators

There are several ways to detect radiation, depending on the radiation one wants to detect.
For hard y-rays and X-rays the predominant way is based on inorganic scintillators.
Scintillators are materials which emit light when hit by ionising radiation. The emitted light
can then be detected with the help of a photomultiplier tube or a photodiode.
In the different applications the detector requirements differ considerably and consequently
the scintillator requirements differ also. But there are a few basic requirements which are
shared by most applications!:

- A fast response.

- Ahigh light yield.

- A high density.

- A large atomic number.

- The possibility to grow large crystals.

- Low cost.
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It seems that in practice these requirements are somewhat contradictory, especially the first
two. So depending on the application one has to decide what the most important requirements
are and choose the material which best fits these requirements.

It is therefore not surprising that there is an ongoing search for better scintillators. A thorough
theoretical understanding of the scintillation process in inorganic compounds would be very
beneficial to this search and might eventually lead to the design of scintillators for specific
applications.

The scintillation process is very complex, but we can divide the whole process into three
major stages2. In the first stage the ionising radiation produces very hot so-called primary
electrons in the crystal. These primary electrons produce a cloud of hot secondary electrons.
These thermalise eventually to electron-hole pairs of low energy. Recently a good
phenomenological description of this process has been developed34.

In the second stage the electron-hole pairs migrate through the crystal. They can migrate
through the crystal as a pair (an exciton) but most of the electrons and holes will migrate
separately. Of this stage very little is known on a quantitative basis.

In the third stage an electron and a hole recombine on a luminescence centre, emitting a
photon in the process. The luminescence centres are usually lanthanide ions (although there
are other classes of inorganic scintillators). By catching an electron and a hole the lanthanide
ion is brought into an excited state. Via a 5d - 4f electric dipole transition the ion then falls
back to the ground state, while emitting a photon. The lanthanides which are expected to
show luminescence according to this scheme are cerium, praseodymium and neodymium!.

The above leads to the following considerations for an efficient scintillator:

- The number of electron-hole pairs created by the incident radiation should be as
large as possible. Since this is mainly a function of the band gap of the material’
we should look for materials with as small a band gap as possible.

- The transfer of the electron-hole pairs to the luminescence centres should be fast
and efficient. For an efficient transfer we need pure defect-free crystals. For a fast
transfer the cross-section of the luminescence centre for the trapping of a hole or
an electron should be large. It is generally believed that this is so if either the
lowest lanthanide 4f level is close to the valence band edge or one of the
lanthanide 5d levels is close to the conduction band edgeS. Note that this limits
the smallest possible band gap to approximately the smallest 4f - 5d transition
energy.

- The luminescence centres should only de-excite radiatively and the life time of
the excited state should be short. These conditions are fulfilled in the case of
cerium, praseodymium or neodymium as luminescence centres!.




1.1 Inorganic Scintillators.

From the above it follows that there are two important research areas for theoreticians
working on scintillation. The first one is the energy transport through the crystal. This process
is important for the overall efficiency of the scintillator. Still very little about it is known.

The second research area is a good description of the luminescence centres, i.e. the lanthanide
jons. This area is somewhat better understood, but up to now mostly on a qualitative basis.
Because the positions of the lanthanide 4f and 5d levels (both relative to each other and
relative to the bands of the host) are important for the luminescence behaviour of the crystal a
more quantitative description would be invaluable.

1.2 Scope of this Thesis

In this thesis we will develop and use a methodology to obtain a reliable quantitative
description of lanthanide ions in ionic materials, by the use of ab initio quantum chemical
methods. We will restrict our research to cerium containing compounds for two reasons.
Firstly cerium seems to be the most popular dopant for ionic compounds in scintillation
research. Consequently the ability to describe the cerium ion in ionic compounds will already
cover a large part of the scintillation research. Secondly, cerium is the easiest lanthanide from
a theoretical point of view. In ionic compounds cerium assumes a +3 charge state. The
ground state electronic configuration for the +3 charge state consists of a Xenon core and one
4f electron. In such an electronic configuration the correlation effects will be small and
calculations on the Hartree-Fock level should suffice to give an adequate description.

Being a lanthanide, cerium is a rather heavy ion. Relativistic effects are therefore expected to
be important. Consequently, all the calculations should preferably be done within a
relativistic computational model. In the theoretical chemistry group of the university of
Groningen a program package called MOLFDIRS7 was developed, which can perform
relativistically correct four-component Hartree-Fock-Dirac calculations on arbitrary
molecules. For our purposes this program package required prohibitive amounts of computer
resources. So it was essential that the program package was optimised before it could be used
for our calculations.

To test and adjust our methodology we investigated several cerium containing materials
which are relevant for scintillation research and compared our calculated results with the
available experimental data.
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This thesis is structured as follows:

In chapter 2 we give a brief overview of the theory behind the methods we use for our
investigations.

In the chapters 3 and 4 we present our efforts to optimise the MOLFDIR program package so
that it can be used for our calculations.

In chapter 5 we present the results of our calculations on cerium containing fluorine
compounds.

In chapter 6 we present the results of our calculations on cerium containing oxygen
compounds.

In chapter 7 we present the results of our calculations on cerium containing chlorine
compounds.

In chapter 8 we give a summary of the main conclusions drawn from the work described in
this thesis.

References

1) C.W.E. van Eijk, in Proceedings of the Tenth Feofilov Symposium on Spectroscopy of Crystals
Activated by Rare-Earth and Transition-Metal Ions, eds. A.I. Ryskin and V.F. Masterov, Proc. SPIE, Vol.
2706, p158, St. Petersburg,, 1996

2) J. Andriessen, P. Dorenbos and C.W.E. van Eijk, Mat. Res. Soc. Symp. Proc., 348 355 (1994)

3) P.A. Rodnyi, P. Dorenbos and C.W.E. van Eijk, Phys. Stat. Sol. (b), 187 15 (1995)

4) M. Marsman, P. Dorenbos and C.W.E. van Eijk, in Proceedings of the International Conference on
Inorganic Scintillators and their Applications, eds. P. Dorenbos and C.W.E. van Eijk, p156, Delft
University Press, Delft, 1996

5) C. Pedrini, D. Bouttet and C. Dujardin, in Proceedings of the International Conference on Inorganic
Scintillators and their Applications, eds. P. Dorenbos and C.W_E. van Eijk, p103, Delft University Press,
Delft, 1996

6) Relativistic Quantum Chemistry: The MOLFDIR program package, L. Visscher, O. Visser, P.J.C. Aerts,
H. Merenga and W.C. Nieuwpoort, Computer Physics Communications 81 120 (1994)

7 Relativistic Quantum Chemistry: The MOLFDIR program package, L. Visscher, W.A. de Jong, O.
Visser, P.J.C. Aerts, H. Merenga and W.C. Nieuwpoort, in METECC-95, E. Clementi and G. Corongiu,
(STEF, Cagliari, 1995)




Chapter 2

General Theory

The theoretical study of the electron distribution and the energy levels of impurities in
inorganic solids starts with the determination of the simulation model. We can identify two
different aspects of the simulation model: the material model and the computational model.
The material model is concerned with the material representation we choose for the physical
system of interest. The computational model is concerned with the level of theory we use to
determine the wave function of our representation of the physical system.

In the first section of this chapter we will briefly discuss the material model we use. The
following sections of this chapter are dedicated to the computational model we use. In those
sections we will give a brief overview of all the computational methods employed in this
thesis.

2.1 The Material Model

The natural starting point for describing inorganic crystalline solids is band structure theory!.
This theory makes full use of the translational symmetry of the material.

In band theory it is assumed that the adiabatic (Born-Oppenheimer) approximation is valid.
The Hamiltonian is written as a part referring only to the electrons and a part referring only to
the nuclei. The cross terms in the Hamiltonian are neglected. The Schrodinger equation can
now be separated in an electronic and a nuclear equation. These equations can be solved
separately. Normally the nuclei are assumed to be frozen at their equilibrium positions. The
electronic Hamiltonian shows the small group? symmetry of the frozen lattice. The small
group symmetry is a combination of the point group symmetry and the translational
symmetry of the lattice, where the symmetry operations which do not leave k invariant have
been deleted. Because of this translational symmetry the eigenstates of the electronic
Schrodinger equation can be labelled with a continuous quantum number k. The
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eigenfunctions transform according to the irreducible representations of the space group of
the Hamiltonian.

Usually in band theory one assumes that the many electron Schrodinger equation can be
reduced to a system of one electron equations. The resulting one electron Hamiltonian is
assumed to have the same space group symmetry as the many electron Hamiltonian. So the
eigenfunctions (Bloch functions) can be labelled with a continuous quantum number k.

If impurities are present in the material the translational symmetry is broken. Instead of an
orderly array of a repetitive unit, the crystal has become one huge molecule with little or no
symmetry. A quantum mechanical calculation on such a system is clearly impossible, without
using some sort of approximation.

Approximations Based on Band Theory

One of the simplest approximations we can make, which remains in the spirit of band theory,
is the so-called supercell method3. This method is essentially a band theory method in which
the repetitive unit (the unit cell) can be freely chosen. By choosing the unit cell very large and
by having only one impurity atom per unit cell we approximate the case of one isolated
impurity in a host crystal. Because of the need to choose a very large unit cell the
computational resources needed to perform a calculation also become very large. This makes
the method less suited to our purposes.

The second well known method to describe impurities and defects in crystals consists of
performing a band theory calculation on the pure host and then describing the impurity or
defect in terms of the pure host Bloch functions, by perturbation theory. The resulting
equations are usually solved using a Green's function approach. For shallow impurities it can
be shown that, with some approximations and the use of perturbation theory, this method is
equivalent to the effective mass theory. The effective mass theory has successfully been
applied to several shallow level impurities*. For localised deep level impurities however very
large expansions to very high k values are needed to give an accurate description of the
impurity. In these cases these methods become impractical.

The Cluster Approximation

When one wants to describe localised defects or impurities in solids a band structure
calculation is not very suitable. In these cases it is more natural to use a local approach. The
entire crystal with the impurity is considered to be one large molecule and we want to study
this molecule. Because of its huge size and the lack of translational symmetry it is impossible
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to study this system with standard quantum chemical methods. We need additional
approximations. Because we are primarily interested in the characterisation of the impurity
atom, we will concentrate on that and treat the host as a perturbation on the impurity. Within
this approach there are two starting points possible. The first is a band structure calculation
on the pure host.

Zunger and co-workersS developed such a Green's function method. It is based on the fact
that the total potential of the system V(r) can be written as a sum of the periodic potential of
the pure host Vy(r) and the perturbation due to the impurity AV(r). The same holds for the
total density of the system p(r). They first compute Vy(r) and py(r) from a self-consistent
band structure calculation on the host crystal. The impurity wave function is expanded in the
host crystal quasi bands and a set of orbitals centred on the impurity. The Green's function for
the resulting problem is then solved using local density techniques. This is essentially a one-
electron description of the system. For many properties of impurities the many electron
effects may be very important. Zunger et al account for this by calculating the many electron
effects for each state of the impurity from the atomic Racah parameters By and Cqy. This
method seems to work reasonably well. Nevertheless it does have some problems. These
problems can be divided in problems due to the computational scheme used and problems
due to the way in which the entire system is represented.

) Because of the use of the local density approach this method is effectively a local
one electron approach. The many electron and non-local effects which may be
important can only be estimated from their values in the free impurity atom.
These estimates may significantly deviate from the crystal values. The non-local
exchange correlation can only be approximated by a local potential. So the Pauli
principle is not strictly enforced. Furthermore local density methods yield only
the electronic density of the system under study with good accuracy. The wave
function is much less accurate. So properties which depend explicitly on the wave
function cannot be computed accurately.

Of course the Green's function can also be solved by using methods which do not
have the above mentioned deficiencies. However the required computational
resources for such a computation could easily become prohibitive.

(ii) The perturbation of the potential AV(r) and the charge density Ap(r) describe
only a small piece of the crystal, typically the impurity or defect surrounded by a
few shells of host atoms. This region must be large enough to contain the defect
specific effects of the impurity. The change in V(r) and p(r) due to the impurity is
only described in that region. The polarisation of the charge density of the crystal,
induced by charged states of the impurity is not confined to this region. Therefore
calculations which pertain to charged states of the impurity will lack some
important polarisation effects.
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The other starting point is the cluster calculation. A cluster consists of the defect or impurity
surrounded by at most a few layers of the host material. These clusters can then be studied
with standard quantum chemical methods. So in principle the wave function of the cluster can
be determined to any desired level of approximation. The cluster should be large enough to
contain the defect specific effects of the impurity or defect.

The cluster approach still poses some problemsé. The cluster can be regarded as a piece of

material which is cut out of the crystal. So the interactions between the cluster and the rest of

the crystal are missing. We will give here a short resume of the different aspects of this
deficiency.

) In cutting the cluster out of the crystal we may have broken some bonds. The
resulting dangling bonds may produce levels in the gap which may have a large
unphysical interaction with the gap levels of the impurity. To counteract this the
dangling bonds are normally saturated with hydrogen atoms or some sort of
pseudo atoms. This procedure pushes the bonding levels deep into the valence
band and the anti-bonding levels high into the conduction band. In the case of
highly ionic materials the dangling bonds do not seem to be a real problem.

(ii) In the cluster approach we study a small piece of the crystal. The interaction of
the cluster atoms with crystal atoms not included in the cluster is missing. This
interaction can be divided into two contributions: a static contribution and a
dynamic contribution. The static contribution pertains to the interaction of the
cluster atoms with the unperturbed charge density of the rest of the crystal. This
interaction is mainly coulombic in nature. For the short range however there may
be significant exchange contributions. The dynamic contribution pertains to the
response of the charge density of the rest of the crystal to alterations in the charge
state of the impurity or defect.

In this thesis we will be dealing with highly ionic compounds. Therefore the problems
enumerated under point (i) will not concern us. The problems mentioned under point (ii) do
need our attention.

The static part of the interaction can be modelled by surrounding the cluster with a set of
point charges, which are fitted to reproduce the Madelung potential due to the rest of the
crystal at the cluster sites’”. The exchange repulsion of the cluster atoms with the rest of the
crystal is still missing. This will mainly effect the atoms at the edge of the cluster. For highly
ionic compounds we expect this effect to be small as far as the calculation of the electronic
charge distribution is concerned. For geometry optimisations on the clusters the effects will
probably be significant. In those cases we can, in some cases, remedy the problems by
enlarging the cluster and freezing the positions of the atoms on the cluster edge.

To take into account the dynamic part of the interaction is more complicated. We need to
represent the rest of the cluster with some sort of (semi)classical response function. This
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response function can be based on a continuous dielectricum or on a discrete set of dipole
polarisabilities8. The effect of the environment on the cluster can then be calculated with
perturbation theory or in some methods self consistently by putting the appropriate terms in
the Hamiltonian. For highly ionic compounds the dynamic part of the interaction is expected
to be small, as long as the charge of the impurity does not change. We will not attempt to
describe this part of the interaction.

The material model we will be using in this thesis will be a cluster surrounded by point

charges, which reproduce the Madelung potential due to the rest of the crystal. The cluster
will consist of the impurity (Ce) atom and one or more shells of atoms from the host.

2.2 The Non-Relativistic Computational Model

Our non-relativistic computational model is based on the time-independent Schrodinger
equation?:

n, A2 nn, n, n,
LD JCARE ) W ZHIRL o SN S 1 22.1
2 i al'i i a Ra—l‘i 2avb Rab 2 ij rij

where n. is the number of electrons in the system and n, is the number of nuclei in the
system. The r; give the coordinates of the electrons and the R, give the coordinates of the
nuclei. The notation rj; is shorthand for r; - rj and Ry is shorthand for R, - Ry. A prime after
the sum symbol denotes that the sum indices cannot be equal. The whole equation is given in
atomic units. It can easily be seen from equation 2.2.1 that we can write the many-electron
Schrédinger equation as a sum of one-electron Schriédinger equations and an interaction
term9:

nc nc B
(Zai +%z 8 +VMJ‘P:E‘{’, 222
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n
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and ﬂu =—, 224

n, .
and V= %2 ZaZy 225

The many particle wave function ¥(r;...rp) can be written in terms of the one-electron
functions {y(r)}%:

Y= Nc0¢)0+2 2cvd>v+z ECVWcDVW ah 226

r v=n,+l r,s v,w=n_+I

The factor N is the normalisation constant; the term @ is the Slater determinant:
1
Dy = ﬁhﬁ\l’z' “VYr W, 227
o!

and the terms ®,"", etc. are constructed from ®g by replacing y, with y, y, with yy, ,etc.
in the determinant. The reason that @ is given by a Slater determinant and not by a simple
product of one-electron functions stems from the fact that the wave function must be an
eigenfunction of the parity operator P with eigenvalue -1.

The expansion of equation 2.2.6 is slowly converging, given that ®y is a reasonable
approximation for . One has to keep in mind however that the determinants with an even
number of substitutions have a larger effect on the energy of the wave function than the
determinants which have an odd number of substitutions!9.

The number ny gives the dimension of the set {y(r)}. This number is at best extremely large
and can even be infinite. This means that in almost all cases the wave function of equation
2.2.6 cannot be determined to full precision. To get an estimate for the wave function ¥ we
will have to make some approximations.

There are two basic strategies we can follow: We can reduce the dimension of the set {y(r)}
and we can limit the expansion of ‘¥ in equation 2.2.6. In the following subsections we will
elucidate these possibilities. We will start with limiting the expansion of ¥ in equation 2.2.6.
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The Hartree-Fock Method

If we restrict the expansion for ¥ in equation 2.2.6 to only the first term, we obtain the
simplest form for ¥ which is still consistent with the Pauli exclusion principle:

¥ = N®,, 228

This is a reasonable ansatz for the wave function in the case of groundstates with high lying
excited states. The method which results from this choice of wave function is called the
Hartree-Fock method!0,

The expectation value for the energy E for a normalised wave function ¥ is given by:

E = (P[H|P). 229

If we substitute equations 2.2.8 and 2.2.7 in equation 2.2.9 and use the Hamiltonian of
equation 2.2.2, we find:

n, n,
E= N2[2(r|ﬁ|r) + %2 [(rslg] 1s) — (rslg]sr)] + Vnn}, 22.10
r r.s
ne
where h= "k 2211
i
n,
and  g=) gi. 22.12
ij

Up to now we have ignored spin. Assume that the one-electron functions {y(r)} can be
written as a product of a spatial function {¢(r)} and a spin function {o=0.,}:

Wr(r): ¢r(r)cr' 2.2.13

For a "closed shell" system, in which every orbital is doubly occupied (once for a spin and
once for B spin) equation 2.2.10 becomes:

E=N? 2i(r|h|r> + "2‘ '[2(rslﬂ| 1s) — (rs|g|sr)] +Von |- 2.2.14
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The first term of equation 2.2.14 are the so-called one-electron integrals. This term describes
the kinetic energy of the electrons and the potential energy of the electrons relative to the
nuclear skeleton. The third term just gives the potential energy of the nuclei. This is a
constant; so we will ignore this term in the rest of this section. The second term is the most
interesting. It consists of the so-called coulomb repulsion and exchange integrals. They
describe the interaction of the electrons with each other.

We now express the one-electron functions {¢.(r)} in terms of a set of gaussian basis
functions {y;}:

ng
o, =Zcifxi, 2.2.15
i
with:
2i(r) = ol et 2.2.16

We can now define the projection operator (R with matrix elements:

Ry = Z<Xk‘cirXi><C5Xj lX1> = Ckcf 22.17

i,j,1

where ¢ is the coefficient matrix. If we assume that the set basis functions {y;} is orthonormal
we can write equation 2.2.14 as:

E =2tr(Rh) + tr(RG), 2.2.18
where the matrix h is the one-electron matrix with the elements:

hy; = <Xi|ﬁ]Xj>v 2.2.19
and G is the two-electron interaction matrix with the elements;

oy,
Gy = 3. Ry 2xlain) — (eixidglnxs)) = 295 - K. 2220
kl

For any change OR, the first-order energy change will be:

12
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8E® = 2tr(5Rh) + 2(SRG) = 2tr5Rh"), 2221

where hf =h+G 2.2.22

is the matrix of the Hartree-Fock Hamiltonian.
The eigenvalues g, of the operator hF can be expressed as:

g = thFc,. 2.2.23
We now define:

tr(RhF) Zs 2.2.24

To find a solution for the wave function ¥ we have to minimise the energy (2.2.18). So:

SE® = 2tr(5RhF) -0. 2225

Therefore the sum of all eigenvalues is also stationary. To satisfy the requirements of
equation 2.2.25 it is enough to solve:

|
|
|
|
. Obviously the eigenvalues €, of the operator hF are stationary against any change 8R.
|
‘ hfe=cec. 2226
|
|
Note that this equation needs to be solved iteratively. Because of the definition of G (2.2.20)
the matrix hF depends on the solution c.
| The above explained version of the Hartree-Fock method is called the Restricted Hartree-
Fock method because the spatial functions of the & and B electron in the same orbital are
forced to be equal. We can lift this restriction and obtain the Unrestricted Hartree-Fock

equations:
hEe® =g%e?, 2227

|
hcP =ePeP, 2228
where the Hamilton matrices are defined by:

13
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hg =h+G, =h+J(R®)-K(R)+J(RP), 2.2.29
hf =h+Gy =h+ J(RF)-K(RP)+ J(R?). 2.2.30

These equations have the advantage that they can also be used to describe non closed-shell
systems. The disadvantage of this method is that the obtained wave function is not
necessarily an eigenfunction of §2 anymore. To remedy this Roothaan!! developed a version
of the restricted Hartree-Fock method, that can handle open shells.

The expression for the total energy becomes:

E = vytr(Ry (h+ 4Gy )+ votr(Ry(h+1Gy)), 2231

where v; is the occupation number of the closed shell orbitals, v, the occupation number of
the open shell orbitals, and:

Gy =(G(ViRy)+G(V;R,)), 2.2.32
G, =G(ViRy) +(J(v,R;) - K(v,R,)). 2.2.33

We have factorised the total function space into three parts: the closed shell space Ry, the
open shell space R; and the virtual (empty) space Rj.
Energy minimisation leads to two Fock matrices:

hl :h+G1, h2:h+G2. 22.34

These two matrices have to be diagonalised simultaneously. This can be written in the form
of one effective eigenvalue equation with the Hamiltonian®:

h=(1-Ry)hy(1-Ry)+(1-Ry)h,(1-R, )+

2.2.35
(1 - R3 )(Vlhl - V2h2)(1 - R3)

This equation also has to be solved iteratively because the matrices J and K depend on the
solution c.

14
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The Generalised Valence Bond Method

The non-relativistic calculations described in this thesis were mainly performed with
Gaussian 92!2. The implementation of the open-shell Hartree-Fock method in this program is
severely limited. For the calculations on more complicated open-shell configurations we have
had to use the implementation of the Generalised Valence Bond (GVB) method of that
program. In this sub-section we will explain briefly the for us relevant parts of the GVB
method as implemented in the Gaussian 92 program. A complete description can be found in
reference 13.

In the GVB method we use a wave function of the form:
W = A[{core}d; 02 (0B — Bor) 010y (0B — Bot) Oy 10t “Opat]. 2.2.36

In this equation _4_is the antisymmetriser operator; {core} is just a product of one-electron
orthonormal spin functions (leading to a Hartree-Fock type wave function); the {¢,} are
spatial orthonormal one-electron functions and the {¢|m,02n} are pairs of one-electron
functions (with their spins coupled to a singlet), which need not be orthogonal to each other:

(O1m|02m)=Sm #0. 2237

The wave function of 2.2.36 is normally referred to as the GVB-PP (Perfect Pairing)
function. In principle we can also allow for other spin-couplings in 2.2.36, but we will not
dwell on this possibility here.

The expression for the total energy of the wave function of equation 2.2.36 becomes quite

complicated. We can simplify the expression by transforming the orbital pair part of the wave
function to natural orbitals !4

NO NO
bp = VO1mPlm +vVO2mPom
.

\/Glm +0om

NO NO
0, = VO1mPim ~VO2mPom
2m —

\/Glm + Oom

2.2.38

Oim >0, 035>0, <¢{\1n(l)|¢12\18>:0

The energy expression now reduces to the form:
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E = 2zfihii + Z(aUJU + leKl))’ 2239
i ij
where:
f; =1 if ¢; is a core orbital
f, = o} if ¢, is a pair orbital 2.2.40
fi=1 if ¢; is an open orbital
and:
au = 2flf] . .
b 1 if ¢; and ¢; are both open orbitals
i~ 2
a; =1 . . L
if ¢; is a pair orbital 2241
b; =0
2 =0 if o and ¢ in th i
if ¢, and ¢; are in the same pair
blj = GiO'j 1 J
a; = 2f f;
! b otherwise.

The form of the energy expression 2.2.39 is equal to the form of the energy expression for the
Hartree-Fock method, except for the meaning of the coefficients fj, aj; and by;.

Just as in the Hartree-Fock case (equation 2.2.15) we expand the one-electron orbitals {4} in
linear combinations of gaussian type functions {};}. When optimising the orbitals {¢,} we
have to recognise that there are two different types of variations possible. The first type mixes
the occupied orbitals with the virtual orbitals. These variations (when performed on an orbital
by orbital basis) keep the occupied orbitals orthogonal. The second type of variation lets the
occupied orbitals mix among each other. In this case a change in an orbital has to be
accompanied by an equal but opposite change in the other occupied orbital with which it is
mixing, else the orthogonality of the orbitals is destroyed.

The total optimisation of the orbitals {¢} is accomplished in two steps. In the first step we
allow only the first type of variation. In the second step we also allow the second type of
variation.

The variational equations for the first step are given by:

H.c, =¢.c, 22.42

16
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where:
H, =fh+ (a;J; +bK;) +(ag +b, I, + X, 2.243
i1
and:
(Xr)ij = 2(arr +by )(1 - 5ir)(1 - Sjr)(Kr)ij 2.2.44

There is a different equation 2.2.42 for each orbital ¢,. If we ignore the matrix X, then the
operator H; of equation 2.2.42 will be equal for all orbitals in a shell; i.e. all the orbitals in
the closed-shell core, all the orbitals in one pair, or all the open-shell orbitals coupled to one
spin-state. This can give significant savings in computation time.

Assuming that our starting guess for {¢;} is reasonable we can suffice in the second step by
optimising the orbitals pairwise. So:

0
B (4’? + A5 )
' NI Xzij
2.2.45
B (‘D? +A ji¢?)
! A1+ k%i
To preserve orthogonality we require:
A=Ay 2.2.46
In second order the Ajj's can be found by:
2
M=—pt|| o | +1 2247
where:
0 _ (o [H;, — 8, o) 2.2.48

U (iolHy, —H, [ig) - (iol#E;, - [io) + 73

17
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and:
¥y =2(a; +ag — 2ay Ky, + (b + by = 20)(35,5, +Kiyj,) 2249

Usually equation 2.2.47 is sequentially solved for all orbital pairs without redefining the
initial orbitals in between. After all the Ajj's are found the orbitals are updated and the process
is repeated till self consistency is reached.

The Configuration Interaction Singles Method

The Cl-singles method!S is a method developed to obtain wave functions and observables for
excited states of molecules. It is assumed that the groundstate of the molecule (the reference
state) can be written as a one-determinantal (Hartree-Fock) wave function. The singly excited
determinants @) can be viewed as zeroth order approximations to the excited states of the
molecule. Of course these determinants do not provide a good description of the excited
states because the orbitals they contain are optimised for the groundstate of the molecule. We
can partially improve the description of the excited states by allowing linear combinations of
the @Y. The wave function for an excited state will then become:

n, Iy
Yos=2, 2P 2.2.50
r v=n,+l

The ®) are defined by the Hartree-Fock calculation on the groundstate of the molecule. The
CI-singles calculation consists of finding the correct coefficients c;. To find these
coefficients it is sufficient to solve the eigenvalue equation:

He=Ec, 2.2.51
where the matrix H consists of the matrix elements:

Hyy oo = (@)

H|oy). 2252

TV,SW

The wave functions Wcys for the excited states obtained this way are orthogonal to the
groundstate Wy by virtue of Brillouin's theorem:

(o

H|P)=0 2.2.53

18
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Because the CI-singles coefficients are determined variationally the overall wave function
should be able to relax and give a better description of the excited states than the singly
substituted Hartree-Fock determinants alone. The ClI-singles method leads to a well-defined
wave function and differentiable energy, thus analytical gradient techniques to determine
properties and optimised excited-state geometries are straightforward to apply. Finally the CI-
singles method is size-consistent, meaning that it scales in the proper way with the number of
electrons in the system.

Reduction of the Basis

Reducing the dimension of the set {y«(r)} is potentially very dangerous. If we delete
functions from the set, which will occur with a significant coefficient in the final wave
function ‘P, our estimate for the wave function becomes very inaccurate.
On the other hand, it is clear that if we choose the set {y(r)} well, we can get an accurate
estimate for ¥ with a relatively small number of one-electron functions.

Consider a Hartree-Fock calculation on an arbitrary system. Such a calculation would yield a
@, and a set of one-electron molecular orbitals {y,(r)}. We can use these molecular orbitals
as the one-electron functions in the expansion 2.2.6 for . It is clear that we can limit the
expansion of 2.2.6 for the groundstate, without too much loss of accuracy, to the occupied
and the lowest virtual molecular orbitals. The molecular orbitals with very high orbital
energies will not have a significant contribution to V.

Because of this, molecular quantum mechanical methods that go beyond the Hartree-Fock
method usually start with a Hartree-Fock calculation to obtain a set of one-electron functions,
from which one can easily select an reasonable subset for the further calculations!®.

To reduce the dimension of {\(r)} for a Hartree-Fock calculation we can do something
similar. Consider a molecule consisting of several atoms. The electrons in the molecule can
be described with functions which resemble but are not identical to the atomic functions. If
we would perform a Hartree-Fock calculation on each atom separately and use the thus found
sets of orbitals {\uf‘t(r)} or parts of those orbitals as the basis for the expansion of the
molecular functions, we can restrict the sizes of the basis sets to the occupied orbitals plus a
few extra, and still obtain a fairly accurate result!7,
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Effective Core Potentials

Chemical properties of molecules or solids are mainly determined by the valence electrons of
the constituent atoms, Furthermore, the core orbitals of atoms will hardly change when the
atoms will form chemical bonds. It is therefore convenient to describe the core-electrons with
an effective potential and not explicitly in molecular calculations.

The ECP calculations described in this thesis were performed with the ECP's developed by
Stevens et al18,19, In this section we will describe their method.

The method starts with performing a numerical Hartree-Fock?® or numerical Hartree-Fock-
Dirac?! calculation on the atom in the charge state for which the ECP is needed. The (large
component of the) orbitals are then transformed to nodeless pseudo-orbitals by the procedure
developed by Christiansen et al.?2;

4
I+k+1
Xi(r) = Der ™ <R,
k=0
2.2.54

Xii (1) = 05 (r) r2R,

where R| is usually chosen to be the position where the radial part of the orbital reaches its
outermost maximum. Beyond R; the pseudo-orbital has exactly the same shape as the original
orbital. For radial distances smaller than R the pseudo-orbital is defined by a polynomial
expansion that goes to zero smoothly. The coefficients of the polynomial are defined by
matching the value and first three derivatives of the orbital at Rj and by requiring that y; is
normalised.

The effective potential has the form:

Imax—1
Veff = Vlerfrfxax + Z fof - vfgax)llm)am' 2.2.55
1=0
where:
2
rZVf'ff _ zAl,krnl'ke_Bl'kr 2.2.56
k

The coefficients Ajx and By are found by minimising the functional ||Q|23:
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IOl = (x |02|X11>%
2.2.57
0= 51i|5(11)(5(n | ~ &3]0 )i |

where the quantities capped with a tilde are obtained by solving the Hartree-Fock(-Dirac)
equation with the trial potential. In the case the effective potential is derived from a
relativistic Hartree-Fock-Dirac calculation the final potential is obtained as a weighted
average of the potentials for the two different j-values.

After the effective potential has been found a small basis set is made by varying the
exponents and coefficients of a trial basis and thus minimising the total energy.

The expansion 2.2.55 for the effective potential can be very short, while still obtaining fairly
accurate results. Errors in the orbital energies €55, due to the effective potential rarely exceed
0.03 eV for an expansion of only three terms. Because the orbitals are nodeless, the valence
basis set can also remain small. So this method leads to very compact ECP's and basis sets.
Atomic calculations of Stevens et al. on several atomic states show that the ECP's are able to
reproduce all-electron results within an error of 0.2 eV.

2.3 The Relativistic Computational Model

In the previous section we used the Schrédinger equation as the basic equation of motion.
This equation is found by using the correspondence principle of the Hamiltonian formalism
of non-relativistic classical mechanics. It has all the invariance properties of the Hamiltonian
from which it derives. It can also be shown that the Schrodinger equation is invariant under
the Galilean transformation, but not under the Lorentz transformation24. Therefore the
Schridinger equation does not provide a proper description of systems for which relativistic
effects are important.

In 1928 Dirac?3-26 proposed an equation for a single electron moving in a potential ¢, which
is invariant under the Lorentz transformation:

ihi\l—’:[ca-p-kﬁmcz—eq)]‘l’. 2.3.1
ot

In this equation p is the impulse and o.-p is a shorthand notation for:
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O P=0 Py +0y Py +0; Py 232

The o's and B are 4x4 matrices:

a=0 cx.a:O cs,_azo (Sz_B=1 0 233
*{lop, 07 o, 0/ (o, 0/ 0 -1/ o

where the ¢'s are the usual Pauli matrices:

01 0 i 10 .
o, = s oy=|. o} Ga= : 3
o)l oo F Lo

Just as in the case of the Schrédinger equation, the Dirac equation can be separated into an
equation dependent on time only and an equation dependent on the spatial coordinates only.
The time-independent Dirac equation is usually written as:

[cou-p +pme? —eo]¥ = E¥. 235

From the dimension of the matrices o and B it is clear that the solution of this equation must
be a four-component spinor:

The upper half of the spinor is referred to as the large component and the lower half of the
spinor is referred to as the small component. These names derive from the fact that the
amplitude of the energy of the large component is of order c larger than that of the small
component.

The eigenvalue spectrum of the Dirac equation ranges from -co to oo, with a forbidden gap
between -mc2 and mc2. A possible physical interpretation of this spectrum and its drawbacks
can be found in standard textbooks?427, and will not be dealt with here.
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The Many-Electron Dirac Equation

To describe a system with more than one electron we need a generalisation of the Dirac

equation. We will do this in analogy with the many-electron Schriddinger equation. We then
get the Hamiltonian:

n D 1 n n
(Ile = 2&1 + 522911 N 237
i=1 i=1j=1

where h;D is the Dirac-Hamiltonian of the it electron and gi; is the interaction between
electrons i and j. In the Schrodinger equation g;; has the form:

8ij = o 238
ij

i.e. the Coulomb operator. It can be shown however that the Coulomb operator is not Lorentz
invariant; so it can never be a correct relativistic operator. With the use of Quantum
Electrodynamics it can be shown that the Coulomb term is the first term in an expansion of
the true electron-electron interaction. This interaction cannot be written down in closed form.
In practice only the first two terms of the expansion are retained?8. In the so-called low
frequency limit this leads to an operator first derived by Breit2%:

Coulomb+Breit _ 1 1| O Oy (ai 'rij)(aj 'rij)
ij =% + . 2.3.9
j ! ks 3

ij ij ij

The first part of this operator is the usual Coulomb interaction, the second part is the
magnetic interaction between the two electrons and the third part describes the retardation
effects due to the finite velocity of the interaction. The magnetic term is also called the Gaunt
interaction30.

The many-electron time-independent Dirac equation can now be written as:

Hp¥(r)--r,)=E¥(r;r,), 23.10

with Hp given by equation 2.3.7 and g;; by equation 2.3.8 or 2.3.9. All relativistic
calculations described in this thesis were performed with the g of equation 2.3.8. This was
done because inclusion of the Gaunt interaction increases the resource demands of the
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calculations considerably and only has a marginal effect on the results of Hartree-Fock-Dirac
calculations3!32,

The wave function ¥(r;...r,) can be written in the form of equations 2.2.6 and 2.2.7, with the
only difference that the set of one-electron functions {y(r)} now consists of four-component
spinors and not of scalar functions.

To solve equation 2.3.10 we can use in principle the same methodology as for the time-
independent Schrodinger equation. Their are two factors which make a small adjustment of
the methods necessary. The first one is the different form of the one-electron functions. The
second is the fact that the Dirac Hamiltonian is not bounded from below. As a consequence
the variation theorem does not apply. However most variational methods only determine
stationary states. By selecting only the lowest positive energy solutions we are able to

determine the lowest positive energy state. The so-called variational collapse does not
occur33.34,35,

The Basis Set Expansion

The time-independent many-electron Dirac equation as written down in equation 2.3.10 looks
at first glance very similar to the time-independent many-electron Schrodinger equation. To
solve equation 2.3.10 we can use the same methodology as for solving the Schrodinger
equation.

We write the wave function W(ry...r,) again in the form of equations 2.2.6 and 2.2.7. There is
one significant difference: The set one-electron functions {y(r)} now consists of four-
component spinors instead of scalar functions. To be able to use the basis set expansion in
gaussian type functions we define two scalar gaussian type basis sets3436.37: one for the large
component {xl;(r)} and one for the small component {x§(r)} of the one-electron functions.
We can then express the one-electron functions in the two basis sets:

ZcirLXiL 0 0 0
i 2@ x- 0 0
L iLAQ S
‘I!(rxL - 0 : W? =5 o : \u?s — ZCIer,S g \I{E’ = 0 . 2.3.11
0 i zcirinS
i

Just as in the non-relativistic case we can make more compact basis sets by optimising the
exponents of the gaussians for the free atom and by determining the optimal coefficients ¢y
and keep some of them fixed relative to each other in the subsequent molecular calculations.
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The Kinetic Balance Principle

We can write the time-independent Dirac equation from equation 2.3.5 in the following way:

~ed co-p Ywh) [wh
(Cc.p —e¢—2mc2)(\psj_€(\ys . 23.12

From this notation it is immediately clear that we can formally express the small component
of the spinor in terms of the large component:

S 1 L

=G 2.3.13
¥ e¢+e+2m<:2 Py

Equation 2.3.13 can only be used if equation 2.3.12 has been solved and ¢ and € are known.
If we assume that ¢ and € are small compared to 2mc2 (which is approximately true for
valence electrons, but not for core electrons in heavy atoms) equation 2.3.13 reduces to:

v = o pyt 23.14
2mc

This relation is known as the kinetic balance38 relation.

If the basis sets used for the expansion of the one-electron functions {yy(r)} are such that the
relation 2.3.14 cannot be fulfilled the solution of equation 2.3.12 will not converge to the
correct non-relativistic result in the limit of very large c. Furthermore there will occur
spurious positive energy solutions, which have not enough kinetic energy. These spurious
solutions may lead to a variational collapse39.

To make sure that relation 2.3.14 can be fulfilled, the primitive small-component basis set is
obtained by operating with the spatial part of -p on the primitive large-component basis set:

2
S }e——{ut}. 23.15

A basis set constructed in this way is said to be kinetically balanced. The primitive large-
component basis set is determined in the same way as in the non-relativistic case.

In the case the large-component basis set is contracted a straightforward application of
relation 2.3.15 may give erroneous results#?:41. We prefer to use the so-called atomic
balance#2. An atomic balanced basis set is constructed by performing a four-component
relativistic calculation on the relevant atom, using a non-contracted kinetically balanced basis
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set. The large and small-component functions are then separately contracted using the
coefficients from this calculation.

The Hartree-Fock-Dirac Method
In this section we will briefly explain the relativistic analogue of the Hartree-Fock method:
the Hartree-Fock-Dirac method.

We write the wave function W(r;...r,) as a Slater determinant of one-electron four-component
spinors:

¥(ryor,) = D1y ry) = _\/%l\Vl(rl)W2(r2)'“\Vn(rn)I' 23.16

The energy expression for an average of configurations#3 becomes:

E= Z(r|ﬁ|r) + %Z[(rs[gl 1s)— (rs|g|sr)] +
Z(t|h|t +o afzz[(tu|g|tu ) (tulglut)]+ 2.3.17
fZ[(rtlslrt )]

where r and s run over the closed-shell orbitals and t and u run over the open-shell orbitals.
The operators h and g have the same meaning as in section 2.2. The factor f is the occupation
number of the open shells:

= 23.18
m

where n is the number of open-shell electrons and m is the number of open-shell spinors. The
constant a is the coupling constant:

_ m(n—1)
n(m-1)

23.19

If we now introduce the basis set expansion of equation 2.3.11 we can derive the Hartree-
Fock-Dirac-Roothaan pseudo eigenvalue equations:
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2.3 The Relativistic Computational Model.

h:'FDcc = Sccc 2.3.20
h:lFDCO = Soco , 2.3.21

where the superscript ¢ refers to the closed shells and the superscript o to the open shells.
The Hamiltonians are given by:

hirp = h+G(R®)+G(fR°) + oL’ 2322

h{ep = h+ G(R®)+aG(fR°) + oL 2.3.23
where, in contrast to the non-relativistic case G is now given by:

G(R)=J(R)-K(R). 23.24

The coupling matrices L take care of the orthogonality between the closed and open shell
spaces and are given by:

L= SR°G(fR°) + G(fR° )R°S
2.3.25
L°= SR°G(fR°) + G(fR° )R"S,

where the matrix 8 is the overlap matrix of the basis. The coefficient o is given by:

=172 2.3.26

This method is basically the same as the open-shell restricted Hartree-Fock method outlined
in the equations 2.2.31 through 2.2.35, although the problem of simultaneously diagonalising
two Fock matrices is handled here differently. In contrast with 2.2.35 in this formalism
Koopmans' theorem#4 is still valid43; i.e. the orbital energies can be interpreted as zeroth
order ionisation energies.
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Chapter 3

Improving the Convergence Behaviour
of the MOLFDIR Program Package

In this chapter we describe our work to optimise the convergence behaviour of the SCF part
of the MOLFDIR!:2 package. We will review some convergence accelerator methods
commonly used in traditional Hartree-Fock calculations and we will ascertain the
applicability of these methods to the Hartree-Fock-Dirac case. The similarity of the SCF
procedure in both the traditional and the relativistic Hartree-Fock calculations suggests that
accelerator methods should show similar performances in both cases. After the review we
will discuss the gains in performance realised by the implementation of the methods to
enhance the convergence.

3.1 General Theory

There are basically two ways to reduce the number of SCF cycles needed to obtain the wave
function to a certain degree of convergence:

i) provide a good starting guess.

ii) enhance the convergence gain per SCF cycle.

With the advent of generalised contracted basis sets3 a so-called core guess (i.e. the starting
vectors for the SCF procedure are obtained by diagonalising the one-electron part of the Fock
matrix) is approximately equal to a guess based on non-interacting atomic orbitals of the
constituent atoms. Making better starting vectors is quite difficult and in our experience does
not reduce the number of SCF cycles significantly. So we will not investigate this option any
further. For the remainder of this chapter we will focus our attention on option ii).
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Chapter 3. Improving the Convergence Behaviour of the MOLFDIR Program Package.

Convergence enhancers can roughly be subdivided into two groups. Group 1 contains the
methods that leave the traditional iterative scheme intact. These methods make use of
interpolation or extrapolation schemes on the density or Fock matrix or on the vectors to
enhance the convergence gain per SCF cycle. The second group of methods (Group 2) uses
an alternative to the normal iterative scheme. These methods usually try to minimise the
energy directly, without repeated diagonalisation of the Fock matrix.

3.2 Group 1 Convergence Accelerators

We will review a number of well-known extrapolation methods and explain the principles on
which they work. For each method we will try to assess if it is worthwhile to implement it in
MFDSCEF, the SCF program of the MOLFDIR program package.

Damping

The simplest interpolation/extrapolation method that can be applied is damping. Damping is
usually applied either to the vectors or to the density matrix. The new set of extrapolated
vectors V¢ can be found by:

Vf =11Vn-1 +(1—T\)Vn, 3.2.1

where V)1 are the vectors of the previous iteration, V,, are the vectors of the current iteration
and 7 is the damping constant.

The normal iterative procedure has a tendency to overestimate the needed changes in the
vectors and density. This can lead to oscillations that sometimes even prevent the process
from converging. With damping we can counteract these oscillations and force the process to
convergence. When oscillations do not occur damping will only slow down the convergence.
For the damping constant 1} we have two options: We can use a fixed damping constant or we
can make the damping constant dependent on the achieved convergence. In practice methods
with a variable damping constant work somewhat better than methods with a fixed damping
constant.

The old MFDSCF program contains two damping methods that work on the vectors. The first
method uses a fixed damping constant and the second method uses a variable damping
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constant4. The variable damping constant is determined for each orbital separately, according
to the formula:

€ €|
_ _ e’ + ’ ?
€ —€_ & tE

n= 3.2.2

where {€;} are the eigenvalues of the orbitals generated by the diagonalisation of the Fock
matrix and {€';} are the corrected eigenvalues of the orbitals after the damping procedure.

Both methods worked very poorly. The reason is that the extrapolated vectors were
orthonormalised with the Schmidt orthogonalisation method. If the changes in the vectors in
consecutive iterations are considerable the orthogonalisation will result in large corrections to
especially the last vectors. The effect of the extrapolation is thus largely undone resulting in
poor convergence. Therefore we have chosen to apply the damping to the density matrix.

Aitken Extrapolation

A somewhat more sophisticated extrapolation method is Aitken3. Aitken is a three point
quadratic extrapolation method, where the change in a vector is considered as a function of
that vector only and is extrapolated to zero. Let us call the vector of the last diagonalisation ¢,
the vector of the previous iteration b and the vector of the iteration before that a. Each
component of the extrapolated vector e is then found by the formula:

__ac;—b}

= . 323
ai + Ci - 2bl

i

Aitken is a reasonably efficient convergence accelerator as long as the not corrected iterative
process is not wildly oscillating. Aitken has already been built into the MFDSCF program
and the results are rather poor because of the reasons noted earlier.

Pople's Extrapolation

A very popular extrapolation method is the method due to Pople. It is implemented in many
current quantum chemical program packages like Gaussian®, HONDO7 and GAMESS2. This
method can be applied on the density matrix, the Fock matrix or the eigenvectors. In our
discussion of the method we will assume it will be used on the density matrix. We first have
to calculate the differences between four consecutive density matrices:
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d,=D,-D,_|, 324
d; =D, -D,_,, 325
d3 = Dn_2 - Dn_a. 326

If the three d,, vectors are nearly coplanar we extrapolate. To that end we write d; in terms of
d; and d3:

dl = Xd3 + yd2 . 3.2.7

We can write this alternatively as:

d d
AR b 3.2.8
d, 1 OAdg
If the eigenvalues of the 2x2 matrix lie on the interval {-0.95,0.95] we can do the four point
extrapolation:
Dnew = Dn + adz + Bd3, 3.29
with:

Xty 3.2.10

and B= .
l1-x-y P 1-x-y

If the four point extrapolation is not possible we try the three point extrapolation. The three
point extrapolation is only attempted if the vectors d| and d; are nearly parallel. The new
density matrix is calculated according to:

D,.w =D, +od;, 3.2.11

with

ldy|

o=—-y i 3.2.12
|d2]cos¢—|d1|
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where ¢ is the angle between d; and dj.

Pople's extrapolation method was implemented in the MOLFDIR package. The extrapolation
was done on the density matrix for the same reasons as stated in the discussion on the
damping methods.

The DIIS Method

The most successful and best extrapolation method to date is Pulay's Direct Inversion in the
Iterative Subspace®10.11 method. This method can be used to extrapolate the density matrix
and the Fock matrix.

Consider the error vector e;:

¢ =[F;.D;], 32.13

where in the commutator F; is the Fock matrix of the current iteration and D; is the density
matrix of the current iteration. At convergence e; = 0. We now define a total error vector e:

n
e=) ce;, 32.14
&~

where n is the number of the current iteration. We will now minimise € in a least squares
sense:

ai<e|e)=o, 32.15
Ci

under the constraint:
S 2
Yl =1. 3.2.16
i=1

The sets of equations 3.2.15 and 3.2.16 lead to a small set of linear equations:
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0 -1 -1 - —1y-A) (-l

=, 3.2.17

where

B;j = (eie;) 3.2.18
and A is a lagrangian multiplier. Equation 3.2.17 can be solved for ¢ with standard techniques.
In the relativistic case the error vectors e; are complex. If we use the entire commutator
matrix [Fi,Di] and not only the upper or lower triangle for the error supervectors e;, then the
dot products <ei |e j> will be real and the remainder of the DIIS procedure can be standard. In
practice we do not solve equation 3.2.17 as it stands. Firstly we multiply the diagonal
elements of B with a factor 1.02. This procedure is recommended by Pulay and serves to
stabilise the process. Secondly we subtract row i from row i+1 in the B matrix. This
eliminates the lagrangian multiplier.

The new extrapolated Fock matrix can be calculated by:

n
Frew = 2 ciF;. 3.2.19
i=1

We have applied the DIIS extrapolation on the Fock matrix. This is the least CPU intensive
solution and it has the added advantage that at every cycle of the SCF process we have a
correct idempotent density matrix.

3.3 Group 2 Convergence Accelerators

Group 2 methods usually try to minimise the energy expression directly. To do this one
usually needs the first and the second derivatives of the energy with respect to the orbital
coefficients. This is not a real problem for MCSCF calculations for which these methods
were originally developed. For Hartree-Fock SCF calculations however the computation of
the derivatives of the total energy cause such a high CPU overhead that these methods are not
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of any practical value. Fortunately some methods were recently developed which avoid the
direct computation of the energy derivatives.

In this section we will review the Quadratic Convergent SCF method, originally developed
by Bacskay!12:13.

The Quadratic Convergent SCF Method: General Theory

The total orbital space for a molecule can be divided in three subspaces: The closed shell
orbital space (D), the open shell orbital space (P) and the virtual orbital space (V). The wave
function representing the ground state |0) must be invariant for any unitary V/D, V/P and P/D
orbital mixing. This means that the first derivative of the total energy corresponding to such
rotations must vanish, while the second derivative must be positive definite. The basic
strategy of the QC-SCF method is to approximate the energy hypersurface with respect to a
set of such orbital rotations by a quadratic surface whose minimum is then located, yielding
an improved set of orbitals.

Let us consider a unitary orbital transformation:
o =o"U, 33.1
U=eX=1+X+12X%+--, 33.2

where X is an anti-hermitian matrix, i.e.:

*

Xoe=Xius 333

with the added constraint:

X;j=Xpq=Xap =0, 33.4

where i and j run over the closed shell orbitals, p and q run over the open shell orbitals and a

and b run over the virtual orbitals. So we will not bother with rotations within a subspace.
The transformed orbitals can now be written as:

1
o, =0 + Y X, @ +EZX[’HXU’S®?+~-. 335
t t,u
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The total energy as a function of X up to second order can be written as:
E? =EO +X'E’ +12X'E"X, 33.6

where E' is the first derivative and E" is the second derivative of the total energy with respect
to the matrix elements X, at X = 0. Expressions for the derivatives will be given later. The
equations 3.3.5 and 3.3.6 are only valid for the real X. For complex X the equations become
much more elaborate. We will for the remainder of this subsection assume that X is real and
discuss the results for complex X in the next subsection.

In order to get a secular equation for X we now define an energy functional £[X] that is
quadratic in X:

E® L gOp@
dX]=—Tpm 337
For an orthonormal orbital set the term D@ is defined by:
2 2
D® = Zszs,ls|xn,s| 3.3.8
s<t
The matrix S is a diagonal matrix containing the terms:
Sia,ia = closed shell occupation number,
Spa,pa = open shell occupation number, 339
Spi,pi = (closed - open) shell occupation number.
Minimising the functional £[X] yields the following two secular equations:
E'+(E”+2(E® -¢)s)x =0, 3.3.10
2(E® —¢)=-X"E". 33.11

Making use of the hermiticity of XTE' these two equations can be written as one eigenvalue
equation:
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EQ -¢ LB 1, .
VB B+ (B -g)s \x) T 12

The matrix of equation 3.3.12 shows a resemblance with a Configuration Interaction (CI)
matrix and will therefore be called the CI matrix for the remainder of this chapter.

Expressions for the Energy Derivatives

The definitions of E' and E" differ in the relativistic case from the ones Bacskay uses. In the
relativistic case the matrix X is complex. So the total energy now has to be differentiated with
respect to the real and imaginary components of X separately. Thus we obtain two
expressions for E":

d d
EIR - — E X ) 3313
2w o
I 1
d )
E,l~ — + E X s 3314
b [axt,s BXSJ 0 o

where the superscripts R and I denote the real and imaginary parts respectively. We get four
expressions for E":

E/RR = ( 9___9 ]( I ___9 jE(X) etc. 3.3.15
oX, s X \oX,y 9X,, <o
The term E'X in equation 3.3.12 now becomes:
Re(E’X)=E'RXR - E'X!, 3.3.16
Im(E'X)=0. 3.3.17
The term E"X in equation 3.3.12 now becomes:
Re(E”X) = E"RRXR _ gRIX! 33.18
Im(E”X) = E”RX® - E7IXT, 3.3.19
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The two components of the first derivative and the four components of the second derivative
can be calculated in the way outlined in the paper of Douady et all4 for the case of real X. For
complex X the formalism becomes much more complicated.

Assuming the total energy can be written as!5:

E= Y (iHli)+ %Z[(iilljj) — (ili)] +

£ (ph|p)+5af>Y[(pplaa) - (pallap)] +. 33.20

£ [(iilop) - (iplp)]

(where the two-electron integrals are written in the charge cloud notation) the components of
the first derivatives of the energy are:

ER =2Re(FS), 3321
Ejf = -2Im(Fg), 33.22
E =2f -Re(Fjy), 3.3.23
Ejf =-2f - Im(FG,), 33.24
Ep =2(1-f)-Re(Fy) ), 33.25
Ep =—2(1-f)-Im(E} ), 3326

and the real components of the second derivative of the total energy are:

E”RR 2Re(F§b)51j - 2R6(Fi(j: )5“‘5 *

o , 3327
2{2(Re(ai)|Re(bj)) - Re(ib]ja) + ilba))}
E/RR = {(1 —£)-Re(FYy ) +2f Re(Fg)}sab + aag
2 - {2(Re(ai)|Re(bp)) - Re((ib]pa) + (ip||ba))}!
E7RR ={2(1- 1) Re(Fyp )+ - Re(E )13 + .

2(1=1)- {2(Re(ai)]|Re(pj)) — Re((ip]ja) + (ij||pa))},
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ELTi =26 Re(FQ o =20 -Re{F o +

, 3.3.30
2af? - {2(Re(ap)[Re(ba)) - Re{(pblga) + (pqlba))}
E7RR ={(1- 1) Re(FY )~ £-Re(F) 15, + 3331
26(1 - af)-{2(Re{ap)Re(a)) - Re{(palia) + (pilaa))} )
E;}Rq]R =2(1-f1)- Re(F&; )81j -2(1-f) Re(Fzy )Spq *
3.3.32

2(1-2f + af?)- {2(Re(pi)|Re(qj)) - Re((iglip) + (illap))}

The imaginary and mixed components of the second derivative of the energy are listed in
appendix B. In the equations 3.3.21 - 3.3.32 we made use of the following definitions:

F¢=h+Q¢+Q°,
FO =h+Q¢+aQ®,

1—af
F¥ =h+Q%+—-Q°,
Q 1_fQ

where h: one-electron part of the Fock matrix,,

Q€ =X (Ji-K;)and Q° =3 (J, - K,

1 p

| f= %: occupation of open spin orbitals and

a:d(n—l)

| n(d-1)

: coupling coefficient,

with  n: number of electrons and

d: number of available spin orbitals. 3.3.33

J and K are the matrix representations of the coulomb and exchange operators respectively.
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The components of the first derivative (equations 3.3.21 to 3.3.26) and the one-electron part
(i.e. the Fock matrix part) of the components of the second derivative (equations 3.3.27 to
3.3.32) of the total energy are easily calculated, requiring only the construction of three Fock
matrices and their transformation to the molecular orbital basis. The two-electron part of the
components of the second derivative of the energy is much more involved.

The Direct CI Method

To compute the two-electron parts of the second derivative of the total energy we need to
evaluate two-electron integrals over the molecular orbitals. This is usually done with the help
of a four-index transformation on the two-electron integrals in the atomic orbital basis. Four-
index transformations are very time consuming, so we would like to avoid this step. This is
possible because we do not need E" explicitly. We only need the quantity Q:

Q=E’X. 3334

We can calculate Q(2 el.) relatively easy by first transforming the matrix X to the atomic
orbital basis (i.e. the basis over which the two-electron integrals are calculated), then
contracting this matrix with the two-electron integrals and finally transforming the resulting
matrix back to the molecular orbital basis.

We write the matrix X as:

o XCO XCV
X=X, 0 X, 33.35
X, X0 O

v¢ vo

and we write the matrix of the molecular orbital coefficients as:

CC
C=[C, | 3.3.36
CV
Transform X to the atomic orbital basis and call the new matrix D:
D=CXC'. 3.3.37
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When we write this out in the non-redundant components we get:

DOC = COXOCCi
D,. =C,X,C!. 3.3.38
DVO = CVXVOCE
When we write the contraction of the density matrices D with the two-electron integrals of

the equations 3.3.27 to 3.3.32 as PD (i.e. as the multiplication of the supermatrix P with the
supervector D), the matrices Qyy(2 €l.) can be written as:

Q. (2¢l)= CL[P{z(l ~ 2f + %Dy +2(1 - )D, +2f(1 - af)Dvo}]Cc

3.3.39
=cj[pp¥c.
Qc(2 el) = CI[P{2(1 - £)D, + 2D, +2MD,, }]C,
" e 3.3.40
= CV[P z ]Cc
Quo(2 e1.) = CH[P2£(1 - af Dy +2/D, + 227D, J|C,
3.341
=ci[ppy|c,
Inspection of the equations 3.3.39 to 3.3.41 shows that:
(z):c — D\)EC _ D\g’ 3342
So we only have to compute two density matrices:
¥ = 2(1-f)D,, +2D,, +2fD,, 3.3.43
¥ = 2f(1 - af)Dy, +2fDy, +2af’D,, 3.3.44

The density matrix D$° can then be found by applying equation 3.3.42. The three matrices
Q.y are then easily obtained by applying the equations 3.3.39 to 3.3.41.

The equations 3.3.39 to 3.3.41 are only valid for the real component of the second derivative
of the energy. The other components cannot be written in exactly the same form. The
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supermatrix P would be different for all the components of E". They can easily be derived
from the equations in appendix B and will not be given here.
Raleigh-Schriodinger Perturbation Theory

The CI matrix will be diagonalised with the help of Raleigh-Schrédinger perturbation theory.
We divide the CI matrix into two parts:

Clmatrix=Hy+V 3.3.45

The matrix Hy is a diagonal matrix containing the term E in the upper left corner and the
term EO)S and the diagonal part of the one-electron (Fock) part of the second derivative of
the total energy, in the lower right corner. The matrix V contains the rest of the CI matrix.
The zeroth order vector corresponding to the solution we seek is:

[0)=(100--). 3346

The ith order correction to |0) is!é:

i
li)= Yio){(v g )li-1)- Z li—k) } 3.3.47
where:
basis A/
A SD—,J—J-(EO—EJ-)

and g; is the ith order correction to Eq and E; is the zeroth order energy belonging to the
function |j). The RS perturbation theory is used to generate a small set of basis vectors on
which the CI matrix is computed and diagonalised. The basis is extended until the changes in
the lowest eigenvector of the CI matrix remain below a certain threshold.
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The Algorithm

To summarise all the preceding theory we will present here a schematical overview of the
algorithm of the QCSCF method. At the highest level we have the so-called macro iterations:

)
ii)
iii)
iv)
v)
vi)
vii)

Calculate FC, FO and FV. (equation 3.3.33)

Transform the Fock matrices to the molecular orbital basis.
Construct H.

Solve the CI equation for X. (equation 3.3.12)

Evaluate eX and transform the molecular orbitals. (equation 3.3.5)
Check for convergence.

If the calculation has converged build the "normal” Fock matrix and
diagonalise it to obtain the canonical molecular orbitals and stop.
Else go back to 1)

In step iv) the CI matrix is diagonalised with the help of an iterative method. These iterations
are called the micro iterations:

i)

ii)
iif)
iv)

V)

vi)
vii)
viii)

Construct the zeroth order approximation to X (i.e. equation 3.3.46).
Compute o, = V|0).

Construct the next (ith) order correction X with RSPT. (equation 3.3.47)
Compute o;,; = V|i).

Compute the (i+1)th row and column of the CI matrix in the basis of the
perturbation correction functions, i.e. the matrix elements:

(i) = (lHo i)+ (o)

Diagonalise the CI matrix.

Check for convergence.

If the calculation has converged transform X back to the MO basis,
Else go back to iii)

Step ii) and iv) can be subdivided as follows:

1)

it)

iii)

Transform the matrices X, Xyc and Xy, to the non-symmetry basis and
combine them with the proper coefficients to Dx¥¢ and DsY0. (equations
3.3.43 and 3.3.44)

Contract the Dy matrices with the two-electron supermatrices to form the Q'
matrices.

Construct Qp. = Q% + Q-
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iv) Transform the Q' matrices back to the MO basis. We now have the two-
electron part of the vector ©.

/T 1
V) Add the first derivative part [E EO )(' >) to the vector ©.
¢ 1

vi) Add the one-electron (Fock) part of the second derivative to the vector ©.

Because of the enormous complexity of this method we decided not to implement the
imaginary components of the two-electron part of E". This has simplified the programming
considerably. The current implementation will still work properly when the eigenvectors of
the Fock-Dirac matrix can be expressed with real valued coefficients in the basis set. In all
other cases the current implementation may not work optimally.

In the next section we will, among other things, assess how bad this omission is and if it is
worthwhile to implement the method fully.

3.4 Results

In this section we will present calculations we have done on some small systems to assess the
performance of all the methods we have discussed in sections 3.2 and 3.3. We will present
the systems in order of increasing complexity and show the results of non-relativistic and full
four component relativistic calculations. For each system we will compare the performances
of all relevant extrapolation methods and discuss the differences.

All the Group 1 methods are directly comparable because the CPU overhead they cause is
small compared to the CPU requirements of a pure SCF cycle. The QCSCF method uses a
very different scheme to obtain the wave function. Comparison with the other methods is
therefore more difficult. We have chosen to compare the number of micro iterations needed
by the QCSCF method to obtain a certain convergence to the number of traditional SCF
cycles needed by the other methods to obtain the same convergence. This is a fair comparison
because the amount of work needed for one QCSCF micro iteration is comparable to the
amount of work needed for one traditional SCF cycle.

The test calculations are done in the same manner as they would be done in normal practice.
The damping and Pople procedures are started at the first iteration and are not combined. The
DIS and QCSCEF procedures are started when the convergence on the density is better than
10-2. This is the minimal initial convergence these methods need to be able to converge to a
proper state. The initial convergence of 10-2 is obtained by using the damping procedure
because in this way it is guaranteed that one can reach this initial convergence.
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Details of the Calculations

We have performed calculations on four different test systems. The first system is the boric
atom. This is the simplest not trivial system we can test. It is small, containing only five
electrons. It is only one atom, so it can be treated with the highest symmetry the MOLFDIR
package can handle: Op. The orbitals can be expressed with real valued coefficients in the
basis set. So the current implementation of the QCSCF method should work correctly for this
system. The system is not trivial because it does contain two fully occupied s orbitals and a
partial occupied p orbital.

We used an uncontracted basis set, with the exponents taken from the STO-3G17 basis set.
For the relativistic calculations we added a small component to the basis according to the
’ strict kinetic balance principle.

The second system we have tested is the Co** ion. Just like the boric atom it has very high
| symmetry and its orbitals can be expressed with real valued coefficients in the basis set.
| However it is more complex than the boric atom. It is substantially bigger and it contains a
| half-filled 3d shell.

We used a (10/9/4) uncontracted basis set with the four d-exponents equal to the last four s-
’ exponents. The small component basis set was derived from the large component basis set

through the extended kinetic balance principle. The basis set is listed in appendix A.

We will now look at a more complex system: the SiH4 molecule. This is a small, high

symmetry (Tgq) closed shell system. The molecular orbitals of this system cannot be expressed

with real valued coefficients in the basis set. Even for the non-relativistic calculation the basis

functions are chosen such that the molecular orbital coefficients are complex. So our
implementation of the QCSCF method will not be able to handle this system correctly. The
calculations on this system will give us a chance to assess the implications of the current
implementation limits on the convergence behaviour of the QCSCF method.
The large component of the basis sets consisted of a (12/8) primitive basis contracted to (9/6)
for Si, and a (6) primitive basis contracted to (3) for H. The small component of the basis set
was derived from the large component through the extended kinetic balance recipe. The basis
sets are listed in appendix A.
The final test system we look at is the CoFg2" molecular ion. This is a very difficult system,
With the old version of the MFDSCF code we could not obtain a converged result. So this is
an almost perfect test system for our new convergence accelerators. The symmetry of the ion
is high: Oy. The large component basis set of Co consists of a (16/9/6) primitive basis
generalised contracted to a (5/5/3) basis. The generalised contraction was based on a full
four-component relativistic SCF calculation on the Co** jon. The small component basis set
for Co was derived from the large component basis set through the extended kinetic balance
principle. The large component basis set for F consists of the (10/6) primitive basis developed
by Wachters!® generalised contracted to a (4/3) basis. The generalised contraction was based
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on a full four-component relativistic SCF calculation on the F- ion. The small component
basis was derived from the large component basis through the extended kinetic balance
principle. Both basis sets are listed in appendix A.

Discussion of the Results

The convergence behaviour of our test calculations is shown in the figures 3.4.1 to 3.4.8. For
each system we have done a non-relativistic and a full four component relativistic calculation.
For each system we only show the results of those methods that lead to some sort of
converged result.

For the calculations on the two atoms we see that the normal non-extrapolated SCF procedure
already shows a smooth convergence. Damping would slow the convergence down, so for
these systems we did not try that, except in the preparatory cycles for the DIIS and QCSCF
method. We can see that the convergence gain in those cycles is indeed smaller than in the
non-extrapolated cycles. In the other cases the non-extrapolated SCF procedure will start to
oscillate. For the non-relativistic calculation on the SiHy molecule the oscillations will damp
out after 45 iterations and the subsequent convergence is smooth. For the remaining three
calculations the SCF procedure will keep oscillating and a converged result cannot be
reached. The suppression of oscillations is the main reason we implemented the fixed
damping scheme. From figure 3.4.5 we can see that this is indeed what the damping
procedure does. The convergence is smooth, but still very slow. This is partly due to the high
damping constant (n = 0.5) we used. This high damping constant was needed to successfully
suppress the oscillations in the early stages of the calculation. In the later stages of the
calculation such a high damping constant obviously slows the convergence down. So the
overall convergence is poor. The same holds for the relativistic calculation on SiHy. For the
calculations on CoFg2- the situation is even worse. To successfully suppress the oscillations
we needed a damping constant n > 0.7. As a result we needed more than 800 iterations to
achieve a convergence of 1010 on the density. These results are not shown in the figures.

The Pople extrapolation procedure only shows good results for the calculations on SiHy. For
both the relativistic and the non-relativistic calculation the Pople procedure performs one
three-point extrapolation, which brings the system out of oscillation. The subsequent
convergence is fast and smooth. In all the other cases we were either not able to achieve a
converged result or the Pople procedure performed approximately equal to the non-
extrapolated SCF procedure.

The DIIS procedure performed very well in all cases. For the first three test systems we
started the DIIS procedure after we had reached an initial convergence of 102 on the density.
After the DIIS procedure was started convergence was smooth and very fast in all cases.
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Figure 3.4.2 The convergence behaviour of the relativistic calculations on B.
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Figure 3.4.8 The results of the relativistic calculations on CoFg2".
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In the case of CoFgZ the DIIS procedure had some trouble reaching a converged result when
we started the procedure at an initial convergence of 10-2 on the density. However it did
eventually reach convergence. When we started the DIIS procedure at an initial convergence
of 10-3 on the density it performed much better, although also in this case the DIIS procedure
seems initially to have some problems. That we need a higher initial convergence here than in
the other cases is caused by the high damping factor we needed to use to obtain the initial
convergence. A high damping factor means that a very large part of the old density matrix is
retained in the next iteration. Because of that the convergence appears to be better than it in
reality is. This is nicely illustrated in figure 3.4.7. Upon starting the DIIS procedure the
damping is switched off and we see the convergence drop by an order of magnitude.

The performance of the QCSCF method is a bit disappointing. For the calculations on the
atoms the current implementation of the QCSCF method should work properly. On the macro
iteration level the method indeed shows very fast convergence. Because each macro iteration
needs on average three micro iterations the overall convergence however is poor. The
calculations on B show that the performance is approximately equal to that of the non-
extrapolated SCF procedure.

The non-relativistic calculation on Co%+ also shows a performance equal to the normal non-
extrapolated procedure. But in the last iteration we see the convergence drop sharply. The last
iteration of a QCSCF calculation consists of a traditional diagonalisation of the Fock matrix.
This serves two purposes: It is a check to see if the QCSCF method really converged to a
proper eigenstate of the Hamiltonian, and we get a set of canonical orbitals and orbital
energies. We have to conclude that in this case the QCSCF method converged to a wrong
state. Surprisingly the QCSCF method did perform quite well for the relativistic calculation
on Co#+. Although it was still outperformed by the DIIS method.

Because of the current implementation limits we expect the QCSCF method to perform even
worse on our molecular test systems. The results bear this out. For the SiHy calculations the
convergence is extremely slow and for the relativistic calculation it appears to converge
towards a wrong state. For the calculations on CoFg2 we see almost no convergence gain at
all. The convergence seems to remain at approximately 10-3 on the density.

3.5 Conclusions

Without any convergence accelerators the SCF procedure will only converge smoothly for
very simple systems, like atoms. More complex systems will give rise to oscillations and will
therefore converge very slowly, if at all.
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The damping on the density is able to suppress those oscillations. With the damping
procedure convergence can always be achieved, but the convergence can be very slow. In the
case of the CoFg¢2" ion we needed more than 800 iterations to achieve a convergence of 10-10
on the density.

The Pople extrapolation procedure shows very variable results. In the calculations on the
SiH4 molecule the method performs very favourably, suggesting that for simple closed shell
systems the method works quite well. In the calculations on the difficult CoFg¢2- molecular ion
the method fails. The results for the B atom and the Co*+ ion do not show a clear trend. If the
method works the convergence is not much better than the non-extrapolated convergence. So
the Pople extrapolation method seems to have trouble with open shell systems.

The DIIS procedure shows excellent convergence behaviour. It does need a partially
converged result to start, but the convergence after that is smooth and fast. An initial
convergence of 10-2 on the density is in most cases enough to get good results. Such an
initial convergence is easily reached with the damping procedure. The combination of
damping and DIIS should be able to get a proper converged result in almost all cases.

The QCSCEF procedure shows disappointing results. Part of this may be attributed to the
current implementation limits of the method. The QCSCF method is implemented to work
only with real X. This is true only for a very limited set of systems. However the fact that the
method also has problems with the non-relativistic calculation on the Co#* ion suggests that
there are other reasons as well. One of the assumptions in the derivation of the QCSCF
method is that the energy hypersurface is quadratic. In general the energy hypersurface is not
quadratic except to a good approximation near the absolute converged result. In our
calculations we assumed that a convergence of 10-2 on the density was near enough to the
real solution for the method to work. Apparently this is not true for all systems.

For the systems for which the method does work we see a very fast, almost quadratic,
convergence on the macro iteration level. Unfortunately every macro iteration requires at
least three micro iterations. As a consequence the overall performance of the QCSCF method
always drags behind the performance of the DIIS procedure.
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Chapter 4

Improving the Overall Efficiency
of the MOLFDIR Program Package

In the previous chapter we described our improvements to the convergence behaviour of the
MOLFDIR!2 program package. Even with those improvements the amount of CPU time and
the amount of disk space needed for a full four component relativistic calculation is still huge
and can easily become prohibitive in the case of larger systems and systems of low
symmetry. In this chapter we will describe our efforts to improve the overall efficiency of the
MOLFDIR program package and thus reduce the amount of computer resources needed for a
relativistic calculation.

In the first part of this chapter we will review the possibilities we have to improve the
program package and make the choice of which improvements to apply. In the second part of
this chapter we will give the current status of this work.

4.1 Problem Survey

The large demands the MOLFDIR program package has on the computational resources stem
primarily from the enormous amount of two-electron integrals that need to be computed,
stored and processed. The number of two-electron integrals is much larger than in the non-
relativistic case. In the relativistic case we also need a basis set for the small component of
the wave function. Because of the kinetic balance principle3 the basis set for the small
component is larger and contains functions for higher 1-values than the basis set for the large
component. This greatly increases the number of two-electron integrals relative to non-
relativistic calculations.

The large number of two-electron integrals creates two problems: Firstly the integrals have to
be stored on disk. For larger and heavier systems the needed disk space is so large that it can
easily become prohibitive. Secondly all the integrals have to be read in and processed at each
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SCF iteration. The processing of all those integrals is the time determining step in the SCF
process. Reading in all the integrals is slow and increases the wall clock time needed to
complete the calculation.

So reducing the number of two-electron integrals would greatly improve the performance of
the relativistic calculations with the MOLFDIR program package and would make
calculations on larger systems or calculations on smaller computers more feasible.

4.2 Reduction of the Number of Two-Electron Integrals

There are basically three ways to reduce the problems associated with the large number of
two-electron integrals. The first one is the so-called Direct SCF method4. The second one is
reducing the actual number of two-electron integrals by making better use of symmetry. The
third one is reducing the size of the basis set and thus reducing the number of two-electron
integrals. In the following sections we will review these strategies and estimate their
effectiveness.

4.3 The Direct SCF Method

In the "traditional" Hartree-Fock-Roothaan> schemes the two-electron integrals are computed
first and stored on disk. During the SCF cycles the integrals are read from the disk and used
to build the Fock matrix. In the Direct SCF method the two-electron integrals are not stored
but recomputed each time they are required. This reduces the storage requirements for a SCF
calculation to almost zero.

If we would recompute all the two-electron integrals every cycle this method would show a
substantial rise in the CPU time needed for a calculation. Fortunately algorithms have been
devised which make the recomputation of an integral dependent on the amount of change in
the density matrix elements with which that integral is multiplied. So the number of integrals
that have to be calculated for a SCF cycle decreases when the convergence increases.
Relatively recent implementations of this scheme, like the Direct SCF program in the
Gaussian92 package®, show a very good performance relative to the traditional scheme.
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4.3 The Direct SCF Method.

Direct SCF programs seem to be very suited to the capabilities of modern day workstations,
which have fast processors but very slow I/O channels.

A Direct SCF program for the MOLFDIR package would therefore be a welcome addition.
The more so because the gain in CPU efficiency, resulting from clever integral routines, is
expected to be larger in the four component case than in the normal two component case. The
reason for this is twofold. The two-electron integrals over the small component of the basis
set form by far the largest subset of the total number of two-electron integrals. Their
contribution to the Fock-Dirac matrix however is small and does not change much from one
iteration to the next. So they probably only have to be computed a few times. The second
reason lies in the fact that the small and large component parts of the basis share the same
exponents. So whenever the integrals over the small component basis have to be computed
this can be done very efficiently.

A direct SCF program would make full relativistic SCF calculations on a routine basis much
more feasible than it is now. The writing of a state of the art direct SCF program requires a
major effort. Because of the limited time to our disposal we have decided against writing
such a program.

4.4 The Use of Spatial Symmetry

The most promising way to reduce the number of two-electron integrals (at least for systems
with high symmetry) is to make use of the available symmetry as much as possible. The old
version of the MOLFDIR program package already uses the spatial symmetry to a high
extend, but it can be made more efficient.

Theory

Consider a system with the pointgroup symmetry G. Also consider a set of atomic orbitals
{¢i} which we use to describe this system. We divide {¢i} into subsets {¢?} such that:

po? e{o?} VgeG, 44.1

where g is a symmetry operator of the pointgroup G.
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Within each subset {(bf’} we can make linear combinations of the ¢! such that the resulting
functions transform according to some irreducible representation of the pointgroup G:

r
=Pr. 0. 442

Where \pir ' is the ith symmetry adapted orbital of the subspecies y of the irreducible
representation I" and g)I-Y is the projection operator for the subspecies v of the irreducible
representation I'.

Symmetry adapted orbitals belonging to different irreducible representations are always
orthogonal. The Fock-Dirac operator 3 transforms according to the total symmetric
irreducible representation. So:

r QY20 if and only if T=Q. 443
(villv?) y

In other words the Fock-Dirac matrix will be block diagonal in the irreducible
representations. We can now write the Fock-Dirac matrix in the basis of the symmetry
adapted orbitals:

Q20 \~Q,
F LT =hi +ZZ( L K )Dkl , 444
kl Q,

where h is the one-electron matrix, D is the two-particle density matrix, J is the coulomb
interaction supermatrix and K is the exchange interaction supermatrix. Note that we only
need two-electron integrals of the form (', Ty [2,82,) and ([0,

Symmetry requires that:

Fl' = Fﬂ. 2 efc. 445

So we can drop the subspecies label in equation 4.4.4:

r r I rQ
Fj =hi+ Y Y (150 - K3 )DE. 4.4.6
kl Q
with T = 2 ZJukl , 4.4.7
Nr Nq yveT'weQ
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where Nr- is the dimension of the irreducible representation I'.

The matrix elements J Eﬁ and K};ﬁ are called reduced matrix elements’. These reduced
matrix elements all have totally symmetric integrands, because they have been averaged over
all the subspecies within the relevant irreducible representation. This makes the computation
of these reduced matrix elements relatively easy because we can use Pitzer's theorem®.
Pitzer's theorem states that each integral of a set integrals related by symmetry contributes
equally to an integral with a totally symmetric integrand. In practice this means that we can
compute all the matrix elements J gﬁ and Kgﬁ from only the symmetry unique two-electron
integrals over the atomic orbital basis.

Estimate of the Gain

To give an idea of the effects which the proper use of symmetry would have on the number of
two-electron integrals we will give here an estimate for the CoFg?- system. This system has
pointgroup symmetry Oy and consequently is a best case example because it has the highest
symmetry the MOLFDIR package is able to handle.

The large component basis is a generalised contracted basis: Co (5s,5p,3d) and F (3s,2p). The
small component basis was constructed from the large component basis with the kinetic
balance principle: Co (6s,9p,8d,5f) and F (3s.4p,4d).

In table 4.4.1 we list the number of basis functions for each irreducible representation. In
table 4.4.2 we list the number of two-electron integrals that the current package gives and the
number of integrals that would result from the implementation of the symmetry supermatrix
formalism®.

Component €1, €2 fo ey €y fu

large 12 5 : 15 12 2 14

small 42 26 63 37 24 55
Table 4.4.1 Number of basis functions for the CoFg2 system

The current version of the MOLFDIR package uses the so-called petite list!0 of two electron
integrals. This means that only the symmetry unique integrals are calculated and stored.
Furthermore, integrals that are zero for symmetry reasons are also not calculated and stored.
Integrals that are "accidentally” zero are calculated but not stored. The numbers listed in table
4.4.2 are the number of integrals that are actually stored.

For the symmetry supermatrix formalism the number of integrals we have to calculate is
smaller than or equal to the number of integrals we have to calculate for the petite list because
we only need symmetry unique integrals of the form (FYFYHQme) and (Fmel‘rme)‘
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(LLILL) (SLISL) (SSISS) Breit
current 220,600 6,357,851 47,940,066 12,401,379
with symmetry 79,800 2,319,387 16,898,391 4,638,774
Table 4.4.2 Number of two-electron integrals for the CoFg2- system

From table 4.4.2 we can see that the use of the supermatrix formalism gives a reduction of a
factor three in the number of two-electron integrals. This result may be a bit flattered though,
because the symmetry integrals will in general be complex quantities, while the integrals
currently in use are all real. So the real gain depends on our ability to construct the symmetry
adapted basis functions in such a way as to yield real valued integrals.

The current package stores the integrals together with their label. This label takes just as
much space as the integral value. So the disk storage needed is twice that as expected on the
basis of the number of integrals alone. In the symmetry supermatrix scheme the order of all
the supermatrix elements is precisely defined. So we do not have to store labels for the matrix
elements. This can be an advantage as well as a disadvantage. The advantage is that it halves
our storage requirements relative to the current scheme. The disadvantage is that we cannot
make use of the distance zeroes. We also have to store the integrals with value zero. So in
practice we would save less than halve of the disk space. When generalised contracted!! basis
sets are used (which is normal practice) the number of distance zeroes is small. So this
disadvantage will not be too severe.

4.5 The Use of Time Reversal Symmetry

In the previous section we have described the consequences of the spatial symmetry for the
Hartree-Fock-Dirac calculations. Apart from this spatial symmetry the Dirac equation also
shows another symmetry: the time reversal symmetry. The time reversal symmetry is not
very well used in the MOLFDIR program package.
The time reversal symmetry results in an at least twofold degeneracy of each Fock-Dirac
eigenvalue. The normal pointgroup symmetry cannot be used anymore and we have to use
double group symmetry!2,
If we look at the basis functions that span the irreducible representations of the double
groups, there are three possibilities with respect to the distribution of a basis function and its
time reversed conjugate:

i) The basis function and its time reversed conjugate are in different subspecies of

the same irreducible representation.
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ii) The basis function and its time reversed conjugate are in different irreducible
representations, of which the characters are each others complex conjugate. (Two
such irreducible representations can be taken together to form one reducible
representation.)

iii) The basis function and its time reversed complex conjugate belong to the same
(subspecies of an) irreducible representation.

In the first two cases the time reversal symmetry is in principle already contained in the
symmetry adapted orbital basis defined in the previous section and there are no Fock matrix
elements between a function and its time reversed conjugate. In the third case we have to take
special actions to make use of the time reversal symmetry because now there are Fock matrix
elements between all the functions in that irreducible representation.

General Theory

Consider a double group G* containing (among others) two one-dimensional irreducible
representations 'E and “E which have characters, that are each others complex conjugate. The
projection operators P'E and P"E which produce suitable symmetry adapted functions out of
a trial function are defined by:

. I/ g\*
" =;i§,(x-‘E) iy 45.1
n il " *
TE—%E(%E) i 452
$E = () - 453

Where 1 is the order of the group G.
The time reversal operator (K is defined by!:

K_ =-i o O K 454
0 o, o

where oy is the 2x2 Pauli matrix and (K, is the complex conjugation operator. We can now
deduce the following relation between the two projection operators of equations 4.5.1 and
4.5.2:
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PE =gk 455

Now consider a function |"E). Operating on this function with the operator @ will return
the same function |"E). Also:

©F|"E) = KP EK_'|"E) =K | E). 4.5.6

The last step in equation 4.5.6 follows from the fact that the operator @'E will either project
the function |' E) out of its object or return zero. The last option is clearly not possible.
So we have shown:

|"E) =K |'E). 4.5.7
Now consider a matrix element of an arbitrary hermitian one-electron operator h. When we

operate with the time reversal operator (K on this matrix element and make use of 4.5.7 we
find:

K_(E,if| E,j)=(E,ilK W& | Ej)=("Eip'|"E,j)= ("E,if|"E.j). 4.5.8

When we operate with the time reversal operator on the matrix element and do not make use
of 4.5.7 we get:

K_(E,ij| E,j) = (E,i|]K_'"'&K | E.j) = ( E,if E,j) . 4.5.9
Combining 4.5.8 and 4.5.9 we find:
("E.ij|"E,j) = ( E,ij{| E,j) . 45.10

The Double Group D}

We will limit ourselves now to the double group D;. This group contains eight symmetry

operators: €, R, Cz, C/R, Cx» CxR, Cy and CydR where (R is a rotation over 360°, which is

for the double groups not equal to the identity operator. It has one two-dimensional fermion
irreducible representation: E{/;. The highest abelian subgroup for D; along the subgroup
chain is C;. The double group C; has four symmetry operators: €, R, C; and C,R. It has
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two one-dimensional fermion irreducible representations: 'Ey2 and "Ejj. The character
projection operators for the symmetry adapted functions for D; now become:

P (<E R_+iC, —iRC,)

@E ( - ®R_-iC, +iRC,)

4.5.11

In this way we obtain symmetry functions that transform simultaneously as the Ejp
irreducible representation of D; and as one of the irreducible representations of the subgroup
C;. The symmetry adapted functions that are obtained by applying the projection operators
of equation 4.5.11 define matrix representations Dg r(Q) for the operators () of the group
D;, with T 'E or "E. Now consider the effect of the operator Cy (which is not in C;) on a
matrix element of a one-electron operator h, which is invariant under the symmetry
operations of the group D;:

{E'E}
C,(E'EiHEEj)= ¥ (ETiREQ)Drg(Cy)Da:e(Cy)
r.Q g

4.5.12
=(E,"E,ij|E,"E,j)
Because the operator h is invariant for a rotation around the y-axis we should also have:
Cy(E, EiR|E, E.j) = (E, E,if[E'E, j). 4.5.13
Combining equations 4.5.12 and 4.5.13 yields:
(E,'E,ijp|E,'E,j) = (E,"E,ijh|E,"E,j) 4.5.14
Combining the equations 4.5.14 and 4.5.10 gives:

(E'E,iR[E,E,j) = (B, Eif[EE,j)’ 45.15

So the matrix clements have to be real. In a very similar way it can also be shown that the
two-electron integrals, i.e. the matrix elements J gﬁ and Kgﬁ, are real.
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The Other Double Groups

For non-abelian double groups symmetry adapted basis functions are constructed by using a
projection operator that is a product of two projection operators:

Pre = plp® 4.5.16
Double group  Irreducible Subgroup Irreducible
rcpresentation repr esentation
Ty Ein S ‘B2, "E1n
Esp ‘B3z, "Eap
Gap B2, "Eip, 'Eap, "E3p
o* Eip Cy E12, "E1n
Esp 'Esnz, "Eap
Gap Eip, "E1n, 'Esp, "Eap
o Eg 1 Cin 'Eg 112, "Eg,112
Egsi2 ‘Eg 32, "Eg 312
Ggan 'Eg 112, "Eg 172, ‘Eg 32, "Eg3p
Euin 'Ey1/2, "Eu,112
Eusn ‘Ey32, "Eu3r2
Guysn Eu.112, "Euir2, Euzn, "Buzn
D; Ein Cy Ein, "Ein
Espp Ea, "Esn
Chy Ein Cy ‘B2, "Ein
Eap ‘Esp, "Eap
Dq Eip S ‘Ei2, "Ein
E3p 'E3p, "E3p
D Eg 112 Cin ‘Eg112: "Eg112
Egan ‘Eg 32, "Eg 312
Ey 12 Eu,112, "Eu,112
Ey3n ‘Euan, "Euan
D, Ein C Eip, "Eip
Cyy Ein C, Ein "Ein
D3, Eg 12 Gy Eg 12, "Eg 112
Eyin Ey12, "Euir

Table 4.5.1 Subgroup chains and fermion irreducible representations correspondence

for point groups with an even order principle axis
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where I is a multi-dimensional irreducible representation of the non-abelian double group
and Q is a corresponding one-dimensional irreducible representation of the highest abelian
double group in the subgroup chain.

In this way we uniquely resolve the degeneracy of the highest irreducible representation.

In the tables 4.5.1 and 4.5.2 we list the group chains that are used in the MOLFDIR program
package along with the correspondence of the irreducible representations.

In table 4.5.1 we see that all non-abelian double groups, with a principal rotation axis of even
order, are reduced to SZ, CZ, C; or the product of one of these groups with C?. The
symmetry adapted functions for the double groups that are reduced to C; (D; and sz) can
all obviously be constructed in such a way as to yield real valued integrals.

In a recent paper Visscher!3 shows that the symmetry adapted functions for the double groups
D; and C;v can be chosen in such a way as to give real valued integrals. In that paper it is
also argued that the double groups which reduce to CZ or SZ will also have real valued one-
and two-electron integrals, because the functions obtained for those groups will also define
proper representation matrices for the elements of the groups D; and CZV.

Double group  Irreducible Subgroup Irreducible
r@resentation representation

T Ein C; ‘B2, "Ein
‘G B, Ein
"Gap B, "Eip

T} Egin Ss Eg,112, "Eg,12
'Ggjn Bg, Eg 112
"Gy By, "Eg,112
Euin 'Eu,112, "By, 12
'Gun By, By,
"Guan By, "Euin

D3 Ein C; B2 "Ein
‘Ezp, "Eap B,B

Cay Ein C3 ‘Ei2, "E12
Ean, "Eap B,B

D3q Eg 12 Sz ‘Eg.112, "Eg 112
'Eg 312, "Bg3n By, B,
Eu12 'Eu,112: "Bu12
‘EU,1/27 ”Eu}ﬂ Bu, Bu

Table 4.5.2 Subgroup chains and fermion irreducible representations correspondence for point groups with an

odd order principle axis
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For double groups with a principal rotation axis of odd order things are more complicated.
All the non-abelian double groups are reduced to C; or Sg. The symmetry adapted functions
that are constructed for these groups do not form a proper representation for the elements of
D; and consequently the integrals are not necessarily real valued.

For those groups we can still construct symmetry adapted basis functions which do deliver
real integrals. In fact we can do so for all double groups that do not contain A or B fermion
irreducible representations. To accomplish this we need to combine functions from the 'E,
and "Ey; (or 'Gyp and "Gyyp) irreducible representations in such a way that they still form
proper time reversal pairs and that they form a proper matrix representation for the symmetry
operators of D;.

This procedure however destroys (part of) the symmetry blocking of the Fock-Dirac matrix
and will thus give rise to larger J and K supermatrices. It is not a priori clear if the full use of
spatial symmetry or the advantage of being able to work with real valued matrix elements
will result in the most efficient calculations. It may well be that the optimal choice differs for
different double groups.

For the double groups containing real one-dimensional fermion irreducible representations of
type iii, using the time reversal symmeltry to advantage is much more difficult. We can regard
a type iii irreducible representation as a type ii reducible representation, but with real
characters. The time reversal operator connects the two components of this reducible
representation and the Fock-Dirac matrix will be block diagonal in the components. The
problem with this picture is that we have no way to distinguish between the functions
belonging to one of the components. Therefore it is very difficult to construct a set of
functions that blocks the Fock-Dirac matrix. Furthermore the set of functions that block the
Fock-Dirac matrix may contain linear combinations of functions which the current version of
MOLFDIR cannot handle. The same arguments hold for the construction of basis functions
that would yield real valued integrals.

4.6 Current Status

At this moment there is a production version of the MOLFDIR program package which
makes use of the fact that the integrals for groups containing D; or C;V as a subgroup are
real valued. This version of the code was programmed by Visscher!3. The performance of his
code relative to the old one is discussed in his paper for the F, molecule using the double
group D:h. His conclusion is that for the diagonalisation and the construction (the time
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determining step) of the Fock matrix significant speedups are achieved. Significant time
savings are also observed for the Coupled Cluster calculations.

A version of the MOLFDIR package that makes use of the supermatrix formalism is not yet
production ready. The programs MOLFDIR, RELTWEL and MFDSCF have been adapted to
make use of the supermatrix formalism and to make use of the real valued integrals for those
double groups that contain D; or CZV as a subgroup. A new program MFDSRT has been
written to construct the J and K supermatrices from the unsorted two-electron integrals over
the symmetry adapted functions which are obtained by RELTWEL.

Because a whole chain of programs has been changed, debugging is tricky. The work has not
been completed yet. So a comparison between the supermatrix formalism and the use of the
petite list of integrals cannot yet be given.
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Chapter 5

The Fluorine Compounds

With the help of electronic structure calculations we want to improve our understanding of
scintillation in inorganic ionic crystals. In recent years our group has experimentally and
theoretically studied several ionic crystals, doped with cerium!-23:456 In such crystals the
cerium ion usually acts as the luminescence centre. The luminescence is caused by a Ce3+
5d)! -> Ce* 4f)! transition. We will limit our investigations to ionic crystals doped with
cerium. In this chapter we will discuss the results of our calculations on several fluorine
compounds containing cerium. The compounds we have investigated are: CeF3, LaF5:Ce,
LiLuF,:Ce, LiYF4:Ce and LiBaF3:Ce.

CeF3 and LaF;:Ce are interesting systems to investigate for several reasons. Some of these
reasons are technical; the others have a more physical background.

First the technical reasons: In CeF3 the Ce ion is part of the host crystal and not an impurity.
The positions of all the atoms are known from X-ray diffraction experiments. Any
discrepancies between our calculated results and experimental results cannot be due to
uncertainties about the atom positions but must come from errors or oversights in our
method. Good experimental data are available for CeF3 and LaF3:Ce on the absorption and
emission frequencies’8 as well as on the positions of the Ce 4f and Ce 5d levels in the band
gap?10. CeF3 and LaF3:Ce have the same crystal lattice, although somewhat different bond
lengths. The experimental results for both systems are therefore very similar. In our cluster
approach there is, apart from the different bond lengths, no difference between these two
systems. So from a technical standpoint these two systems belong together and form an
almost ideal benchmark for our methods.

From a physical standpoint CeF3 is also a very interesting compound. It has a very high
density, so consequently a high stopping power for radiation. It is extremely radiation hard!1.
It shows very fast scintillation (~10 ns.). It also has a reasonably high photon yield (~4000
photons/MeV)12. These properties have made CeF3 an interesting candidate for a gamma
detector for the Large Hadron Collider to be built at CERN!3, For the above mentioned
reasons it is understandable that this material has raised a considerable amount of interest in
recent years from the scintillation community.
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LiYF4 crystals doped with Ce have been studied some 16 years ago because of their potential
application as ultraviolet solid-state lasers'4. Recently experiments have been performed in
our laboratory on the scintillation properties of LiYF4:Ce and LiLuF,:Ce>15. The object of
these experiments was to determine the suitability of these materials to provide a good
thermal neutron detector. The presence of Li in these compounds is required because of its
ability to convert the incident thermal neutrons into secondary charged particles. This is done
through the reaction:

SLi+in—IH+500. 5.0.1

The crystal structures of LiYF4 and LiLuF, are almost identical, which can also be seen from
their almost identical spectra. Therefore we have only performed calculations on LiYF4:Cel6.

LiBaF; has recently been investigated experimentally!7 in our laboratory to determine its
suitability to provide a detector for thermal neutrons. It was found that this scintillator
exhibits cross-luminescence and self-trapped-exciton luminescence. The Li ions in the
compound are needed to convert the thermal neutrons into secondary charged particles
according to the reaction equation 5.0.1. To see if light output of the material could be
improved by doping it with Ce, experiments have been performed on LiBaF;:Ce crystals!s.
Our calculations have been performed to assist these experiments.

5.1 The Model

To improve our understanding of the crystals involved we want to calculate the Ce 4f and Ce
5d levels and their positions in the band gap of the host material. We cannot solve the
Schrédinger or Dirac equation for the entire crystal, so we need to make some
approximations. Our theoretical model contains two separate approximations. One
approximation is concerned with the level of theory for the computations; the other is
concerned with the material representation of the crystal.

The Material Model

The properties we are interested in are mainly local properties of the Ce impurity. A band
structure calculation cannot describe these local properties, so we use the cluster
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approximation. We represent the crystal with a cluster containing the Ce impurity and the
first layer of the atoms from the host crystal. The interaction with the rest of the crystal is

represented by a limited number of point
charges, which are chosen so as to generate the
correct Madelung potential at the cluster sites,
due to the rest of the crystall9. A more thorough
discussion of the cluster model can be found in
chapter 2.

In figure 5.1.1 we show the Ce 5d level splitting
for the Ce3+ ion in the field of the LaF;
Madelung potential and for the CeF,, cluster in
the field of the LaF; Madelung potential. It can
easily be seen that it is essential to include the
first layer of atoms of the host crystal to
accurately describe the Ce 5d levels. If we
replace the first layer of neighbouring atoms
with point charges the calculated 5d level
splitting is far too small.

-2.207 .
g -2451
5 2701 — -
g 295{ — —
E
s 3200 — -
-
< 34519
-3.701 —
Point charges CeF|; cluster
Figure 5.1.1 Point charge model results

for the 5d level splitting of Ce 3+ion in the
Madelung field of LaF3 compared to those
of a CeFj | cluster in the Madelung field of
LaF; .

The position of the band edges of the host crystal can only be a crude approximation, because

of the very limited size of the cluster?0.21,

The Computational Model

We use ab initio molecular quantum mechanical methods to compute all the energies we

need: HF SCF22.23, HFD SCF2425, GVB26 and
CIS?7 (see also Chapter 2). Ce is a rather heavy
atom, so we expect relativistic effects to be
important. However, because of their very
large demands for resources relativistic
calculations are not always feasible for the
systems we want to study. Fortunately, it is
possible to get good results without using the
relativistic variant for all the calculations. In
figure 5.1.2 we show the 4f and 5d levels of
the Ce ion calculated with the fully relativistic
Hartree-Fock-Dirac method and with the non-
relativistic Hartree-Fock method.
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Figure 5.1.2 The 4f and 5d levels of a

Ce3+ ion surrounded by six point charges on
the x, y and z axes. (Site symmetry: Op)
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It is clear from this figure that the distance between the Ce 4f and the Ce 5d levels can only
be described correctly by a relativistic formalism. The spread in the Ce 5d levels, apart from
the spin-orbit interaction, however is already correctly described by a non-relativistic
formalism.

The Ce 4f - 5d energy difference obeys some regularities we can use to minimise the number
of relativistically correct calculations. In figure 5.1.3 we show the experimental energy
difference between the average of the energies of the Ce 4f levels and the average of the
energies of the Ce 5d levels for some crystals.15.18.28,29.30.31 Tt appears that for all fluorine
compounds the distance between the average of the Ce 4f and the average of the Ce 5d levels
is approximately the same.

|
l
|
l
I
|
1
|
|

~
Sl

-32

Energy in 103 cm’!

IS
o

BaF):Ce LaF3:Ce LiLuF,:Ce LiBaF;:Ce YAP:Ce YAG:Ce LSO:Ce SrCly:Ce CeCly

Figure 5.1.3 Energy difference between the average of the Ce 4f and the average of
the Ce 5d levels.

This also seems to hold, to a somewhat lesser extend, for the oxygen compounds and the
chlorine compounds. So for each type of crystal (i.e. fluorine compounds, oxygen
compounds, chlorine compounds, etc.) we need one fully relativistic calculation to determine
the distance between the energy of the average of the Ce 4f states and the energy of the
average of the Ce 5d states and thus the distance between the average Ce 4f and 5d levels.
After that we only need to perform a non-relativistic calculation on the relevant cluster to
determine the Ce 5d energy levels. This can be done in several ways: by doing one Restricted
Hartree-Fock calculation on the average of all Ce 5d states or by doing a Configuration
Interaction Singles calculation. From the calculated Ce 5d levels we can then deduce the
position of the average of the Ce 4f levels.

Recently good effective core potentials were developed for the lanthanides which contain
relativistic effects32. Because these effective core potentials are to be used in non-relativistic
calculations one cannot expect them to give completely relativistically correct results. The
orbitals which are described explicitly will differ somewhat from the correct relativistic
orbitals and the spin-orbit coupling will be missing entirely. Nevertheless they can provide an
estimate for the Ce 4f - 5d energy difference. We will ascertain in this chapter how good
these estimates really are.
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The Band Gap

To determine the band gap and the positions of the valence and conduction band edges we
have several options. To calculate the band gap we perform a Hartree-Fock calculation on the
ground state of a cluster of the host material and a General Valence Bond Open Shell Singlet
calculation on the first excited state of the same cluster. The difference of the total energies of
these calculations is taken as a reasonable measure for the band gap. In a physical sense we
are making in this calculation, a localised exciton: an excitation of a fluorine 2p electron to
the 5d/6s orbital of a neighbouring Ce atom. This picture does not correspond very well with
the concept of band gap as it is derived from effective one-electron band structure
calculations33. On the other hand from experiment it is known that the bottom of the
conduction band in CeFj is formed by a hybrid of Ce 5d and Ce 6s orbitals34. It is exactly
such an excitation that we calculate. Because of electronic polarisation the occupied 5d/6s
orbital will lower in energy and the exciton will become localised. The band gaps calculated
with this procedure are in better agreement with experiment than the band gaps calculated
from the band structure picture (see section 5.2).

From experiment it is known that the conduction band edge in the real crystal is formed by
the metal s functions33, or a 5d/6s orbital hybrid in the case of all Ce compounds. In our
clusters we only have one central ion and consequently a delocalised metal s band cannot be
formed. By adding a few very diffuse s functions to the basis set of the metal atom we give
the system the possibility to form a set of very diffuse (delocalised) s orbitals. We assume
that these very diffuse s orbitals will give a reasonable estimate for the bottom of the
conduction band.

The Position of the Ce Levels in the Gap

The position of the Ce levels in the band gap is a more complex problem. We start with a
Hartree-Fock calculation on a Ce3+ 5d)! configuration. Assuming Koopmans' theorem3¢ is
valid the positions of the Ce 5d levels on an absolute scale are given by their orbital energies.
The Ce 4f levels can be placed relative to the Ce 5d levels with the help of the energy
difference between the average of the Ce 5d)! states and the average of the Ce 4f)! states for
that type of crystal. To find the position of the Ce levels in the band gap we need to determine
the positions of the valence and conduction band edges. There are two possibilitics. We can
assume that the orbital energy of the lowest unoccupied molecular orbital (diffuse metal s-
type orbital) of the pure host crystal gives the edge of the conduction band and then place the
valence band edge relative to this estimated conduction band edge with the help of the
calculated value for the band gap. This procedure will shift the valence band orbitals to
higher energy. We can also assume that the valence band edge is given by the orbital energy
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of the highest occupied F 2p orbital and place the conduction band edge relative to this
valence band edge with the help of the calculated value for the band gap.

Because the cluster we use is too small to give the fluorine atoms a chance to form a good
band the F 2p band will be too narrow. Hence the highest F 2p orbitals will lie too low in
energy. The absence of part of the repulsion the 2p-electrons would feel in the crystal will
also place the F 2p orbitals too low. The diffuse metal s-type orbital of the host material
cluster is expected to give a reasonable estimate for the conduction band edge although the
error bar is not known.

The advent of good effective core potentials for the heavier elements makes possible a more

solid way for calculating the positions of the localised Ce levels in the gap. Furthermore,

because the core potentials describe the inner core orbitals of the elements the number of
electrons that are described explicitly and consequently the number of basis functions needed
is much smaller than in the all-electron case. This enables us to do calculations on a higher
level of theory (CIS) than would have been possible in the all-electron case. Also, because

the effective core potentials contain the relativistic effects of the core orbitals they enable us

to obtain a much more accurate description of the Ce 4f orbitals in an otherwise non-

relativistic calculation than we would have obtained with an all-electron basis set. As we will

see a good accuracy of the Ce 4f level energies is a very important prerequisite for the

success of the method.

The VB - Ce 4f distance is calculated by taking the total energy difference between a SCF

calculation on the cluster in its Ce#+ state and a SCF or GVB calculation on the cluster in a
Ce3+ 4f)! anion np-hole state. If the anion np band is too narrow this energy difference will be
too large and the Ce 4f levels will lie too high in the gap. The error will be less severe than in

the last alternative method which relates the position of the Ce levels to the position of the

anion np orbitals, because in this case we do not incur the error caused by the neglect of
electronic relaxation in using Koopmans' theorem.

To calculate the difference between the Ce3+ 4f)! levels and the Ce3+ 5d)! levels we have two
options. We can take the difference in total energy between a SCF calculation on the lowest

Ce3+ 4f)! state of the cluster and a SCF or GVB calculation on the lowest Ce3+ 5d)! state of
the cluster. These calculations give the distance between the lowest Ce3+ 4f)! and lowest Ce3+
5d)! state. The other Ce3+ 5d)! states can be positioned by making use of the calculated Ce 5d
level splitting. The second option we have is performing a CIS calculation with as reference
state the Ce3+ 4f)! groundstate of the cluster. From this calculation we obtain directly the
energy differences between the Ce3+ 4f)! groundstate and all the Ce3+ 5d)! states.

Finally we place the conduction band above the valence band with the amount calculated for
the band gap.
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5.2 CeF3and LaF3:Ce

The CeF; and LaFs crystals belong to the spacegroup P3-C137:38. The pointgroup site
symmetry of the Ce or La atom is Cp. The Ce atom is surrounded by 11 fluorine atoms at
various distances. So the obvious first choice of a cluster to describe the crystal with is a
CeF;; cluster surrounded by point
charges that represent the Madelung
potential. We shall later see that this
cluster is quite sufficient to give a good
description of those features of CeF; that
we are interested in. A picture of the
cluster is given in figure 5.2.1.

Due to the relatively large size and low
symmetry of the cluster we were not able
to perform fully relativistic calculations.
We did perform Hartree-Fock and CIS
calculations. The Hartree-Fock
calculations have been done with several
basis sets to establish the sensitivity of
the results for the basis sets used. The
large basis set for Ce we have used was
constructed from the one by van
Piggelen?® by reoptimising the
exponents for the Ce3* 5d)! state with a
Watson shell at the smallest Ce - F
distance in CeF3. The primitive set was
used both in a generalised contraction40

Figure 5.2.1 The CeF| | cluster in CeF3
The dircction of view is along the C) axis.

and in a segmented contraction. The contraction coefficients were taken from a non-
relativistic atomic calculation on Ce3+ in the 5d)! configuration with a Watson shell at the
smallest Ce-F distance in CeFs3. The basis set is listed in appendix A. The large basis set for F
we have used is a (11/6) primitive set, optimised for the groundstate of F- with a Watson shell
at the smallest Ce-F distance in CeF5. This basis set was used in generalised contraction and
in a segmented contraction. The basis set is also listed in appendix A. The small basis set for
Ce is a (15/10/8) primitive set contracted to (6/5/4). This basis is listed in appendix A. The
small basis set for F is a primitive (7/6) basis contracted to (2/1). The basis was optimised for
the groundstate of F- and is due to Huzinaga®!.
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All the CIS calculations and some of the Hartree-Fock calculations were done with the ECP's
and basis sets of Stevens et al3242, For the Ce atom we used a (111) contraction for the d-
exponents and a (61) contraction for the f-exponents. For the F- ion we changed the
contraction of the basis to (211) to allow for the more diffuse negative charge state.

In table 5.2.1 we show the ionisation potential for the Ce3+ jon as calculated with the basis
sets we have used.

basis
large  small ecp exp.4344
IP Ce3+ 4f)! N.A. N.A. 35.75 36.72
IP Ce3+ 5d)! 30.21 29.00 2948 31.65
Table 5.2.1 Tonisation potentials for the Ce3+ jon. All entries in eV.

The calculated ionisation potentials agree within an error of 8% with the experimental
ionisation potentials. The large basis set, which is significantly larger than the other basis sets
only performs slightly better than the other basis sets. We may conclude that the basis sets are
all flexible enough to describe the Ce4* as well as the Ce3+ states.

In table 5.2.2 we show the electron affinities for the F atom as calculated with the basis sets
we have used. The electron affinities were calculated by taking the difference in total energy
of the neutral F atom and the singly negative F- ion. The electron affinities of the large basis
and the ECP basis agree reasonably with each other and are near enough to the Hartree-Fock
limit to guarantee an adequate description of the F-ion. The electron affinity calculated with
the small basis is much worse. Because this basis was optimised for the F- ion and is a
minimal basis, the unfavourable result must come from an inadequate description of the
neutral atom. This is supported by the fact that decontracting the last p exponent decreases
the calculated electron affinity to 1.94 eV.

basis
large  small ecp exp.4
EAF 1.18 4.78 0.82 3.464
Table 5.2.2 Electron affinities for the F atom. All entries in eV.

All the CIS calculations and most of the Hartree-Fock calculations have been done with the
Gaussian 9223 program package. The remaining Hartree-Fock calculations have been done
with the MOLFDIR program package2425.

78




5.2 CeF3 and LaF;:Ce.

The Results of the All Electron Hartree-Fock Calculations

The pointgroup symmetry of the Ce site is only Cy, so the 5d levels should split up into five
singlets, which transform as either the A or B irreducible representations of C,. This is
exactly what we see in the results of our calculations. In Table 5.2.3 we have listed some of
the results of our non-relativistic Hartree-Fock calculations on the average of the five 5d)!
states. The meaning of the basis set labels is explained in table 5.2.4. To make a comparison
between the different calculations easier we shifted the orbital energy of the highest Ce 5d
orbital to zero for all the calculations.

r basisseta  basissetb  basissetc basisseta;  basis sete
no Mad. pot.
5d levels B -1.40 -1.39 -1.07 -1.33 -1.53
A -1.09 -1.09 -0.83 -1.05 -1.18
B -0.75 -0.75 -0.53 -0.53 -0.79
A -0.56 -0.57 -0.19 -0.33 -0.59
A 0.00 0.00 0.00 0.00 0.00
Table 5.2.3 Hartree-Fock energies of the Ce 5d orbitals of the CeFj cluster. All entries are in eV.

For an explanation of the basis set labels see table 5.2.4.

From the table we can see that the different basis sets yield very similar results, with one
notable exception: column c. This is a calculation with two extra very diffuse s-functions on
the Ce ion. The two diffuse functions form a very diffuse low lying s orbital, which is only
0.5 eV above the highest 5d orbital. They also mix very strongly with the 5d orbitals, thus
affecting the nature of the 5d orbitals and their energies. The diffuse functions protrude far
beyond the cluster edge and still have a significant density at the positions of the point
charges surrounding the cluster. The point charges are fitted so that they represent the
Madelung potential at a grid at the cluster positions!9. Far beyond the cluster edge the
potential generated by the point charges is not the correct Madelung potential for CeF3. So
the very diffuse s-functions feel a potential, which is not quite correct. Therefore molecular
orbitals with a large contribution of those functions may show some error, as can be seen
from Table 5.2.3.

basis original basis additions
a large basis none
b large basis 2 diffuse s on Ce: 0.12 and 0.04
c large basis 2 diffuse s on Ce: 0.10 and 0.02
e small basis none
Table 5.2.4 The basis sets for the CeF3 calculations.
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Surprisingly the calculations with basis b do not show the same error. Just as in the previous
case the diffuse functions form a Ce s-like molecular orbital, which lies 0.5 eV above the
highest Ce 5d orbital. The s-d mixing, however, is in this case much smaller. Apparently the
only small difference in diffuseness of the diffuse exponents (0.02 and 0.04) is in this case
crucial for the amount of mixing with the 5d orbitals which is observed. This calculation
converged badly however, while all the other calculations converged smoothly; so the good
results in this case may be fortuitous.

The results for the cluster without a Madelung potential are remarkably good, especially for
the two lowest lying 5d levels. The splitting of the Ce 5d levels in CeF3 seems to be primarily
determined by the next nearest neighbours of the Ce ion.

The above mentioned calculations were done on the average of all five Ce 5d)! states.
Because there is only one set of molecular orbitals for five different states, none of these
states is described optimally. To get better results one would have to do separate Hartree-
Fock calculations on all five states separately. However the Hartree-Fock method only
enables us to correctly calculate the lowest state of a given symmetry. In this case this means
we can only calculate the two lowest Ce 5d)! states; one A and one B type state. To be able to
compare these results with the previous ones we calculate the total energy difference between
the calculated states and the average of all Ce3+ 5d)! states. The results are listed in Table
5.2.5.

r basis set a basis set €
average lowest average lowest
S5dorb.en. B -0.63 -0.66 -0.71 -0.72
A -0.33 -0.36 -0.36 N.A.
Table 5.2.5 Hartree-Fock energies of the lowest two Ce 5d orbitals of the CeFj cluster in CeF3.

All entries are ineV.

To facilitate the comparison all the energies in table 5.2.5 are calculated as the deviation of
the orbital or total energy of a specific orbital or state to the average energy of the 5d orbitals
or states. As one can see from Table 5.2.5 it hardly makes a difference if we use the orbital
energies of the calculation on the average or if we use the total energies of the different 5d)!
states. The electronic polarisation due to the occupation of a specific 5d orbital is very small
in this case.

To determine the position of the Ce 5d levels in the gap of CeF3 or LaF3 we need to compute
the band gap. For CeFj this is technically very difficult, because of the 4f and 5d levels in the
gap. It is impossible to specify, within the Hartree-Fock method, the electronic configurations
we want. For LaF; we are able to calculate the band gap by doing a Generalised Valence
Bond calculation on an excited state where one electron is promoted from the highest lying F
2p orbital to the lowest lying virtual (diffuse s-function on La). The electron spins are singlet
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coupled. This is strictly speaking not the first excited state of the cluster, but the energy
difference between the singlet and triplet state will be small. Much smaller in any case than
the errors we incur by using a finite cluster. In this way we calculated a band gap for LaF; of
10.14 eV, which is in good agreement with experiment3!. We can now calculate the positions
of the Ce levels in the gap in the ways noted earlier in section 5.1,

For the energy difference between the average Ce 4f and the average Ce 5d levels we have
used the average of the experimental absorption lines!0: 5.57 eV. The numbers we used for
the Ce 5d levels were taken from the calculations with basis set a. The results are listed in
Table 5.2.6 together with the results deduced from experiments% 103146, For convenience we
shifted the conduction band to zero energy.

The column cb in table 5.2.6 contains the results obtained by placing the levels relative to the
virtual conduction band like diffuse s-function on Ce.

This work Exp 2 10.31.35
cb vb

CB 0.00 0.00 0.00
Ce 5d -047 0.89 -0.14
-1.04 0.33 -0.60

-1.22 0.14 -0.94

-1.57 -0.20 -1.33

-1.87 -0.50 -1.62

Ce 4f av. -6.81 -5.44 -6.50
VB -10.14 -10.14 -10.00

Table 5.2.6 Positions of the Ce 4f and Ce 5d levels in the gap of CcF3 and LaF3:Ce. The column labelled
"cb" contains the values obtained by putting the conduction band edge at the orbital energy of
the virtual La 6s orbital. The column labelled "vb" contains the values obtained by placing the
valence band edge at the orbital energy of the highest occupied F 2p orbital. All entries in eV.

The column vb contains the results obtained by placing the Ce levels relative to the highest
occupied F 2p functions (valence band). The last procedure places the Ce levels
approximately 1.4 eV higher in the gap. The levels are placed so high in the gap that three Ce
5d levels appear to be in the conduction band. The results of column cb are in good
agreement with the experimental data, especially if we account for the experimental
uncertainty of 0.5 eV in the position of the Ce 4f levels.

The Results of the ECP Calculations
The results of the non-relativistic all-electron calculations we have presented in the previous

sub-section give a good description of CeF3 and LaF;:Ce. However we were not able to
calculate the energy difference of the Ce 4f and Ce 5d levels in the gap. In this sub-section
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we will present the results of our calculations on CeF3 with the help of the ECP's and basis
sets of Stevens et al3242, Because these ECP's contain relativistic effects we should be able to
get a fair, totally ab initio, prediction for the 4f)! -> 5d)! absorption spectrum. Moreover,
because the ECP basis sets are much smaller than the all-electron basis sets we are now able
to do the CIS calculations on the cluster.

To get a feeling for the accuracy of the ECP's for Ce we performed some calculations on the
free Ce3+ ion with the ECP's of Stevens et al. We also performed fully relativistic calculations
on the Ce3+ ion with the MOLFDIR24:25 package and the uncontracted version of the basis set
of van Piggelen. The results are listed in table 5.2.7.

MOLFDIR (All electron) Gaussian (ECP's)
HFD HF HF CIS
AE(4f - 5d) 5.37 8.57 6.28 7.11
Table 5.2.7 4n! > 5dy! excitation energies of the free Ce3* ion. All entries are in eV.

From the table it is clear that the ECP's perform quite acceptable. Although there is a
difference with the full relativistic result of 0.91 eV, this result is much better than the totally
non-relativistic one. Furthermore in ionic compounds the electronic structure of the Ce3+ ion
is expected to be very similar to the one of the free ion. If that is true the difference in AE4f 54
in the free ion between the full relativistic results and the ECP results should be transferable
to the cluster resuits. Thus enabling us to correctly predict the Ce absorption spectrum from
only the ECP results.

We also see a relatively large difference between the AEg4;.5q of the HF and the CIS
calculations with the ECP's. The HF result is a so-called ASCF result. The AE is the
difference between the total energies of the 4f)! and the 5d)! state. Both states are described
with molecular orbitals, which are optimised for that state. So the electronic polarisation,
which takes place when exciting the electron from the 4f to the 5d orbital is accounted for. In
the CIS calculation the excited 5d)! state is described with molecular orbitals optimised for
the 4f)! state. Although some of the electronic polarisation is accounted for by the mixing in
of determinants describing other single excitation configurations, most of the electronic
polarisation is absent. This accounts for the difference between the HF and CIS results.

The ECP calculations on CeFs can be divided into two sets: The calculations on the Ce#*
charge state, to determine the position of the Ce 4f levels relative to the valence band, and the
calculations on the Ce3+ charge state to determine the position of the Ce 5d levels relative to
the Ce 4f level. The results are listed in tables 5.2.8 and 5.2.9.

The GVB(OSS) result for AEyp.4¢ was obtained by taking the total energy difference of a
Hartree-Fock calculation on the Ce#+ ground state of the cluster and a generalised valence
bond calculation on an excited state in which one electron was excited from the highest
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occupied F 2p orbital to the lowest Ce 4f orbital. The two unpaired electrons were singlet
spin coupled. This is the same procedure we have used to compute the band gap of the LaF);
cluster; so the same arguments for the validity of the result apply as mentioned there.

The CIS calculation places the Ce 4f level much higher. The reason for this is the lack of
electronic polarisation in the CIS calculation as mentioned earlier. In this case the lack of
polarisation is much worse than in the previous case because the charge state of the Ce ion
changes upon this excitation. The Ce orbitals used by the program to describe the (local) Ce3+
4f)! state are not able to do that very well, because they were optimised for the Ce4+ state.

CIS CIS

4f levels 0.00 5d levels 6.41
0.00 7.38
0.21 7.78
0.30 8.19
0.36 8.22
0.55
0.59

Table 5.2.8 Results of the CIS ECP calculations on the CeF | cluster. All entries are in eV.

Just as in the case of the free Ce ion we have calculated AEyq 54 in two ways: as a ASCF result
and with CIS. For the CeFjy cluster the two results differ less than for the free Ce ion. The
ASCEF result is poor in comparison with the experimental result of AE4; 59 = 4.88 eV. If we
assume that the difference between the full relativistic and the ECP AEqs.54 for the free Ce ion
also applies in this case we obtain AE4¢.59 = 5.27 eV. This result compares much better with
experiment.

CIS HF & GVB
AE(VB-4f) 7.82 4.06
AE(4f-5d) 6.41 6.18
AE(4f-CB) 9.64 N.A.
Table 5.2.9 Results of the ECP calculations on the CeF | cluster. All entries are in eV.

The CIS calculation on the Ce3+ 4f)! state of the cluster gives seven 4f)! states with 2 total
splitting of 0.59 eV. This splitting is not caused by the spin-orbit coupling, because this effect
is not included in this calculation. Experiments47 suggest a total 4f splitting of 0.3 €V, which
is mainly caused by spin-orbit splitting. The full relativistic MOLFDIR calculations on the
average of the 4f)! states of the free Ce ion support this. These calculations show a total 4f
level splitting of 0.3 eV, which can only be due to spin-orbit coupling (because there is no
external potential). The large 4f level splitting in the ECP calculations must be an artefact of
the calculation. The ECP calculation on the free Ce ion already shows a 4f level splitting of
0.3 eV. Spin-orbit splitting is not included in these calculations and there is no external
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potential, so there is no physical phenomenon that could cause this splitting. The reference
state for the CIS calculation is a state in which one of the 4f orbitals is occupied. The six
empty 4f orbitals see the potential of a Ce3+ 4f)! state and are therefore not the proper
orbitals to describe the excited Ce 4f)! states. When they become occupied in the CIS
calculation the energy of the associated states will be too high.

This work Exp.%.10.31,46
Best ECP Best of all
CB 0.00 0.00 0.00
Ce 5d 1.00 0.59 -0.14
0.96 0.02 -0.60
0.56 -0.16 -0.94
0.15 -0.51 -1.33
-0.81 -0.81 -1.62
Ce 4f av. -6.08 -6.08 -6.50
VB -10.14 -10.14 -10.00

Table 5.2.10 Positions of the Ce levels in the gap of CeF3. All entries are in eV.

For the 5d levels we see something similar. The total 5d splitting is larger than in the SCF
case and larger than experimentally measured. In this case, however one could argue that the
CIS results should be better than the SCF results because in the real material the 4f - 5d

CB
Ce 5d p— — Ce 5d
Ce 4f _

— Ce 4f

VB

This work Experiment

Figure 5.2.2 Localised Ce levels in the bandgap of CeFy |
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transition goes so fast that the other electrons may not have a chance to fully adjust
themselves to the new situation. In this case, however, this argument does not seem to be
supported by the theoretical and experimental results.

In table 5.2.10 we list the positions of the Ce levels in the band gap of CeF3 as we deduced
them from the best ECP results we have. In this table there is a second column labelled "Best
of all", in which the Ce 5d level splitting was taken from the all-electron calculation with the
large Ce basis set. A pictorial representation of the best results and the experimental data is
given in figure 5.2.2.

The position of the Ce 4f level is predicted quite accurately; approximately 0.5 eV too high.
The calculated energy difference between the Ce 4f and Ce 5d levels is also somewhat too
large. Therefore the Ce 5d levels are placed too high in the gap. The Ce 5d level splitting
seems to be better described by a SCF calculation on the average of 5d states than by a CIS
calculation.

We can extend our picture of the electronic levels of CeF; with the width of the valence band.
From the orbital energies of the F- 2p orbitals we can estimate the valence band width. In
table 5.2.11 we list the estimated valence band widths for the basis sets we have used together
with the experimental value4,

large basis  small basis ecp basis exp.40
VB width 32 3.5 32 3.0

Table 5.2.11 Valence band widths for CeF3. All entries are in eV.
The calculated values were obtained for a CeF| cluster in the Madelung field of CeF3.

The calculated values agree quite well with the experimental value. The calculated values are
somewhat larger than the experimental one, this in contrast with expectations. The
uncertainty in the experimental values, however, is large (30%).

Conclusions

We are able to describe CeF3 quite adequately. The band gap is calculated correctly with the
GVB(OSS) calculation. The Ce 5d level splitting can be correctly computed with most of the
methods we used; CIS being the only exception. The position of the Ce 4f level in the band
gap can also be calculated correctly. The only significant error that remains in our
calculations is the ab initio prediction of the energy difference of the Ce 4f and Ce 5d levels
in the gap. The error we make here is 0.4 eV. This is less than 10% of the transition energy.
For a semi-relativistic approach this is not too bad a result, although it is not yet accurately
enough for our purposes.
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5.3 LiLuF4:Ce and LiYF4:Ce

LiYF,4 crystallises in a lattice with the
141/AS spacegroup#8. The Ce impurity
replaces a Y ion. The pointgroup
symmetry of the Y site is S4. The Y ion is
surrounded by eight fluorine ions. These
eight fluorines fall into two groups of
four. The two groups have slightly
different bond lengths to the Y ion. The
obvious first choice for a cluster to
describe the system is a CeFg cluster
embedded in an array of point charges that
emulate the Madelung potential at the
cluster sites. In figure 5.3.1 we show a
picture of this cluster.

All the calculations on the CeFg cluster
were performed with the Gaussian 92
program. We only performed non-
relativistic Hartree-Fock calculations and
some limited geometry optimisations. The basis sets used were the small basis sets mentioned
in the previous section.

Figure 5.3.1 The CeF 8 cluster in LiYF 4:Ce

The Results

In table 5.3.1 we show the results of a Hartree-Fock calculation on the CeFg cluster with the
Ce ion in its 4+ charge state. The energies of the 5d levels were taken from the energies of the
virtual 5d orbitals.

It can be seen from the first and last column of table 5.3.1 that the agreement between the
calculated and experimental values is poor. This was of course to be expected. Our cluster
has the host crystal geometry. The Ce ion however is substantially larger than the Y ion, so
one would expect lattice relaxations to occur upon doping with Ce.

On the basis of the pointgroup symmetry of the cluster we expect four different 5d levels.
The results of our calculation also show this. The experimental values however show five 5d
levels. The degenerate 5d level can be splitted up by spin-orbit coupling, but the energy
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difference we see between those levels in the experimental values is much too large to be

explained by spin-orbit coupling. Apparently the lattice relaxation around the Ce impurity
lowers the symmetry of the site.

r 1 2 3 4 5
5d levels A 0.00 0.00 0.00 0.00 0.00

A -0.85 -0.70 -0.59 -2.62 -0.34

A -0.85 -0.70 -0.59 -2.75 -0.65

B -2.34 -1.79 -141 -3.12 -1.58

B -3.74 -2.83 -2.17 -3.12 -2.42
Table 5.3.1 Ce 5d orbital energies of the CeFg cluster in LiYF4:Ce..

All entries are ineV.

Column 1: CeFg cluster in the host geometry in the Madelung field of LiYFy.

Column 2: CeFg cluster with 5.15% outward relaxation of the fluorines in the
Madelung field of LiYFy.

Column 3: CeFg cluster with 10% outward relaxation of the fluorines in the
Madelung field of LiYF4.

Column 4: CeFyg cluster (partially optimised structure) in the Madelung field of
LiYFy,

Column 5: The experimental results>:15 for LiYFy

The easiest way to model the lattice relaxation is to let the eight fluorine ions move out
radially, while keeping the Madelung field fixed. If this is done we find a minimum in the
total energy of the cluster for an outward relaxation of 5.15%. The virtual orbital energies are
listed in table 5.3.1 under the column 2. As expected the total 5d level splitting is now
reduced, although it is still too large when compared with the experimental values. We can
move the fluorine ions even more outward. The column 3 of table 5.3.1 lists the 5d levels for
an outward radial relaxation of 10%. Apart from the second and third level the calculated and
experimental] values show a reasonable agreement.

The 10% outward relaxation of the fluorine ions is found by comparing the calculated results
with the experimental results and is therefore not a strictly ab initio result. What is worse: this
method can never be used to predict the properties of a material that has not been
experimentally investigated. A theoretical more sound and satisfying way would be to find
the geometry of the cluster which yields the lowest total energy and compute the 5d levels at
that geometry. This method does not necessarily give the correct geometry of the impurity
and its surroundings in the crystal. In our calculations the cluster is embedded in an array of
point charges and not in the real crystal. The forces acting on the cluster ions will be
incomplete and partly incorrect, leading to a possibly incorrect optimal geometry.
Nevertheless Berrondo et al.# have shown that good results can be obtained with the help of
ab initio cluster geometry optimisations.
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We have optimised the two bond lengths and the bond angles of the CeFg cluster in the field
of the point charges under the constraint that the symmetry of the cluster remains S4. Without
the last constraint the number of degrees of freedom would be much larger. This would make
the optimisation significantly more difficult, if not impossible. Although in the real crystal
the symmetry of the site seems to be distorted, this calculation should provide a reasonable
estimate of the site geometry. The cluster was optimised for the Ce3+ 5d)! charge state. We
subsequently did a calculation on the Ce#* charge state. The energies of the virtual 5d orbitals
from this calculation are listed in table 5.3.1 in the column labelled 4. As can be seen from
the table the total level splitting has become much larger. Even the ordering of the levels has
changed. The agreement with experiment is even worse than in the case of the calculation on
the cluster in the host crystal geometry. Apparently the lack of repulsive forces from the ions
not included in the cluster gives the cluster jons too much freedom to relax.

Conclusions

The present CeFg cluster is too small to reliably calculate the distorted geometry around a Ce
impurity in LiLuF4. The interactions of the CeFg group with its direct environment are in the
small cluster only represented by the interaction with the point charges. The very important
repulsive forces, which limit the cluster relaxation, are completely missing. In a larger cluster
these repulsive forces would be present and result in a more reliable geometry. Unfortunately,
increasing the cluster size with the next shell of atoms makes the cluster too large to perform
a complete geometry optimisation.

Given the experimental absorption spectrum of LiLuF4:Ce we can, to a certain extend,
modify the geometry such that the calculated and experimental absorption spectra match. In
this way we can obtain information about the impurity site geometry, which is not accessible
by any other means.

In the case of LiLuF4:Ce we were able to reproduce the total splitting of the Ce 5d levels. We
were not able to completely match the experimental results. The breaking of the Sy
pointgroup symmetry leaves too many possibilities to try by hand and the cluster proved too
small to get reliable results by doing an automatic geometry optimisation.
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5.4 LiBaF3:Ce

The Ba site in LiBaF3; has the very high pointgroup symmetry Oy. The next nearest

neighbours of the Ba ion consist of twelve fluorine ions%0. At a slightly larger distance there

are eight Li ions. We assume that the Ce impurity will occupy a Ba site. To describe the Ce

impurity in LiBaF; we will use in first instance two systems: A Ce ion and a CeF, cluster

embedded in an array of point charges. In figure 5.4.1 we present a picture of the Ba site in

LiBaF;.

The Ba site can be thought of

as the centre of a cube. The

twelve F ions are located at F I

the middle of the edges of the |
I

F

cube and the eight Li ions are
located at the corners of the TF e F
cube. By translating this cube o /_ _
in the x, y and z axis T

directions one can build up
the entire crystal.

The Ba ion has a formal o
charge of +2. The Ce ion, s
which replaces it has a formal
charge of +3. This difference
in charge has to be
compensated. This can be
done by either removing one
of the eight Li ions near the Ba site, or by adding an interstitial F ion near the Ba site, or by
replacing one of the next nearest Ba ions by a Li ion. In this section we will determine which
of these three possibilities apply to LiBaF3:Ce.

N\
=

Figure 5.4.1 The CeFlzcluster in LiBaF3:Ce

Results

The Ba site has Oy pointgroup symmetry. The Ce 5d levels in the unmodified crystal will
split up into a triplet (T3) and a doublet (E) in the absence of spin-orbit coupling. The spin-
orbit coupling will split up the triplet into a singlet (Epy) and a doublet (Fg). In the
terminology we did not account for Kramers degeneration. The spin-orbit splitting will be
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small: 0.3 eV. Our Hartree-Fock calculations on the Ce ion in the cubic point charge
environment and the CeFy, cluster show the triplet and the doublet (column 1 and 2 of table
5.4.1). The experimental absorption spectrum of Ce in LiBaF3 shows four lines (column 7 of
table 5.4.1). However we can still recognise two groups of lines and thus the cubic structure
in this spectrum, so the distortion from the cubic symmetry is not too large. This distortion is
due to the charge compensation and its accompanying lattice relaxation.

In column 3 of table 5.4.1 we show the Ce 5d level splitting as it is obtained by a calculation
on the CeF, cluster, with one of the Li ions deleted from the surrounding point charges. The
symmetry is now reduced and we get a singlet and two doublets. This spectrum does not
resemble the experimental one; neither quantitatively nor qualitatively. Although the lattice
relaxation following the removal of the Li ion may lower the site symmetry further and thus
split up the lowest doublet it seems unlikely that the charge compensation is realised in this
way.

1 2 3 4 5 6 7

Ce 5d levels 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 -0.23 -1.76 -0.14 -0.21 -0.39

0.00 000 -023 -2.61 -0.47 -0.74 -0.91

-0.30 -0.54 -0.75 -2.97 -0.67 -1.12 -1.12

-0.30 -054  -0.75 -2.97 -0.67 -1.12 -

Table 5.4.1 Ce 5d orbital cnergies of several CeFy clusters in LiBaF3:Ce. All entries in eV.

Column 1: Ce3* ion in the Madeclung field of LiBaF3.

Column 2: CeFy3 cluster in the Madelung field of LiBaF3.

Column 3: CeF17 cluster in the Madelung field of LiBaF3 with one of the Li point charges deleted.

Column 4: CeF 7 cluster + extra F- ion on one of the cubic axes in the Madelung field of LiBaF3.

Column 5: CeF 17 cluster in the Madelung field of LiBaF3 with one of the point charges of the
nearest neighbouring Ba ions replaced by a Li ion point charge.

Column 6: CeF12LigBay (optimised structure) in the Madelung field of LiBaF3.

Column 7: Experimental results!8 for LiBaF3:Ce.

In column 4 of table 5.4.1 we show the Ce 5d level splitting as it is obtained by a calculation
on the CeF, cluster with an extra F ion added on one of the cubic axes. The pointgroup
symmetry is reduced and we get a doublet and three singlets.

We now have a spectrum which at least qualitatively matches the experimental data. The
calculated total splitting is much too large. The total splitting is very sensitive to the distances
between the Ce ion and its neighbours. The lattice relaxation, which will undoubtedly occur
on introducing the interstitial F ion and which we did not account for, may very well decrease
the splitting.

In column 5 of table 5.4.1 we show the Ce 5d level splitting as it is obtained by a calculation
on the CeF cluster where in the array of point charges the +2 charge of a nearest Ba ion was
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replaced by the +1 charge of a Li ion. The pointgroup symmetry is reduced and now we also
get a doublet and three singlets.

We again have a spectrum which at least qualitatively matches the experimental data. The
calculated total splitting is still much too small.
From the above mentioned results we can conclude
that the charge compensation in LiBaF;:Ce is
realised by either an interstitial F ion or the
replacement of a Ba ion by a Li ion.

The last option is the most likely. The interstitial F

ion would be in a very cramped position, which *
would probably result in extensive lattice
relaxation. The energy barrier for such a process
would be rather high. Replacing the Ba ion with a
Li ion is much easier. There is more than enough Li
space for the small Li ion at the Ba site.

Assuming that the Ba ion is indeed replaced by a Li
ion we optimised the structure of our cluster for this
situation. The optimal geometry of the Ce site was *
first determined with the HADESS3! program. The Ce
HADES program lets the lattice relax over very
long distances. In the subsequent Hartree-Fock
calculations we only used the modified coordinates
of the CeFj, cluster. We did not change the F L F
Madelung point charges. During the optimisation

the four F ions above the Ce ion move down toward  Figure 5.4.2 Side view of a unit cell

the Ce and a little bit outward. The Li ion moves  of LiBaF3:Ce. The arrows indicate the
upward. The Ce ion also moves upward a bit. All ?e’;zi:::g;" which the ions will move upon
the other ions move only marginally. A pictorial

representation of the optimisation is shown in figure

5.4.2.

The optimal geometry was confirmed by minimising the Hartree-Fock total energy of some
clusters with respect to the ion coordinates in the field of the Madelung point charges. The
smallest cluster we have used for this optimisation is the CeF|;Lig cluster. The geometry
optimisation of this cluster gives basically the same results as the HADES optimisation, with
one significant difference: The four F ions above the Ce ion move significantly outward. This
is due to the lack of repulsion at the cluster edge and therefore is an artefact of the limited
cluster size. If we extend the cluster with the four Ba ions around the Ce ion at the same z-
coordinate, i.e. use a CeFy;LigBay cluster, this lack of repulsion is corrected for. We then get
approximately the same optimised geometry as with the HADES program. The displacement

. )
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of the ions is much larger in the HADES case than in the Hartree-Fock optimisation case but
the direction of the displacements is the same. It is a well-known fact that the HADES
method over-estimates the displacements, so these results are in agreement with general
experience.

The Ce 5d orbital energies belonging to the optimised cluster are listed in column 6 of table
5.4.1. The agreement with the experimental values is quite satisfactory.

Conclusions

We were able to calculate the experimental Ce 5d level splitting quantitatively correct. The
structure of the experimental absorption spectrum can be reproduced by assuming that the
charge compensation in LiBaF;:Ce is realised by replacing a neighbouring Ba ion of the Ce
impurity with a Li ion.

Molecular cluster calculations, even on the relatively low level performed here, are very
useful in obtaining valuable information that is inaccessible by experimental means.
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Chapter 6

The Oxygen Compounds

In this chapter we will describe the results of our work on three rather complex oxygen
compounds: LayHf»0:Ce, Lu;S105:Ce and CeAlO;3.

La;Hf707:Ce and even more so Lu;Hf,07:Ce are interesting candidates for scintillators. They
have a high density and a large number of high Z atoms. The corresponding materials with

vanadium and tungsten instead of hafnium do not show any luminescence!. Blasse? suggests
that this is caused by the transference of the excited Ce 4f electron to a neighbouring

vanadate or tungstate group. In the case of the hafnates this transfer is not expected to occur3.

Hence Lu;Hf,07:Ce should show Ce luminescence. In our laboratory this material will be
experimentally investigated. The calculations reported here were done to assist those

experiments.

Lutetium-ortho-silicate (LSO) doped with Ce is a very interesting material. It has an
unexpectedly high density and it already gives a large light output (25,000 photons/MeV) for
a small concentration of Ce impurities (0.1 at %)*. Consequently LSO:Ce and derivates have
attracted a lot of attention in recent years3:6.7,

Recently XPS results3! became available on CeAlOs. The structure of this material is very

near the geometry used in our laboratory for some simplified model calculations on
YAIOj;:Ce8. This gave us the opportunity to check those results against experiment.

6.1 Computational Details

In section 5.1 we gave an overview of the methods we can use to calculate the properties of
the fluorine compounds we were interested in. The properties of the oxygen compounds can
be calculated in the same way.
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For the calculations we have used several basis sets. Some were optimised by ourselves, with
the help of the program ASCF?, others were taken from the literature. The Ce and O basis
sets used for the calculations on La;Hf,07:Ce were optimised by ourselves. These basis sets
were primarily used in a general contraction!0. The exponents of the basis and the contraction
were optimised for the ion in the charge state in which it occurs in the ionic compound, with
a Watson shell to make the system neutral again. These basis sets are listed in appendix A.
For the relativistic calculations on LSO:Ce and CeAlO3 we used a kinetically balanced
general contracted basis, based on the primitive set of van Piggelen!!. For the oxygen ion we
used a kinetically balanced general contracted basis, based on a primitive set for O- of
Huzinaga!2. The basis sets are listed in appendix A. For the non-relativistic calculations on
LSO we used mainly the small segmented contracted basis set for Ce, already mentioned in
chapter 5 and a segmented contracted version of the O- basis set of Huzinaga. In the cases
where we also had Si atoms in our cluster we used a small segmented contracted basis set.
This basis set is listed in appendix A. Some LSO calculations were also performed with the
ECP's of Stevens et al!3.14 for Ce and Si.

The quality of the Ce basis sets has already been discussed in section 5.2. The Hartree-Fock
and experimental ionisation potentials for the Si atom are listed in table 6.1.1.

basis Exp.15
small ECP
Ist IP 115 11.8 8.2
2nd IP 17.3 17.6 16.3
3rd IP 26.7 269 335
4th TP 44.5 N.A. 45.1
Table 6.1.1 The first four ionisation potentials for the Si atom. All entries are in eV,

The fourth ionisation potential cannot be calculated with the ECP's. With the ECP's, the Si
atom only has four electrons, so a calculation on Si%* is impossible. The results obtained with
the two basis sets are virtually the same. The fourth ionisation potential is the energy
difference of the Si3* {Ne} 3s)2 3p)! and the Si4* {Ne} 3s)? states. For these states the
correlation energy should be approximately equal. We therefore expect the Hartree-Fock
method to perform well. Comparison of our calculated fourth ionisation potential with the
experimental one confirms this. The agreement of the other calculated ionisation potentials
with experiment is much poorer. We will use the Si basis sets to describe Si ions in LSO. If
we assume LSO to be completely ionic all the Si ions will have a +4 charge. We may
conclude from our results that the Si basis sets are adequate for this task.

Making and testing a basis set for the O2- jon is a difficult task because the O ion is not
stable in vacuum. This is also immediately evident from table 6.1.2. This table lists the first
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ionisation potential and the first electron affinity of the oxygen atom. It is clear that the basis
set optimised by ourselves (labelled optimal) gives the best results, at least for the more
negatively charges states. This best result is still not very good compared with the
experimental result. The small basis by Huzinaga performs a little less good than our own,
but the difference is not so great. The ECP basis for O performs not so good and will
probably not yield reliable results for OZ ions.

basis Exp.!°
small optimal ECP

Ey OF -74.3703 -74.3574 -15.1849 N.A.

E O -74.8084 -74.8045 -15.6205 N.A.

Ey O 747776 747836 -15.5808 N.A.
IPO 11.9 12.2 11.8 13.6
EAO -0.8 -0.6 -1.1 1.5

Table 6.1.2 Total energies, ionisation potentials and electron affinities of the oxygen atom.

The total energies are in atomic units and the electron affinities are in eV.

All the CIS and most of the Hartree-Fock calculations were done with the Gaussian9217
package. All the relativistic calculations and the remaining Hartree-Fock calculations were
done with the MOLFDIR18.19 program package.

6.2 Lasz207Z Ce

LayHf;07 is a solid which crystallises in a lattice with the FD3-MZ spacegroup20, The
lanthanum site has the pointgroup symmetry Dsq.

The calculations were done on the lanthanum compound and not on the lutetium compound
because structural data were only available for the lanthanum compound. Both compounds
are expected to have the same crystal structure although the ion distances may vary somewhat
because of the different ion sizes of lanthanum and lutetium.

The Ce impurity is expected to occupy a lanthanum site. The Ce ion and the La ion both have
the same formal charge and approximately the same ion size, so we do not expect large lattice
relaxations upon doping with Ce.

The first shell of neighbours around the La3+ site consists of eight O ions (six at a distance of
2.6 A and two at a distance of 2.3 A). So the obvious first choice of cluster to describe
La;Hf,07:Ce would be a CeOg cluster. The cluster is shown in figure 6.2.1.
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Unfortunately, no experimental work has yet been carried out so far on this material. We
have therefore no check on the results we will obtain for this material, except for a few
general notions, which seem to apply for all oxygen compounds. On the other hand, we can
also consider this as a big challenge. Theory should be able to predict beforehand the results
of experiments. If our predictions are later confirmed by experiment, it would mean the
ultimate proof of our methods.

The Results of the Hartree-Fock Calculations

To describe the oxygen anions accurately we need a rather diffuse basis set, optimised for the
(in vacuum not stable) -2 charge state of the oxygen. This makes the oxygen compounds
much harder to treat than the fluorine or chlorine compounds. The diffuse oxygen basis
protrudes far outside the cluster
in places where the crystal
potential is not correctly
described anymore. This can
give rise to spurious oxygen
states in the band gap. This
seriously hampers the
determination of the Ce levels in
the gap and the determination of
the band edges.

In our Hartree-Fock calculations
on the CeOg cluster these
problems indeed occurred. When
we performed the calculation
with the van Piggelen basis for
the Ce ion and the Huzinaga
basis for the O ion it was
impossible to obtain reasonable
Ce 5d states. There were very
low lying O states and a very
strong mixing of the Ce 5d

orbitals and the O orbitals. This Figure 6.2.1 The CeOS cluster in LaszZO 71C€
The direction of view is along the C3 axis (0-Ce-0O)

made it impossible to occupy or
even recognise the Ce 5d
orbitals.
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We reoptimised the van Piggelen basis for the Ce3+ ion with a Watson shell at half the
distance of the nearest O ion and generalised contracted this basis to (6/5/4). This resulted in
a basis that was more compact than the original one. We also optimised a new basis for the
02 ion with a Watson shell at half distance. This basis was generalised contracted to (3/3).
The results of the cluster calculations with these basis sets was better than the previous ones.
But the Ce 5d orbitals still showed a very strong mixing with the O orbitals.

We then reoptimised the O basis for the O- 2P state with the Watson shell at half distance.
The basis was then generalised contracted for the O2- state to (3/3). This procedure resulted in
a very compact O basis. The results of the cluster calculations with this basis show "good" Ce
5d orbitals. There is still some mixing with O orbitals, but this is on an acceptable level.
Apparently we need a very compact O basis to get valid results. To study this in a more
systematic way we decontracted the most diffuse p-exponent and varied it in the cluster
calculations, the results are listed in table 6.2.1.

The O content of the Ce 5d orbitals increases with a decreasing exponent. The highest lying
Ce 5d orbital shows significantly more O mixing than the others. When the exponent has
decreased to 0.115803 the O content of the Ce 5d orbitals has become very high. In the case
of an exponent of 0.105803 the highest Ce 5d orbital consists primarily of O functions.

The lowest total energy is obtained for the exponent 0.115803. This suggests that this is the
best basis set for the O2- ion in the cluster. The O content of the Ce 5d orbitals for this basis,
however is high and that may lead to an inaccurate calculated 5d level splitting.

exponent I 0.145803 0.135803 0.125803 0.115803 0.105803
Eiot - -9182.972  -9183.040  -9183.084  -9183.094  -9183.058
5d levels Ay 0.00 0.00 0.00 0.00 0.00
E, -1.73 -1.64 -1.51 -1.29 -0.72
E, -2.96 -2.88 -2.75 -2.53 -1.68
Table 6.2.1 Total energies and Ce 5d orbital energies for the CeOg cluster as a function of the most diffuse

O p exponent. The total energies are in Atomic Units. The 5d orbital energies are in eV. The
spin-orbit splitting is not included.

From table 6.2.1 we can see that when the exponent becomes smaller than 0.125803 the
positions of the Ce 5d levels change faster with the decreasing exponent then before.
Therefore the best basis for the O2- ion in the CeOg cluster seems to be the one with the p-
exponent 0.125803. This is the O basis set which was labelled "optimal" in the previous
section. The 5d level splitting calculated with this basis should be the most reliable result for
the Ce 5d splitting.

To be able to calculate the 4f-5d absorption spectrum of LayHf;07:Ce we need the Ce 4f - 5d
energy difference. To calculate this value we have used the ECP and basis set of Stevens et
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al. for the Ce ion. For the oxygen ion we have tried the three different basis sets already
mentioned in section 6.1. Some of the results of these calculations are listed in table 6.2.2.
From table 6.2.2 it becomes clear that the results are very sensitive to the basis set used for
the oxygen ions. Much more so than in the case of the fluorine and chlorine compounds.

small optimal ecp
5d levels 0.00 0.00
-0.63 -0.24
-0.63 N.A. -0.24
-2.19 -1.75
-2.19 -1.75
AE(4f-5d) 10w 4.49 3.78 461
AE(vb-4f) 2.18 1.21 4.05

Table 6.2.2 The relative positions of the Ce 4f and 5d levels of the CeOg cluster in LayHf7O7:Ce. For the
Ce ion we used the ECP basis set of Stevens et al. For the oxygen ions we used the basis sets
denoted in the column headers.

The energies of the Ce 5d orbitals calculated with the optimal O basis set are missing from
the table because we were unable to identify them. There are ten alpha spin orbitals which
show a significant Ce 5d occupation and which all are strongly mixed with oxygen p orbitals.
If we occupy the lowest orbital with a significant Ce 5d content, this orbital remains strongly
mixed with the oxygen orbitals. The Mulliken orbital analysis for this orbital shows that only
20% of the electron is on the Ce ion. We can also see from table 6.2.2 that AE(4f-5d),,,, for
the optimal oxygen basis deviates significantly from the values for the other two basis sets.
This holds particularly for the value of AE(vb-4f).

The overlap populations of the Ce d with the oxygen p functions of the optimal O basis are
large. This means that the Ce Sd orbitals can use oxygen p functions for their description and
vice versa. Under these circumstances it is very hard to determine the orbital character from
the function coefficients. Consequently it makes the gross Mulliken population analysis
unreliable. It can also explain why, in this case, the use of a different Ce basis can have such
a huge effect. The effect can be seen by comparing table 6.2.1 with 6.2.2. The Ce ECP basis
is more diffuse than our reoptimised van Piggelen basis and can be used better by the O
atoms to describe their orbitals. Therefore the Ce 5d and O 2p orbital mixing will be larger in
the ECP case and the "real” Ce 5d orbitals have become unrecognisable.

Given the above observations and the results on the quality of the O basis sets listed in table
6.1.2 we conclude that the results obtained with the small O basis are the most reliable results
of table 6.2.2.

So the energy difference between the lowest Ce 4f and the lowest Ce 5d level is 4.49 eV. If
we correct this value with the correction we found to be necessary for the free ion (section
5.2) we obtain: AE(4f-5d)ow =3.58 eV.
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The lowest Ce 4f level is 2.18 eV above the valence band edge, which is estimated from the
orbital energy of the highest occupied oxygen level.

We also performed Hartree-Fock calculations on the LaOg cluster with the small basis sets
and extra diffuse s-functions on the La ion, to obtain the band gap. We found a band gap of
6.6 eV. Oxygen compounds usually have a band gap in the order of 6 €V, so this value seems
reasonable.

Conclusions

Calculations on clusters containing O ions are complicated by the diffuse basis sets needed
for the O2- ions. The diffuse O orbitals protrude far beyond the cluster edge where they feel a
potential that deviates significantly from the correct crystal potential. Because of this there
are low lying O states in the
band gap, which seriously
hamper the determination
and occupation of both the
Ce 5d levels and the
conduction band edge.

By carefully adjusting and
balancing the basis sets it is - T Ce5d
still possible to get

reasonable looking results. > 21
We were able to get a ;
reasonable estimate for the :;3
band gap, the valence band g 4

-> Ce 4f distance (table | I Ce 4f
6.2.2, first column) and the
Ce 4f -> Ce 5d distance
(table 6.2.2, first column).
The only remaining problem
is that the two most reliable
results we have obtained for
the Ce 5d level splitting

differ significantly and we Figure 6.2.2 The band gap and local Ce levels in La;Hf20:Ce
have no objective way of

determining which one is
better, although the results of the third column of table 6.2.1 seem somewhat more
trustworthy than the results from the first column of table 6.2.2.
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So we finally arrive at two possible level schemes for La;Hf,07:Ce. They are depicted in
figure 6.2.2. Note that if the Ce 4f levels are indeed this high above the valence band edge,
the difference in Ce 5d level splitting between the two results may not really matter. In that
case we could probably only observe the lowest Ce 5d level.

6.3 LU2Si05:Ce

LSO crystallises in the same structure as Yttrium-ortho-silicate (YSO)21. These materials
have very low symmetry and belong to the spacegroup P121/M122, Because structural data
for LSO was not available we used the structural data for YSO in our calculations. Both
materials are believed to have the same structure although the lattice parameters will be
slightly different because of the
different radii of the Y3+ and Lu3+
ions (0.89 A and 085 A
respectively).

There are two different Lu sites.
The Ce impurity is believed to
occupy a Lu site. So there also are
two possible different kinds of Ce
impurities in LSO, which may have
different luminescence behaviour.
The pointgroup site symmetry of
both Lu sites is C;. We will call the
sites: site 1 and site 2. In figure
6.3.1 we show a picture of site 1.
The Lu ion has seven O ions at
small distances around it. The
average distance between the Lu
and the O ions is 2.32A for this
site. The conformation of the O
ions can be viewed as a disturbed
octahedron and an extra OZ ion. In
figure 6.3.2 we see a picture of site 2. Here the Lu ion is surrounded by six O ions. The
average Lu - O distance is 2.22A for this site. The conformation of the O ions can be viewed
as a distorted octahedron.

Figure 6.3.1 The CeO7 cluster (site 1) in LSO:Ce.
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The clusters shown in figures 6.3.1
and 6.3.2 are the clusters we used
for only some of our calculations.
It is not a priory clear that these
clusters will give a proper
description of LSO. Most of the
0O2- ions around the central site are
covalently bonded to Si atoms. So
to make the above clusters we have
had to break covalent Si - O bonds.
This may introduce severe errors
into description of the affected O
ions and thus into the calculated
observables.

Therefore we have decided to
construct a cluster in which the
SiO44 groups were treated as
undividable units. We then get a
LuO,(Si04)4 cluster. This cluster
is an extended version of the
cluster for site 2. The cluster is
shown in figure 6.3.3. Also this
cluster has its drawbacks.

The cluster O2- ions which are
furthest away from the central Lu
ion are much further away than a
lot of other ions which are not
included in the cluster. This may
give problems with the fitted
Madelung potential for the cluster.
The alternative is to include all
ions up to a distance of 9 Bohr
from the central Lu ion. This
would result in a LugSis O cluster.
The effort required to do a Hartree-
Fock SCF calculation on this
cluster is tremendous and can
certainly not be done on a routine
basis.

Figure 6.3.2 The CeOg cluster (site 2) in LSO:Ce.

Figure 6.3.3 The CeO7(Si0y )4 cluster (site 2) in LSO:Ce.
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The average distance between the Lu ion and its neighbouring O ions is rather small. Ce has a
larger estimated ionic radius than Lul6. So we expect significant lattice relaxation in LSO
upon doping with Ce. Based on the Lu-O distances we expect a significantly higher
occupation of site 1 than site 2.

Determination of the Cluster Embedding

In all previous cases we embedded the clusters only in an array of point charges generating
the correct Madelung potential at the cluster sites?3. In the case of LSO there is a
complication. It can be argued that LSO cannot be regarded as a completely ionic material
because the SiO44 groups contain covalent bonding. The consequence of that is that the Si
and O ions which are part of a SiO4 group may have smaller charges than +4 and -2
respectively. To study the sensitivity of the cluster results for variations of the Madelung
potential we performed Hartree-Fock calculations on the three smallest above mentioned
clusters (with the Lu ion replaced by a Ce ion) with a Madelung potential based on Luy*+0?-
(Si*+0,2") (labelled mad4) and a Madelung potential based on Lup3*O2(Si3+04!-75") (labelled
mad3). The geometry of all the clusters was relaxed in the sense that all ions, except the Ce
ion, were moved outward radially by 10%. This was needed to get reasonably recognisable
Ce 5d orbitals24. The results of these calculations are listed in table 6.3.1.

CeO7 (site 1) CeOg (site 2) Ce0,(S104)4
mad3 mad4 mad3 mad4 mad3 mad4
5d levels 0.00 0.00 0.00 0.00 0.00 0.00
-045 -0.78 -0.33 -0.67 -0.37 -0.60
-1.25 -1.07 -2.25 -1.49 -2.52 -2.73
-1.57 -1.35 -2.30 -1.60 -2.72 -2.93
-2.17 -1.85 -2.49 -1.84 -2.85 -3.05
Table 6.3.1 Orbital energies of the virtual Ce** 5d orbitals of LSO:Ce. The calculations labelled mad4

were done with a Madelung potential based on a totally ionic description of LSO:Ce. The calculations labelled
mad3 were done with 25% smaller charges for the Si and O ions which are part of a $iO4 group. All entries are
in eV and relative to the highest Ce 5d level.

In the case of the large CeO2(Si04)4 cluster the differences in Ce 5d splitting due to the
different Madelung potentials is small (only 0.2 eV). The Ce ion in the centre of the cluster is
shielded from the point charges by the other ions in the cluster. For the large cluster this
shielding already works so well that the difference in Madelung potential only results in
marginal differences in the Ce 5d level splitting. In the CeO7 cluster this shielding is less
effective. Still the differences between the two calculations are not very large. This in
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contrast to the results for the CeOg cluster, which do differ markedly for the two different
Madelung potentials.

The results on the CeOg cluster seem to imply that the potential mad3 is the best choice,
because the mad3 results of the CeOg and the CeO,(SiO4)4 clusters agree better with each
other than the mad4 results. On the other hand, because of its odd shape, it is not a priory
clear that the results of the CeO,(Si04)4 cluster should be better than those of the CeQOg
cluster. Consequently the mad3 potential does not necessarily need to be better than the mad4
potential.

In the case of the small clusters, i.e. CeOg and CeO37, there is an inconsistency in the charge
of the quantum-mechanically treated cluster and equivalent clusters in the environment when
we use the potential mad3. Therefore it seems best to use the potential based on the formal
charges?25, i.e. the potential mad4.

The Effects of Cluster Size

As explained earlier the choice of the cluster to model this system is not trivial. To study the
effect different choices of cluster have on the results, we performed a number of calculation
on the host material and extracted from those calculations the Lu 4f band width, the valence
band width and the band gap. The calculations were performed on the LuQ; cluster (site 1),
the LuQg cluster (site 2), the LuO,(Si04)4 cluster (site 2) and the LugO(SiO4)4 cluster (site
2). The results are listed in table 6.3.2.

LuOy LuOg LuOy(Si04)s4  LugO10(SiO4)4 Exp.20.27

4f band 0.19 0.10 0.11 220 3.1
VB 9.93 8.34 7.25 11.74 5.0
gap | 1176 11.69 12.87 9.90 6.5
gap 2 3.25 3.47 543 N.A. N.A.
Table 6.3.2 Selected crystal properties of LSO, calculated with different clusters. Gap 1 was calculated

from the (virtual) orbital energies. Gap 2 was calculated from a HF calculation on the first excited state. All
entries are in ¢V.

For the three smaller clusters we see a very narrow Lu 4f band. In these clusters we only have
one Lu ion and therefore a band cannot be formed. What we see is only the ligand field
splitting between the lowest and highest Lu 4f level. In the largest cluster we have eight Lu
ions and a band can be formed. Because the Lu 4f orbitals are rather core-like the overlap
between the Lu 4f orbitals on different sites will be small and the band will be narrow. The
calculated band width of 2.2 ¢V confirms this. The experimental value26 is somewhat larger,
but this is to be expected.
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The calculated valence band width is very large. It is larger for site 1 than for site 2.
Surprisingly the LuO,(SiO4)4 cluster gives a significantly smaller valence band width than
the LuOg cluster. The largest cluster shows the largest valence band width.

The calculated valence band widths are all much larger than the experimental one26. There
are two main reasons for this. First the experimental value is rather inaccurate. In the XPS
spectrum for LSO the O 2p band only shows up as a tail of the Lu 4f peak. The width of the
O 2p peak can only be estimated by comparison with similar compounds (CeAlO; and
LuAlQ3). But because there are two oxygen p bands in LSO (one of the oxygens bonded to
silicon and one of the free oxygens) the total oxygen p band width for LSO will be larger than
for the similar compounds. The second reason has already been mentioned in section 6.2.
Because of their diffuseness the (outer) O 2p functions reach beyond the cluster edge and
therefore feel a wrong potential. This effect will broaden the O 2p band.

In the LuO,(8i04)4 cluster most of the O ions, and therefore most of the O 2p orbitals, are
involved in covalent bonds to Si ions. This limits the freedom of the O 2p orbitals to find
regions of low potential outside the cluster. The calculated valence band width for this cluster
is consequently smaller than for the smaller clusters.

In the LugOg(Si04)4 cluster we have ten non-bonded O ions and consequently the valence
band width is larger than for the other three clusters. However if we ignore the three deepest
O 2p levels the valence band width reduces to 7.2 eV. This is reasonable because these
orbitals would have a very small weight in the XPS spectrum (only 3 orbitals of a total of 78).
This corrected value agrees well with the calculated value for the LuO2(SiO4)4 cluster.

The band gap as estimated from the orbital energies is as usual much to large. The values for
the three smaller clusters agree reasonably with each other. The value for the largest cluster is
somewhat smaller. For this cluster the lowest unoccupied molecular orbital is a mixture of Si
ds, O 3p, Lu 6s and Lu 5p orbitals. It should be a Si 4s orbital. Because of the strong
admixture of O 3p orbitals this orbital lies too low in energy and so the calculated band gap is
smaller than it should be.

The band gap calculated as the difference of the total energies of the ground state and first
excited state of the cluster is much smaller, because the electronic polarisation is now
accounted for. For the two smallest clusters the highest occupied molecular orbital of the first
excited state consists of a Lu 6s like function strongly mixed with a O 3p type function. This
strong mixing is possible because the O 3p orbitals lie too low in energy (again as a
consequence of the fact that they spill significantly over the edge of the cluster). Because of
this the calculated band gap is far too small. For the LuO;(SiO4)4 cluster the results are better.
The highest occupied molecular orbital for the first excited state is now a Si 4s function. The
mixing with O 3p functions is much less.
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Above we have seen how some crystal properties vary with cluster size. Our main interest,
however, lies in the 4f - 5d distance and 5d level splitting of Ce impurities in LSO. To study
the effect of cluster size on these properties we performed calculations on the CeO7, CeOg
and Ce0,(Si04)4 clusters. The ligands were moved 10% radially outwards. Some of the
results are listed in table 6.3.3.

CeO5(1) CeO¢(2) Ce0,(Si04)4 (2) Exp.4
5d levels 1.85 1.84 3.05
1.07 1.17 2.45
0.78 0.35 0.33 1.23
0.50 0.24 0.12 0.71
0.00 0.00 0.00 0.00

Table 6.3.3 Ce 5d level splitting for LSO:Ce. The ligands were moved 10% radially outwards. All entries
are in eV and relative to the lowest Ce 5d level.

From this table we can see that the two sites give rise to significantly different absorption
spectra. The two different sized clusters for site 2 agree well on the three lowest Ce 5d levels.
The two highest Ce 5d levels however differ enormously. The two highest Ce 5d levels of the
large cluster are probably not very accurate because they lie amidst a set of low lying O 3p
orbitals and also are mixed with O 3p orbitals. Because experimentally only the three lowest
absorption lines were measured it is at this stage impossible to say which of the two clusters
performs better. Furthermore the experimental data seem to suggest that site 1 is the preferred
site for Ce ion28, leaving no experimental way to distinguish between the site 2 clusters CeOg
and C€02(5104)4.

So it seems that the Ce 5d level splitting can very well be calculated with the help of the
small clusters, because the differences between the results of the small and larger cluster are
not experimentally verifiable.

Estimation of Lattice Relaxation

As mentioned before the Lu - O distances in LSO are rather small. The Ce3+ ion is
substantially larger than the Lu3* jon, so we expect lattice relaxations to occur upon doping
LSO with Ce. As a first ansatz to the relaxation we determined the radially outward
relaxation giving the lowest total energy for the clusters. The results are given in table 6.3.4.

The results for the CeO7 and CeO,(Si04); clusters are very similar, although they refer to
different sites. As expected the relaxation is larger for site 2. Calculations for the CeOg
cluster at 5%, 10% and 15% radially outward relaxation showed the lowest total energy for
15% relaxation. We expect the optimal relaxation to lie between 10% and 15%, near 15%.
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Because the larger cluster for site 2 is expected to give a more reliable result we did not think
it necessary to determine the optimal relaxation more accurately.

Because there are no repulsive forces to stop the ions from moving outwardly, the relaxation
is overestimated. Furthermore the relaxation probably is not purely radial and we should
perform a completely unrestricted geometry optimisation. The three above mentioned clusters
are not very suitable for a geometry optimisation because of their very limited size. A more
suitable cluster, however, would require a prohibitive amount of computer resources.

CeO7(1) CeOg(2) Ce0,(Si04)4 (2) Exp.

relaxation (%) 8.0 15.0 94 N.A.
5d levels 1.60 2.25 2.86
0.93 1.57 2.48

0.57 0.33 0.32 1.23

0.21 0.22 0.08 0.71

0.00 0.00 0.00 0.00

Table 6.3.4 Ce 5d level splitting for LSO:Ce. The clusters are at their optimal relaxation, except for the

CeOg cluster. All entries are in eV and relative to the lowest Ce 5d level.

To get a reasonable estimate of the relaxation we used a simplified model system. We used
the LuOg cluster, representing site 2. We saturated the O ions with twelve H ions (two H for
each O ion) and optimised the H positions. The hydrogen ions should mimic the repulsive
forces of the direct surroundings of the cluster. Thus we have a LuOgH;, cluster representing
site 2 in LSO. With this cluster it is not quite clear how the Madelung potential should be
constructed, so we left it out. We can now optimise the positions of the O ions. If this system
would be a perfect model for LSO all the O ions would remain at their initial positions. The
system is not a perfect model and so the O ions are displaced, but not very much. The
displacements are listed in table 6.3.5. Surprisingly the relaxation is almost radial. The
smallest Lu - O distance changes 1%, the others only 0.6%. The changes in the angles and
dihedrals are very small.

The LuOgH,; cluster now has its optimal host optimal  optimal
34 LuOg CeOg
geometry. We now replace the Lu3+ ion by R 317 519 374
a Ce3* jon and reoptimise the positions of R, 2.26 2.27 2:31
the O ions. These displacements of the O R3 2.24 226 2.29
ions are also shown in table 6.3.5. We now Ry 2.24 2.26 2.29
Rs 2.24 2.25 2.29

have found the geometry relaxation due to
o 1“ tg o °3t+yb o R 223 224 2.28
€ re ent of Lu Ce3+. Again the
p, ace_m . y g Table 6.3.5  Results of the geometry optimisation
relaxation is almost radial. The smallest Ce of (Lu/Ce)OgH) 7. Only the (Lu/Ce) bond lengths are
- O distance changes 2.1% and the other shown. All the angles changed less than 0.2°. All
bond distances change 1.6%. The changes dihedrals changed less than 0.3°. All entries in A.
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in the angles and dihedrals are very small.

The relaxations calculated with this simplified model are much smaller than the optimal
radial relaxations calculated previously. It is possible that the O - H interaction is so strong
that the relaxation is underestimated. Andriessen et al.28 performed a geometry optimisation
on LSO:Ce with the semi-classical MOLSTAT code?? and found a relaxation of 4%. They
conclude that their relaxation may be somewhat too small because the displacement of the O
jons is smaller than the difference in ionic radii between the Lu3+ and Ce3+ ion.

Keeping all this in mind we decided that a 5% radial relaxation should be a reasonable model
for the Ce impurity site in LSO. We performed calculations on the small clusters for sites 1
and 2 with the small O basis and the Ce ECP basis. The results of these calculations are listed
in table 6.3.6.

The calculated AE(4f->5d) for the CeO7 cluster is somewhat too large compared with
experiment. If we correct the calculated value for the error we know the ECP makes in the
free ion case (section 5.2) we get AE(4f->5d) = 3.23, which is a bit too small, but within 10%
of the experimental value. The calculated AE(4f->5d) for the CeOg cluster is far too small. In
this cluster the Ce 5d and O p orbitals mix very strongly. This makes it impossible to find a
pure 5d)! state. The mixing with the artificially low O p orbitals lowers the energy of the 5d)!
like state and thus reduces AE(4f->5d).

The distance between the valence band edge and the Ce 4f level also varies greatly between
the two clusters. A population analysis of the occupied orbitals of the two clusters suggest
that CeO5 results is more reliable than the CeOg result. The latter is again plagued by strong
mixing with O orbitals.

For the CeO7 cluster the Ce 4f CeO7(1)  CeOg(2) Exp.*
levels lie under the valence band 4 levels %g;

edge. Although this is not 104 0.59 123
impossible30 we have to date not 0.57 0.41 0.71
seen any other Ce3+ case where 0.00 0.00 0.00
this is s026.71 AE(4->5d) 414 189 3.42

> ) . .

Note that for the CeO7 cluster the AE(VB->4f) _1.45 059

Ce 4f and Ce 5d levels span a

) Table 6.3.6 Results for the small LSO:Ce clusters with 5%
range of 5.56 eV. So the levels just

radial relaxation. The Ce 5d levels were taken from virtual
barely fit in the band gap. If by orbital energics. The energy differences are ASCF results. All

any chance the Ce 4f level lies ~ entriesareineV.

above the valence band edge one

or more of the Ce 5d levels would shift into the conduction band edge. This would nicely
account for the inability to measure all five Ce 5d levels in absorption experiments.
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The Relativistic calculations

Finally we performed some relativistic Hartree-Fock-Dirac calculations on the small cluster
representing site 2 in LSO:Ce. Because of the absence of any symmetry this small CeQg
cluster is already too large to perform a full four-component HFD calculation in our usual
basis sets. It was possible however to perform a calculation in which we neglected the two-
electron integrals (i.e. the matrix elements of the operator g;) containing small-component
basis functions.

To estimate the effects of this omission we also performed calculations on the same cluster
with and without the two-electron integrals containing small-component basis functions,
using a much more severe contracted version of our usual primitive basis sets. For the large
component of the basis we ignored the small differences in the orbitals due to the different j
values for a specific | value. For the small component part of the basis we made the
thresholds for conserving the atomic balance less severe. The results of these calculations are
listed in table 6.3.7.

The AE's give the energy differences between the average of the Ce 4f and the average of the
Ce 5d levels. There are two AE,,'s. The first one is calculated by directly subtracting the total
energies of the Ce 4f)! and the Ce 5d)! calculations; i.e.:

AE}!V = E4f)1 - E5d)1 . 6.3.1
The second one is calculated by:
AEZ, = Ey % — B30 + EXDSS - BT, 6.3.2

The two AE,,'s are not equal because of the so-called Basis Set Superposition Error
(BSSE)32.

The calculations on the Ce 4f)! state and the Ce 5d)! state were not performed in exactly the
same function space. Therefore their total energies are formally not comparable and AE;V
will contain an error. The BSSE can become quite large. In this case the two primitive basis
sets only differ in the removal of the f-exponents for the "Ce 5d" basis set. Nevertheless the
error is quite large for the severely contracted basis set, implying that this basis does not
provide a very adequate description of Ce ion in the cluster. In equation 6.3.2 we try to
correct for the BSSE. Although the correction is calculated for a different charge state of the
cluster (and can therefore not be completely correct) the value for AE2, should be much
better than the value for AELV. The term AE,q, gives the energy difference between the
lowest Ce 4f level and the lowest Ce 5d level. Its value is based on AE;,.
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Severely contracted basis Exp.4 normal basis

LL int. only Full LL int. only
5d levels 4.64 4.88 2.13
3.79 4.00 1.93
0.63 0.65 1.23 0.77
0.30 0.31 0.71 0.12
0.00 0.00 0.00 0.00
AE,, 1 -10.09 -10.52 N.A. 5.61
AE,,2 7.05 4.63 N.A. 4.40
AEjow 5.65 4.07 3.42 3.85

Table 6.3.7 Ce 5d orbital energies and Ce 4f -> 5d transition energies for the CeOg cluster (site 2) in
LSO:Ce. AE,y is the energy difference between the average of the 4f and the average of the 5d
levels. AEIav is the "pure" value. AE2av has been corrected for BSSE. All entries are in eV.

Looking at table 6.3.7 we notice that there is a huge difference between the results for the
severely contracted basis and our usual basis. Obviously the basis set cannot be contracted
this way without unwanted effects. This also becomes clear from the enormous differences
between AE:W and AEZV for this basis set. The effect of ignoring part of the two-electron
integrals does not seem to effect the Ce 5d level splitting much. However the total energy
difference between the Ce 4f)! state and the Ce 5d)! state are affected very strongly.

If we assume that the 4f - 5d distance calculated with the normal basis set will decrease if we
would do a fully relativistic calculation (just as with the smaller basis) the calculated 4f - 5d
distance would be too small compared to experiment. This is (in part) due to the strong
mixing of the Ce 5d and O p orbitals. As explained earlier this is an artefact caused by the O
p functions spilling over the edge of the cluster to regions with an ill-defined potential. This
artefact is expected to be larger in the relativistic case. The small component of the basis is
larger and contains functions of higher angular momentum than the large component and thus
should be more affected. And the large component basis is already larger than the basis set
for a non-relativistic calculation, because the orbitals for the two different j values belonging
to an 1 value differ.

Conclusions

Although the combination of the need for a diffuse 02 basis set and the use of a small cluster
surrounded by point charges give rise to artificially low lying O2- levels which can have
unphysical interactions with the central Ce ion, it is possible to obtain reasonably accurate
results from cluster calculations.
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Because of the low symmetry (C;) and size of LSO it is impossible to do a reliable geometry
optimisation of the impurity sites. Previous results indicate however that the relaxation is
relatively small.

There are two possible impurity sites. Experiments indicate that only one of those sites is
actually occupied. Because of the geometry of the sites and the shape of the absorption
spectra we conclude that the preferred site for the Ce impurity is site 1.
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Figure 6.3.4 The band gap of LSO:Ce. The gap was taken from
table 6.3.2. The Ce levels were taken from table 6.3.6. For the 4f -
5d distance the free ion corrected value was taken.

Using the best results we have obtained, we arrive at the level scheme for LSO:Ce as
depicted in figure 6.3.4. The valence band -> Ce 4f distance was taken from table 6.3.6. For
the 4f -> 5d distance we have used the corrected value from table 6.3.6. The Ce 5d level

splitting was also taken from table 6.3.6. The gap was taken from the calculation on the
LuO,(Si04)4 cluster.
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6.4 CeAlO3

CeAlO; crystallises in a lattice
with the P4/mmm space group
symmetry33. At first sight this
seems to imply a rather low point
group symmetry for the Ce site.
Close inspection of the
coordinates of the occupied sites,
however, shows that they only
deviate 2% from the values for
pure Oy point group symmetry.
Therefore a CeQj, cluster with
On point group symmetry should
be a fair model for CeAlO;. A
picture of this cluster is shown in
figure 6.4.1. To preserve the Oy
symmetry for the charge density
the position of the point charges,
which emulate the Madelung
potential, should also show O ;il‘ngeutrieirgﬁi.clm of virleﬂl\}veigzg)lnzgcéﬁsetzfias ?cﬁl]r(f)(ﬁ'd axes.
symmetry. So the entire crystal

should be slightly deformed..

The Results

We have performed a fully relativistic four-component Hartree-Fock-Dirac calculation on the
CeOy; cluster embedded in an array of point charges, emulating the Madelung potential of
CeAlO3. From the orbital energies obtained in this way we estimated several band widths and
band gaps. The results are listed in table 6.4.1.

The band widths in the first column of table 6.4.1 were calculated by taking the difference of
the lowest and highest orbital energy for that band.

Since there is only one Ce ion in the cluster and consequently a band cannot be formed, the
listed values for the Ce 4f and 5p bands only give an upper limit to the ligand field splitting.
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The ligand field splitting is much smaller than the band width, as can be seen by comparing
the calculated values with the experimental band widths.

The calculated band widths for the O 2s and 2p bands are both much larger than the
experimental ones. But this is not a fair comparison. The experimental band widths are the
widths of the peaks in the spectrum at half the height of the peak, while the calculated band
widths are the maximum widths of the peaks. If we take the eigenvalue spectrum of the
calculation and convolute it with gaussian functions with exponents of -40,000 and then
measure the widths of the peaks at half maximum we obtain the values listed in the second
column of table 6.4.1.

For the oxygen 2s and 2p bands these values agree much better with the experimental ones.
For the Ce bands the values in the second column of table 6.4.1 just give the width the
gaussian function with which we convoluted the spectrum. They have no physical meaning.

calc. exp.?®
plain convoluted
width Ce 4f 0.3 1.1 2
width O 2p 9.5 4.1 4
width O 2s 2.0 33 4
width Ce 5ps/, 0.0 1.1 3
width Ce 5pi2 0.0 1.1 2
AE Ce 4f, 0 2p 1.6 2.8
AE O 2p,02s 20.0 18.1
AE Ce 4f, Ce 5p3pn 14.2 15.6
Table 6.4.1 Theoretical and experimental band widths and band distances of CeAlO3. All entries arc in eV.

In the experimental values there is an uncertainty because the O 2s and Ce 5p bands overlap
and the width of the bands can only be measured on functions for the separate bands, which
were fitted to the spectrum. To a lesser extend the same problems pertains to the
determination of the positions of these bands.

We also listed the energy distances between some of the bands in table 6.4.1. The
experimental values were obtained by measuring the distances between the tops of the peaks.
The theoretical values were obtained by calculating the average of all the eigenvalues for
each band, and then taking the difference between two such averages. Although not perfect,
the theoretical results are quite good. The observed differences are smaller than 2 eV and
could be caused by either the neglect of correlation or the deficiencies of the cluster model.

For completeness sake we have also calculated the Ce 4f - 5d distance and the Ce 5d level

splitting, although there are to our knowledge, no experimental data available to check these
results. The results are given in table 6.4.2.
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The Ce 5d orbital energies are obtained from a four- Energies
component Hartree-Fock-Dirac calculation on the  dlevels 82
average of all Ce3+ 5d)! states of the cluster. The Ce 4f - :] 7

5d difference is calculated as the direct total energy

difference between the Ce3+ 4f)! groundstate calculation AE(4f->5d) 4.2

and the Ce3+ 5d)! groundstate calculation. So this value Table 6.4.2 The Ce 5d level splitting
may contain a considerable error due to BSSE (see  and the CE 4f->5d transition energy
section 6.3). Nevertheless the values all lie in the for CeAlO3. All entries are in V.
expected range for an oxygen compound (see also section 5.1).

Conclusions

We have performed a fully relativistic four-component calculation on the CeO;, cluster,
embedded in an array of point charges. This cluster served as a model for CeAlOs. As far as
the computational model is concerned this calculation is close to the best we can do for this
system. It is encouraging to see that the results are in good agreement with the experimental
data. This shows that the cluster model is still a good model even when the materials studied,
are not completely ionic anymore.

The problems we have had in the previous sections of this chapter with low lying oxygen
states seem to be less severe here. This is due to the very high point group symmetry of the
cluster. Because of the high symmetry the diffuse oxygen p functions are limited in their
freedom to combine into functions, which have their main density in regions of low potential
outside the cluster.
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Chapter 7

The Chlorine Compounds

In this chapter we will report the results of our investigations on some chlorine compounds:
SrCl,:Ce and CeCls.

SrCl, is the very first chloride we investigate. It has a very high symmetry. This makes it
relatively easy to do a full relativistic calculation on it. Good experimental data on the
absorption and luminescence spectra of SrCly:Ce are available!. There is no experimental
data available on the position of the Ce impurity levels in the gap, so we can check only a
part of our calculations with experiment. Still, because of its high symmetry, this system
enables us to calculate the correct relativistic energy distance between the average Ce 4f and
the average Ce 5d states.

CeCl3 is an interesting material to investigate. Just like in CeF3 the Ce ions are not impurities,
but part of the "host" lattice. So we do not have to worry about lattice relaxations. The atomic
positions are known fairly accurate. Technically it is a much more difficult system to treat
than CeF3 because the chlorine ions are much larger and diffuser than the fluorine ions. There
is experimental data available about the absorption spectra?, the luminescence spectra3 and
the position of the localised Ce levels in the gap*. All these facts make CeCl; a good
benchmark system for our methods.

7.1 Computational Details

In section 5.1 we gave an overview of the methods we can use to calculate the properties of
the fluorine compounds we were interested in. The properties of the chlorine compounds can
be calculated in the same way.
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Chapter 7. The Chlorine Compounds.

All the CIS and most of the Hartree-Fock calculations were done with the Gaussian925
package. All the relativistic calculations and the remaining Hartree-Fock calculations were
done with the MOLFDIR®.7 program package.

For the relativistic calculations we used the same basis sets for Ce as mentioned in chapter 6.
For CI we used a basis set based on the basis set of Huzinaga® for Cl-. The basis set was
generalised contracted’ to (4,3/4,5,4). The contraction coefficients were based on a
relativistic calculation on the Cl- ion. The small component of the basis set was constructed
by way of the extended kinetic balance!0 requirement. For the non-relativistic calculations we
used the same small Ce basis set as mentioned in the previous chapters. For Cl we used the
basis set of Huzinaga8 as given. We also performed calculations with the basis sets and ECP's
of Stevens et al11.12,

basis
Huzinaga ecp exp.13
EA C] 2.6 24 3.6
Table 7.1.1 The electron affinity of the Cl atom. All entries are in cV.

In table 7.1.1 we show the electron affinity of the chlorine atom calculated with the basis sets
we have used, together with the experimental value!3. The two basis sets give approximately
equally good results. They should both be flexible enough to provide an adequate description
of the CI- ion. The SCF results are smaller than the experimental results. This is due to the
neglect of correlation in the SCF method. The correlation energy contribution of the neutral
atom is different from the one of the negative ionl4.

The Sr basis set we used was the Sr2+

basis given by Huzinaga8. To this basis Calc. Exp.

. . . 2nd IP 9.96 11.03
set we added two diffuse s-functions with 3rd IP 42.04 43.60
exponents: 0.03 and 0.01. The Table 7.1.2 Ionisation potentials of the Sr atom.
experimental !5 and calculated second and All entries are in V.

third ionisation potentials for Sr are listed

in table 7.1.2. For the second ionisation potential correlation effects are not very important,
because we go from a {Kr} 5s)! to a {Kr} configuration. The calculated value has an error of
1.1 eV (10%). The calculated third ionisation potential shows a larger error, because here
correlation effects are more important. From these value we can conclude that the basis set is
flexible enough to adequately describe the Sr2+ ion.

All clusters were surrounded by a set of point charges, which were fitted to generate the
Madelung potential at the cluster sites!,
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7.2 SrCl,:Ce

The crystal belongs to the spacegroup FM3-M17, The pointgroup symmetry of the Sr site is
very high: Oy. The obvious first choice of a cluster consists of the Sr ion and its next nearest
neighbour Cl ions. This results in a SrClg® cluster. The cluster is shown in figure 7.2.1.

ocl
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Cl Cl
Figure 7.2.2 SrCl 5:Ce
Figure 7.2.1 The SrCl gcluster. Sideview of a unitcell with a Ce impurity

and an extra Cl ion. The arrows indicate
the direction of the lattice relaxation due
to the Ce impurity and the extra ClI ion.

The Ce impurity very likely occupies a Sr site. The formal charge of the Ce ion is +3, while
the formal charge of the Sr ion is +2. When a Ce3* ion replaces a Sr2* jon the extra charge
has to be compensated. The absorption spectrum of SrCl,:Ce!® suggests that the impurity site
has a Cy4 type pointgroup symmetry. One of the ways to accomplish this is to put an extra Cl
ion on the 100 axis through the Ce ion!%. This is done in analogy with previous calculations
in our group on BaF;:Ce20. Of course after replacing the Sr ion with a Ce ion and adding the
extra Cl ion the lattice will relax. We tried to estimate this relaxation with the HADES
program?2l. Because we did not have HADES interaction parameters for Sr and Cl we had to
extrapolate them from other known parameters. This finally gave us two sets of interaction
parameters and consequently two different relaxed structures. The relaxed clusters have Cy,
pointgroup symmetry. In figure 7.2.2 we show how the lattice relaxes. The two relaxed
structures only differ in the amount of displacement of the ions, not in the directions of the
displacements. The distortion of the eight original Cl ions from the cubic symmetry is only
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small. The largest contribution to the distortion from the cubic symmetry comes from the
extra interstitial Cl ion. In figure 7.2.2 we give a rough sketch of the distortion, introduced by
the extra CI- ion.

Results of the Relativistic Calculations

We have performed four-component relativistic calculations on the CeClg cluster in the host
crystal geometry. These calculations should provide us with a good estimate of the Ce 4f - 5d
energy difference in chlorine compounds. To check the dependence of the results on the Ce -
Cl distance we also performed a fully relativistic calculation on the same cluster but with a
8% smaller Ce - Cl bond distance. This is approximately the average expected relaxation of
the crystal after replacing the Sr2* ion with the Ce3* ion and neglecting the charge
compensation. The results are listed in table 7.2.1. Because of the cubic pointgroup symmetry
the Ce 5d levels split up into a doublet and a triplet. The triplet lies higher in energy than the
doublet. The triplet is again split up into a singlet and a doublet by the spin-orbit interaction,
but this splitting is small.

MOLFDIR ECP's Exp.!
Host geom. 8% inward Host geom.
5d levels 0.00 0.00 0.00 0.00
-0.15 -0.16 0.00 -0.15
-0.15 -0.16 0.00 -0.26
-1.46 -2.26 -1.27 -1.76
-1.46 -2.26 -1.27 -
AE,, 1 5.16 5.33 N.A. N.A.
AE,, 2 4.96 4.73 5.26 4.78
AEjow 4.32 3.61 4.85 3.80
Table 7.2.1 Ce 5d orbital energies and Ce 4f -> 5d transition energies for the CeClg cluster in SrClp:Ce.

AEjy is the energy difference between the average of the 4f and the average of the 5d levels.
AEl,, is the "pure" value. AE2,, has been corrected for BSSE. All entries are in eV.

The AE's give the energy differences between the average of the Ce 4f and the average of the
Ce 5d levels. There are two AE,,'s. The first one is calculated by directly subtracting the total
energies of the Ce 4f)! and the Ce 5d)! calculations; i.e.:

AEl,=E,.  -E 721

4f)! s5d)'

The second one is calculated by:
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2 _ p4tbasis _ 175d basis 5d basis _ 4f basis
AEZ, = By — B + EG — B, 722

The two AE,,'s are not equal because of the so-called Basis Set Superposition Error
(BSSE)?22. The calculations on the Ce 4f)! state and the Ce 5d)! state were not performed in
exactly the same function space. Therefore their total energies are formally not comparable
and AE:iv will contain an error. The BSSE can become quite large. In this case the error is
relatively small because the two primitive basis sets only differ in the removal of the f-
exponents for the "Ce 5d" basis set. In equation 7.2.2 we try to correct for the BSSE.
Although the correction is calculated for a different charge state of the cluster (and can
therefore not be completely correct) the value for AEiV should be much better than the value
for AELV. The term AE)qy gives the energy difference between the lowest Ce 4f level and the
lowest Ce 5d level. Its value is based on AEgv.

As expected decreasing the Ce - Cl bond length increases the 5d level splitting between the
doublet and the triplet. The spin-orbit splitting hardly changes, indicating that the Ce 5d
orbitals do not significantly change. The change in AE,, as a consequence of the decreasing
bond length is small, giving further evidence that AE_, is roughly equal for all chlorine
compounds.

Comparing the calculated spectra with the experimental spectrum we see that the agreement
is poor, but this was to be expected. The experimental spectrum clearly shows that the Ce site
has C4y symmetry instead of Oy pointgroup symmetry. This is due to the charge
compensation that must follow the replacement of a Sr2* ion by a Ce3+ ion. In our
calculations up to now we neglected this. Although AE,,, significantly differs between the
calculated and experimental result, AE,, shows a reasonable agreement.

It is also possible to assume that the experimental spectrum is caused by a Ce ion in a Cs,
type environment. The deviation of O symmetry is then small and the cluster in the host
geometry should provide an adequate description of the Ce site. This interpretation is
consistent with the assumption that the lattice relaxation in SrCly:Ce on doping with Ce is
mainly caused by the different sizes of the Sr2+ and Ce3+ ions, and that charge compensation
only has a minor influence on the direct environment of the Ce impurity site. In the remainder
of this section we will assume that the Ce impurity site has C4, pointgroup symmetry.

We have also performed calculations on the CeClg cluster in the host geometry with the
ECP's of Stevens et al!!-!12, This should provide us with a further check on the validity of the
ECP's. These results are also listed in table 7.2.1. The Ce 5d levels again split into a triplet
and a doublet. This time the triplet is not split up by spin-orbit interaction. All electrons that
are treated explicitly are treated on a non-relativistic level, so the spin-orbit interaction is
absent. The difference in the total 5d level splitting between the relativistic and the non-
relativistic calculation is in part due to the absence of the spin-orbit splitting in the latter. The
other main reason for this difference is given by the fact that for the ECP calculation the
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orbital energies are those of the virtual Ce 5d orbitals of the calculation on the Ce#+ charge
state. If the 5d orbitals are occupied the splitting will increase somewhat.

The ECP value for AE,, is too large. If we correct the value with the correction factor we
found for the free ion (section 5.2) we get: AE,, = 4.35eV, which is too small. Apparently in
this case the correction for the free ion does not carry over to the cluster.

If we compare the fully relativistic calculation with the ECP calculation in more detail the
reason for this becomes clear. The main difference between the two calculations is not in the
description of the Ce 4f orbital, but in the description of the Ce 5d orbital. The Ce 5d orbital
is spatially rather extended and thus very sensitive to the direct environment of the Ce ion. It
is therefore understandable that the free ion correction does not carry over very well to all
sorts of different clusters.

The ECP value for AE,,,, combines the errors in AE,, and the 5d splitting, so its value does
not compare very favourably with the full relativistic value of AE;,.

Charge Compensation and Lattice Relaxation

The Ce3+ ion has a higher positive charge than the Sr?+ ion it replaces in the crystal. In
analogy with the BaF;:Ce case we assume that this extra charge is compensated by putting an
extra Cl ion near the Ce impurity. The extra Cl ion is placed on one of the fourfold symmetry
axes of the unperturbed cluster. This assures that the resulting Ce site has the Cy4, symmetry
the experiments! indicate. Because of the different sizes of the Ce and Sr ions and the extra
Cl ion the positions of the other ions near the Ce impurity will be modified. We tried to
estimate this lattice relaxation with the HADES program. We did not have the proper
HADES interaction parameters for SrCl,. We obtained parameters by extrapolating the
parameters for SrF,:La and KCl. This gave us two sets of parameters. We performed the
relaxation for each set of parameters. Both sets of parameters yielded the same type of
relaxation; i.e. the direction of the displacements of the ions was equal. The amount of
displacement, however, differed significantly between the two sets of parameters. Thus we
were finally left with two relaxed structures for the Ce impurity site.

In our subsequent quantum mechanical calculations we use the modified positions of the Ce
impurity and its surrounding nine Cl ions. The positions and values of the Madelung point
charges surrounding the cluster were kept frozen in the host crystal geometry. The Ce 5d
level splittings calculated in this way with the non-relativistic Hartree-Fock method are listed
in table 7.2.2.

The orbital energies in table 7.2.2 calculated with the small basis are the energies of the five
occupied 5d orbitals in a calculation on the average of all Ce3+ 5d)! states. The orbital
energies calculated with the ECP basis are the energies of the five virtual 5d orbitals of a
calculation on the Ce?* state. As can be seen from table 7.2.2 the choice of basis set or the use
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of virtual versus occupied orbitals does not seem to matter very much in this case.
Differences in geometry have a much larger effect. The difference in geometry seems to
mainly effect the splitting between the former doublet and the former triplet. The splittings
of the doublet and triplet due to the symmetry lowering are much less sensitive to the
differences in geometry.

geometry 1 geometry 2 Exp.T'
small basis ECP small basis ECP
5d levels 0.00 0.00 0.00 0.00 0.00
-0.19 -0.17 -0.17 -0.16 -0.15
-0.19 -0.17 -0.17 -0.16 -0.26
-1.12 -1.17 -1.77 -1.73
-1.78 -1.69 -2.23 -2.14 -1.76

Table 7.2.2 Ce 5d orbital energies of the relaxed CeClg clusters in the Madelung field of StCl;.
Geometry 1 is the structure derived from the optimisation with the SrF parameters.
Geometry 2 is the structure derived from the optimisation with the KCI parameters.
All entries are in eV.

In the calculated 5d levels we still see a degeneracy between the second and third level. This
degeneracy can be lifted by inclusion of the spin-orbit interaction. The relativistic
calculations on the clusters in the host geometry gave a spin-orbit splitting between these
levels of 0.15 eV. Assuming that the spin-orbit splitting would be the same for the relaxed
clusters the degenerate levels at -0.19 eV would split up into a level at -0.12 eV and a level at
-0.27 eV. These levels are in reasonable agreement with the experimental data.

When we compare the calculated Ce 5d levels with the experimental ones we observe that
there is an good agreement for the three highest lying levels, especially when we take into
account the spin-orbit splitting. From the two lowest lying Ce 5d levels only one can be
deduced from the experiment: The transition of the lowest 4f orbital to one of those 5d
orbitals is missing from the luminescence-excitation spectrum. The total Ce 5d level splitting
of the calculation on geometry 1 compares very well with the total splitting found in the
excitation spectrum. We therefore conclude that geometry 1 gives a good description of the
direct environment of the Ce impurity in SrCl,.

Results of the CIS Calculations

We have also performed a CIS calculation on the CeCly cluster in SrCly:Ce. In the previous
section we showed that according to the Hartree-Fock method the cluster in geometry 1
showed the best agreement with experiment. Therefore we decided to do the CIS calculation
on the CeClg cluster in geometry 1. The calculation was performed with the ECP basis of
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Stevens et al. The results are summarised in table 7.2.3. All energies are given in eV. The
energies of the 4f -> 4f spectrum are given relative to the Hartree-Fock groundstate. All the
other energies are given relative to the highest Ce 5d)! state. This makes the comparison with
our previous results easier.

4f > Af 4f ->5d Ce’* ->CeZ*
energies 0.00 0.00 -0.99
0.00 -0.40 -0.74
0.00 -0.40 -0.74
0.04 -1.69 -0.39
0.13 -1.72 -0.32
0.24 -0.28
0.24 -0.28
-0.21
-0.21
Table 7.2.3 Many electron cnergy levels for the CeClg cluster in SrClp:Ce. All energies are in eV.

The 4f -> 4f energies are given relative to the groundstate. All other energies are given relative
to the highest Ce3* 5d)! state.

The Ce 4f)! levels show a total splitting of 0.24 eV. Just as in the CeF;3 case this is mainly an
artefact of the calculation. The splitting cannot be caused by spin-orbit interaction because
this effect is not described by this method and the crystal field cannot have such a large effect
on a core orbital as the 4f orbital.

The Ce 5d)! levels show a reasonable agreement with experiment. There are however some
remarkable differences with the Hartree-Fock results. The second and third level (from
above) are lying almost twice as low in the CIS case as in the Hartree-Fock case. The fourth
level is at a completely different position. These differences have to do with another
remarkable feature of the CIS results: The very low lying Ce2+ 4f)15d)! states. Some of the
Ce?+ states have total energies comparable with the Ce3+ 5d)! states. Because of their
closeness in energy the two configurations will mix significantly. Analysis of the CIS wave
functions for the three Ce3* 5d)! states that differ most between the Hartree-Fock and the CIS
calculations show that these states only consist for 70% of determinants with a Ce3+ 5d)!
configuration. The remaining determinants in these wave functions have a Ce2+ 4f)!15d)!
configuration. The Hartree-Fock method is basically a one-determinant method. Therefore
configuration mixing cannot occur there and we only have pure Ce?* 5d)! states.

The extra CI ion near the Ce impurity has 3p levels well above the valence band and in the
gap. The excitation energy from one of those 3p levels to one of the Ce 5d levels is much
smaller than a valence band -> Ce 5d excitation. This makes the Ce2+ levels lie so
unexpectedly low.

Nevertheless the Ce2+ levels, as given by the CIS calculation, may be too low relative to the
Ce3+ levels. The errors made by the CIS method in the two types of excitations may differ
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substantially. The Ce3* levels consist of excitations from the lowest occupied Ce 4f orbital to
the other Ce 4f orbitals and the Ce 5d orbitals. The two main errors in these excitations are
the error in the position of the lowest Ce 4f orbital, due to the non-relativistic treatment of
this orbital, and the error in the description of the excited states, due to the lack of
polarisation. The Ce2* levels consist of excitations from the Clexira 3p orbitals to the Ce 5d
orbitals. The error in the position of the Ce 4f orbital does not matter here. The lack of
polarisation is expected to be worse here, because the local charge state of the Ce ion changes
with these excitations. The Ce2+ excitation energies will also show an error, due to the
difference in the correlation energy contributions to the ground state and the excited states.
We will address some of these errors again in the next sub-section, where we will determine
the positions of all the levels in the band gap.

Position of the Ce Levels in the Gap

Now that we have calculated the splitting of the Ce 5d levels to a reasonable accuracy there
remains the task of determining the position of the Ce levels in the band gap of SrCl,.

We will start by computing the relative position of all the levels we expect to be in the band
gap. All the calculations we did for this purpose were done on the CeCly cluster in geometry
1. We calculated the energy difference between the lowest Ce 4f and the Ce 5d levels by
taking the total energy difference from a Hartree-Fock calculation on the Ce3+ 4f)! state and a
Hartree-Fock calculation on the Ce3+ 5d)! state. The energy difference between the lowest
Clexra 3p orbital and the lowest Ce 4f orbital was calculated by taking the total energy
difference from Hartree-Fock calculations on the Ce#+ and the "Ce3* 4f)! Cley, 3p)hole” state.
The energy difference between the lowest Cley, 3p orbital and the lowest Ce?+ state was
calculated by taking the total energy difference of the Hartree-Fock calculations on the Ce3+
4f)! and the "Ce?+ 4f)15d)! Cleyra 3p)hole" state. The Ce 5d level splitting was taken from the
Hartree-Fock calculation with the small basis sets (table 7.2.2). The splitting of the Cley, 3p
orbitals was taken from the orbital energies of a Hartree-Fock calculation on the Ce4* state.
The splitting of the Ce2* levels was taken from the CIS calculation (table 7.2.3). The results
are listed in table 7.2.4. All the energies are given relative to the highest Ce 5d)! level.

The lowest Ce 4f)! level lies at -6.44 eV. The lowest Ce 5d)! state lies at -1.78 eV. This
means that the lowest Ce 4f -> Ce 5d transition lies at 4.66 eV. If we assume that for the
cluster in the relaxed geometry we have the same error in the ECP results (relative to the fully
relativistic MOLFDIR results) as for the cluster in the host crystal geometry the transition
energy becomes 4.13 eV. This compares reasonably well with the experimental value of 3.80
eV.

If we assume that the ECP error is only in the position of the Ce 4f level and not in the
positions of the Ce 5d levels all the other levels in table 7.2.4 are unaffected by this
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correction. If we assume that the ECP error is only in the Ce 5d levels, all the other levels
will go up by 0.53 eV.

Ce-+ Clextra Ce?+

levels 0.00 -3.63 2.01
0.19 3p  -3.63 2.01

5d -0.19 -3.63 1.93

-1.12 1.93

-1.78 4f5d  1.90

4f -6.44 1.83

1.48

1.48

1.22

Table 7.2.4. Energy levels in the gap of SrCly:Ce.
All entries are in eV and relative to the highest Ce 5d level.

Note that in the Hartree-Fock case the Ce2* levels lie much higher relative to the Ce 5d
levels, than in the CIS case. In absolute value they lie lower, which is consistent with the lack
of polarisation in the CIS calculation.

We calculated the band gap of SrCl, by doing a Hartree-Fock calculation on the SrClg cluster
in the host geometry and a GVB(OSS) calculation on the same cluster in which one Cl 3p
electron was excited to a Sr s orbital. The basis set of the Sr ion was extended with two
diffuse s-type functions with exponents 0.03 and 0.01. The remaining unpaired Cl 3p electron
and the excited electron were singlet spin coupled. The band gap can be found by subtracting
the total energies of these two calculations. We found a band gap of 8.4 eV. Comparing this
number with experiment is impossible, because we could not find experimental data on the
band gap of SrCl,. However for the chlorides for which the band gap was measured? it is
always about 6 eV, so we may assume that the calculated band gap is somewhat too large.

To position the Ce levels in the band gap we can use the methods explained in section 5.1.
There is one complicating factor. It is obvious that we should calculate the relative positions
of all the Ce levels and the extra Cl levels from the results on the relaxed cluster. It is less
clear if the position of those levels in the gap, and therewith the positions of the valence and
conduction bands, should be estimated from the results on the cluster in the host geometry or
in the relaxed geometry. The positions of the valence and conduction bands are given by the
host crystal. Near the Ce impurity the potential is different from the potential in the pure host
and consequently the bands will be distorted (band bending). If we determine the positions of
the bands from the cluster in the host geometry this band bending is completely ignored. On
the other hand if we try to determine the positions of the band edges from the cluster in the
relaxed geometry, the band bending may very well be exaggerated.
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Determining the band edges from calculations on the relaxed cluster turned out to be
technically impossible. We were not able to get a converged result for those configurations,
which would enable us to determine the band gap and the VB - Ce 4f distance.

The two methods explained in section 5.1 based on the orbital energies of the levels are
possible for both clusters, except that the band gap could only be calculated for the cluster in
the host geometry. Table 7.2.5 lists the VB - Ce 4f distance for all the possible methods.

Host geom. Geometry |
vb cb ASCF vb cb ASCF
A(VB -> Ce 4f) 6.13 -4.96 0.13 6.95 0.01 N.A.

Table 7.2.5 Energy difference between the VB edge and the Ce 4! level for SrCl:Ce.
Positive values mean the 4f level is above the VB. All entries arc in eV.

For the valence and conduction band methods we used the calculations with the small basis
sets, where the Sr basis was augmented with two very diffuse s-functions, with exponents
0.03 and 0.01 for the calculations on the cluster in the host geometry and the Ce basis was
augmented with diffuse s-function, with exponents 0.111 and 0.032 for the calculations on
the cluster in geometry 1. To position the Ce 4f level relative to the Ce 5d levels the corrected
value of the ECP calculations was used.
The valence band method yields
approximately the same result for CB
both clusters, because the cet
difference between the VB and the
Ce 5d levels is approximately the

> —_—

same for both clusters. The result e 3 Ce3* sq

. . . el —

is implausible. We must conclude g 4 S
=

that the valence band method does Boos

. . Clextra 3 -

not give acceptable results. Part of 6 extra =P

the reason is that the eight C1- ions 7

see a Ce3+ jon instead of a Sr2+ 3

. . -8 Ce”t af

ion. Because of the extra positive 0 VB

charge the Cl 3p band will lie

much too low. This even holds for

the cluster with the extra CI- ion

because the extra anion is Figure 7.2.3 Energy levels in the band gap of SrCly:Ce

relatively far away.

The conduction band method yields very different results for the two clusters. In the relaxed
cluster all the occupied-orbital energies are higher than in the host cluster, while the Ce 6s
orbital energy is the same. The result for the relaxed cluster was obtained under the
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assumption that the band gap for this cluster is equal to the band gap for the cluster in the
host geometry. This assumption may be wrong, so the reasonable looking value obtained with
the conduction band method for the cluster with geometry 1 may be due to a lucky
cancellation of errors. The ASCF value for the cluster with the host geometry looks
reasonable and is probably the most reliable estimate we can currently obtain.

If we assume that the ASCF value for the VB - Ce 4f distance is correct and if we use the
corrected ECP value for the Ce 4f - Ce 5d distance and if we assume that the ECP error in the
Ce 4f - Ce 5d distance is completely caused by the error in the Ce 5d level positions, we find
the levels in the gap as shown in figure 7.2.3. In spite of the many uncertain assumptions this
is about the best estimate we can make.

We also estimated the valence bandwidth from the energies of the Cl 3p orbitals. The results
are listed in table 7.2.6.

Relativistic calc. on host geom. Calc. with ECP basis
4f basis 5d basis Host gem. Geom. 1
band width 22 2.4 2.5 2.8

Table 7.2.6 Calculated valence bandwidths for SrCly:Ce. All entries are ineV.

All the calculated values for the cluster in the host geometry are very similar. The calculated
value for the cluster in geometry 1 is somewhat larger.

Conclusions

With the HADES program we can get a reasonable estimate for the lattice relaxation around
the Ce impurity in SrCl,. The Ce 5d level splitting can be calculated with acceptable
accuracy. Given the uncertainty in the geometry of the impurity site the results are quite
good. It is also possible that the Ce site has C3z, symmetry instead of C4, symmetry. That
interpretation has the advantage the we do not have the problem of an unexplained,
experimentally not seen, Ce 5d level.

The semi-relativistic calculations with the ECP basis on the clusters in the host crystal
geometry are able to reproduce the fully relativistic cluster results within an error of
approximately 10%. The calculated energy difference between the Ce 4f and Ce 5d levels in
the relaxed cluster still contains an error of 10% after correcting for the ECP error found for
the host geometry cluster.

To give a reliable estimate for the positions of the Ce levels in the band gap remains a very
difficult task. There are technical difficulties, which prevent us from calculating all the states
we would like to. Experimental data, other than the luminescence and luminescence-
excitation spectrum on the Ce impurity in SrCl, are not available. Therefore we have no
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check on the final result, nor on the assumptions we have made to reach that result. More
work, theoretical as well as experimental is needed to improve on these results.

7.3 CeCly

Although the chemical formula for CeCls suggests that it may be very similar to CeFj it
actually has quite a different structure. CeClz has a higher spacegroup symmetry than CeFs3.
CeClj; belongs to the spacegroup P63/M23. The Ce site has a pointgroup symmetry Cay,.

A Ce ion in CeCl; is surrounded by nine Cl ions; all at virtually the same distance. The next
shell of ions consists of eight Ce ions. We have performed calculations on the CeClg cluster
and the CeClgLag cluster. In the last mentioned cluster we replaced all non-centre Ce ions by
La ions. This makes the calculations a lot easier because we do not have the eight 4f electrons
and their associated basis sets. In the figures 7.3.1 and 7.3.2 we show a top view and a side
view of the CeClgCeg cluster.

It is clear to see that the structure of CeCls is very open. The Ce - Cl bond length is rather
large, so the overlap between the Ce 5d orbitals and the CI orbitals will be small. We
therefore expect a relatively small 5d level splitting. The nine Cl ions surrounding the Ce ion
lie almost on a sphere. Such a spherical surrounding will also keep the 5d level splitting
small. It will also make the electron distribution more sensitive for non-spherical polarisation
effects. This could make it harder to obtain good accurate results.

Results of the Hartree-Fock Calculations

The smallest cluster we can use to describe CeCl; is a CeClg cluster. This cluster has Csiy,
pointgroup symmetry. Unfortunately this system is already too large to do a completely
relativistic calculation. So we can only do non-relativistic calculations. The results of our
Hartree-Fock calculations on the CeCly cluster are listed in table 7.3.1, together with the
results deduced from the absorption spectrum by Sato2. The basis sets used are listed in table
7.3.2.

The Csp pointgroup symmetry will split the 5d levels into two doublets and a singlet. This can
be seen in column a of table 7.3.1. In this column the Ce 5d levels are listed as found by a
calculation on the CeClg cluster with the small basis sets. As expected the total 5d level
splitting is small. In this case the polarisation of the Cl ions may be important. The small
basis sets may not be flexible enough to describe this polarisation properly.
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Figure 7.3.2 Side view of the CeClgCeg cluster in CeCly
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Therefore we extended the Cl basis set with a polarisation function: A d-function with
exponent 0.4574. The results obtained with these basis sets are listed in column b of table
7.3.1. The total 5d splitting decreases somewhat, as expected, while the second level goes
down. If we make the Cl basis even more diffuse this trend continues. Column ¢ of table
7.3.1 lists the results obtained by using very large basis sets optimised for the Ce3* and the
ClI- charge states of the ions. The Cl basis set contained two polarisation d-functions with
exponents 0.7 and 0.17.

Theory Exp.”
basisa  basisb basis ¢ basisd  basis b,
no pot.
5d levels 0.00 0.00 0.00 0.00 0.00 0.00
-0.17 -0.33 -0.34 -0.43 -0.30 -0.30
-0.64 -0.56 -0.45 -0.65 -0.42 -0.70
-1.20
Table 7.3.1 Ce 5d level energies of the CeClg cluster in CeCl3. All entries are in eV.

If we use even more diffuse d-functions on the Cl ion it becomes impossible to obtain
reasonable results. In that case the Cl 3d orbitals lie very low in energy and mix very strongly
with the Ce 5d orbitals. This is an artefact caused by the very limited size of the cluster and
the point charges surrounding the cluster. The effect is already somewhat visible in the
calculation with basis set c.

original basis additions Ce basis additions CI basis
basis a small basis sets none none
basis b small basis sets none d-polarisation function;
exp.: 0.457
basis ¢ large basis sets none d-polarisation functions;
exp.: 0.7 and 0.17
basis d small basis sets 4f polarisation functions none
Table 7.3.2 The all-electron basis sets for the SCF calculations on CeCl3.

In the previous calculations we have seen the effect of polarisation functions on the Cl ion.
We can also use polarisation functions on the Ce ion. To study this effect we extended the
small basis set for Ce with the 4f functions and performed a Hartree-Fock calculation on the
Ce3+ 4f )gf 5d)2‘v5 state of the CeCly cluster. With the orbitals thus found we evaluated the
correct energy expressions for the different Ce3+ 5d)! states of the cluster. The results are
listed in column d of table 7.3.1. When we compare column d with column a we notice that
the total 5d level splitting is not affected. The second level however, lies much lower in
energy with the 4f functions included.
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In the last theory column of table 7.3.1 we list the results of the calculation with the basis sets
b, but without the point charges, which emulate the Madelung potential. Just as in the CeF;
case we see that the 5d level splitting is mainly determined by the next nearest neighbours of
the central Ce ion. The external potential has only a marginal effect on the 5d level splitting.
If we compare the theoretical results with the experimental results the agreement is very poor.
The calculated 5d splitting is only half the experimental one. What is more, the experimental
results show four absorption lines (and not three) with the smallest distance between the lines
being 0.3 eV. This absorption spectrum seems to conflict with the C3p, pointgroup symmetry
of the Ce site.

To check the structural data we have used, we performed a completely relativistic calculation
on the Ce3+ jon embedded in an array of point charges, emulating the Madelung potential of
CeCls. The results of this calculation, together with the experimental results are listed in table
7.3.3.

The gap between the 2Fy, quartet

. . Theor Exp.24
2Fsy triplet db Y P

anfi the I ripe .IS cause Y 4f levels 0.00 0.00
spin-orbit interaction and is 20.02 20.01
primarily determined by the ion -0.05 -0.02
itself and not by its environment. -0.06 -0.03
The splitting within the levels -0.29 -0.28
. . -0.32 -0.29
belonging to one term is caused by 035 2030

t?le hga_nd flelfl' . Thé calculated Table 7.3.3  The energies of the Ce3* 4f levels in the
ligand field splitting is somewhat Madelung field of CeCl3. All entries are in eV.
larger than the experimental one.

This is a result from the fact that the environment of the Ce ion is completely represented by
point charges. The point charges generate a stronger field than the smeared out charge
distributions of the real CI ions and consequently the level splitting will also be larger.
However this is only a small effect. Because all the electrons of the Ce ion react to the ligand
field (and to each other) the 4f electron in Ce3+ only feels 28% of the ligand field2S. This
effect is called shielding. The Hartree-Fock-Dirac method, used to obtain the theoretical
results, accounts only for part of this shielding. The factor two difference between the
calculated and measured values is caused by shielding effects not treated by the HFD method.
Although the match between the calculated and the experimental results is not perfect, the
results clearly indicate that the structural data we have used is approximately correct and that
the Madelung field and its associated higher order fields are correctly represented. This leads
to the conclusion that there is something wrong with either the experiment of Sato or its
interpretation.

The analysis of the structure of CeCl3 and the results of the calculations on the CeClg cluster
showed that the Ce 5d level splitting is small and that polarisation in the Cl shell around the
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central Ce jon is important. In the CeClg cluster the Cl ions are on the outside of the cluster
and are therefore not properly described. This may affect their charge density and thus also
the calculated Ce 5d level splitting. To describe the ClI ions better we should include the next
shell of ions in the cluster. This would result in a CeClgCeg cluster. In practice a calculation
on this cluster would be very difficult. The total number of basis functions would be very
large on account of the nine Ce ions. We also have nine loose 4f electrons. It is not a priori
clear what the spin coupling between these nine electrons should be. To circumvent these
problems we have used a CeClgLag cluster instead, because La3+ and Ce3* are equally large.
For the CI ions this substitution should not matter much. They should feel approximately the
same potential and repulsion forces as with the Ce ions. The results of the Hartree-Fock
calculations on the CeClgLag cluster are summarised in table 7.3.4.

The calculations were done with the small

basis sets, without polarisation functions. Orb. en. S

) . 5d levels 0.00 0.00
The first column of the table lists the 0.15 0.18
virtual orbital energies of the Ce 5d -0.68 -0.67

orbitals from the calculation on the Ce#+ Table 7.3.4  Ce 5d level energies of the CeClgLag
charge state. The second column contains cluster in CeCl3. All entries are in eV.

the differences in total energy of the

different Ce3+ 5d)! states. The results of both methods differ very little. The extra relaxation
of the charge density due to the actual occupation of one of the Ce 5d orbitals is very small.
In regard of the almost spherical distribution of the Cl ions around the Ce ion this is not really
surprising.

If we compare the results of table 7.3.4 with column a of table 7.3.2 we notice that there is
virtually no difference. The large CeClgLag cluster does not provide a better description of
the central Ce ion than the small CeClg cluster. It follows that to describe the local properties
of a Ce ion in CeCl; we can suffice with calculations on the CeClg cluster.

Results of the ECP Calculations

Unfortunately the CeClg cluster is too large and has too low a pointgroup symmetry to allow
a fully relativistic four component calculation. To get a theoretical estimate for the Ce 4f - 5d
distance and the VB - Ce 4f distance we have to resort to the use of the semi-relativistic ECP
basis sets. For the Ce ion we used a (111) contraction for the d-exponents and a (61)
contraction for the f-exponents. We have totally decontracted the Cl basis set to allow for the
negative charge state of the ion in the cluster.

In table 7.3.5 we show the Ce 5d level splitting calculated with the CeClg cluster and the ECP
basis set. The column labelled SCF contains the orbital energies of the virtual Ce 5d orbitals
of the calculation on the Ce#+ charge state of the CeClg cluster. The column labelled CIS
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contains the results of the CIS calculation on the CeClg cluster in the Ce3+ 4f)! reference
state.
The SCF values are, as expected,

. . SCF CIS Exp.
he orbital
approximately equal to the orbital =g\ o\ 0.00 0.00 0.00
energies calculated with the small 022 027 -0.30
basis sets without the polarisation -0.65 -0.29 -0.70
functions. The results of the CIS -0.52 -1.20
-1.02

calculation are surprising. We seem to
have lost the Csp point group
symmetry.

The reference state for the CIS
calculation is the Ce3+ 4f)! state of the cluster. If we look at the virtual Ce 5d orbitals from
that calculation we see that the 5d level splitting has increased and that the symmetry is
broken: The highest lying doublet has split up by 0.3 eV. The Ce 5d levels are polarised by
the non-spherical distribution of the 4f)! electron. Performing a CIS calculation on this state
will obviously give similar results, because the CIS method lacks the ability to reverse this
polarisation.

Actually the Ce 5d level splitting calculated with the CIS method compares quite well with
the experimental results from Sato?. Assuming that the experimental results are correct this
result seems to indicate that the Ce 4f)! -> Ce 5d)! transitions are so fast that the Ce 5d
orbitals do not get a chance to relax to the altered electron distribution during this transition.
The remaining quantities we need to be able to determine the position of the Ce levels in the
gap are listed in table 7.3.6. The gap was calculated by taking the difference in total energy of
a SCF calculation on the groundstate of the LaClg6- cluster and a GVB calculation on the first
excited state of the same cluster. We used the small basis sets for La and CI. The basis set for
La was extended with two very diffuse s-type functions with the exponents 0.03 and 0.01. All
the other calculated values were obtained from calculations on the CeClg cluster with the
ECP basis sets.

Table 7.3.5 Ce 5d level splitting of the CeClg cluster in
CeCl3. All entries are in eV.

ASCF CIS Exp.
4f -> 5d 5.39 6.42 3.80
VB -> 4f 0.51 4.89 0.00
gap 7.32 N.A. N.A.

Table 7.3.6 Excitation energies for CeCl3. All entries are in eV.

As in all previous cases the CIS values are larger than the ASCF values, because the CIS
method lacks part of the electronic polarisation. We can remedy this by including multi-
excitation configurations in the CI. We can do this either by directly including those
configurations in the CI or by doing Mgller-Plesset perturbation theory2¢ on the final CIS
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wave function. Both methods are very time consuming for systems as large as ours. So it
seems worthwhile to look for alternatives like the ASCF method.

The ASCF value for the 4f -> 5d transition is much larger than the experimental value. There
are two reasons for this. The first reason we have encountered before. Even though the ECP's
contain relativistic effects, the electrons are still treated on a non-relativistic level. Therefore
the energies contain an error relative to the full relativistic energies. For the free ion we found
(section 5.2) a difference between the completely relativistic results and the ECP results of
0.91 eV. For the CeClg cluster in SrCl, we found a difference of only 0.3 eV.

The second error in the ASCF value for the 4f -> 5d transition energy comes from the fact
that the SCF method is not able to reproduce the experimental 5d level splitting. We only
managed to get a reasonable result with the CIS method. This gives an additional correction
factor with a maximum value of 0.4 eV. The smallest value for the 4f -> 5d transition we can
get with the help of the two above mentioned corrections is 4.08 eV. This value compares
reasonably with the experimental value of 3.8 eV.

In the XPS spectrum* of CeCl; the Ce 4f levels are seen as a shoulder on the flank of the
valence band peak. The calculated value of AEyg_4r = 0.5 €V is a bit on the large side, but not
too bad.

The calculated band gap is the difference between the valence band edge and the edge of the
band formed by the Ce 6s orbitals.

The actual conduction band in CeCly is formed by a hybrid of the Ce 5d and the Ce 6s
orbitals27. The real conduction band in CeCls should therefore lie somewhat lower then a
pure Ce 6s band. In this light the calculated value of 7.3 eV for the band gap seems a
reasonable result. (Chlorine compounds usually have a band gap in the order of 6 eV.).

Theory Experiment

CB 0.00 0.00
5d levels -1.70
-1.98 -2.32
-1.99 -2.62
-2.22 -3.02
272 -3.52
lowest 4f -6.81 -7.32
VB -7.32 -7.32

Table 7.3.7  The levels in the gap of CeCl3. All entries are in eV.

In table 7.3.7 we list our best results for the positions of the conduction and valence band and
the levels in the gap of CeCls. The Ce 5d level splitting has been taken from the CIS
calculation. The Ce 4f - 5d transition energy is the ASCF value from table 7.3.6 corrected for
both the relativistic error and the SCF error. The VB - Ce 4f transition energy was also taken
from table 7.3.6. The experimental values were taken from references 2 and 4. Because the
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experimental band gap is unknown we have
used the calculated band gap in the column CB

with experimental results.

From the orbital energies of all the
calculations we have performed we can
estimate the width of the valence band (Cl 3p
band). These values, together with the Ce 5d
experimental one, are listed in table 7.3.8.
The different basis sets we have used all
yield approximately the same valence band
width. The valence band width calculated
with the CeClgLag cluster differs from the
value calculated with the CeClg cluster. This
is understandable, because the chlorine ions
have different environments in the two
clusters. The band width calculated with the
smaller cluster agrees better with experiment

Ce 4f —

than the band width calculated with the large v

cluster. Both clusters are far too small to give This work Experimental
reliable band information. The larger cluster

does not necessarily provide better results28, Figure 7.3.3 The band gap of CeCl3.

because the different errors still vary wildly

with the cluster size. Because of a lucky

cancellation of errors it is possible that a small cluster yields results which seem to be better
than those of a large cluster.

CeClg CeClgLag Exp.
small basis large basis ECP's small
VB width 32 3.1 32 29 35
Table 7.3.8 Valence band widths for CeCl3. All entries are in eV.

In figure 7.3.3 we give a pictorial representation of the band gap and the localised levels. For
this picture we have used the values from table 7.3.7.

Conclusions

The experimental absorption spectrum measured by Sato leaves some doubt about its
correctness. The spectrum does not show the Csp, pointgroup symmetry. The absorption
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spectrum is caused by a Ce 4f)! -> Ce 5d)! transition. The electron distribution of the Ce 4f
orbital is not spherical. If the electronic transition is so fast that the Ce 5d orbitals have no
time to adjust to the changing electron distribution this experimental outcome is possible
(Although this effect is not observed in the other materials studied in this thesis.).

Our calculations confirm this. The SCF method yields Ce 5d energy levels that are consistent
with the C3j, pointgroup symmetry of the Ce site, but do not agree with experiment. The CIS
calculations, which use Ce 5d orbitals polarised by the occupied Ce 4f orbital, yield results
that are comparable to experiment.

The lowest Ce 4f)! -> Ce 5d)! transition can be calculated with an accuracy of 10%. The
position of the Ce 4f level relative to the valence band can be calculated within an accuracy
of 0.5 eV. Given the fact that we use a semi-relativistic formalism to describe effects that are
relativistic these are very reasonable results.

Our method is capable of predicting the positions of localised impurity levels in the gap of
inorganic crystals within a reasonable accuracy.
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Chapter 8

Summary and Concluding Remarks

In the first section of this chapter we will present a summary of this thesis together with the
main conclusions we arrived at. In the second section we will discuss some of the problems
which still remain with the cluster calculations and give some suggestions on how to continue
this research. We will also briefly discuss what else is needed to come to a complete
understanding of scintillation in ionic compounds.

8.1 Summary

The scintillation process in ionic compounds can be divided into three stages!:

i) The creation of hot electrons and holes by the ionising radiation and their

subsequent thermalisation.

i) The migration through the crystal of the excitations created in the first stage.

iii) The de-excitation of the excitations at luminescence centres.
In this thesis we are only concerned with the third stage of the scintillation process in ionic
compounds doped with cerium. In these compounds the cerium ion usually acts as the
luminescence centre. The light emitted by the cerium ion originates from an electronic
transition from a Ce3+ 5d)! state to a Ce3* 4f)! state. It is believed that the positions of the
cerium levels relative to the bands of the host are important for the luminescence behaviour
of the crystalZ.
The work described in this thesis is aimed at the calculation of the positions of these Ce3* 4f
and 5d levels in ionic compounds. We describe the material with a cluster of ions3,
embedded in an array of point charges, emulating the Madelung potential*. Because cerium is
a rather heavy atom (Z=58) relativistic effects are important and the calculations should
preferably be done within a relativistic computational model.
In the theoretical chemistry group of the university of Groningen a program package called
MOLFDIR3-¢ was developed, which can perform four-component Hartree-Fock-Dirac
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Chapter 8. Summary and Concluding Remarks.

calculations on arbitrary molecules. Due to the relatively large size and low symmetry of our
clusters this program package required prohibitive amounts of computer resources for our
calculations. So we decided to optimise the program package.

Optimisation of the MOLFDIR Package

We implemented a number of convergence accelerators into the SCF part of the program:
Damping on the density, Aitken extrapolation’, Pople's extrapolation, DIIS8 and a partial
implementation of the QCSCF method®. The results of the test runs we performed with these
methods show that damping on the density to obtain an initial convergence of at least 10-2 on
the density, followed by the DIIS procedure, aimost always gives superior results. In all cases
the program converged at least three times as fast as the original program, while the overhead
of the DIIS procedure was minimal. The other convergence accelerators had systems on
which they performed well, but they were less reliable and performed overall considerably
less than the DIIS procedure.

The second thing we did to optimise the MOLFDIR program was to look if we could
restructure the code that calculates the integrals and if we could make better use of symmetry.
Making better use of symmetry is indeed possible, but does not yield computational savings
as big as we had hoped. The reason lies in the fact that for double groups with an odd
principle axis we cannot define a representation for all the irreducible representations such
that all the integrals remain real-valued. The implementation of the new scheme has not yet
been completed.

Results of the Calculations

After these optimisations we investigated a number of fluorine, oxygen and chlorine
compounds. For these investigations we used a combination of non-relativistic calculations,
non-relativistic calculations with ECP's!0 containing relativistic corrections, and completely
relativistic calculations.

The results of these calculations show clearly that the full four-component relativistic
Hartree-Fock-Dirac calculations are the most accurate calculations we can perform. This is
especially evident in the calculated position of the Ce 4f levels and thus in the Ce 4f-5d
energy distance. The Ce 5d level splitting seems to be only marginally affected by relativistic
effects and is already adequately described by the non-relativistic Hartree-Fock method.

Full four-component Hartree-Fock-Dirac calculations are not always possible, because of
their huge demands on the computational resources. The only realistic alternative we have is
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to perform non-relativistic Hartree-Fock calculations, where we describe the cores of the
atoms with ECP's which contain relativistic effects. These calculations give much better
results than "pure” non-relativistic Hartree-Fock calculations, but still fail to give correct
relativistic results. In the free cerium ion there is an error of approximately 0.9 eV in the
calculated position of the Ce 4f levels.

The Fluorine Compounds
The calculations on the fluorine compounds show good results.

For CeF3 the Ce 5d level splitting is quite accurately predicted. The VB - Ce 4f distance and
the Ce 4f - 5d distance is somewhat less accurate, because of the errors we make for the Ce 4f
orbitals, due to the ECP's. But even these values are within 0.4 eV of the experimental values.

In LiBaF3:Ce extensive lattice relaxation is expected upon doping with cerium. By a suitable
choice of cluster we are able to calculate this lattice relaxation. The resulting Ce 5d level

splitting agrees well with experiment, indicating that our prediction of the lattice relaxation is
also correct.

The results for LiLuF4:Ce are also reasonable. In this material also extensive lattice
relaxation is expected upon doping with cerium. Judging from the experimental results the
lattice relaxation or a Jahn-Teller distortion!! breaks the original S4 symmetry of the impurity
site. A reliable geometry optimisation without symmetry restrictions is at the moment beyond
our capabilities, so an accurate Ce 5d spectrum could not be obtained. By making use of a
geometry optimisation which leaves the S4 symmetry intact we were able to calculate the
total spread of the Ce 5d levels correctly.

The Chlorine Compounds

The results for the chlorine compounds are somewhat less good than those for the fluorine
compounds. This is caused by the large ionic radius of the chlorine ion and its large
polarisability. The results, however, are still acceptable.

For SrCl,:Ce we are able to give a reasonable estimate of the lattice relaxation upon doping

with Cerium with the HADES!2 program. Given the uncertainties linked with this HADES
calculation the resulting Ce 5d level splitting agrees quite well with experiment. For the other
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calculated observables, like the positions of the cerium levels in the band gap, experimental
data is, to our knowledge, not yet available.

For CeCls the calculated band gap, the position of the cerium 4f level relative to the valence
band edge and the average cerium 4f - 5d distance agree within an error of 0.4 eV with the
experimental results. Given the fact that most of the calculations were only semi-relativistic
this can be considered a good result. There remains a problem with the Ce 5d level splitting
in CeCl; which is far too small when compared with experiment. Because there is some
doubt about the correctness of the experimental absorption spectrum a second independent
absorption or luminescence-excitation spectrum experiment on CeCl3, or even better
LaCls:Ce, would be desirable.

The Oxygen Compounds

The calculations on the oxygen compounds gave serious problems and the results are not
always usable. But reasonable results can be achieved by a careful choice of the cluster and
the basis sets. The problems with the oxygen compounds are partially caused by the need for
a rather diffuse basis set to describe the O2- ion. These basis sets are so diffuse that they
protrude far beyond the cluster edge into the region where the point charges are located,
which generate the Madelung potential at the cluster sites. These functions feel a potential
and field which significantly deviate from the crystal potential and field. As a consequence
they give rise to artificially low lying states in the band gap of the cluster. The low lying
oxygen states seriously hamper the determination of the Ce 5d levels and the calculation of
the conduction band edge. Another reason for the problems is the in general low pointgroup
symmetry and the fact that cerium usually replaces an ion with a much smaller ion radius.

Despite these problems we were able to obtain reasonable looking results for LayHf;07:Ce. It
is not yet possible to check the results against experiment.

LSO:Ce is a very complicated material because of its low symmetry. The lutetium sites have
only C pointgroup symmetry. It is possible to calculate observables of the host material with
a reasonable accuracy. The calculated band gap, valence band width and Lu 4f band width
agree reasonably with experiment. The calculations on the system with the impurity are less
accurate. This is to a large extend due to the fact that we were not able to reliably calculate
the lattice relaxation in this material. Nevertheless the calculated absorption spectrum for the
Cerium impurity site does not compare too badly with the experimental data. The first Ce 4f
-> 5d transition is predicted within 0.4 eV of the experimental value.
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Our completely relativistic calculation on cubic CeAlO; shows that the results on Oxygen
compounds can be as accurate as our calculations on fluorine compounds. All the calculated
values agree well with experiment. The cerium site in cubic CeAlO; has a high pointgroup
symmetry (Op) and the Ce - O distance is large (2.65 A). Apparently, if these conditions are
fulfilled accurate results for oxygen compounds are possible.

Final Conclusion

In conclusion we can say that our procedure to calculate the positions of local cerium levels
relative to the valence band edge of ionic host materials works reasonably well. In many
cases we are able to predict the levels with an error less than 0.5 ¢V. The combination of
small cluster size and poor embedding of the cluster in the lattice can cause problems. These
problems are the most severe for clusters with a low pointgroup symmetry and diffuse basis
sets on the ligands.

8.2 Recommendations

In light of the above stated conclusion it is obvious on what point further research should be
concentrated. The embedding of the quantum mechanically treated cluster of ions should be
improved in such a way that even the diffuse functions of the cluster always will feel a
reasonably correct potential. A set of point charges is not enough to ensure this. We need at
least a projection operator which will prevent the diffuse functions from occupying the
neighbouring core regions. By using, for instance, a pseudo potential for the ions
neighbouring the cluster of ions!3 we can ensure this. However, it may be that even more
elaborate schemes are needed, which embed the cluster in the wave function and potential of
a band structure calculation!4.13,

The need for such an embedding becomes more pressing when the ligands become heavier.
The heavier the anions are the larger they are. When the anions become larger, they will also
need larger and more diffuse basis sets to describe them. As a consequence the problems we
already experienced with the oxygen compounds will become more severe, and we could
reach a stage in which no useful results can be obtained. This can, to some extend, already be
seen when we compare our calculations on the chlorine compounds with our calculations on
the fluorine compounds.
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In this thesis we have only considered materials doped with cerium. But cerium is not the
only dopant which can act as a luminescence centre. Experiments are also performed with
materials doped with, among others, neodymium!617 and praseodymium?18.19.20,21,22, These
ions have in their +3 charge state a partially filled 4f shell. So the 4f -> 5d excitation spectra
are much more complicated than for cerium. Moreover for these excitation spectra correlation
effects are important and we cannot suffice with Hartree-Fock calculations anymore.
Accurate quantum mechanical calculations on a correlated level require larger basis sets (and
functions for higher l-values) than Hartree-Fock calculations?3. So for these systems the
problems already encountered for the oxygen compounds will also be more severe.

So developing an embedding that can handle and solve these problems is very important if
we want to investigate a broader range of systems.

As explained earlier scintillation can be thought of as to occur in three separate stages. In this
thesis we were only concerned with the electronic structure of the luminescence centres in
scintillators, which is part of the third stage. To obtain a more complete understanding of
scintillation we have to understand all three stages and not only the third.

Recently a few papers2425 were published that give a phenomenological description of the
first stage.

Of the second stage: the migration of the holes, electrons and excitons through the lattice to
the luminescence centres very little is known. The performance of a scintillator is to a large
extend determined by the efficiency of this stage. A better and more quantitative
understanding of this stage would enormously benefit the search for better scintillators.

The methodology described in this thesis can only describe static situations and is thus not
very well suited to study a dynamic process like the migration of the excitations through the
crystal. The migration of excitations through the crystal should be studied with methods
which are capable to describe the dynamics of the process.
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Appendix A

Gaussian Basis Sets

Lithium

The lithium basis set used in chapter 5 for the LiBaF4:Ce calculations is a segmented
contracted basis. The contraction scheme is (6111). The exponents and coefficients are:

s
583.677850000 0.002421600
87.465763000 0.018366000
19.979867000 0.086292500
5.628597600 0.265102600
1.766619500 0.478960200
0.585672430 0.308176600
0.736603380 -0.093630600
0.067051490 0.638230900
0.025710550 0.430382000
Cerium

The small basis set for Ce used in the non-relativistic calculations is a segmented contracted
basis. The contraction scheme is (4322/4211/4211). The exponents and coefficients are:

S P d
50563.078 0.0166001 2383.3398 0.0244934  297.66639 0.0380686
7624.1048 0.1166973  563.10164 0.1653555  87.399204 0.2197978
1734.6306 0.4306567  177.92475 0.4919077  31.380124 0.5264647
469.78702 0.5665720 62.635045 0.4769569  11.655706 0.4193660
700.94718 -0.1147211 27.047588 0.4739006 6.1047986 0.4958934
81.168677 0.6594528 10.797621 0.5867927 1.9558493 0.6259546
35.782997 0.4120855 4.4186707 0.5455808 0.35808 1.0000000
69.370368 0.2784065 1.8164039 0.5122086 0.14538 1.0000000
11.019743 -1.1323360 0.60472662  0.5634847
13.119354 -0.3183287 0.22177225  0.5086430
2.1795111 1.1521180
2.5787978  -0.2682437
0.33572966  1.1098845
0.01149362  0.1584908
0.03414466  0.8674480
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The large basis set used for the non-relativistic calculations on CeF3 is a generalised
contracted basis (6/5/4). The segmented contracted version of this basis set has a contraction
scheme (71111111111111/411111111111/411111111). The exponents are:

s p d
7121549.6222689068 38721.5360558228 1881.4802231306
1066836.1110528151 9169.5926880411  567.9298975953

242815.0662528069 2975.8382621897  220.9456384930
68769.7728121559 1136.0392121282 96.9760903732
22430.1944243533 480.6783928634 45.6584543843

8095.3566097776 218.0917793407 22.2334898107
3156.6754216478 103.8749530994 11.0803429985
1309.7724035093 50.9471758500 5.4179508602
573.1901039615 24.4990532035 2.6010416880
262.2100204373 12.2351243729 1.2009713087
105.1504232151 5.8450607328 0.4455424946
48.3504035463 2.8737810094 0.1673383013
18.8411250551 1.3823894037
9.8329036622 0.5900448634
3.7822495042 0.2527148523
1.9392878691
0.5628688437
0.2732791999

The optimised Ce basis set used for the calculations on La2Hf207:Ce is a (18/15/12)
primitive basis generalised contracted to (6/5/4). The exponents are:

s p d
7121549.6222689068 38721.5360558228 1881.4802231306
1066836.1110528151 9169.5926880411  567.9298975953

242815.0662528069 2975.8382621897  220.9456384930
68769.7728121559 1136.0392121282 96.9760903732
22430.1944243533 480.6783928634 45.6584543843

8095.3566097776 218.0917793407 22.2334898107
3156.6754216478 103.8749530994 11.0803429985
1309.7724035093 50.9471758500 5.4179508602
573.1901039615 24.4990532035 2.6010416880
262.2100204373 12.2351243729 1.2009713087
105.1504232151 5.8450607328 0.4455424946
48.3504035463 2.8737810094 0.1673383013
18.8411250551 1.3823894037
9.8329036622 0.5900448634
3.7822495042 0.2527148523
1.9392878691
0.5628688437
0.2732791999
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Gaussian Basis Sets.

For the relativistic calculations on Ce complexes we have two generalised contracted basis
sets: One for the 4f states of Ce and one for the 5d states of Ce.
The basis set for the Ce 4f state is a (6/9/6/2//10/15/14/9/3) basis:

The large component:

S P d f
7122983.0136677921 36650.1839543551 1264.9795101488 97.5207000582
1067016.0452476069 8681.8700585044  534.6226345412 47.4547875705

242845.4536522813 2817.9811327393  232.0759812242 22.7512931226
68769.1073868605 1075.5062283196  100.2148787853 11.2932647708
22416.9110784454 454.6457571109 45.7843185941 5.3962322067

8067.5148966666 205.7345225768 21.5187619008 2.5798454384
3115.7246632465 97.5207000582 10.3177504293 1.2105858409
1264.9795101488 47.4547875705 4.7560161167 0.5009954029
534.6226345412 22.7512931226 2.1478653846
232.0759812242 11.2932647708 0.8951611900
100.2148787853 5.3962322067 0.3580800000
45.7843185941 2.5798454384 0.1453800000
| 21.5187619008 1.2105858409
‘ 10.3177504293 0.5009954029
| 4.7560161167 0.2175075105
| 2.1478653846
0.8951611900
0.3331657429
’ The small component:

S d f

36650.1839543551  7122983.0136677921 36650.1839543551 1264.9795101488

8681.8700585044 1067016.0452476069 8681.8700585044 534.6226345412
2817.9811327393 242845.4536522813 2817.9811327393 232.0759812242
1075.5062283196 68769.1073868605 1075.5062283196 100.2148787853
454.6457571109 22416.9110784454  454.6457571109 45.7843185941
205.7345225768 8067.5148966666  205.7345225768 21.5187619008
97.5207000582 3115.7246632465 97.5207000582 10.3177504293
47.4547875705 1264.9795101488 47.4547875705 4.7560161167
22.7512931226 534.6226345412 22.7512931226 2.1478653846
11.2932647708 232.0759812242 11.2932647708 0.8951611900
5.3962322067 100.2148787853 5.3962322067 0.3580800000
2.5798454384 45.7843185941 2.5798454384 0.1453800000
1.2105858409 21.5187619008 1.2105858409
0.5009954029 10.3177504293 0.5009954029
0.2175075105 4.3177504293 0.2175075105
2.1478653846
0.8951611900
0.3331657429
4.7560161167
0.3580800000
0.1453800000

g
97.5207000582
47.4547875705
22.7512931226
11.2932647708

5.3962322067
2.5798454384
1.2105858409
0.5009954029
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The basis set for the Ce 5d state is a (6/9/7//10/17/12/11) basis:

The large

component:

S

7122983.
1067016.
242845.
68769.
22416.
8067.
3115.
1264.
534.
232.
100.

45.

21.

10.

4.

2.
0.
0.

The small

S
36650.
8681.
2817.
1075.
454.
205.
97.
47.
22.
11.
5.

2
1
0.
0

0136677921
0452476069
4536522813
1073868605
9110784454
5148966666
7246632465
9795101488
6226345412
0759812242
2148787853
7843185941
5187619008
3177504293
7560161167
1478653846
8951611900
3331657429

component:

1839543551
8700585044
9811327393
5062283196
6457571109
7345225768
5207000582
4547875705
7512931226
2932647708
3962322067

.5798454384
.2105858409

5009954029

.2175075105

7122983.
1067016.
242845.
68769.
22416.
8067.
3115.
1264.

534

ODOROON N

P
.1839543551

.8700585044
.9811327393
.5062283196

.6457571109
.7345225768
.5207000582

.4547875705
.7512931226
.2932647708

.3962322067
.5798454384
.2105858409
.5009954029
.2175075105

0136677921
0452476069
4536522813
1073868605
9110784454
5148966666
7246632465
9795101488

.6226345412
232.
100.

45.

21.

10.
.3177504293
.1478653846
.8951611900
.3331657429
.7560161167
.3580800000
.1453800000

0759812242
2148787853
7843185941
5187619008
3177504293

1264.
534.
232.
100.

.7843185941

21.

10.

.7560161167

.1478653846

.8951611900

.3580800000

.1453800000

COON D

152

9795101488
6226345412
0759812242
2148787853

5187619008
3177504293

.1839543551
.8700585044
.9811327393
.5062283196
.6457571109
.7345225768
.5207000582
.4547875705
.7512931226
.2932647708
.3962322067
.5798454384
.2105858409
.5009954029
.2175075105

f

1264.
534.
232.
100.

45.
21.
10.

OO ON ™

9795101488
6226345412
0759812242
2148787853
7843185941
5187619008
3177504293

.7560161167
.1478653846
.8951611900
.3580800000
.1453800000




Gaussian Basis Sets.

Cobalt

The basis set used for the Co%* calculations of chapter 3 was an uncontracted basis set with
exponents:

The large component:

s P d
62215.5696176057  2353.5348831193 73.0866923680
9345.2500769493 557.7055230741 15.2920582492
2129.2831188329 179.5246950185 4.0752719620
604.5224630384 67.3635830398 1.0963960884
199.2452332807 27.4529129592
4.4780198649 11.7137001716
73.0866923680 4.7992484093
15.2920582492 2.0131290829
4.0752719620 0.8103996276

1.0963960884

The small component:

| S P d f
l 2353.5348831193 62215.5696176057 2353.5348831193 73.0866923680
| 557.7055230741 9345.2500769493 557.7055230741 15.2920582492
’ 179.5246950185 2129.2831188329 179.5246950185 4.0752719620
67.3635830398 604.5224630384 67.3635830398 1.0963960884
27.4529129592 199.2452332807 27.4529129592
11.7137001716 4.4780198649 11.7137001716
| 4.7992484093 73.0866923680 4.7992484093
; 2.0131250829 15.2920582492 2.0131290829
0.8103996276 4.0752719620 0.8103996276

i 1.0963960884

The Co basis used for the CoFg2- calculations was a generalised contracted basis
(5/513116/9/8/5):

The large component:

S P d

1084972.4046765571 2344.7803037885 84.1211960383
162536.2440878314 555.6471279394  25.1128634902
36991.6657512951 178.8630683156 9.1834004938
10477.4164326834 67.1082326484 3.7092623217
3418.4052294473 27.3476842044 1.4923545649
1234.4886328448 11.6614995468 0.5677846809

481.3642010999 4.7724007891

198.7287460788 1.9906731303

20.7965155176 0.7986484906

0.3605114786
84.1211960383
25.1128634902

9.1834004938

3.7092623217

1.4923545649

0.5677846809
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The small component:

s p d f
2344.7803037885  1084972.4046765571 2344.7803037885 84.1211960383
555.6471279394 162536.2440878314  555.6471279394 25.1128634902
178.8630683156 36991.6657512951  178.8630683156 9.1834004938
67.1082326484 10477.4164326834 67.1082326484 3.7092623217
27.3476842044 3418.4052294473 27.3476842044 1.4923545649
11.6614995468 1234.4886328448 11.6614995468 0.5677846809
4.7724007891 481.3642010999 4.7724007891
1.9906731303 198.7287460788 1.9906731303
0.7986484906 20.7965155176 0.7986484906

0.3605114786
84.1211960383
25.1128634902

9.1834004938

3.7092623217

1.4923545649

0.5677846809

Fluorine

The small basis used for the non-relativistic CeF; calculations is a segmented contracted
basis. The contraction scheme is (43/6)::

5 p

1040.68625 0.01392338 51.500717 0.013513

156.68433 0.1333205 10.482701 0.093476

35.119879 0.4609976 3.01404 0.283429

9.2932511 0.5266653 0.96196 0.423782

13.989198 -0.0797469 0.30107 0.360588

1.1622875 0.5838995 0.08567 0.148650
0.32317710 0.5075939

The large basis set used in the non-relativistic calculations on CeF3 is a generalised
contracted basis set: contraction (3/3). The segmented contracted version of this basis has a
contraction scheme (41111111/3111). The exponents are:

s P
39243.7115248981 70.2683391067
5882.4388067934 16.2059373641
1338.8040554062 4.9233191247
379.0446309700 1.6536950565
123.4595333588 0.5344070759
44.2793910224 0.1702177393
16.9803544817
6.7201653343
1.8657300048
0.7051905664
0.24%0032869
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The basis set for F used in the CoFg¢? calculations is a generalised contracted basis set
(3/2113/4/4):

The large component:

§ P
18648.5000000000 63.1253000000
2790.7700000000 14.5012000000
633.2580000000 4.3823300000
178.5990000000 1.4535500000
57.7896000000 0.4632370000
20.4555000000 0.1265780000
7.5879600000
1.9921300000
0.7498540000
0.2418450000
| The small component:
| s p d
| 63.1253000000 18648.5000000000 63.1253000000
14.5012000000 2790.7700000000 14.5012000000
4.3823300000 633.2580000000 4.3823300000
1.4535500000 178.5990000000 1.4535500000
0.4632370000 57.7896000000 0.4632370000
0.1265780000 20.4555000000 0.1265780000
7.5879600000
1.9921300000
0.7498540000
0.2418450000

Hydrogen

The hydrogen basis set used for the SiH4 calculations of chapter 3 is given by:

Large component (only s). Contraction scheme (411):
79.99016053  0.00625958

11.96435285 0.04808010
2.72256964 0.23531523
0.77282765 0.78728941
0.25176829 1.00000000
0.08842324 1.00000000

Small component (only p). Contraction scheme (111111):

79.99016053 0.00625958
11.96435285 0.04808010
2.72256964 0.23531523
0.77282765 0.78728941
0.25176829 1.00000000
0.08842324 1.00000000

The hydrogen basis used for LSO geometry optimisation in chapter 6 is a segmented

contracted basis. The contraction scheme is (31). The s exponents and coefficients are:
13.0077 0.0334946

1.96208 0.234727
0.444529 0.813757
0.121949 1.00000
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Lanthanum

The small basis for the non-relativistic calculations
contraction scheme is (4322211/42211/411):

§ p
48846.811 0.0165911 2295.9512 0
7365.8806 0.1166332  542.48305 0
1675.5336 0.4306097  171.19443 0
453.55232 0.5667209 60.188384 0
677.09644 -0.1144920 25.926240 0
78.087338 0.6617722 10.320874 0.
34.316216 0.4097463 4.1960854 0
66.862944 -0.2765479 1.7284006 0
10.54276 1.1308920 0.578104959 0
12.493048 -0.3177556 0.21024956 0
2.0741487 1.1518320
2.4094278  -0.2825104
0.32338676  1.1171017
0.03249189  0.8897142
0.01110070  0.1319676
Oxygen

is a segmented contracted basis. The

d

.0245181 284.32638 0.0383258
.1655263 83.404867 0.2205760
.4924502 29.88067 0.526605

.4765061 11.067873 0.4192390
.4733901 5.7627901 0.4944886
5876312 1.8441223 0.6274833
.5434560

.5141018

.5750222

.4963662

The oxygen basis used in the La;Hf;07 calculations was a generalised contracted basis (3/3):

s p
30981.0743119833 58.9814848490
4643.8494004933 13.6047228266
1056.8887521234 4.1423308854
299.2076357282 1.4319091422
97.4257362706 0.4508167866
34.9007528983 0.1258026030

13.3443281743
.2577055221
.4794939557
.4997855928
.1874811510

cComru;

The small basis set used for the non-relativistic calculations is a segmented contracted basis.

The contraction scheme is (721/511):

S P
10334.736 0.0008449 117.21023 0
1500.3950 0.0067550 26.967137 0
337.95497 0.0343071 8.3338649 0
96.051304 0.1250896 2.9811654 0
31.613952 0.3167742 1.1284031 0
11.423798 0.4533328 0.42167369 o]
4.3012501 0.2144500 0.15059051 ]
10.195221 -0.0837570
0.93361357 0.5751097
0.2853772 0.5103155
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.0022198
.0172064
.0750846
.2122762
.3725583
.3985842
.1832060




The exponents of the oxygen basis for the relativistic calculations are given by:

The large component:

14362.
2154.
490.
138,
44.
15.

5.

1
0.
0

N

1300000000
8458000000
3337000000
5686000000
8513000000
8495000000
8637000000
.4900000000
5612000000
.1813000000

The small component:

47.
10.
3.

Silicon

1
0.
0

S

5925000000
8657000000
2595000000
.0756000000
3412000000
.0927000000

.68000000
.04000000
.77100000
.52970000
.92260000
.79819000
.38782000
.51901000
.05572300
.48263400
.25209220
.09239991

FRRRPRPRRRPROOCOO

47.
10.

ook W

P

5925000000
8657000000
.2595000000
.0756000000
.3412000000
.0927000000

P

14362.

2154.

490.
138.
.8513000000
.8495000000
.8637000000
.4900000000
.5612000000
.1813000000

.00026600
.00206200
.01068300
.04313300
.00000000
00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.00000000

1300000000
8458000000
3337000000
5686000000

The basis set used for the calculations on SiHy:
The large component (411111111/311111):

.67640000
.63921000
.21085000
.38255100
.17439900
.21318400
.29112340
.08185835
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.5925000000
.8657000000
.2595000000
.0756000000
.3412000000
.0927000000

.00399403
.03038483
.12913868
.00000000
.00000000
.00000000
.00000000
.00000000
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X A.

The small component (uncontracted):

.67640000
.63921000
.21085000
.38255100
.17439900
.21318400
.29112340
.08185835

P

79939.68000000
11984.04000000
2727.77100000

772.52970000
251.92260000
90.79819000
35.38782000
14.51901000

OO

.05572300
. 48263400
.25209220
.09239991

312.
73.
23.

.38255100

.17439900

.21318400

.29112340

.08185835

OO W

67640000
63921000
21085000

The small silicon basis set used for the LSO calculations has a contraction scheme
(5321/5111). The exponents and coefficients are:

6786.
1016.
231.
64.
19.
34.

CSCOoORrRFW

Strontiu

S
309800000
116600000
120870000
952409000
979195000
660741000

.578301500
.313344100
.747735700
.231076670
.084704400

m

[=ReReloNoleNoRoNaNalw]

.005756800
.043234100
.180615800
.481376800
.422399400
.094264800
.581338500
.493979600
.163132800
.664368500
.440739600

164.
38.
11.

.918351900

.331111500

.059495550

.450291010

.163855210

p

137020000
016534000
643929000

.011682300
.081133000
.283100800
.501015700
.335466100
.315862000
.259818300
.555270400

COOO0OOO0O0OQ

The small basis set used for the calculations on SrCl; is a segmented contracted basis set. The
contraction scheme is (4332111/4321/31). The basis is given by:

21296.
3209.
727.
196.
293.
33.
14.
25.

OCOOOWER

967
8256
91698
09818
22238
290922
124638
870075

.4541813
.9740548
.1023461
.61550194
.27245235
.03

.01

PFRPOOODODOQCOOOQCOOOC

.0168869
.1186841
.4354442
.5610052
.1113119
.6447398
.4276644
.2475516
. 7651154
.3740287
.2780315
.7270601
.4354796
.0000000
.0000000

932.
219.
68.
23.
10.
.3530597
.8377163
.94147585
.38674626
.16315313

OOOR ™

62089
09499
182401
397862
702446
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.0263411
.1740745
.5004686
.4654344
.3339042
.5649084
.1984297
.4359256
.5360821
.1154534

OO0 OOO

82.058787

23.102868
7.6585784
2.4975601

d

0.0540576
0.2701788
0.5355593
0.3939006




Appendix B

Expressions for the Second Derivative
of the Total Energy

In section 3.3 expressions were derived for the second derivative of the total energy with
respect to the quantity X. In that section only the real components of the derivative were
given. For the sake of completeness we give here also the imaginary components of the
second derivative:

| Ejly = -2Re(FG )5, +2 Re(Fg)sab +

1
2{2{tm(ai)|m(bj)) - Re(ib]ja) - (iflba))}
Bl ={(1-1)-Re(EY )+ 2¢ -Re(FQ)15,,, +
2
2f -{2(Im(ai)tm(bp)) - Re((ib]pa) - (iplba))}
Bty =—{2(1- 1) Re(FY) +£- Re(F,)}5; +
3
2(1-f)- {2(Im(ai)”Im(pj)) -~ Re((ip"ja) - (ij“pa))}
Ejpg = 20 Re(FQ )8, + 2f - Re(F, )3, +
4
2af* - {2(1m(ap)im(bq)) - Ref(pblaa) - (aplab))}
EfL = {(1 ~f)-Re(FY ) f- Re(Fg)}apq +
5

2£(1 - af)-{2(Im(ap)|im(qi)) - Re((pqlia) - (ip]aq))}
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EjlL =-2(1-1)- Re(Ff,"q)asij +2(1-1)- Re(Fi‘;V)Spq +

2121+ at?) - 2(1m(pifm(a)) - Re((ails)  (ilpa))}

ErRI 2Im(F§b)5ij + ZIm(FS)Sab +

2{2(Re(ai)"lm( jb)) - Im((ib“ja) + (ji||ab))}

E7RL ={(1- 1) Im(EY ) + 26 - 1m(FQ) 3,5 +

21 -{2(Re(ai)|im(pb)) - Im((ibpa) + (pileb))}

BRI = {2(1 —f)-Im(Fyp )+ Im(F?p)}5ij +

2(1- 1) {2(Re(ai)|im(jp)) - Im{(ip|ja) + (iilap))}

Bl =26 1m(F )8y + 26 - Tm(FR, )81 +

2af? . {Z(Re(ap)nlm(qb)) - Im((pbllqa) + (qpilab))}

e5kd {01 (e -

2f(1-af)- {Z(Re(ap)ﬂlm(iq)) - Im((qp“ai) + (pi||qa))}

i =
2(1-2f +af?)- {2(Re(pi)|im(ja)) - Im((ialip) + (ila))

BRI Z (1) Im(F&’])Sij +2(1-1)- Im(Fﬁv )Spq +

—t

»ILR _ p#R,1
Epia = Eaipj etc
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Samenvatting

Elektronische Structuurberekeningen
aan Cerium-Houdende Kristallen

Detectoren voor straling worden in onze samenleving steeds meer gebruikt. In het dagelijkse
leven worden detectoren voor infrarood licht gebruikt in inbraak-alarmen,
afstandsbedieningen en diverse draadloze apparaten. Detectoren voor zichtbaar licht worden
gebruikt in videocameras en elektronische afbeeldings-systemen. In de industrie worden
detectoren voor gamma-straling en rontgenstraling gebruikt voor proces-controle en voor de
analyse van produkten en monsters. In de medische wereld worden detectoren voor gamma-
straling en rontgenstraling gebruikt voor zogenaamde tracing technieken en voor afbeeldings-
systemen. In de hoge-energie fysica worden detectoren voor alle mogelijke soorten straling
gebruikt voor de analyse van de produkten van botsingsexperimenten met behulp van
elementaire deeltjes.

Er zijn verschillende manieren om straling te detecteren, enigszins afhankelijk van de soort
straling die gedetecteerd dient te worden. De detectie van zogenaamde harde gamma- en
rontgenstraling wordt voornamelijk gedaan met behulp van scintillatoren.

Scintillatoren zijn materialen die licht vitzenden als ze worden geraakt door ioniserende
straling. Het uitgezonden licht kan vervolgens worden gedetecteerd met behulp van een
photomultiplicatorbuis of een fotodiode.

De eisen die worden gesteld aan een detector kunnen per toepassing sterk verschillen. Als
gevolg daarvan zullen de eisen die worden gesteld aan de scintillator ook sterk per toepassing
verschillen. Mede hierdoor wordt er steeds gezocht naar nieuwe scintillatoren, in de hoop dat
voor iedere mogelijke toepassing steeds betere scintillatoren beschikbaar komen. Een grondig
theoretisch begrip van de werking van scintillatoren zou deze zoektocht enorm helpen.

De werking van een scintillator is nogal ingewikkeld. We kunnen echter drie verschillende
stadia onderscheiden in het scintillatieproces:

i) Het ontstaan van elektron-gat paren door de interactie van de ioniserende straling
met het kristal.
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ii) De migratie van deze vrije elektronen en gaten door het kristal.
iii) De recombinatie van een elektron en een gat op een luminicentiecentrum in het
kristal, onder uitzending van licht.

In dit proefschrift bestuderen wij het derde stadium van het scintillatieproces. Wij kijken
verder uitsluitend naar ionogene materialen die cerium bevatten. In deze materialen treedt
cerium doorgaans op als luminicentiecentrum. Het cerium ion vangt een elektron en een gat
in en wordt daardoor in een aangeslagen toestand gebracht, Het vervalt vervolgens via een
elektrische dipool overgang, onder uitzending van een foton.

Het cerium ion vervalt van een Ce3+ 5d)! toestand naar een Ce3+4f)! toestand. Verder wordt
aangenomen dat de positie van het Ce 4f niveau ten opzichte van de valentieband en de
positie van de Ce 5d niveaus ten opzichte van de geleidingsband bepalen hoe efficient cerium
in staat is een gat of een elektron in te vangen.

Het werk beschreven in dit proefschrift is erop gericht de posities van de Ce 4f en 5d niveaus
ten opzichte van de valentieband uit te rekenen.

We beschrijven het systeem met een cluster van ionen, ingebed in een verzameling
puntladingen, die de Madelung-potentiaal emuleren.

Omdat cerium een tamelijk zwaar atoom is, verwachten wij dat relativistische effecten
belangrijk zijn. De berekeningen zouden dan ook bij voorkeur dienen te worden uitgevoerd
binnen een relativistisch rekenmodel. In de vakgroep Theoretische Chemie van de
Rijksuniversiteit Groningen is een programmapakket ontwikkeld met de naam MOLFDIR.
Dit pakket is in staat relativistisch correcte Hartree-Fock-Dirac berekeningen te doen aan
willekeurige moleculen. Omdat onze clusters vrij groot zijn en een vrij lage puntgroep
symmetrie hebben, was het beslag dat het MOLFDIR pakket legde op de beschikbare
computerfaciliteiten dermate groot dat de berekeningen vaak onmogelijk waren. We hebben
toen besloten om het MOLFDIR pakket efficienter te maken.

Optimalisatie van het MOLFDIR Pakket

We hebben een aantal convergentieversnellers geimplementeerd in het SCF gedeelte van het
MOLFDIR pakket: Dempen op de dichtheid, Aitken extrapolatie, Pople's extrapolatie, DIIS
en een gedeeltelijke implementatie van de QCSCF methode. De testen die nitgevoerd werden
met deze methodes laten zien dat 'dempen op de dichtheid' om een initi€le convergentie van
ten minste 10-2 op de dichtheid te bereiken, gevolgd door de DIIS methode bijna altijd
superieure resultaten geeft. De convergentie was in alle gevallen minimaal drie maal zo snel
als die van het oorspronkelijke programma, terwijl de overhead van de DIIS procedure
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minimaal was. De andere convergentieversnellers hadden allemaal wel systemen waarvoor ze
het goed deden, maar ze waren minder betrouwbaar en deden het gemiddeld aanzienlijk
minder goed dan de DIIS procedure.

Het tweede dat we hebben gedaan om het MOLFDIR pakket efficienter te maken, is
onderzoeken of we een nog beter gebruik konden maken van symmetrie. Dit blijkt inderdaad
te kunnen, maar levert niet zoveel besparingen op als we hadden gehoopt. Dit wordt
veroorzaakt door het feit dat bij de dubbelgroepen met een oneven hoofdas de matrix-
representaties voor de irreduceerbare representaties niet zo kunnen worden gedefinieerd dat

alle integralen reéel blijven. De implementatie van het nieuwe integralen schema is nog niet
af.

Resultaten van de Berekeningen

Na deze optimalisaties hebben we aantal fluorides, oxides en chlorides onderzocht. Voor deze
onderzoekingen hebben we een combinatie gebruikt van niet-relativistische berekeningen,
waarbij, in een aantal gevallen, de binnen-elektronen van de ionen werd beschreven door
effectieve potentialen, waarin relativistische effecten zijn verwerkt, en relativistische
berekeningen.

De resultaten van deze berekeningen laten duidelijk zien dat de volledig relativistische
Hartree-Fock-Dirac berekeningen het beste zijn wat we op dit moment kunnen doen. Dit is
vooral zichtbaar in de berekende positie van het Ce 4f niveau, en dus ook in de berekende Ce
4f - 5d overgangsenergie. De opsplitsing van de Ce 5d niveaus blijkt slechts marginaal te
worden beinvloed door relativistische effecten en wordt dus al goed beschreven door de niet-
relativistische Hartree-Fock methode.

Hartree-Fock-Dirac berekeningen zijn echter niet altijd mogelijk, vanwege het enorme beslag
dat ze leggen op de computerfaciliteiten. Het enige realistische alternatief dat we dan tot onze
beschikking hebben is het doen van een niet-relativistische Hartree-Fock berekening, waarbij
we de binnen-elektronen van de ionen beschrijven met een effectieve potentiaal, waarin de
relativistische effecten voor de binnen-elektronen zijn verwerkt. Deze berekeningen geven
veel betere resultaten dan "pure” niet-relativistische Hartree-Fock berekeningen, maar
schieten toch nog te kort ten opzichte van de Hartree-Fock-Dirac berekeningen. Voor het
vrije Ce3* ion maken we met de effectieve potentialen een fout van 0,9 eV in de positie van
het 4f niveau.
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De Fluorides

De berekeningen aan de fluorides laten goede resultaten zien.

Voor CeF; kunnen we de Ce 5d opsplitsing goed uitrekenen. De resultaten voor de VB - Ce
4f afstand en de Ce 4f - 5d afstand zijn iets minder nauwkeurig, vanwege de fout die we
maken door het gebruik van de effectieve potentialen. Toch is voor alle resultaten de fout ten
opzichte van het experiment kleiner dan 0,4 eV.

In LiBaF3:Ce verwachten we grote roosterrelaxaties na het dopen met cerium. Door een
geschikte clusterkeuze kunnen we deze relaxatie uitrekenen. De daaruit voortkomende Ce 5d
opsplitsing stemt goed overeen met de experimentele resultaten. Daaruit kunnen we de
conclusie trekken dat onze voorspelling voor de roosterrelaxatie ook correct is.

De resultaten voor LiLuF4:Ce zijn redelijk. Ook in dit materiaal verwachten wij grote
roosterrelaxaties na het dopen met cerium. Afgaande op de experimentele resultaten wordt de
originele S; puntgroep symmetrie van de cerium positie door de roosterrelaxatie (of door een
Jahn-Teller vervorming) verbroken. Een betrouwbare geometrie-optimalisatie, zonder
symmetrierestricties is op dit moment niet haalbaar, dus we waren niet in staat om een correct
Ce 5d spectrum uit te rekenen. We konden echter wel de totale opsplitsing correct uitrekenen
door gebruik te maken van een geometrie-optimalisatie die de S4 symmetrie intact liet.

De Chlorides

De resultaten voor de chlorides zijn wat minder goed dan die voor de fluorides. Dit wordt
veroorzaakt door de grote ionradius en de grote polariseerbaarheid van chloor. De resultaten
zijn echter nog steeds redelijk.

Voor SrCl;:Ce zijn we in staat om een redelijke schatting te geven van de roosterrelaxatie ten
gevolge van het dopen met cerium. De schatting werd gemaakt met behulp van het
programma HADES. Gegeven de onzekerheden die aan deze HADES-berekeningen kleven,
is de overeenstemming van de berekende Ce 5d opsplitising met het experiment vrij goed.
Voor de andere berekende observabelen, zoals de posities van de ceriumniveaus ten opzichte
van de valentieband, zijn geen experimentele gegevens beschikbaar.

Voor CeCl; is er een goede overeenkomst tussen theorie en experiment voor de bandgap, de
VB - Ce 4f afstand en voor de Ce 4f - 5d afstand. De fout in de berekende waarden is in alle
gevallen kleiner dan 0,4 eV. Dit is een goed resultaat als bedacht wordt dat de berekeningen
slechts semi-relativistisch waren. De Ce 5d opsplitsing in CeCl; blijft een probleem. De
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berekende waarde is meer dan twee maal zo klein als de experimentele. Aangezien er wat
twijfel bestaat ten aanzien van de correctheid van het experimentele absorptie-spectrum van
CeCl; is het wenselijk dat er een tweede onafhankelijk absorptie of luminicentie-excitatie
experiment voor CeCls, of nog beter LaCl;:Ce wordt gedaan.

De Oxides

De berekeningen aan de oxides gaven serieuze problemen en de resultaten waren niet altijd
bruikbaar. Door een goede doordachte keuze van de clusters en de basissets kunnen echter
ook in dit geval redelijke resultaten worden verkregen. De problemen met de oxides worden
voor een deel veroorzaakt door de noodzaak erg diffuse basissets te gebruiken om de 02
ionen mee te kunnen beschrijven. Deze diffuse zuurstoffuncties reiken tot ver over de
clusterrand in het gebied waar de puntladingen liggen, die de Madelung-potentiaal genereren.
Hierdoor voelen deze diffuse functies een potentiaal en een veld, die sterk afwijken van de
kristalpotentiaal en het kristalveld. Hierdoor ontstaan kunstmatig laag liggende
zuurstofniveaus in de bandgap van het kristal. Deze laag liggende zuurstofniveaus hinderen
het vinden van de Ce 5d niveaus en de bodem van de geleidingsband. Een andere oorzaak
voor de problemen is gelegen in de, in het algemeen, lage symmetrie van de oxides en het feit
dat cerium doorgaans een ion vervangt met een veel kleinere ionstraal.

Ondanks deze problemen waren we in staat om redelijk lijkende resultaten te vinden voor
LayHf>07:Ce. Het is nog niet mogelijk deze resultaten te vergelijken met het experiment.

LSO:Ce is een zeer ingewikkeld materiaal vanwege zijn lage symmetrie. De lutetium posities
hebben slechts C; puntgroep symmetrie. De observabelen van het zuivere gastmateriaal
kunnen met een redelijke nauwkeurigheid worden berekend. De bandgap en de breedtes van
de valentieband en de Lu 4f band komen redelijk overeen met de experimentele resultaten.
De berekeningen aan het systeem met de cerium onzuiverheid zijn minder nauwkeurig. Dit
ligt voor een groot deel aan het feit dat we niet in staat waren een betrouwbare schatting te
maken voor de roosterrelaxatie. Ondanks dat is de vergelijking tussen het berekende en het
experimentele absorpticspectrum niet al te slecht. De fout in de berekende laagste Ce 4f -> 5d
overgang is kleiner dan 0,4 eV (10%).

Onze volledig relativistische berekening aan kubisch CeAlQO3 laat zien dat de resultaten van
berekeningen aan oxides net zo nauwkeurig kunnen zijn als die van berekeningen aan
fluorides. Alle berekende waarden komen goed overeen met de experimentele waarden. De
cerium positie in kubisch CeAlO; heeft een hoge puntgroep symmetrie (Oy) en de Ce - O

165



Samenvatting.

afstand is groot (2,65 ;\). Als aan deze voorwaarden is voldaan kunnen we blijkbaar goede
nauwkeurige resultaten behalen voor oxides.

De Hoofdconclusie

Concluderend kunnen we zeggen dat onze procedure om de posities van lokale
ceriumniveaus ten opzichte van de valentieband uit te rekenen redelijk goede resultaten geeft.
In veel gevallen waren we in staat om de niveaus te voorspellen met een fout kleiner dan 0,5
eV.

Onze clusters zijn vrij klein en slecht ingebed in het rooster. Dit kan tot problemen leiden.
Voor clusters met een lage puntgroep symmetrie en zeer diffuse functies op de liganden zijn
de problemen het grootst.
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